
DIY Statistical Modelling

Demystifying the black box …



How do we fit a model?

Data points 
(xi, yi)

Fitted model:
Best-fit line is

E(Yi)=a+bxi



Fitted model:
Best-fit line is

E(Yi)=a+bxi

0

a 1 unit

b

Fitting the model means estimating values
for the unknown parameters, a and b

How do we fit a model?



How do we estimate a and b ?

Adjust a and b until we 
get the best-fit line



What do we mean by ‘best fit’?

We need a criterion to optimize:
something we can measure that can become best

Adjust a and b until we 
get the best-fit line

Least 
squares

Maximum 
likelihood



We need a criterion to optimize:
something we can measure that can become best

Least
squares

Maximum
likelihood
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What do we mean by ‘best fit’?



We need a criterion to optimize:
something we can measure that can become best

Least
squares

Maximum
likelihood

Optimize
criterion

What do we mean by ‘best fit’?



Least squares

Criterion: sum of the squared 
distances from the line



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Optimize: find a and b that 
minimize this sum of squares



Criterion: sum of the squared 
distances from the line



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Optimize: find a and b that 
minimize this sum of squares

Will we need anything else?



Criterion: sum of the squared 
distances from the line



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Optimize: find a and b that 
minimize this sum of squares

Will we need anything else?

Every 
statistician 

needs a 
standard 

error!



Why do we need a standard error?

An estimate is useless without a standard error!

Would you 
eat this…?

This…?
Yum!
(not)

???



An estimate is useless without a standard error!

It’s useless to try selling a possibly-dodgy item 
unless you include an assurance of goodness

Why do we need a standard error?



An estimate is useless without a standard error!

• A standard error is quality assurance

This item is 
only a little bit 

lethal!

Why do we need a standard error?



An estimate is useless without a standard error!

• A standard error is quality assurance

• Anyone can propose an estimate:

a = 3.14 b = 1.23
My 

estimates!

• But we need the standard error to tell us what this  

estimate is worth, or how safe it is

Why do we need a standard error?



SE: pathway to inference (conclusions)

Are we sure the slope 
b isn’t zero?

Is there a relationship 
between x and y?

• My estimate is b = 1.23, which isn’t zero…

• But to answer the question “are we sure?”, 

we need the standard error



Are we sure the slope 
b isn’t zero?

Is there a relationship 
between x and y?

If my estimate is b = 1.23 …

SE = 5.8

Poisonous!! 
Don’t trust 

this b!

SE = 0.2

Great stuff!
You can trust 

that b>0

SE: pathway to inference (conclusions)



Standard 
error

p-values and 
confidence intervals

Conclusions

SE: pathway to inference (conclusions)

Are we sure the slope 
b isn’t zero?

Is there a relationship 
between x and y?







So how can we do all this ourselves?

We need:

• A criterion to optimize

➢ e.g. least squares or maximum likelihood

• Some way to optimize things

➢ In R, if you can calculate it, you can optimize it

• Some way to generate a standard error

➢ We can use the bootstrap

Next 
video!



➢ In R, if you can calculate it, you can optimize it

➢ Numerical optimizers repeatedly try out values of 
a and b to find their way downhill to the minimum

Numerical optimization in R







b
a

Criterion(a,b)



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Aiming to get here:
Minimum criterion = 

least-squares estimates 
of a, b

We want to fumble our way downhill to the bottom



b
a

Criterion(a,b)



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Start 
here



b
a

Criterion(a,b)



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Try out some 
small steps …

Wrong 
way!
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b
a

Criterion(a,b)



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Try out some 
small steps …

Maybe…



b
a

Criterion(a,b)



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Try out some 
small steps …

Maybe…



b
a

Criterion(a,b)



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Try out some 
small steps …

Pick the most 
promising 
direction

We’re now a bit 
closer to the 
bottom …

… and all we did 
was calculate 

the criterion at 
different (a, b) !



b
a

Criterion(a,b)



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Start again from 
new position …

Best 
choice



b
a

Criterion(a,b)



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Start again from 
new position …



b
a

Criterion(a,b)



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Start again from 
new position …



b
a

Criterion(a,b)



𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Start again from 
new position …

Success!

