STOCHASTIC CALCULUS
A brief set of introductory notes on stochastic calculus and stochastic differential equations.

1. Processes.

We are concerned with continuous-time, real-valued stochastic processes (X;)o<t<oo. These may
be thought of as random functions — for each outcome of the random element, we have a real-valued
function of a real variable t. These possible outcomes (functions) are called realizations or sample
paths.

Examples: (i) Random walk (step up or down, probability 1/2 each, at each integer time), with
linear interpolation. (ii) Polynomial with random coefficients. (iii) X; = number of events in a Poisson
process occurring by time ¢. (iv) Brownian motion.
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Most of the interesting processes have continuous sample paths (e.g. (i),(ii), and (iv) above). If
we want to allow jump discontinuities (as in (iii) above), we normally specify that the functions be
cadlag (continue & droite, limites & gauche) — they should be right-continuous, and have limits from
the left, at every point.

2. Brownian motion.

The most interesting processes have something random happening at every time t. The archetype
among these is Brownian motion (W;)o<i<oo, a sort of random walk with infinitesimal steps. Its sample
paths look like (iv) above.

e A Brownian motion has independent, normal increments:
W(t+ At) — W(t) ~ N(0,At)

e Brownian sample paths are not differentiable. Note that the increment W (¢t + At) — W (t) has
magnitude of order (At)'/2, rather than At as would be the case for a smooth function.
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Note that the normal is the only possible distribution for the increments, since each increment is
the sum of many independent smaller ones. (Central Limit Theorem.)

There are several ways to construct a Brownian motion. Here’s one: let {Zij}zj':o be ii.d.
standard normal random variables. Set W (0) = 0 and W (1) = Zyo. Then set W (1/2) = (W(0) +
W(1))/2+2712Z;1. Then set W(1/4) = (W(0)+W(1/2))/2+2"'Zo; and W (3/4) = (W (1/2) +
W(1))/2 4 2= Zyy. Then set W(1/8) = (W(0) + W (1/4))/2 + 273/2Z3;, etc. After each step we
can construct a piecewise linear approximation W, of the Brownian motion on [0, 1] by linearly
interpolating between the values constructed so far. Then W = lim, W,, gives the Brownian
motion itself.
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3. Ito diffusions.

It6 diffusions are the main objects of study in stochastic calculus. An Ité diffusion (Xi)o<t<oo is

a stochastic process described by a formal equation of the form:

dX, = Udt + VidW,

where (W;) is a Brownian motion. Loosely speaking, this means that for small increments:

X(t+ At) — X(t) ~ N(U; At , V2AL),

where « means “has approximately the distribution”. This is a conditional distribution given the
values of the processes (W, U,V, and X) on [0, ].

(Uy) is the drift process. It measures the expected rate of change of X; in a similar way to the
conventional derivative of a function.

(V;) is the speed process. It measures the amount of random diffusing around that is going on.
Both (U;) and (V;) should be adapted or non-anticipating stochastic processes, meaning that U,
and V; should not depend on what the driving process W does at times later than ¢ (though they
may depend on Wy for 0 < s < t).

It6 diffusions always have continuous sample paths.

Tt is quite easy to construct a process (X;) with dX; = Updt : just set X; = fot U, ds. To construct
(X:) with dX; = V;dW; requires the stochastic integral (see below).

4. The stochastic integral.

For any adapted process (V;), define its stochastic integral (X;) with respect to a Brownian motion

(W) by

t
Xt:/ v, dw,
0

= liTIan V(ti—1) (W(ts) = W(ti—1)),

the limit being taken as the partition 0 =ty < t; < --- < t,, = t is refined.

This limit is slightly tricky — it may not exist for all (or even almost all) realizations of the sample
paths of V and W. However, under suitable assumptions, the limit will always exist in quadratic
mean and in probability. If V' has sample paths of bounded variation, the limit does exist for
almost all realizations of sample paths.



e It is significant that V is evaluated at the left-hand endpoint ¢;_1, rather than any other point
of [t;—1,t;] (which would give different values for fg Vs dWs). For example, replacing V (t;_1) by
V(t;) would be tantamount to adding in the term

(V(t:) = V(ti-1)) (W(t:) = W(ti-1)),
1

n
i=
which could be significant for the (very nonsmooth) functions we are dealing with here.

e Example: fg W, dWs = (W2 —t)/2. Exercise for the reader: show this using the above limit
definition.

e An It6 diffusion may be written in explicit integral form using a stochastic integral:

dXt = Utdt + ‘/tth

t t
<:>Xt:Xo+/USds+/Vdes
0 0

5. It6’s lemma.

It6’s lemma is analogous to the chain rule for a change of variables in conventional calculus.
For Xt = h(t, Wt),

1
dXy = he(t, Wy)dt + hy (8, Wy)dW, + ihww(t, Wh)dt,

or in integral form

t t 1
X, = Xo +/ B (5, W) dW, +/ (ht(s,Ws) + 2hww(s,Ws)> ds.
0 0

Here hy, hq,, and hy,,, are partial derivatives of h.
The most significant feature is the extra term involving A, which arises because, loosely speak-
ing, even a squared increment of Brownian motion is large enough to be significant: (dW;)? = dt.
More generally, if (X;) is an It6 diffusion with dX; = Udt + V;dW;, and Y; = h(t, X;), then

1
dY; = he(t, X;)dt + ho(t, X;)dX; + 5hm(t, X;) (dXy)?,
where (dX;)? = V2dt is called the quadratic variation of X.

