
DIY Statistical Modelling

Demystifying the black box …

How do we fit a model?

Data points
(xi, yi)

Fitted model:
Best-fit line is

E(Yi)=a+bxi

Fitted model:
Best-fit line is

E(Yi)=a+bxi

0

a 1 unit

b

Fitting the model means estimating values
for the unknown parameters, a and b

How do we fit a model?

How do we estimate a and b ?

Adjust a and b until we
get the best-fit line

What do we mean by ‘best fit’?

We need a criterion to optimize:
something we can measure that can become best

Adjust a and b until we
get the best-fit line

Least
squares

Maximum
likelihood

We need a criterion to optimize:
something we can measure that can become best

Least
squares

Maximum
likelihood

Optimize

What do we mean by ‘best fit’?

We need a criterion to optimize:
something we can measure that can become best

Least
squares

Maximum
likelihood

Optimize
criterion

What do we mean by ‘best fit’?

Least squares

Criterion: sum of the squared
distances from the line

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Optimize: find a and b that
minimize this sum of squares

Criterion: sum of the squared
distances from the line

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Optimize: find a and b that
minimize this sum of squares

Will we need anything else?

Criterion: sum of the squared
distances from the line

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Optimize: find a and b that
minimize this sum of squares

Will we need anything else?

Every
statistician

needs a
standard

error!

Why do we need a standard error?

An estimate is useless without a standard error!

Would you
eat this…?

This…?
Yum!
(not)

???

An estimate is useless without a standard error!

It’s useless to try selling a possibly-dodgy item
unless you include an assurance of goodness

Why do we need a standard error?

An estimate is useless without a standard error!

• A standard error is quality assurance

This item is
only a little bit

lethal!

Why do we need a standard error?

An estimate is useless without a standard error!

• A standard error is quality assurance

• Anyone can propose an estimate:

a = 3.14 b = 1.23
My

estimates!

• But we need the standard error to tell us what this

estimate is worth, or how safe it is

Why do we need a standard error?

SE: pathway to inference (conclusions)

Are we sure the slope
b isn’t zero?

Is there a relationship
between x and y?

• My estimate is b = 1.23, which isn’t zero…

• But to answer the question “are we sure?”,

we need the standard error

Are we sure the slope
b isn’t zero?

Is there a relationship
between x and y?

If my estimate is b = 1.23 …

SE = 5.8

Poisonous!!
Don’t trust

this b!

SE = 0.2

Great stuff!
You can trust

that b>0

SE: pathway to inference (conclusions)

Standard
error

p-values and
confidence intervals

Conclusions

SE: pathway to inference (conclusions)

Are we sure the slope
b isn’t zero?

Is there a relationship
between x and y?

So how can we do all this ourselves?

We need:

• A criterion to optimize

➢ e.g. least squares or maximum likelihood

• Some way to optimize things

➢ In R, if you can calculate it, you can optimize it

• Some way to generate a standard error

➢ We can use the bootstrap

Next
video!

➢ In R, if you can calculate it, you can optimize it

➢ Numerical optimizers repeatedly try out values of
a and b to find their way downhill to the minimum

Numerical optimization in R

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Aiming to get here:
Minimum criterion =

least-squares estimates
of a, b

We want to fumble our way downhill to the bottom

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Start
here

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Try out some
small steps …

Wrong
way!

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Try out some
small steps …

Wrong
way!

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Try out some
small steps …

Maybe…

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Try out some
small steps …

Maybe…

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Try out some
small steps …

Pick the most
promising
direction

We’re now a bit
closer to the
bottom …

… and all we did
was calculate

the criterion at
different (a, b) !

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Start again from
new position …

Best
choice

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Start again from
new position …

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Start again from
new position …

b
a

Criterion(a,b)

𝒊

𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

We want to fumble our way downhill to the bottom

Start again from
new position …

Success!

We’ve found the a
and b that minimize

our criterion…

…i.e. the least-squares
estimates of (a, b)

How do we do this in R ?

Notice what we’ve achieved:

• We can find the parameters (a, b) that optimize

our criterion …

• … entirely by calculating the criterion at different
choices of (a, b)

➢ In R, if you can calculate it, you can optimize it

To estimate parameters, we only need to be able
to calculate some criterion that measures

how good the fit is at each choice of parameters

How do we do this in R ?