We’ve found the a
and b that minimize 

our criterion…

…i.e. the least-squares 
estimates of (a, b) 



How do we do this in R ?

Notice what we’ve achieved:

• We can find the parameters (a, b) that optimize 

our criterion …

• … entirely by calculating the criterion at different 
choices of (a, b) 

➢ In R, if you can calculate it, you can optimize it

To estimate parameters, we only need to be able 
to calculate some criterion that measures      

how good the fit is at each choice of parameters



How do we do this in R ?

• There are a few numerical optimizers in R:

➢ nlm, nlminb, optim, …

• We recommend nlm as a good all-purpose 

optimizer to start with

➢ nlm stands for non-linear minimization

• All it needs is:

1. A function to optimize: called the objective 

function or “criterion”

2. Somewhere to start: initial values of (a, b)



findmin.func <- function(startvec=c(0, 0)){
# Define the objective (criterion) as an inner function:
objective.func <- function(pars){

# The parameters have to be supplied as a vector:
a <- pars[1]
b <- pars[2]
# Calculate the objective for this (a, b):
return((a-1)^2 + (b-2)^2 + 3)

}
# Perform the minimization:

nlm(f=objective.func, p=startvec)
} 

Minimize the criterion f(a, b)= (a-1)2 + (b-2)2 + 3:



findmin.func <- function(startvec=c(0, 0)){
objective.func <- function(pars){

a <- pars[1]
b <- pars[2]
return((a-1)^2 + (b-2)^2 + 3)

}
nlm(f=objective.func, p=startvec)

} 

Minimize the criterion f(a, b)= (a-1)2 + (b-2)2 + 3:



$minimum
[1] 3

$estimate
[1] 1 2

$gradient
[1] 0.000000e+00 1.110223e-12

$code
[1] 1

$iterations
[1] 2

> findmin.func()

Best values of a 
and b: the ones 
that minimize 
the objective

Check that the 
gradient is close 

to 0 at the 
minimum

Minimize the criterion f(a, b)= (a-1)2 + (b-2)2 + 3:

Is this what you 
would expect?



findmin2.func <- function(startvec=c(0, 0)){
objective.func <- function(pars){

a <- pars[1]
b <- pars[2]
return(log(a-1)^2 + log(b-2)^2)

}
nlm(f=objective.func, p=startvec)

} 

What could possibly go wrong …?

1. Bad start 

values!



1. Bad start values:

Solution is to choose 
better /alternative 

start values



All looks 
good now



bad.func <- function(startvec=c(1, 1)){
objective.func <- function(pars){

a <- pars[1]
b <- pars[2]
return( (a-1)^2+ (b-2)^2 + 1/(a-b)^2 )

}
nlm(f=objective.func, p=startvec)

} 

What could possibly go wrong …?

2. Some (a,b) combinations don’t 

work: evaluate to NA or Inf



fixed.func <- function(startvec=c(1, 1)){
objective.func <- function(pars){

a <- pars[1]
b <- pars[2]
obj <- (a-1)^2+ (b-2)^2 + 1/(a-b)^2
# Print output so we can see what’s happening:
print(c(a, b, obj))
# Fix up the case where obj is NA or Inf by
# redefining it as a very large positive number: 
if(is.na(obj) | is.infinite(obj)) 

obj <- (abs(a)+abs(b))*1e10 
return(obj)

}
nlm(f=objective.func, p=startvec)

} 



Your first task … 

• Given a code template your first task is          

to complete the code and reproduce the      

output from the “lm” function

• lm stands for linear model

• lm is fitted in R by a least-squares criterion

• Coming next: how to use the bootstrap to 

compute a standard error for your least-
squares estimates of (a, b) …



Standard error by bootstrap

We’ve said that the standard error is a 

type of quality assurance … 

… but what does it really mean?

