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1 Introduction

Distance sampling (Buckland et al., 1993) defines a suite of methods for estimating the
abundance of objects, usually animals, in a study area. An observer stands at a point or
travels along a line, counting the number of objects observed and recording their distances
from the line or point. Detectability is assumed to diminish with increasing distance, so
the observed object distances are modelled to estimate a detection function. Using the de-
tection function, the true object abundance can be inferred from the detected abundance.

The most popular approach to distance sampling is line transect sampling.

Distance sampling can be used for a wide range of wildlife applications, and can be based
either on counts of the animals themselves, or on cues such as nests or dung piles. The
methods are relatively inexpensive to apply, and the assumptions involved are often easily
met by good design. For these reasons, distance sampling techniques are used extensively
in practice. However, the validity of the methods and estimators was called into question
in a recent paper by Barry and Welsh (2001). If their analysis is correct, distance sampling
methods have limited value to practitioners. Because so many wildlife managers currently
rely on the methods, it is important to evaluate the results of Barry and Welsh. Like them,

we focus on line transect sampling, although the issues for point transects are similar.

1.1 Background and notation

Let A be a study area, containing an unknown number N of objects. For most of our
analyses, we use a rectangular study area with a corner at the origin: A = [0,4] x [0, 1].
The area of A is written |A|. The true density of objects in the area, which we wish to

estimate, is A = N/|A|.

We estimate A by surveying m line transects. Following Barry and Welsh, in most of our
analyses transect ¢ is the line y = u;, and the length of the transect is ¢; = £. This means
that each transect covers the whole horizontal extent of A, so only the y-coordinates of

the objects are important. The N objects have y—coordinates yi,...,yn.

In surveying a transect, we establish a search strip of width w to either side of the transect.
(w is sometimes called the half-width of the strip.) Objects within the search strip can
be detected, but objects outside the strip are considered too far away and are ignored if

seen. A total of n; objects is detected from transect ¢, so the total number of detections



is n = Y1 n;. The recorded data are ny,...,n,,, together with each distance |y; — u;| of

a detected object from the appropriate transect line.

The detection function, g(r,#), is the probability that an object is detected, given that
it is located at distance r from the transect line. Detectability is zero outside the search
strip, so g(r,0) = 0 if |r| > w. A function is proposed for g, parametrized by 6, and 0 is
estimated from the observed distance data. One possibility is the half-normal detection
function, g(r,0) = exp {—r%/(20?)} I(r < w), where I(-) is the usual indicator. A key
assumption of basic distance sampling is that ¢(0,0) = 1, so all objects directly on the

transect line are detected. It is also assumed that g(—r,0) = g(r, ).
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If the distribution of object distances from the transect line is uniform across the search
strip, then gy is the probability that an object is detected, given that it is in the strip.
Suppose that the detection function parameter 6 is known. The basic distance sampling

estimator of object density from m transects is

A - n
T 2wmgy
This can be interpreted as estimating the total number of objects in the m search strips by

n/gy, and scaling by the total area surveyed, 2¢wm, to estimate the overall object density.

If the detection parameter is not known, we estimate it by 6 and use density estimator A=
n/ (2lwmgy) . Maximum likelihood is used to obtain 0. Let f(r,0) be the p.d.f. of distances
of detected objects: then f(r,#)dr is the probability that the distance of a detected object
from the transect line is in the interval (r, 7+dr). Using elementary probability arguments,
we obtain f(r,0) = g(r,0)/(wgg) if object distances are uniformly distributed across the
search strip. We can therefore maximize the log-likelihood 3 7_; log {g(r;,0)/(wgp)} to
obtain é, where r; is the observed distance of the jth detected object from the transect

line.

1.2 Assumptions

In the derivation above, we made assumptions that g(—r,0) = g(r,@); that ¢(0,0) = 1;
that the distribution of object distances across the search strip is uniform; and that ob-

jects are detected independently of each other. The first assumption is generally accepted.



The second is reasonable for many animal populations, but is problematic in some cir-
cumstances, for example marine surveys of diving animals or ground surveys of birds in
high canopies. If we cannot assume that g(0,0) = 1, a more advanced distance sampling

scheme is required, such as the double platform designs of Borchers et al. (1998).

The assumption that object distances are uniformly distributed across the search strip is
stronger than necessary, as the same derivation holds if the p.d.f. is linear. We investigate
this issue in more detail in Section 3. For the fourth assumption, violation of independence

has limited effect on density estimation, but it can affect variance estimators.

A further assumption of distance sampling is that objects should be detected at their initial
locations, before there is any movement in response to the observer. Careful attention to
field methods is required to meet this assumption, and a more advanced sampling scheme
may be necessary if responsive movement cannot be eliminated. Counting a moving object

repeatedly from the same transect will also cause bias.

In addition to the theoretical assumptions, the performance of the method can be greatly
enhanced by following some basic rules of survey design. Buckland et al. (2001) recommend
that the number of transect lines m is at least 10 to 20, to ensure good coverage and
improve estimates of variance. They suggest that at least n = 60 to 80 observations are
made before the detection function is estimated. If a substantial gradient in object density
is known to occur across A, transects should be placed parallel to the gradient to make
the coverage more representative. This often happens in marine surveys, where animal
density changes along transects perpendicular to the coastline. The placement of transect
lines should be random with respect to the object distribution, and use of roads or tracks

as transect lines should be avoided.

