
each interface and its pri-
exports an opaque pointer
, if the interface reveals its

les, excluding exceptions,
 the exceptions it can raise
d and unchecked runtime

 on which the summaries

Threads

han 13
em 28
hread 41
C Interfaces and Implementations
Quick Reference

Interface summaries are listed below in alphabetical order; the subsections name
mary type, if it has one. The notation “T is opaque X_T” indicates that interface X
type X_T, abbreviated as T in the descriptions. The representation for X_T is given
primary type.

The summary for each interface lists, in alphabetical order, the exported variab
followed by the exported functions. The prototype for each function is followed by
and a concise description. The abbreviations “c.r.e.” and “u.r.e.” stand for checke
error(s).

The following table summarizes the interfaces by category and gives the pages
begin.

Copyright © 1996 David R. Hanson. All Rights Reserved.
12/21/01 16:38

Fundamentals ADTs Strings Arithmetic

Arena 5
Arith 6
Assert 9
Except 14
Mem 20

Array 7
ArrayRep 8
Bit 11
List 18
Ring 26
Seq 29
Set 30
Stack 32
Table 36

Atom 10
Fmt 15
Str 33
Text 38

AP 2
MP 22
XP 43

C
S
T

T is opaque AP_T

Mem_Failed
Mem_Failed

Mem_Failed
Mem_Failed

Mem_Failed

 a c.r.e. for app, *app, or

Mem_Failed

g white space and accepts
ercase or uppercase letters
ter in str that terminated
l and sets *end to str, if
AP
It is a c.r.e. to pass a null T to any AP function.

T AP_add(T x, T y)
T AP_addi(T x, long int y)

return the sum x + y.
int AP_cmp(T x, T y)
int AP_cmpi(T x, long int y)

return an int <0, =0, or >0 if x<y, x=y, or x>y.
T AP_div(T x, T y)
T AP_divi(T x, long int y)

return the quotient x/y; see Arith_div. It is a c.r.e. for y=0.
void AP_fmt(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision)

a Fmt conversion function: consumes a T and formats it like printf’s %d. It is
flags to be null.

void AP_free(T *z)
deallocates and clears *z. It is a c.r.e. for z or *z to be null.

T AP_fromstr(const char *str, int base,
char **end)

interprets str as an integer in base and returns the resulting T. Ignores leadin
an optional sign followed by one or more digits in base. For 10<base≤36, low
are interpreted as digits greater than 9. If end≠null, *end points to the charac
the scan. If str does not specify an integer in base, AP_fromstr returns nul
end is nonnull. It is c.r.e. for str=null or for base<2 or base>36.

Mem_Failed
 the same sign as x. It is a

Mem_Failed
Mem_Failed

Mem_Failed
Mem_Failed

Mem_Failed

Mem_Failed

Mem_Failed
.

Mem_Failed
 the same sign as x. It is a

Mem_Failed
Mem_Failed
T AP_lshift(T x, int s)
returns x shifted left by s bits; vacated bits are filled with 0s, and the result has
c.r.e. for s<0.

T AP_mod(T x, T y)
long AP_modi(T x, long int y)

return x mod y; see Arith_mod. It is a c.r.e. for y=0.
T AP_mul(T x, T y)
T AP_muli(T x, long int y)

return the product x⋅y.
T AP_neg(T x)

returns −x.
T AP_new(long int n)

allocates and returns a new T initialized to n.
T AP_pow(T x, T y, T p)

returns mod p. If p=null, returns . It is a c.r.e for y<0 or for a nonnull p<2
T AP_rshift(T x, int s)

returns x shifted right by s bits; vacated bits are filled with 0s, and the result has
c.r.e. for s<0.