The standard error aims to measure the 
variability you’d see in estimates of (a, b) …

… if you conducted your 

whole estimation procedure 

again and again:

– starting with collecting your data 



The standard error measures the variability you               
would see in your estimates of (a, b) …

… if you ran your whole estimation procedure     

over and over:

– starting with collecting your data 

So in an ideal world we would have:

• Lots and lots of data sets;

• Each one has the same characteristics as our real 

data (same sample size and study design);

• We’d estimate (a, b) from each one…

• and just measure the variance in our estimates!



• Lots of data sets

• Each one has the same design as our real data

• Estimate (a, b) from each data set…

• Measure the variance in our estimates

This is exactly what the bootstrap aims to do

We only have ONE real data set …

… but if we resample from it, we could artificially 

create new data-sets that mimic our real data:

• Same sample size

• Same target population



X Y

1 315.0 6.0

2 316.9 2.0

3 317.6 7.8

4 318.4 8.9

5 319.0 10.6

6 319.6 -14.9

Standard error by bootstrap

Original 

data



X Y

1 315.0 6.0

2 316.9 2.0

3 317.6 7.8

4 318.4 8.9

5 319.0 10.6

6 319.6 -14.9

Standard error by bootstrap

Original 

data

X Y

1 315.0 6.0

2 316.9 2.0

3 317.6 7.8

4 318.4 8.9

5 319.0 10.6

6 319.6 -14.9

X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

Bootstrap 
replicate 1

Bootstrap 
replicate 2

Bootstrap 
replicate 3



X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

X Y

2 316.9 2.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

3 317.6 7.8

1 315.0 6.0

X Y

5 319.0 10.6

2 316.9 2.0

2 316.9 2.0

6 319.6 -14.9

3 317.6 7.8

6 319.6 -14.9

X Y

6 319.6 -14.9

5 319.0 10.6

6 319.6 -14.9

4 318.4 8.9

6 319.6 -14.9

2 316.9 2.0

X Y

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

4 318.4 8.9

3 317.6 7.8

2 316.9 2.0

X Y

3 317.6 7.8

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

X Y

3 317.6 7.8

4 318.4 8.9

4 318.4 8.9

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

B7 B8 B9

B1 B2 B3

B6B5B4 And on and on and on!

Each bootstrap data-set mimics our real data:

• Same sample size

• Same target population



X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

X Y

2 316.9 2.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

3 317.6 7.8

1 315.0 6.0

X Y

5 319.0 10.6

2 316.9 2.0

2 316.9 2.0

6 319.6 -14.9

3 317.6 7.8

6 319.6 -14.9

X Y

6 319.6 -14.9

5 319.0 10.6

6 319.6 -14.9

4 318.4 8.9

6 319.6 -14.9

2 316.9 2.0

X Y

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

4 318.4 8.9

3 317.6 7.8

2 316.9 2.0

X Y

3 317.6 7.8

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

X Y

3 317.6 7.8

4 318.4 8.9

4 318.4 8.9

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

a7 b7 a8 b8 a9 b9

a1 b1 a2 b2 a3 b3

a6 b6a5 b5a4 b4

Each one 

gives us an 

estimate of  
(a, b) …



X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

X Y

2 316.9 2.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

3 317.6 7.8

1 315.0 6.0

X Y

5 319.0 10.6

2 316.9 2.0

2 316.9 2.0

6 319.6 -14.9

3 317.6 7.8

6 319.6 -14.9

X Y

6 319.6 -14.9

5 319.0 10.6

6 319.6 -14.9

4 318.4 8.9

6 319.6 -14.9

2 316.9 2.0

X Y

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

4 318.4 8.9

3 317.6 7.8

2 316.9 2.0

X Y

3 317.6 7.8

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

X Y

3 317.6 7.8

4 318.4 8.9

4 318.4 8.9

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

a7 b7 a8 b8 a9 b9

a1 b1 a2 b2 a3 b3

Each one 

gives us an 

estimate of  
(a, b) …

Our bootstrap estimates of the        
standard errors of a and b are:

se(a)  = sd( a1, a2, ….., aB )

se(b)  = sd( b1, b2, ….., bB )