1.3 Inferential framework

Barry and Welsh introduced two frameworks for evaluating the distance sampling esti-
mators. The first is the design-based framework, in which the positions y1,...,yn of the
N objects are regarded as fixed. The randomness in the estimation of A and var(A) is
due to the design, namely the positions uq,...,u, of the m transects. The second is
the model-based framework, in which the transect position w is fixed, and randomness is

due to the object positions y1,...,yn. Objects are assumed to be distributed across A

according to some probability density function k(y).



In both the model-based and design-based frameworks, Barry and Welsh investigated the
bias of A, 9, and various variance estimators. However, their investigations were flawed in
two main respects. In the design-based framework, they used a design that did not provide
representative coverage of the area A. Not surprisingly, this caused bias in the results. In
the model-based framework, they fixed the transect positions in an unrepresentative region
of A, and attempted to extrapolate their density estimates to the whole of A. Again, this

was an unreasonable approach that understandably produced poor results.

Our approach to evaluating the estimators differs a little from that of Barry and Welsh,
although we make use of both frameworks and build on many of their ideas. The philosophy
behind distance sampling is twofold. Firstly, object density is modelled within an indi-
vidual search strip, to obtain a density A; = n;/ (2wfg,) within that strip. Secondly, the
m search strips are assumed to form a representative subset of A, which enables us to

construct the overall density estimate of A =n/ (2wlmgy).

To evaluate the estimators, we need to make rigorous the definition of a representative
design that validates the second of these steps. We do this in Section 2, where we conduct
the same design-based analyses of the estimators as Barry and Welsh. We show that
their design was unrepresentative, and that with respect to a representative design, the

estimators have the properties desired.

For the estimation of object density within a strip, we move to the model-based framework.
This enables us to investigate conditions on the object distribution within a strip that will
yield unbiased strip estimates of A and 6. If all strips satisfy the conditions for unbiased
within-strip density estimation, we can rely on a representative design with large m for
successful estimation of A in the whole area A. Our model-based analysis is performed
in Section 3. We also present results from a completely model-based framework in which
density is modelled across the whole of A, rather than relying on the representative nature

of the design.

Finally we examine the variance estimators. For these, it is inappropriate to confine
ourselves either to the model-based or the design-based framework, because the variability
in the estimator A has components due to both object distribution and transect location.
We investigate the properties of the traditional variance estimators in Section 4, and also

derive a new estimator.



2 Design-based analysis of A

2.1 Design-based analysis when the detection parameter is known

Suppose that the detection function g(r,0) and the parameter § are known. The study
area is A = [0,/] x [0,1], and we consider a single horizontal transect with length ¢ and
y-coordinate u. The density estimator from this transect is A = n/(2¢wgyg), where n is

the number of detections and gy = w™" [’ g(r, ) dr.

A is design-unbiased for A if EU(A |y) = A, where the expectation is taken over the
random transect position u, and conditions on the object positions y = (y1,...,yn)-
Whether or not A is design-unbiased depends upon the design. In the current framework,
with fixed length and orientation of transects, the design governs the distribution of u
and also specifies how to handle search strips that extend outside the area A. We are
only interested in the design-based properties of A with respect to designs that provide
representative coverage of the objects in A. We define this to mean that every object in

A has equal a priori probability of being sampled, before the transect position is known.

Barry and Welsh consider a design with u ~ UJ[0, 1], under which any parts of the search
strip [u — w,u + w] that lie outside of A are ignored. We shall call this a linear design
on [0,1]. The linear design is not representative, because when w < 0.5 the sampling
probability is lower for points y in [0,w] or in [1 — w, 1] than for points in [w,1 — w].
Similarly, for w > 0.5, points in [0,1 — w] or [w, 1] have lower sampling probability than
points in [1 — w,w]. Barry and Welsh use a number of different object configurations to
evaluate the properties of A under the linear design. Many of these place the majority of
objects into [1 — w, 1], so the effect of under-sampling of objects at the edges is extreme.
In part, this is the cause of the severe design bias that they report in A under the linear

design.

To obtain a representative design with u ~ U[0, 1], we must eliminate the problem of
under-sampling at the edges. This can be achieved by a circular design that conceptually
glues A onto the surface of a cylinder with the horizontal edges y = 0 and y = 1 joined.
Any part of the search strip lying beyond one edge of A reappears at the other edge.
As long as w < 0.5, this means that a transect position at u effectively establishes three
non-overlapping search strips, with centrelines at u — 1, u, and u + 1. We survey all parts

of the search strips that overlap with A.



We can readily show that the circular design is representative and A is design-unbiased

when w < 0.5. The a priori probability of detecting a point at position y is

min(y+w, 1) 1 max(0, y+w—1)
[ o(ly = ul.0) du + [o(ly—tu=1)}.0)du + | 9(ly =+ 1).6) du,
max(y—w, 0) min(y—w+1,1) 0

where the three terms correspond to the parts of A overlapping the three search strips.

y+w w
This reduces after appropriate changes of variable to / g(ly—rl,0)dr =2 / g(r,0)dr,
0

y—w
w
showing that every point y has equal probability 2 / g(r,0) dr of being sampled. We then
0

have

1
20wgy

N w

. 2N [y g(r,0)dr N
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3 w {I(object at y; detected)} 57 f(;” o(r.0) dr <1 ,

Ey (A) =

so the estimator A is design-unbiased.