T AP_sub(T x, T y)
T AP_subi(T x, long int y)

return the difference x − y.
long int AP_toint(T x)

returns a long with same sign as x and magnitude mod LONG_MAX+1.

xy xy

x

Mem_Failed

eturns str. If str=null,
 base>10. It is c.r.e. for a
char *AP_tostr(char *str, int size,
int base, T x)

fills str[0..size-1] with the character representation of x in base and r
AP_tostr allocates it. Uppercase letters are used for digits that exceed 9 when
nonnull str to be too small or for base<2 or base>36.

T is opaque Arena_T

Arena_Failed

 bytes are uninitialized. If
 offending source coordi-

Arena_Failed

tes, and returns a pointer
f Arena_calloc raises
ate.

is a c.r.e. for ap or *ap to

o Arena_free.
Arena_NewFailed
Arena
It is a c.r.e. to pass nbytes≤0 or a null T to any Arena function.

void *Arena_alloc(T arena, int nbytes,
const char *file, int line)

allocates nbytes bytes in arena and returns a pointer to the first byte. The
Arena_alloc raises Arena_Failed, file and line are reported as the
nate.

void *Arena_calloc(T arena, int count,
 int nbytes, const char *file, int line)

allocates space in arena for an array of count elements, each occupying nby
to the first element. It is a c.r.e. for count≤0. The elements are uninitialized. I
Arena_Failed, file and line are reported as the offending source coordin

void Arena_dispose(T *ap)
deallocates all the space in *ap, deallocates the arena itself, and clears *ap. It
be null.

void Arena_free(T arena)
deallocates all the space in arena — all the space allocated since the last call t

T Arena_new(void)
allocates, initializes, and returns a new arena.

0.

h that z⋅y = x. Truncates

or y=0.

n u.r.e. for y=0.
Arith

int Arith_ceiling(int x, int y)
returns the least integer not less than the real quotient of x/y. It is an u.r.e. for y=

int Arith_div(int x, int y)
returns x/y, the maximum integer that does not exceed the real number z suc
towards −∞; e.g., Arith_div(−13, 5) returns −3. It is an u.r.e. for y=0.

int Arith_floor(int x, int y)
returns the greatest integer not exceeding the real quotient of x/y. It is an u.r.e. f

int Arith_max(int x, int y)
returns max(x, y).

int Arith_min(int x, int y)
returns min(x, y).

int Arith_mod(int x, int y)
returns x − y⋅Arith_div(x, y); e.g., Arith_mod(−13, 5) returns 2. It is a

T is opaque Array_T

ay has no elements. It is a

Mem_Failed
ray. If length exceeds

 where N is the length of

Mem_Failed
e bytes. The elements are

y and returns elem. It is

Mem_Failed
original length, the excess
Array
Array indices run from 0 to N−1, where N is the length of the array. The empty arr
c.r.e. to pass a null T to any Array function.

T Array_copy(T array, int length)
creates and returns a new array that holds the initial length elements from ar
the length of array, the excess elements are cleared.

void Array_free(T *array)
deallocates and clears *array. It is a c.r.e. for array or *array to be null.

void *Array_get(T array, int i)
returns a pointer to the ith element in array. It is a c.r.e. for i<0 or i≥N,
array.

int Array_length(T array)
returns the number of elements in array.

T Array_new(int length, int size)
allocates, initializes, and returns a new array of length elements each of siz
cleared. It is a c.r.e. for length<0 or size≤0.

void *Array_put(T array, int i, void *elem)
copies Array_size(array) bytes from elem into the ith element in arra
a c.r.e. for elem=null or for i<0 or i≥N, where N is the length of array.

void Array_resize(T array, int length)
changes the number of elements in array to length. If length exceeds the
elements are cleared. It is a c.r.e. for length<0.

int Array_size(T array)
returns the size in bytes of the elements in array.