X Y

6 319.6 -14.9

5 319.0 10.6

6 319.6 -14.9

4 318.4 8.9

6 319.6 -14.9

2 316.9 2.0

X Y

2 316.9 2.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

3 317.6 7.8

1 315.0 6.0

X Y

5 319.0 10.6

2 316.9 2.0

2 316.9 2.0

6 319.6 -14.9

3 317.6 7.8

6 319.6 -14.9

Our bootstrap estimates of the         
standard errors of a and b are:

se(a)  = sd( a1, a2, ….., aB )

se(b)  = sd( b1, b2, ….., bB )

Equivalently:

se(a)  = sqrt(var( boot$a ))

se(b)  = sqrt(var( boot$b ))

X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

a7 b7 a8 b8 a9 b9

Each one 

gives us an 

estimate of  
(a, b) …



X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

X Y

2 316.9 2.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

3 317.6 7.8

1 315.0 6.0

X Y

5 319.0 10.6

2 316.9 2.0

2 316.9 2.0

6 319.6 -14.9

3 317.6 7.8

6 319.6 -14.9

X Y

6 319.6 -14.9

5 319.0 10.6

6 319.6 -14.9

4 318.4 8.9

6 319.6 -14.9

2 316.9 2.0

X Y

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

4 318.4 8.9

3 317.6 7.8

2 316.9 2.0

X Y

3 317.6 7.8

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

X Y

3 317.6 7.8

4 318.4 8.9

4 318.4 8.9

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

a7 b7 a8 b8 a9 b9

a1 b1 a2 b2 a3 b3

Each one 

gives us an 

estimate of  
(a, b) …

Our bootstrap estimates of the 

standard errors of a and b are:

se(a)  = sd( c(a1, a2, ….., aB) )

se(b)  = sd( c(b1, b2, ….., bB) )

For 95% confidence intervals:

quantile(boot$a, probs=c(0.025,0.975))

quantile(boot$b, probs=c(0.025, 0.975))



bootstrap.func <- function(dat, B=1000, startvec=c(0, 0)){
# Create empty boot.res for storing your results:
boot.res <- data.frame(rep=1:B, a=rep(NA, B), b=rep(NA, B))
# Loop for bootstrap replicates:
for(i in 1:B){

# Sample the rows at random with replacement:
resampleRows <- sample(1:nrow, size=nrow, replace=T)              
# Create the data for the resample:                
dat.boot <- dat[resampleRows, ]
# Fit the model to this replicate:
fit.boot <- leastSquares.func(dat.boot, startvec)                
# Enter the estimated values into row i of boot.res:
boot.res$a[i] <- fit.boot$estimate[1] 
boot.res$b[i] <- fit.boot$estimate[2]

} # End of loop
# Find the confidence intervals:
CI.a <- quantile(boot.res$a, probs=c(0.025, 0.975))
CI.b <- quantile(boot.res$b, probs=c(0.025, 0.975))

} 



bootstrap.func <- function(dat, B=1000, startvec=c(0, 0)){

n <- nrow(dat)

boot.res <- data.frame(rep=1:B, a=rep(NA, B), b=rep(NA, B))

for(i in 1:B){

resampleRows <- sample(1:n, size=n, replace=T)              

dat.boot <- dat[resampleRows, ]

fit.boot <- leastSquares.func(dat.boot, startvec)                

boot.res$a[i] <- fit.boot$estimate[1] 

boot.res$b[i] <- fit.boot$estimate[2]

} 

# Find the confidence intervals:

CI.a <- quantile(boot.res$a, probs=c(0.025, 0.975))

CI.b <- quantile(boot.res$b, probs=c(0.025, 0.975))

return(list(a=CI.a, b=CI.b))

} 



• We can fit the model: i.e. estimate a and b

• We can compute their standard errors

DIY Modelling – we’re nearly there!