If w > 0.5 we cannot use the circular design on [0, 1], because the edges of the search
strip overlap when wrapped around the notional cylinder. For a representative design
when w > 0.5, we can extend the sampled area to A’ = [0,/] x [% —w, % + w], and use
u ~ Ut —w, 3 +w]. The density in A’ is A’ = N/(2wl) = A/(2w). The search strip
now fits into the area A’ exactly, so by the working above we have E,(A’) = A’. Thus
Ey(A) = E,(2wA’) = 2wA’ = A, so the extended circular design is again unbiased for A.

The poor results for EU(A) /A in Table 1 of Barry and Welsh can be explained by two
effects that are corrected by the circular design. The first is the reduced sampling prob-
ability for objects y in [0, w] or [1 — w,1]. This effect causes underestimation of density
for w < 0.5 when the objects are concentrated in the edge regions: for example when
y ~ Beta(5,1), Beta(5, 0.5), or Beta(5, 0.25). The good results for y ~ Beta(3,3) occur

because this distribution focuses objects away from the edges.

The second problem is lack of attention to the area sampled. When w is large the search
strip [u — w, u + w] can extend substantially outside of the area A. As the density outside
A is zero, the object density in the sampled area is lower than A. This effect can be seen
from the entry in Table 1 of Barry and Welsh for # = 2, w = 1, and y ~ Beta(1,1). The
entry is EU(A) /A = 0.510. With these parameters, all objects lie in the search strip, and
most are detected, but the area sampled is twice the size of A and therefore the density

in the sampled region is half the intended density A. In this situation, either the area or



the density estimate should be amended before reporting results.

The design-unbiasedness of A with the circular design holds for any detection function and
any configuration of objects on [0,1]. In practice, a circular design may be inconvenient
to implement, because a search strip at one edge of A must be wrapped around to the
opposite edge. For an easy implementation, we can define a buffer zone of width w around
A, and survey the region A” = [0,4] x [~w,1 4+ w]. Any objects in the buffer zone are
ignored, so overall density is A” = N/[(1 + 2w)¢]. The sampling protocol for a circular
design on A" is identical to that for the more convenient linear design, because no objects
are recorded in the wrapped part of the search strip so we can simply ignore it. The

estimated density in A” is A”, which is adjusted to A = (1 + 2w)A".

In almost all real surveys, the design-based bias of A under the linear design is negligible.
Only when w is large compared with A, or most objects are concentrated at the edges of
A, does it become important to use a circular design or buffer zone. Even a strip width
of w = 0.05 (5% of the width of A) is large compared with likely values in the field.
Note also that, although A is design-unbiased for any set of objects in [0,1], the density
estimate from an individual transect will be most reliable if the transect is placed parallel
to the density gradient. For the extreme Beta distributions used by Barry and Welsh, the

transects occur at right angles to the density gradient, and the variance of A will be high.

2.2 Design-based analysis when the detection parameter is estimated

Barry and Welsh present an asymptotic analysis of the design-based properties of A when
the detection function is known only up to an unknown parameter 6. The sightings
data from which 6 is estimated are the distances r; of observed objects from the randomly
selected transect lines. The function crit(t) is defined as crit(t) = 3°7_; log {g(r;,t)/(wgt)}-
Under certain object distributions and independence of detections, crit(t) is the exact
log-likelihood function; otherwise it is an approximation. As the number of transects
m — 00, the strong law of large numbers states that crit(¢t) — E,, (crit(¢) | y). The quantity
0o(y) = arg max; {E, (crit(¢) |y)} is defined to be the maximum of the asymptotic log-
likelihood.

On the whole, the asymptotic design-based properties of A are of limited interest, as
the number of transects m is not usually large enough for asymptotic results to apply.
Nonetheless, under the circular design it can be shown that 6y(y) = 0 for any detection

function g, as long as g(r,0) = g(—r,0). This contrasts with the poor results in Table 2



of Barry and Welsh, which give 0y(y)/6 for the linear design.

When 6 is estimated, we can write A = A(0) = A(6y(y)) + (0 — 0o(y)) A/ (6p(y)) + .. ..
Using the circular design, we have 0y(y) = 6, from which the leading term approximation

to E,(A(0)) is E,(A(0)) = A. Again, this differs from the results in Table 3 of Barry and
Welsh for the linear design.

We return to the estimation of @ in greater detail in the model-based framework, where
an asymptotic treatment is more appropriate and the issues are more interesting. There,
we can establish conditions on the spatial distribution of objects that will ensure that 6
and A are asymptotically unbiased. Note that when 6 is estimated we do not expect in
either framework that A = n/ (2¢wg;) will be unbiased in a non-asymptotic sense, because

maximum likelihood estimation of # does not produce an unbiased estimate of 1/gg.

3 Model-based analysis of A

For a model-based analysis of the distance sampling estimators, we consider the effect
of object distribution when the transect position is fixed. For convenience, we place the
transect line at v = 0 and sample objects in the strip [—w, w]. This means we no longer
consider the area A, but restrict attention to the search strip only. We define k(y) to
be the p.d.f. of object positions in the strip, so [* k(y)dy = 1, and we aim to study

conditions on k(y) necessary for successful estimation of A in the strip.