• There are a few numerical optimizers in R:

➢ nlm, nlminb, optim, …

• We recommend nlm as a good all-purpose

optimizer to start with

➢ nlm stands for non-linear minimization

• All it needs is:

1. A function to optimize: called the objective

function or “criterion”

2. Somewhere to start: initial values of (a, b)

findmin.func <- function(startvec=c(0, 0)){
Define the objective (criterion) as an inner function:
objective.func <- function(pars){

The parameters have to be supplied as a vector:
a <- pars[1]
b <- pars[2]
Calculate the objective for this (a, b):
return((a-1)^2 + (b-2)^2 + 3)

}
Perform the minimization:

nlm(f=objective.func, p=startvec)
}

Minimize the criterion f(a, b)= (a-1)2 + (b-2)2 + 3:

findmin.func <- function(startvec=c(0, 0)){
objective.func <- function(pars){

a <- pars[1]
b <- pars[2]
return((a-1)^2 + (b-2)^2 + 3)

}
nlm(f=objective.func, p=startvec)

}

Minimize the criterion f(a, b)= (a-1)2 + (b-2)2 + 3:

$minimum
[1] 3

$estimate
[1] 1 2

$gradient
[1] 0.000000e+00 1.110223e-12

$code
[1] 1

$iterations
[1] 2

> findmin.func()

Best values of a
and b: the ones
that minimize
the objective

Check that the
gradient is close

to 0 at the
minimum

Minimize the criterion f(a, b)= (a-1)2 + (b-2)2 + 3:

Is this what you
would expect?

findmin2.func <- function(startvec=c(0, 0)){
objective.func <- function(pars){

a <- pars[1]
b <- pars[2]
return(log(a-1)^2 + log(b-2)^2)

}
nlm(f=objective.func, p=startvec)

}

What could possibly go wrong …?

1. Bad start

values!

1. Bad start values:

Solution is to choose
better /alternative

start values

All looks
good now

bad.func <- function(startvec=c(1, 1)){
objective.func <- function(pars){

a <- pars[1]
b <- pars[2]
return((a-1)^2+ (b-2)^2 + 1/(a-b)^2)

}
nlm(f=objective.func, p=startvec)

}

What could possibly go wrong …?

2. Some (a,b) combinations don’t

work: evaluate to NA or Inf

fixed.func <- function(startvec=c(1, 1)){
objective.func <- function(pars){

a <- pars[1]
b <- pars[2]
obj <- (a-1)^2+ (b-2)^2 + 1/(a-b)^2
Print output so we can see what’s happening:
print(c(a, b, obj))
Fix up the case where obj is NA or Inf by
redefining it as a very large positive number:
if(is.na(obj) | is.infinite(obj))

obj <- (abs(a)+abs(b))*1e10
return(obj)

}
nlm(f=objective.func, p=startvec)

}

Your first task …

• Given a code template your first task is

to complete the code and reproduce the

output from the “lm” function

• lm stands for linear model

• lm is fitted in R by a least-squares criterion

• Coming next: how to use the bootstrap to

compute a standard error for your least-
squares estimates of (a, b) …

Standard error by bootstrap

We’ve said that the standard error is a

type of quality assurance …

… but what does it really mean?

The standard error aims to measure the
variability you’d see in estimates of (a, b) …

… if you conducted your

whole estimation procedure

again and again:

– starting with collecting your data

The standard error measures the variability you
would see in your estimates of (a, b) …

… if you ran your whole estimation procedure

over and over:

– starting with collecting your data

So in an ideal world we would have:

• Lots and lots of data sets;

• Each one has the same characteristics as our real

data (same sample size and study design);

• We’d estimate (a, b) from each one…

• and just measure the variance in our estimates!

• Lots of data sets

• Each one has the same design as our real data

• Estimate (a, b) from each data set…

• Measure the variance in our estimates

This is exactly what the bootstrap aims to do

We only have ONE real data set …

… but if we resample from it, we could artificially

create new data-sets that mimic our real data:

• Same sample size

• Same target population

X Y

1 315.0 6.0

2 316.9 2.0

3 317.6 7.8

4 318.4 8.9

5 319.0 10.6

6 319.6 -14.9

Standard error by bootstrap

Original

data

X Y

1 315.0 6.0

2 316.9 2.0

3 317.6 7.8

4 318.4 8.9

5 319.0 10.6

6 319.6 -14.9

Standard error by bootstrap

Original

data

X Y

1 315.0 6.0

2 316.9 2.0

3 317.6 7.8

4 318.4 8.9

5 319.0 10.6

6 319.6 -14.9

X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

Bootstrap
replicate 1

Bootstrap
replicate 2

Bootstrap
replicate 3

X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

X Y

2 316.9 2.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

3 317.6 7.8

1 315.0 6.0

X Y

5 319.0 10.6

2 316.9 2.0

2 316.9 2.0

6 319.6 -14.9

3 317.6 7.8

6 319.6 -14.9

X Y

6 319.6 -14.9

5 319.0 10.6

6 319.6 -14.9

4 318.4 8.9

6 319.6 -14.9

2 316.9 2.0

X Y

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

4 318.4 8.9

3 317.6 7.8

2 316.9 2.0

X Y

3 317.6 7.8

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

X Y

3 317.6 7.8

4 318.4 8.9

4 318.4 8.9

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

B7 B8 B9

B1 B2 B3

B6B5B4 And on and on and on!