T is Array_T

 c.r.e. for length≠0 and
by other means.
ArrayRep

typedef struct T {
int length; int size; char *array; } *T;

It is an u.r.e. to change the fields in a T.

void ArrayRep_init(T array, int length,
int size, void *ary)

initializes the fields in array to the values of length, size, and ary. It is a
ary=null, length=0 and ary≠null, or size≤0. It is an u.r.e. to initialize a T

on. If NDEBUG is defined
Assert

assert(e)
raises Assert_Failed if e is 0. Syntactically, assert(e) is an expressi
when assert.h is included, assertions are disabled.

m.

Mem_Failed
 len<0.

Mem_Failed

Mem_Failed
Atom
It is a c.r.e. to pass a null str to any Atom function. It is an u.r.e. to modify an ato

int Atom_length(const char *str)
returns the length of the atom str. It is a c.r.e. for str not to be an atom.

char *Atom_new(const char *str, int len)
returns the atom for str[0..len-1], creating one if necessary. It is a c.r.e. for

char *Atom_string(const char *str)
returns Atom_new(str, strlen(str)).

char *Atom_int(long n)
returns the atom for the decimal string representation of n.

T is opaque Bit_T

It is a c.r.e to pass a null T
t_diff.

 is the length of set; like-

Mem_Failed
l or t=null, it denotes the
gths.

ths.

Mem_Failed
Bit
The bits in a bit vector are numbered 0 to N−1 where N is the length of the vector.
to any Bit function, except for Bit_union, Bit_inter, Bit_minus, and Bi

void Bit_clear(T set, int lo, int hi)
clears bits lo..hi in set. It is a c.r.e. for lo>hi, or for lo<0 or lo≥N where N
wise for hi.

int Bit_count(T set)
returns the number of 1s in set.

T Bit_diff(T s, T t)
returns the symmetric difference s / t: the exclusive OR of s and t. If s=nul
empty set. It is a c.r.e. for s=null and t=null, or for s and t to have different len

int Bit_eq(T s, T t)
returns 1 if s = t and 0 otherwise. It is a c.r.e. for s and t to have different leng

void Bit_free(T *set)
deallocates and clears *set. It is a c.r.e. for set or *set to be null.

int Bit_get(T set, int n)
returns bit n. It is a c.r.e. for n<0 or n≥N where N is the length of set.

T Bit_inter(T s, T t)
returns s ∩ t: the logical AND of s and t. See Bit_diff for c.r.e.

int Bit_length(T set)
returns the length of set.

int Bit_leq(T s, T t)
returns 1 if s ⊆ t and 0 otherwise. See Bit_eq for c.r.e.

int Bit_lt(T s, T t)
returns 1 if s ⊂ t and 0 otherwise. See Bit_eq for c.r.e.

ength of set. Changes to

Mem_Failed

Mem_Failed

bit>1, or for n<0 or n≥N

Mem_Failed
void Bit_map(T set,
void apply(int n, int bit, void *cl), void *cl)

calls apply(n, bit, cl) for each bit in set from 0 to N−1, where N is the l
set by apply affect subsequent values of bit.

T Bit_minus(T s, T t)
returns s − t: the logical AND of s and ~t. See Bit_diff for c.r.e.

T Bit_new(int length)
creates and returns a new bit vector of length 0s. It is a c.r.e. for length<0.

void Bit_not(T set, int lo, int hi)
complements bits lo..hi in set. See Bit_clear for c.r.e.

int Bit_put(T set, int n, int bit)
sets bit n to bit and returns the previous value of bit n. It is c.r.e. for bit<0 or
where N is the length of set.

void Bit_set(T set, int lo, int hi)
sets bits lo..hi in set. See Bit_clear for c.r.e.

T Bit_union(T s, T t)
returns s ∪ t: the inclusive OR of s and t. See Bit_diff for c.r.e.

T is opaque Chan_T

 function before calling

Mem_Failed

Thread_Alerted
sender to ptr, and returns

Thread_Alerted
 ptr to the receiver, and
Chan
It is a c.r.e. to pass a null T to any Chan function, or to call any Chan
Thread_init.