Barry and Welsh present results of a similar model-based analysis in Tables 4 and 6 of their
paper, but their results are badly distorted by extrapolation of the strip density estimates
into the whole area A. With a fixed search strip, it is impossible to obtain an unbiased
estimate of the density in A unless the search strip is representative of A. The usual
philosophy of distance sampling is that each search strip should yield a model-unbiased
estimate of density within the strip, while the design ensures that the total region sampled
is representative of the overall area. Accordingly, in the model-based framework we focus
on density estimation within the strip alone. The properties of a representative design

were established in Section 2.

In Figure 1 we plot some of the configurations used by Barry and Welsh in their model-
based analysis, from which it is clear that the sampled areas are highly unrepresentative

of A. Such experiments do not tell us anything useful about desirable properties of k(y).



Note that in each of their configurations, the search strip could be made representative
of A by changing the orientation of the transect, as in Figure 1(d). Aligning the transect
parallel to the density gradient in this way is recommended by Buckland et al. (1993),
page b, Fig 1.4, and page 298.

3.1 Model-based analysis when the detection parameter is known

For simplicity, we take w = 1 and select a range of values for the detection parameter 0,
from 6 = w/4 (limited detection), to 6 > w (perfect detection). We study four different
shapes for k(y) on the strip y € [—1,1]: 1. Uniform, k(y) = 0.5; 2. Linear, k(y) =
0.5 + 0.25y; 3. N-Quadratic, k(y) = 0.6 — 0.3y?; 4. U-Quadratic, k(y) = % + 0.5y%. We
use the notation N-Quadratic to indicate a peaked quadratic shape, which might occur
in the field if there is responsive movement of animals towards the transect. Likewise,
U-Quadratic indicates a U-shaped quadratic that can represent responsive movement away
from the transect. We selected the functions for their shapes, so the exact specifications

are arbitrary. Figure 2 shows the four functions k(y) and the range of detection functions

considered.

Let A be the density within the search strip: then A = N/(2w/), where N is the number

of objects in the strip. The estimator is A = n/(2w/gg) as usual. If § is known, then

Ey(A) _ JZ19(lyl,0)k(y) dy
A 99 '

This ratio is tabulated in Table 1 for the various choices of k(y) and 8. When detection is
high, namely 8 > w, the ratio is approximately unity for each function k. This is because

go ~ 1, so the estimated number of objects is roughly equal to the observed number.

As detection decreases, bias appears for the quadratic object distributions but not for the
linear and uniform distributions. The bias arises for the quadratic distributions because
the object density changes beyond the part of the strip where the change can be properly
detected. To some extent this can be counteracted by truncating the observations to a
smaller value of w, but not entirely. The estimator still performs moderately well but the

bias is not negligible.

For linear and uniform object distributions, A will always be model-unbiased. In fact a
sufficient condition for model-unbiasedness is that k(—y)+k(y) is constant, or equivalently

that k(y) — k(0) is an odd function of y. The proof is straightforward. Firstly we note

10



that if k(—y) + k(y) = ¢, then the condition [* k(y)dy =1 forces ¢ = w'. Then

1.

Ey(A) U9yl Ok dy [ 9(y,0) {k(=y) +k(y)} dy _
A 90 w= fo" 9(y,0) dy

Intuitively, when k(—y) + k(y) is constant, an overabundance of objects on one side of the
line is exactly compensated for by an underabundance on the other side, so the overall

density estimate is correct.

The differing shapes for k(y) correspond to different situations in the field. Because the
width of the search strip is usually very small compared with that of the survey area (often
as little as 0.1%), any large-scale trends in object density over the survey area are likely
to appear approximately linear over the search strip. As long as there are no other factors
influencing density gradient across the strip, we have high confidence in the estimator A.
The large-scale changes in A across the survey area are allowed for by surveying several

strips, following a representative design.

When objects move in response to the presence of an observer, the object distribution
across the strip can become non-linear in such a way that k(—y) + k(y) is not constant.
This situation can be problematic. Issues of responsive movement are covered at length

in Buckland et al. (1993), for example pages 18-19 and pages 31-34.

3.2 Model-based analysis when the detection parameter is estimated

We now examine the asymptotic properties of A when the detection parameter 0 is es-
timated. Once again we restrict attention to a single strip of width w centred at u = 0.
There are N objects in the strip, at positions yi,...,yn. The sightings data are the object

positions y of detected objects. We use 6 for the true value of the detection parameter.

We define the function crit(t) as

N
: 9(ly;l,%) o
crit(t) .E* og ( T g(r,8) dr (object j detected),

where I(-) represents the usual indicator. If k(—y)+k(y) = constant = w~!, and sightings
are independent, then crit(¢) is the log-likelihood of the sightings data. The argument ¢
denotes the detection parameter. As k(-) is unknown, we use crit(¢) as the log-likelihood

for all object distributions.