Each bootstrap data-set mimics our real data:

• Same sample size

• Same target population

X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

X Y

2 316.9 2.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

3 317.6 7.8

1 315.0 6.0

X Y

5 319.0 10.6

2 316.9 2.0

2 316.9 2.0

6 319.6 -14.9

3 317.6 7.8

6 319.6 -14.9

X Y

6 319.6 -14.9

5 319.0 10.6

6 319.6 -14.9

4 318.4 8.9

6 319.6 -14.9

2 316.9 2.0

X Y

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

4 318.4 8.9

3 317.6 7.8

2 316.9 2.0

X Y

3 317.6 7.8

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

X Y

3 317.6 7.8

4 318.4 8.9

4 318.4 8.9

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

a7 b7 a8 b8 a9 b9

a1 b1 a2 b2 a3 b3

a6 b6a5 b5a4 b4

Each one

gives us an

estimate of
(a, b) …

X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

X Y

2 316.9 2.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

3 317.6 7.8

1 315.0 6.0

X Y

5 319.0 10.6

2 316.9 2.0

2 316.9 2.0

6 319.6 -14.9

3 317.6 7.8

6 319.6 -14.9

X Y

6 319.6 -14.9

5 319.0 10.6

6 319.6 -14.9

4 318.4 8.9

6 319.6 -14.9

2 316.9 2.0

X Y

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

4 318.4 8.9

3 317.6 7.8

2 316.9 2.0

X Y

3 317.6 7.8

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

X Y

3 317.6 7.8

4 318.4 8.9

4 318.4 8.9

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

a7 b7 a8 b8 a9 b9

a1 b1 a2 b2 a3 b3

Each one

gives us an

estimate of
(a, b) …

Our bootstrap estimates of the
standard errors of a and b are:

se(a) = sd(a1, a2, ….., aB)

se(b) = sd(b1, b2, ….., bB)

X Y

6 319.6 -14.9

5 319.0 10.6

6 319.6 -14.9

4 318.4 8.9

6 319.6 -14.9

2 316.9 2.0

X Y

2 316.9 2.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

3 317.6 7.8

1 315.0 6.0

X Y

5 319.0 10.6

2 316.9 2.0

2 316.9 2.0

6 319.6 -14.9

3 317.6 7.8

6 319.6 -14.9

Our bootstrap estimates of the
standard errors of a and b are:

se(a) = sd(a1, a2, ….., aB)

se(b) = sd(b1, b2, ….., bB)

Equivalently:

se(a) = sqrt(var(boot$a))

se(b) = sqrt(var(boot$b))

X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

a7 b7 a8 b8 a9 b9

Each one

gives us an

estimate of
(a, b) …

X Y

6 319.6 -14.9

2 316.9 2.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

X Y

5 319.0 10.6

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

2 316.9 2.0

X Y

3 317.6 7.8

1 315.0 6.0

2 316.9 2.0

1 315.0 6.0

3 317.6 7.8

2 316.9 2.0

X Y

2 316.9 2.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

3 317.6 7.8

1 315.0 6.0

X Y

5 319.0 10.6

2 316.9 2.0

2 316.9 2.0

6 319.6 -14.9

3 317.6 7.8

6 319.6 -14.9

X Y

6 319.6 -14.9

5 319.0 10.6

6 319.6 -14.9

4 318.4 8.9

6 319.6 -14.9

2 316.9 2.0

X Y

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

4 318.4 8.9

3 317.6 7.8

2 316.9 2.0

X Y

3 317.6 7.8

5 319.0 10.6

1 315.0 6.0

4 318.4 8.9

5 319.0 10.6

1 315.0 6.0

X Y

3 317.6 7.8

4 318.4 8.9

4 318.4 8.9

1 315.0 6.0

3 317.6 7.8

6 319.6 -14.9

a7 b7 a8 b8 a9 b9

a1 b1 a2 b2 a3 b3

Each one

gives us an

estimate of
(a, b) …

Our bootstrap estimates of the

standard errors of a and b are:

se(a) = sd(c(a1, a2, ….., aB))

se(b) = sd(c(b1, b2, ….., bB))