T Chan_new(void)
create, initialize, and return a new channel.

int Chan_receive(T c, void *ptr, int size)
waits for a corresponding Chan_send, then copies up to size bytes from the
the number copied. It is a c.r.e. for ptr=null or size<0.

int Chan_send(T c, const void *ptr, int size
waits for a corresponding Chan_receive, then copies up to size bytes from
returns the number copied. See Chan_receive for c.r.e.

T is Except_T

tions. The ELSE clause is

)
null. Uncaught exceptions

ement in TRY statements.
Except

typedef struct T { char *reason; } T;

The syntax of TRY statements is as follows; S and e denote statements and excep
optional.

TRY S EXCEPT() … EXCEPT() ELSE END_TRY

TRY S FINALLY END_TRY

void Except_raise(const T *e, const char *file, int line
raises exception *e at source coordinate file and line. It is a c.r.e. for e=
cause program termination.

RAISE(e)
raises e.

RERAISE
reraises the exception that caused execution of a handler.

RETURN
RETURN expression

return statement used within TRY statements. It is an u.r.e. to use a C return stat

e1 S1 en Sn S0

S1

T is Fmt_T

)

en the associated conver-
 emit each formatted char-
 It is a c.r.e to pass a null
rsion specifier that has no

o stream, Fmt_print
Fmt

typedef void (*T)(int code,
va_list *app, int put(int c, void *cl), void *cl,
unsigned char flags[256], int width, int precision

defines the type of a conversion function, which is called by the Fmt functions wh
sion specifier appears in a format string. Here and below, put(c, cl) is called to
acter c. Table 14.1 (page 220) summarizes the initial set of conversion specifiers.
put, buf, fmt, or ap to any Fmt function, or for a format string to use a conve
associated conversion function.

char *Fmt_flags = "-+ 0"
points to the flag characters that can appear in conversion specifiers.

void Fmt_fmt(int put(int c, void *cl), void *cl,
const char *fmt, ...)

formats and emits the “…” arguments according to the format string fmt.
void Fmt_fprint(FILE *stream, const char *fmt, ...)
void Fmt_print(const char *fmt, ...)

format and emit the “…” arguments according to fmt; Fmt_fprint writes t
writes to stdout.

 str[0..len-1] accord-
h, and precision. It is

rsion function. It is a c.r.e.

Fmt_Overflow

nds a null character, and
ore than size−1 charac-

eturns that string.

Fmt_Overflow
void Fmt_putd(const char *str, int len,
int put(int c, void *cl), void *cl,
unsigned char flags[256], int width, int precision)

void Fmt_puts(const char *str, int len,
int put(int c, void *cl), void *cl,
unsigned char flags[256], int width, int precision)

format and emit the converted numeric (Fmt_putd) or string (Fmt_puts) in
ing to Fmt’s defaults (see Table 14.1, page 220) and the values of flags, widt
a c.r.e for str=null, len<0, or flags=null.

T Fmt_register(int code, T cvt)
associates cvt with the format character code, and returns the previous conve
for code<0 or code>255.

int Fmt_sfmt(char *buf, int size,
const char *fmt, ...)

formats the “…” arguments into buf[1..size-1] according to fmt, appe
returns the length of buf. It is a c.r.e. for size≤0. Raises Fmt_Overflow if m
ters are emitted.

char *Fmt_string(const char *fmt, ...)
formats the “…” arguments into a null-terminated string according to fmt and r

void Fmt_vfmt(int put(int c, void *cl), void *cl,
const char *fmt, va_list ap)

See Fmt_fmt; takes arguments from the list ap.
int Fmt_vsfmt(char *buf, int size,

const char *fmt, va_list ap)
See Fmt_sfmt; takes arguments from the list ap.

char *Fmt_vstring(const char *fmt, va_list ap)
See Fmt_string; takes arguments from the list ap.