11



Now as N — oo, crit(t) — E,(crit(¢)) by the strong law of large numbers. The detection

of object j involves the true detection parameter €, so we obtain

By (ciit®) = N [ g(151,6) log o1, 0} k(o) dy—N ([ 901l 0)k(w) dy ) o ([ gty ar)

If k(—y) + k(y) = constant = w~!, this becomes
Ey(crit(t)) = g/ﬂw 9(y,0) log{g(y,1)} dy — % (/Ow 9(y; 0)dy> log (/Ow g(r,t) d?") :

Differentiating with respect to ¢, we find that %Ey(crit(t)) ‘t:& = 0. Thus 6y, the maximum
of the asymptotic likelihood function, is equal to the true parameter 6. That is, for any
detection function g such that g(—r,t) = g(r,t), and for any object distribution & such
that k(—y) + k(y) = constant, we have

Oy = arg max Ey(crit(t)) = 6.

Expanding the estimator A(6) about 6y = 6, the leading term in Ey(A(é)) is Ey(A(O)) =
A. Tt follows that the estimator A is asymptotically unbiased when k(—y) + k(y) is

constant.

If k(—y) + k(y) is not constant, notably when there is responsive movement, the estimator
A is subject to the same problems as it is when @ is known. When responsive move-
ment is severe, practitioners should avoid using the uncorrected estimator A and consider

alternative approaches such as those suggested by Buckland and Turnock (1992).

3.3 Completely model-based approach

Suppose we again consider a large area A of which only a small region is sampled. We
have so far considered a design-based approach to density estimation in A, by randomly
selecting transects u; (i = 1,...,m) of length £. The density estimator for 4 is A =
Y iz1mi/(2lwmgy), where n; is the number of objects detected from transect i. Here we
investigate an alternative approach, suitable when there are large-scale trends in density
across A. We fix the transect positions, and explicitly model the density gradient. This
can be thought of as a completely model-based approach to distance sampling. We present
a simple simulation indicating that the approach can improve precision when the density

gradient across the region is substantial.

12



For the simulation we use A = [0, 1] x [0, 1]. We sample from m = 10 transects at positions
u = 0.05, 0.15,...,0.95, each with length ¢ = 1. The strip width is w = 0.005, so 10%
of the region is sampled, and for the true values of 8 we use § = 0.001, 0.002, 0.004,
and 0.006. The total number of objects in the region is N = 10000 to ensure reasonable
sample sizes for each transect, at least in the more regular object configurations. Object
configurations considered are y ~ Beta(1l, 1), Beta(3, 3), Beta(5, 2), and Beta(5, 1); we
omit the configurations Beta(5, 0.5) and Beta(5, 0.25) because these are so extreme that

the upper limit of the search region (u+w = 0.955) still misses half or more of the objects.

We estimate the detection parameter § by pooling sightings data from all ten search strips.
Density is estimated separately for each search strip, giving point estimates A(uz) =
ni/(2wlg;) where u; = 0.05,0.15,...,0.95. The full density gradient A(u) for u € [0,1] is
obtained by fitting an interpolating cubic spline to the ten point estimates, extrapolating
the output from v = 0.05 to v = 0 and from u = 0.95 to w = 1 by straight lines. The
estimate of overall density A is given by A = fulzo A(u) du. The true overall density is
A = 10000. The method requires w to be small enough for the density in the search strip

[u —w,u + w] to be a good estimate of the instantaneous density A(u).

Typical outputs for the four object configurations and 8 = 0.002 are shown in Figure 3. In
each case, positions of 10000 objects are generated from y ~ Beta(f1, 32), and sightings
are generated according to g(|ly — u;|,0) = exp{—(y — u;)?/(20*)} I(ly — w;| < w) for
1 =1,...,10. The interpolating spline method is successful when there is a clear density
gradient, as in parts (b), (c), and (d). In part (a), the true density is uniform across the
strip and the patterns in the spline curve are spurious. Linear extrapolation to u = 0 and

u = 1 can also be poor when the true density is uniform.

Table 2 summarizes results from 1000 simulations for each combination of 6 and (51, 82)-
A separate y vector is generated for each simulation. The table gives the mean and
standard deviation of the 1000 estimates of § and A /A after the interpolating spline has
been fitted. For comparison, the corresponding results from the design-based approach
are included, under a linear design on [0,1]. The design-based density estimate is A =
S0 n;/ (20wlgy). The choice of linear design is intentional because the circular correction

is generally unnecessary for realistic search strip dimensions.

The results suggest that both the completely model-based approach and the design-based
approach give unbiased estimates of A, but the model-based results have much lower

variance for the non-uniform object configurations. Both methods allow 6 to be estimated

13



with similar precision and no bias, except for # = 0.006 when high detectability can lead

to non-identifiability of §. The bias in 6 does not cause bias in A when this occurs.

We also investigated a more sophisticated model-based approach, in which a linear density

gradient was fitted within each search strip. The log-likelihood is:

m m; Ui+ w

> log {9(|yz‘j — u;l,0) (% + 7i(yij — uz')> }—gm log { / 9(|r—uil,0) (% +7i(r — Ui)) d?‘} ;

i=1j=1
Uj—W
where parameters 1, ..., ¥m govern the slope of the linear density gradient in the search
strips 1,...,m, and y;; is the jth sighting from transect 7. No improvement was found in
either A or 6 due to including the v parameters, even after increasing the strip width to

w = 0.05 with m = 5.