For 95% confidence intervals:

quantile(boot$a, probs=c(0.025,0.975))

quantile(boot$b, probs=c(0.025, 0.975))

bootstrap.func <- function(dat, B=1000, startvec=c(0, 0)){
Create empty boot.res for storing your results:
boot.res <- data.frame(rep=1:B, a=rep(NA, B), b=rep(NA, B))
Loop for bootstrap replicates:
for(i in 1:B){

Sample the rows at random with replacement:
resampleRows <- sample(1:nrow, size=nrow, replace=T)
Create the data for the resample:
dat.boot <- dat[resampleRows,]
Fit the model to this replicate:
fit.boot <- leastSquares.func(dat.boot, startvec)
Enter the estimated values into row i of boot.res:
boot.res$a[i] <- fit.boot$estimate[1]
boot.res$b[i] <- fit.boot$estimate[2]

} # End of loop
Find the confidence intervals:
CI.a <- quantile(boot.res$a, probs=c(0.025, 0.975))
CI.b <- quantile(boot.res$b, probs=c(0.025, 0.975))

}

bootstrap.func <- function(dat, B=1000, startvec=c(0, 0)){

n <- nrow(dat)

boot.res <- data.frame(rep=1:B, a=rep(NA, B), b=rep(NA, B))

for(i in 1:B){

resampleRows <- sample(1:n, size=n, replace=T)

dat.boot <- dat[resampleRows,]

fit.boot <- leastSquares.func(dat.boot, startvec)

boot.res$a[i] <- fit.boot$estimate[1]

boot.res$b[i] <- fit.boot$estimate[2]

}

Find the confidence intervals:

CI.a <- quantile(boot.res$a, probs=c(0.025, 0.975))

CI.b <- quantile(boot.res$b, probs=c(0.025, 0.975))

return(list(a=CI.a, b=CI.b))

}

• We can fit the model: i.e. estimate a and b

• We can compute their standard errors

DIY Modelling – we’re nearly there!

One more thing:

Can we improve on

the Least Squares

criterion?

Least squares

Least squares assumes the data are scattered
symmetrically and evenly about the line

 𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Least squares

Least squares assumes the data are scattered
symmetrically and evenly about the line

 𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Least squares

Least squares assumes the data are scattered
symmetrically and evenly about the line

 𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

Least squares

Least squares assumes the data are scattered
symmetrically and evenly about the line

 𝒚𝒊 − (𝒂 + 𝒃𝒙𝒊)
𝟐

But what if

this isn’t the

right model?

Often a better model would allow right skew
and/or scatter that increases along the line

But what if

this isn’t the

right model?

How bent is a
banana?

How many kiwi are
there in the
Coromandel?

Or maybe there isn’t even a line...

We often want to fit models that don’t

involve scatter about a line at all

What time of day
do I receive emails?

We often want to fit models that don’t

involve scatter about a line at all

Or maybe there isn’t even a line...

All these models have one thing in common:

… a statistical distribution or stochastic process

that we imagine our data are generated from

… under which we can calculate the probability of

our data…

Why not use this probability as our fit criterion?

➢ Good parameter values are those which give

our data high probability

➢ a and b are good estimates if they make our

data highly likely

Maximum likelihood estimation

Probability of our

first observation
for this (a, b, s)

Probability of our

second observation
for this (a, b, s)

Maximum likelihood estimation

Probability of our

third observation
under (a, b, s)

Really probability
DENSITY, but we
can think of it

like a probability

Probability density

of our fourth

observation under
(a, b, s)

Maximum likelihood estimation

Multiply together to get the overall probability
density of the observations for this (a, b, s)

Choose (a, b, s) to

maximize this
likelihood

This is called the

likelihood of the data
for this (a, b, s)

Maximum likelihood estimation

In practice we don’t multiply the probabilities:

➢ Multiplying tens or hundreds of small numbers

will create computational problems

➢ Instead, take logs and add:

➢ The log-likelihood is maximized at the same
(a, b, s) as the likelihood

➢ Can be easily computed

log ෑ

𝑖

𝑃(𝑦𝑖) =

𝒊

log 𝑃(𝑦𝑖)

Maximum likelihood estimation

1. It’s completely general

Why use maximum likelihood?

No problem!

Maximum likelihood

works for
everything!

2. It’s usually the best possible choice:

➢ Maximum likelihood estimation yields the

lowest possible standard error

Why use maximum likelihood?

The standard error measures the variability you would see in
your estimates of (a, b) …

… if you conducted your whole estimation procedure

over and over

Some estimation procedures are more efficient than others!