One more thing:  

Can we improve on 

the Least Squares 

criterion?



Least squares

Least squares assumes the data are scattered 
symmetrically and evenly about the line

 𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐



Least squares

Least squares assumes the data are scattered 
symmetrically and evenly about the line

 𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐



Least squares

Least squares assumes the data are scattered 
symmetrically and evenly about the line

 𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐



Least squares

Least squares assumes the data are scattered 
symmetrically and evenly about the line

 𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

But what if 

this isn’t the 

right model?



Often a better model would allow right skew 
and/or scatter that increases along the line

But what if 

this isn’t the 

right model?



How bent is a 
banana?

How many kiwi are 
there in the  
Coromandel?

Or maybe there isn’t even a line...

We often want to fit models that don’t   

involve scatter about a line at all



What time of day 
do I receive emails?

We often want to fit models that don’t   

involve scatter about a line at all

Or maybe there isn’t even a line...



All these models have one thing in common:

… a statistical distribution or stochastic process      

that we imagine our data are generated from

… under which we can calculate the probability  of 

our data…

Why not use this probability as our fit criterion?

➢ Good parameter values are those which give 

our data high probability

➢ a and b are good estimates if they make our 

data highly likely

Maximum likelihood estimation



Probability of our 

first observation 
for this (a, b, s )

Probability of our 

second observation 
for this (a, b, s )

Maximum likelihood estimation



Probability of our 

third observation 
under (a, b, s )

Really probability 
DENSITY, but we 
can think of it 

like a probability

Probability density 

of our fourth 

observation under 
(a, b, s )

Maximum likelihood estimation



Multiply together to get the overall probability 
density of the observations for this (a, b, s )

Choose (a, b, s ) to

maximize this 
likelihood

This is called the 

likelihood of the data 
for this (a, b, s )

Maximum likelihood estimation



In practice we don’t multiply the probabilities:

➢ Multiplying tens or hundreds of small numbers 

will create computational problems

➢ Instead, take logs and add:

➢ The log-likelihood is maximized at the same  
(a, b, s ) as the likelihood

➢ Can be easily computed

log ෑ

𝑖

𝑃(𝑦𝑖) =

𝒊

log 𝑃(𝑦𝑖)

Maximum likelihood estimation



1. It’s completely general

Why use maximum likelihood?

No problem!



Maximum likelihood 

works for 
everything!



2. It’s usually the best possible choice:

➢ Maximum likelihood estimation yields the 

lowest possible standard error 

Why use maximum likelihood?

The standard error measures the variability you would see in 
your estimates of (a, b) …

… if you conducted your whole estimation procedure     

over and over

Some estimation procedures are more efficient than others!



• You can only minimize functions in R,                

not maximize them

• So minimize the negative log likelihood

• Least squares objective is: 

sum( (yData – yPredicted)^2 )

• Maximum likelihood objective is: 

– sum( dnorm(yData, mean=yPredicted, sigma, log=T) )

Negative log-likelihood 
is a sum …

…. of log-likelihoods 
for each observation

Maximum likelihood in R



• You can only minimize functions in R,                

not maximize them

• So minimize the negative log likelihood

• Least squares objective is: 

sum( (yData – yPredicted)^2 )

• Maximum likelihood objective is: 

– sum( dnorm(yData, mean=yPredicted, sigma, log=T) )

“dnorm” means use the probability 
density from the Normal distribution

Maximum likelihood in R



• You can only minimize functions in R,                

not maximize them

• So minimize the negative log likelihood

• Least squares objective is: 

sum( (yData – yPredicted)^2 )

• Maximum likelihood objective is: 

– sum( dnorm(yData, mean=yPredicted, sigma, log=T) )

• For the Normal distribution, maximum likelihood 

gives the same answers as least squares!