We conclude that a completely model-based approach with fixed transects, even with this
simplistic implementation, can lead to better precision than design-based placement of
transects. The use of distance sampling estimates to construct spatial models of object

distribution is considered by Hedley (2000).

4 Variance estimators

Returning to the usual distance sampling framework, we now look at estimating the vari-
ance of the estimator A. The customary analytic estimator for V&I‘(A) is based on the

delta method (Seber, 1982, pages 7-9). Following Barry and Welsh, we summarize this as

var(A) = A2 (ﬁ(n) + @(f°)> :

g

where n is the total number of sightings and fo = 1/ (wgs). Use of the delta method is
justified by Buckland et al. (1993), pages 53-54, and is valid if E(fy|n) = fo = 1/(wgy).
Alternatively, variance can be estimated by bootstrap methods (Buckland et al., 1993, page
94), which render this requirement unnecessary. If the delta method is used, however,
we need viable estimators for var(n) and var(fy). Here we restrict attention to these

estimators.

The recommended estimator for var( fo) is obtained by the usual Hessian method, and

will be valid as long as the sightings are independent and the p.d.f. of object distribution
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within each search strip satisfies k(—y) + k(y) = constant. This second condition ensures
that crit(¢) is the correct form for the log-likelihood function, and we consider it to be
a reasonable approximation to reality for most real surveys in the absence of responsive

movement.

The estimator recommended for var(n) by Buckland et al. (1993), pages 88 and 90, is

qn when m =1,
v, = L n; n\?2

— Y i — - = h 1.

m—lzg;Z(& L) when m >

Here, m is the number of transects surveyed, ¢; is the length of transect ¢, and L = Y%, ¢;
is the total transect length. When m = 1, the multiplier g is either ¢ = 1 or ¢ = 2 according
to the user’s choice, although in practice we recommend that surveys should be designed
with no fewer than ten transects. Before examining the properties of Vn, we establish the

framework and context of its derivation.

Suppose we have a large area A to be surveyed by m transects. The number of sightings,
n, depends upon the placement of transect lines, the random detection of objects within
the search strips, and the object density within the strips. An estimator for var(n) should
take into account all these sources of variability. We should not condition on either the
positions of the transect lines or the positions of the objects, as this would remove some of
the variability we aim to quantify. Focusing on either the model-based or the design-based
framework alone would therefore be inappropriate for var(n), so instead we consider an

unconditional framework.

The derivations that follow apply to any object distribution and any orientation of tran-
sects. Let & = (z,y) be a point in A, and suppose that search strip 7 has fixed length
£;, width w, and is centred on point x. Let A(x,4;) be the average object density
within the search strip, and n; be the number of objects detected in the strip. Now
n; ~ Binomial (N , M%M). For large N and a small search strip area 2w/;, this
becomes n; <~ Poisson(2wl;goA(x,4;)). If the value of 2wl;goA(x,¥;) is not sufficiently

small, this Poisson approximation inflates the variance of n;.

Under the Poisson approximation, E(n; | ) ~ var(n; | ) ~ 2wl;ggA(x, £;). This gives

E(n;) = Ex {E(n;|z)} ~ 2wl;iggA, (1)
var(n;) = Eg {var(n; | &)} + varg {E(n; | )} ~ 2wl;geA + 4w’ givarg (A(x, 4;)) . (2)
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The rationale behind the estimator V;, now becomes clear. If objects are uniformly dis-
tributed over the region A, then varg(A(x,4;)) = 0. This means that var(n;) ~ E(n;).
When m = 1 and we have no better way of estimating variance, we can therefore put
var(n) = n. This explains the case ¢ = 1 for V,.. The case ¢ = 2 was suggested by
Burnham et al. (1980), page 55, to accommodate super-Poisson variation. It is unlikely

that objects will be exactly uniformly distributed, so using ¢ = 2 provides some leeway.

When m > 1, we can obtain better variance estimates using the full sample of transects.
For uniformly distributed objects, we can write E(n;) = 8¢; and var(n;) = 024;, where
B and o2 are unknown, as from equations (1) and (2). In fact, 8 = o when objects are
exactly uniform, but by estimating 8 and o? separately we enhance the performance of

Vi, when objects are not uniform.

Because n = Y ;% n; and L = >, 4;, we have E(n) = L, so we estimate 5 by n/L.
Furthermore, in the uniform case, 0 = var(n;//%;) for all i, so the random variables

% — BV (i=1,...,m) each have mean 0 and variance o2. This suggests the estimator

m ) -\ 2 m ) 2
52 ;Z(”l _wz) _ ;zgi@_ﬁ) _
m—1 VI L m—1& ¢; L

=1

Hence Vn is derived as
- L & ni  n\>
S
Vi 7 m— ;Z 4 L

We expect V,, to perform well when objects are uniformly distributed across A, but we need
to investigate its performance for other object configurations. For any object distribution,
we can rewrite equations (1) and (2) as E(n;) = B¢; and var(n;) = B + y£7. Let
S = Y, ¢2. Under the Poisson approximation, the true variance of n is var(n) =

Yo, var(n;) = BL 4+ ~S.