• You can only minimize functions in R,

not maximize them

• So minimize the negative log likelihood

• Least squares objective is:

sum((yData – yPredicted)^2)

• Maximum likelihood objective is:

– sum(dnorm(yData, mean=yPredicted, sigma, log=T))

Negative log-likelihood
is a sum …

…. of log-likelihoods
for each observation

Maximum likelihood in R

• You can only minimize functions in R,

not maximize them

• So minimize the negative log likelihood

• Least squares objective is:

sum((yData – yPredicted)^2)

• Maximum likelihood objective is:

– sum(dnorm(yData, mean=yPredicted, sigma, log=T))

“dnorm” means use the probability
density from the Normal distribution

Maximum likelihood in R

• You can only minimize functions in R,

not maximize them

• So minimize the negative log likelihood

• Least squares objective is:

sum((yData – yPredicted)^2)

• Maximum likelihood objective is:

– sum(dnorm(yData, mean=yPredicted, sigma, log=T))

• For the Normal distribution, maximum likelihood

gives the same answers as least squares!

Maximum likelihood in R

• Easy!

• Normal model objective is:

– sum(dnorm(yData, mean=yPredicted, sigma, log=T))

• Poisson model objective is:

– sum(dpois(yData, rate=yPredicted, log=T))

• You can calculate the standard error by bootstrap

as before

Want to change your model?

DIY Modelling: Your tasks

• The code template contains incomplete R

code to fit an “lm” model by least squares

and find the standard error by bootstrap

• First job: complete the code

➢ Apply it to the Climate Data provided

➢ Demonstrate you get the same estimates as

lm, and similar standard errors / CIs

➢ Write new code to fit the same model by

maximum likelihood (Normal scatter model)

➢ Demonstrate you get the same answers again

1. Climate data 1959-2016

GlobalTemperatureAnomaly.csv : call it temp.dat

Annual mean atmospheric CO2

in ppm (parts per million)

Global temperature anomaly in
hC (hundredths of ºC)

Looks like good data
for an “lm” model

2. Wombat data

Wombats.csv : call it wombat.dat

• The northern hairy-nosed

wombat lives in just two

locations in Queensland

• One of the world’s rarest

mammals: about 250 total

• Every few years there is a

burrow survey to estimate

the population size

• Sticky tapes erected outside burrows catch

wombat hairs as the wombats go out for the night

2. Wombat data

Wombats.csv : call it wombat.dat

• Sticky tapes erected outside burrows catch

wombat hairs as the wombats go out for the night

Photos: Dr Alan Horsup

2. Wombat data

Wombats.csv : call it wombat.dat

#burrows in each location
(location = cluster of burrows)

Number of different wombats
sampled from that location

Looks like good data
for a Poisson glm

2. Wombat data

Wombats.csv : call it wombat.dat

Maybe these columns could be suitable
for some other type of model…?

DIY Modelling: your second task

• Write MLE code to reproduce the following

GLM using the Wombat data:

glm(nWombats ~ nBurrows, family=poisson(link=log))

➢ Fit the GLM with poisson and quasipoisson:
glm(…, family=poisson) and glm(…, family=quasipoisson)

➢ Demonstrate your MLE code gives the same

estimates as both poisson and quasipoisson

➢ Investigate how the standard errors compare:

are the bootstrap standard errors similar to the

poisson or the quasipoisson ones? Why?

➢ Write up all your findings in your report and

submit your code on Canvas

DIY Modelling: your third task

• Do something else!

• Your ‘something else’ should use your DIY

modelling skills in some way

➢ Code your own models

Ideas for your Something Else:

• Formulate a model for the extra columns

in wombat.dat: code it and compare with R

• Find a context (data and/or model) where

maximum likelihood is demonstrably better than

least-squares

• Refresh theory from Stats 310 about how to

calculate the standard error analytically: code it

and compare it with your bootstrap results

• Code up the parametric bootstrap and compare

with nonparametric bootstrap for both of the data-

sets supplied

Report and video

• Submit a brief project report (4 pages max)

• Compare output from R (lm / glm) with

output from your own code (least-squares / MLE)

➢ Clearly show how the outputs demonstrate that your code

matches the results from the R functions

➢ Make sure you’ve answered all specific questions with each

data-set (e.g. poisson vs quasipoisson standard errors)

• Describe your Something Else and show output
(include points of interest, e.g. if a slope is significant)

• On your video, show your code running in real

time (just the fitting code; the bootstrap may take too long)

Assessment: 8% total

• Code that successfully answers the questions set

for Tasks 1 and 2: 4% instructor

➢ We must be able to run your code successfully

• Your Something Else: 4%

➢ 50% peer, 50% instructor

Good luck! ☺