Maximum likelihood in R



• Easy!

• Normal model objective is: 

– sum( dnorm(yData, mean=yPredicted, sigma, log=T) )

• Poisson model objective is:

– sum( dpois(yData, rate=yPredicted, log=T) )

• You can calculate the standard error by bootstrap 

as before

Want to change your model?



DIY Modelling: Your tasks

• The code template contains incomplete R    

code to fit an “lm” model by least squares     

and find the standard error by bootstrap 

• First job: complete the code

➢ Apply it to the Climate Data provided

➢ Demonstrate you get the same estimates as 

lm, and similar standard errors / CIs

➢ Write new code to fit the same model by 

maximum likelihood (Normal scatter model)

➢ Demonstrate you get the same answers again



1. Climate data 1959-2016 

GlobalTemperatureAnomaly.csv : call it temp.dat 

Annual mean atmospheric CO2

in ppm (parts per million)

Global temperature anomaly in 
hC (hundredths of ºC)

Looks like good data 
for an “lm” model



2. Wombat data

Wombats.csv : call it wombat.dat 

• The northern hairy-nosed 

wombat lives in just two 

locations in Queensland

• One of the world’s rarest 

mammals: about 250 total

• Every few years there is a 

burrow survey to estimate  

the population size

• Sticky tapes erected outside burrows catch 

wombat hairs as the wombats go out for the night



2. Wombat data

Wombats.csv : call it wombat.dat 

• Sticky tapes erected outside burrows catch 

wombat hairs as the wombats go out for the night

Photos: Dr Alan Horsup



2. Wombat data

Wombats.csv : call it wombat.dat 

#burrows in each location 
(location = cluster of burrows)

Number of different wombats 
sampled from that location

Looks like good data 
for a Poisson glm



2. Wombat data

Wombats.csv : call it wombat.dat 

Maybe these columns could be suitable 
for some other type of model…?



DIY Modelling: your second task

• Write MLE code to reproduce the following     

GLM using the Wombat data:

glm(nWombats ~ nBurrows, family=poisson(link=log))

➢ Fit the GLM with poisson and quasipoisson: 
glm(…, family=poisson) and glm(…, family=quasipoisson)

➢ Demonstrate your MLE code gives the same 

estimates as both poisson and quasipoisson

➢ Investigate how the standard errors compare: 

are the bootstrap standard errors similar to the 

poisson or the quasipoisson ones? Why?

➢ Write up all your findings in your report and 

submit your code on Canvas



DIY Modelling: your third task

• Do something else!

• Your ‘something else’ should use your DIY 

modelling skills in some way

➢ Code your own models 



Ideas for your Something Else:

• Formulate a model for the extra columns               

in wombat.dat: code it and compare with R

• Find a context (data and/or model) where 

maximum likelihood is demonstrably better than 

least-squares 

• Refresh theory from Stats 310 about how to 

calculate the standard error analytically: code it 

and compare it with your bootstrap results 

• Code up the parametric bootstrap and compare 

with nonparametric bootstrap for both of the data-

sets supplied



Report and video

• Submit a brief project report (4 pages max)

• Compare output from R (lm / glm) with             

output from your own code (least-squares / MLE) 

➢ Clearly show how the outputs demonstrate that your code 

matches the results from the R functions

➢ Make sure you’ve answered all specific questions with each 

data-set (e.g. poisson vs quasipoisson standard errors)

• Describe your Something Else and show output 
(include points of interest, e.g. if a slope is significant)

• On your video, show your code running in real 

time (just the fitting code; the bootstrap may take too long)



Assessment: 8% total

• Code that successfully answers the questions set 

for Tasks 1 and 2: 4% instructor

➢ We must be able to run your code successfully

• Your Something Else: 4%

➢ 50% peer, 50% instructor 

Good luck! ☺