Expanding the expression for V,,, and using E(n;) = BL;, var(n;) = B; + v£2, we obtain

E(WV,) :ﬁL+fy<L2_S> .

m—1

This shows that V,, is not unbiased for var(n), although the bias is rarely severe. The
expression (L? — S)/(m — 1) can be rewritten as .7, 4;(/_;), where (/_;) denotes the
mean of all line lengths excluding ¢;. Comparing E(V,)) = BL + v ™, 4;(0—;) with
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var(n) = BL 4+ Y™, £2, we see that the bias in V}, is small if line lengths are not too

77

disparate, and zero when line lengths are equal.

The expression above suggests a new, unbiased estimator for var(n) under the Poisson

approximation. Let

Wo=nt (V-m (75—g) 5.

Then E(W,) = BL + vS. Under any object configuration, W,, is unbiased for var(n) if

the Poisson approximation holds. In practice, the Poisson approximation is not exact so

we expect that W, will overestimate var(n) by some amount.

We investigate the performance of V,, and W, by a simulation exercise. As before, we
use A = [0,1] x [0,1]. We select a set of m = 10 transects, with start-points uniformly
distributed on A. For convenience, all transects are parallel with the z-axis. Each transect
is assigned a length between 0.1 and 1.0, and the width of each search strip is w = 0.02.

On average, this means that about 18% of A is surveyed.

We use a circular design, both horizontally and vertically, to ensure that the full length
£; of each search strip is surveyed. We generate N = 1000 objects at positions governed
by Beta distributions, so the z-coordinates satisfy z ~ Beta(/31,82) and the y-coordinates
satisfy y ~ Beta(fs, 81). Sightings are generated for each transect using the half-normal
detection function with parameter 8 = 0.01. With w = 0.02, this means that detectability
is moderate (gg = 0.6). The 10 transects are enumerated and the total number n of
detections is found. The values of Wn and Vn are calculated. Keeping the same line
lengths and object positions, but with different start-points for the transects, we repeat
the experiment a total of 10000 times. We can estimate the true value of var(n) by the
sample variance of the 10000 observations. We can also evaluate the bias and variability
of the estimators W,, and V,, by taking the mean and standard deviation of their 10000

estimates.

The results are presented in Table 3. As expected, Wn appears to overestimate variance,
while V,, underestimates. On the whole it is preferable to overestimate variance than to
underestimate, but both estimators are reasonable and V;, has slightly better precision
than W,. Note that the uniform object configuration has mean(n) ~ var(n), suggesting

that the Poisson approximation is good in this case.

Barry and Welsh, page 41, recommend a further estimator for var(n), namely ms2 which is

correctly written as m(m — 1)"1 37, {(n; — n/m)?}. Their assertion that this estimator
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is design-unbiased for var(n |y) is mistaken, because it relies upon their equation (13)

which overlooks the possibility of unequal line lengths.

5 Concluding remarks

Our results have shown that the concerns of Barry and Welsh about the validity of dis-
tance sampling estimators are largely unfounded. As long as the survey meets certain
requirements, the methods perform well. The first requirement is a representative design,
which we define as one under which all objects have equal probability of detection. This
can be achieved either through a circular design, in which search strips outlying the study
area on one side are wrapped round to the other side, or by a buffer zone design, which
enables an easy implementation of the circular design by sampling a region outside of A.
In practical distance sampling, the search strips are generally so narrow compared with
the width of A that there is negligible bias if the design is not exactly representative at
the edges of A.

The second requirement is that k(r), the p.d.f. of object distances from the transect line,
should have k(—r) + k(r) constant for —w < r < w. When this is the case, 6 — 0 as
N — o0, and A is asymptotically unbiased. This condition is likely to be approximately
fulfilled for search strips that are narrow compared with A, as long as external effects such
as responsive movement are absent. More advanced methods may be required in the event

of responsive movement.

Our results indicate that a completely model-based approach to density estimation can
give better precision in A than a design-based approach. This is an active research field.
For variance estimation, we favour bootstrap techniques, because these free us from as-
sumptions of independence between the estimated components of A. Nonetheless, we
have shown that the estimator V;, for var(n) performs with reasonably low bias even for
highly non-uniform object distributions. We have also derived an alternative estimator,
W,. Neither estimator is exactly unbiased. W, gives higher estimates and has slightly

poorer precision than V,.

Barry and Welsh, page 52, assert without justification that the estimator

m n;

ZZ

2€wm 9(|u; — y]| 0)

18



is preferable to the standard distance sampling estimator A = n/(2fwmge). In fact,
if detectability is universally high, the performance of Ag is very similar to that of A.
However, if any detection probabilities g(|u; —y;|, 0) are close to zero, AR becomes unstable
and has much lower precision than A. For this reason we recommend that Ay is avoided

except in special circumstances.