6. Stochastic differential equations.
A stochastic differential equation (SDE) for an Itd diffusion (X;) takes the form

dX; = f(t, Xy)dt + g(t, Xy)dWy,

for some functions f and g.

e Note that f(t,X;) and g(t, X;) depend only on the current value of Xy, not past values. This
means that the solution X; will be a Markov process. The functions f and g are analogous to the
transition probabilities of a Markov chain.

e Example. The main SDE of mathematical finance:
dXt = ’I"Xtdt + O'Xtth.

This models the evolution of the price of a risky asset (e.g. a stock) with growth rate r (analogous
to an interest rate) and volatility 0. We can solve this equation by trying for a solution of form
X; = h(t,W;): applying It6’s lemma shows that we need h,, = ch and hy 4+ (1/2)hy = rh, and
this gives us

X, = Xoexp (oW, + (r — (1/2)0”)t) .

This process is called geometric Brownian motion.
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e Example. The Ornstein-Uhlenbeck equation.
dXy = —Xydt + dWs.

This is a mean-reverting process — the more different X; is from 0, the more strongly it tends to
move back towards 0. The equation has solution

t
X = et (XO —|—/ e’ dWS> .
0

A stochastic process (X;) is a martingale if

7. Martingales.

EX,|Xs, 0<s<t]=X,; fort <r.

This means that the process has no average tendency to rise or fall. Martingales are often used as
models for the fortunes of a player in a fair gambling game, who is as likely to lose as win. The main
significance of being a martingale is that E'[X;] = E[X,] for all times ¢. This is even true of certain
random times.

An Tt6 diffusion is a martingale iff it satisfies dX; = Vi;dW;. (In particular, Brownian motion itself
is a martingale.) This means

Xo= [ VedWom S V)W (E) < Wition),

i=1

so X; can be thought of as the fortune of a gambler who wagers a variable amount V(¢;_1) on each
increment W (t;) — W (t;_1), or an investor who owns V; shares of a stock at each time ¢. For such a
diffusion

E[X:]=0
t

E [Xf] = / E [Vf] ds, the isometry property of stochastic integration.
0

8. Diffusions as limits of Markov chains.

In addition to being useful models themselves, It6 diffusions can also serve as approximations of
the long-run behaviour of discrete processes.
Suppose that for each n, (X}2)72, is a discrete-time Markov chain whose state space is (a subset

of) the real numbers. If
n n 1
EXp | X =a]~a+ Eb(w)
n n 1
E[(Xp, —2)? | Xp =2] ﬁcr(sc)2
then for large n, (X}') behaves like the solution of the SDE
dXt = b(Xt)dt + O'(Xt)th,

with n steps per unit time.

e Example. The Ehrenfest urn. Two urns contain a total of 2n balls; at each step a ball is picked at
random and moved to the other urn. Let N be the number of balls in the first urn after £ steps,
and X' = (N} —n)//n. For large n, (X}') behaves like the solution of dX; = —X;dt + dW,, i.e.
like the Ornstein-Uhlenbeck process.

e Example. The Wright-Fisher process. A population consists of n genes, which are of two types
(A and B). At each step, a new population is formed by sampling with replacement from the old
one. Let X' be the proportion of type-A genes in the population after k steps. For large n, (X})
behaves like the solution of dX; = /X3 (1 — X;)dW,.
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9. Multivariate stochastic calculus.

A vector-valued It6 diffusion X; = (X;(t), X2(¢)) can be driven by the usual Brownian motion
W;. This occurs, for example, in the following system of SDEs:

dX,(t) = Xo(t)dt
dXs(t) = —a® X (t)dt + odW (1),

which represents the motion of a “Brownian mass” on the end of a spring (X; =position, X =velocity),
or a noisy electronic oscillator.

X1(t)

It is also possible to have vector-valued diffusions driven by more than one Brownian motion. As
an example, consider the two-dimensional Brownian motion W (t) = (W1 (t), Wa(t)) itself, consisting
of components W7 and W5 which are independent one-dimensional Brownian motions. It is a kind of
continuous-time random walk in the plane.

Similarly for Brownian motion in any number of dimensions.
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