Finally, we note that distance sampling is a general framework that is often implemented
in difficult field situations. Compromises to the theoretical design requirements are in-
evitable, yet we have seen that the methods are robust. The design parameters investi-
gated by Barry and Welsh are quite exceptional in practice. Most real surveys involve
at least 20 transect lines, and have strip widths w of far less than 5% of the width of
the survey region. The problems that Barry and Welsh highlight under the linear design
only become consequential under these somewhat unrealistic search strip dimensions. For
these reasons, we consider that their findings are not relevant in the majority of distance

sampling applications.
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0 Ey(A)/A for the following data configurations:

1. Uniform 2. Linear 3. N—Quadratic 4. U-Quadratic

0.25 1 1 1.16 0.73
0.50 1 1 1.08 0.86
1 1 1 1.03 0.96
2 1 1 1.01 0.99
100 1 1 1.00 1.00

Table 1: E, (A)/A when the half-normal detection function with parameter 6 is known.
Results are given for strip width w = 1 and the data configurations shown in Figure 2.
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model-based design-based

A/A 0 A/A 0

Data 0 mean  s.d. mean s.d. mean  s.d. mean s.d.

(1,1) 0.001 1.00 0.078 0.0010 4.5x10°° 1.01  0.078 0.0010 4.3x10°°
0.002 1.00 0.055 0.0020 7.6x10°° 1.01  0.058 0.0020 8.1x10°°
0.004 1.00 0.049 0.0040 3.6x107% 1.00 0.051 0.0040 3.4x107%
0.006 1.00 0.055 0.0143 2.0x10°! 1.00 0.054 0.0155 2.0x10°!

(3,3) 0.001 1.01 0.076 0.0010 4.5x10°° 1.00 0.217 0.0010 4.4x10°°
0.002 1.01 0.056 0.0020 7.7x107° 1.00 0.212 0.0020 7.5x107°
0.004 1.00 0.049 0.0040 3.6x104 1.00 0.211 0.0040 3.6x104
0.006 1.01  0.059 0.0279 3.5x10°! 1.00 0.212 0.0356 4.0x10~*

(5,2) 0.0001 1.01 0.075 0.0010 4.5x1075 1.01  0.296 0.0010 4.4x1075
0.002 1.01 0.055 0.0020 8.0x107° 1.01  0.289 0.0020 8.0x107°
0.004 1.01 0.050 0.0040 3.6x10* 1.01  0.289 0.0040 4.0x10*
0.006 1.01  0.052 0.0239 2.9x107! 1.01  0.291 0.0311 3.5x107!

(5,1) 0.001 1.00 0.077 0.0010 4.5x1075 1.00 0.416 0.0010 5.1x107°
0.002 1.00 0.054 0.0020 7.8x10°° 1.00 0.415 0.0020 8.8x10°°
0.004 1.00 0.050 0.0041 3.6x10~* 1.00 0.413 0.0040 4.3x107%
0.006 1.00 0.060 0.0273 3.5x107! 1.00 0.415 0.0149 6.9x102

Table 2: Results from model-based and design-based approaches to density estimation
when A = 10000, m = 10, and w = 0.005. For the model-based approach, A =
fulzo A(u) du and A(u) is given by an interpolating cubic spline fitted to the 10 point-
wise density estimates. In the design-based approach, A = Y™, n;/ (2mwlg;). Each
entry summarizes the results from 1000 different y vectors.
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Data configuration

~

A

x Y mean(n) var(n) mean(W,) mean(V,,) sd(Wy)  sd(V,)
1,1 @1 122 122 120 120 65 55
3,3) (3, 3) 117 973 1120 869 516 389
5,5  (5,5) 125 2040 2340 1880 1290 1030
1,3 (52 190 3520 3560 3350 1370 1290
(1, 3) (5, 0.5) 109 8190 8770 6620 14200 10700

(5,0.5) (5, 0.5) 145 14300 16400 13900 30100 25500

Table 3: Evaluation of the estimators Wn and Vn. Objects are generated with z and y
coordinates following the Beta distributions in columns 1 and 2 respectively. The values of
mean(n) and var(n) are the sample mean and variance from 10000 simulations. The mean
and standard deviation of the estimators Wn and Vn are obtained from the corresponding

10000 point estimates. Results are reported to three significant figures.
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Captions to figures

Figure 1

Selection of object configurations used in Tables 4 and 6 of Barry and Welsh. In each
case, the area A is shown with overall density 100, and the sampled areas are shaded.
In (a), y ~ Beta(3,3), and the density in the sampled region is greater than 100: e.g.
A = 186 within the shaded strip (w = 0.05). In (b), (c), and (d), y ~ Beta(5,0.25), and
the sampled region for both m = 1 (part (b)) and m = 5 (part (c)) has object density
much less than 100. Part (d) shows a transect parallel to the density gradient, following
recommended practice, and giving Ey(A |u)/A = 1.

Figure 2

Object p.d.f.s, k(y), and detection functions, g(y, 8), for the experiments in Table 1. The
functions k(y) are 1. Uniform; 2. Linear; 3. N—Quadratic; 4. U-Quadratic. The detection

functions are half-normal with parameter 6 as shown.

Figure 3

Density functions from a completely model-based approach. The solid lines represent
the true function A(u). The dashed lines give the estimated function A(u), obtained by
fitting an interpolating cubic spline to the values of A(u) obtained at ten different transect
positions (marked with dots). In each case, N = 10000, w = 0.005, and § = 0.002. The
results are (a) f1 = B2 = 1, AJA = 1.00, § = 0.0020; (b) 81 = Bo = 3, A/A = 1.02,
6 = 0.0020; (c) B1 =5,82 =2, A/JA =1.01, § = 0.0020; (d) B, = 5,8, =1, A/A =1.00,

~

0 = 0.0021.
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