T is List_T

mpty list.

ns tail.
Mem_Failed

Mem_Failed
ull pointer.

apply to change list.

eturns list->rest. If

Mem_Failed
List

typedef struct T *T;
struct T { void *first; T rest; };

All List functions accept a null T for any list argument and interpret it as the e

T List_append(T list, T tail)
appends tail to list and returns list. If list=null, List_append retur

T List_copy(T list)
creates and returns a top-level copy of list.

void List_free(T *list)
deallocates and clears *list. It is a c.r.e. for list=null.

int List_length(T list)
returns the number of elements in list.

T List_list(void *x, ...)
creates and returns a list whose elements are the “…” arguments up to the first n

void List_map(T list,
void apply(void **x, void *cl), void *cl)

calls apply(&p->first, cl) for each element p in list. It is an u.r.e. for
T List_pop(T list, void **x)

assigns list->first to *x, if x is nonnull, deallocates list, and r
list=null, List_pop returns null and does not change *x.

T List_push(T list, void *x)
adds a new element holding x onto the front of list and returns the new list.

Mem_Failed
 its first element. The Nth
T List_reverse(T list)
reverses the elements in list inplace and returns the reversed list.

void **List_toArray(T list, void *end)
creates an N+1-element array of the N elements in list and returns a pointer to
element in the array is end.

Mem_Failed
nitialized.

Mem_Failed
s and returns a pointer to

Mem_Failed

nitialized. If Mem_alloc
rdinate.

Mem_Failed

eturns a pointer to the first
oc raises Mem_Failed,

null, and it is an u.r.e. for
function. Implementations
Mem
It is c.r.e. to pass nbytes≤0 to any Mem function or macro.

ALLOC(nbytes)
allocates nbytes bytes and returns a pointer to the first byte. The bytes are uni

CALLOC(count, nbytes)
allocates space for an array of count elements, each occupying nbytes byte
the first element. It is a c.r.e. for count≤0. The elements are uninitialized.

FREE(ptr)
See Mem_free.

void *Mem_alloc(int nbytes,
const char *file, int line)

allocates nbytes bytes and returns a pointer to the first byte. The bytes are uni
raises Mem_Failed, file and line are reported as the offending source coo

void *Mem_calloc(int count, int nbytes,
const char *file, int line)

allocates space for an array of count elements, each occupying nbytes and r
element. It is a c.r.e. for count≤0. The elements are uninitialized. If Mem_call
file and line are reported as the offending source coordinate.

void Mem_free(void **ptr, const char *file, int line)
deallocates *ptr, if *ptr is nonnull, and clears *ptr. It is a c.r.e. for ptr=
*ptr to be a pointer that was not returned by previous call to a Mem allocation
may use file and line to report memory usage errors.

Mem_Failed

eturns a pointer to the first
ess byte are uninitialized.
ppear in the new block. If
ding source coordinate. It

 that was not returned by a

Mem_Failed
Mem_Failed

EW0 clears the bytes, NEW

Mem_Failed
void *Mem_resize(void **ptr, int nbytes,
const char *file, int line)

changes the size of the block at *ptr to hold nbytes bytes, clears *ptr, and r
byte of the new block. If nbytes exceeds the size of the original block, the exc
If nbytes is less than the size of the original block, only nbytes of its bytes a
Mem_resize raises Mem_Failed, file and line are reported as the offen
is a c.r.e. for ptr=null or *ptr=null, and it is an u.r.e. for *ptr to be a pointer
previous call to a Mem allocation function.

NEW(p)
NEW0(p)

allocate a block large enough to hold *p and return a pointer to the first byte. N
leaves them uninitialized.

RESIZE(ptr, nbytes)
See Mem_resize.

T is MP_T

n be changed by MP_set.
metic. MP functions com-

.r.e. to pass a null T to any

MP_Overflow
MP_Overflow
MP_Overflow
MP_Overflow

gn bit. It is a c.r.e. for s<0.
MP

typedef unsigned char *T

MP functions do n-bit signed and unsigned arithmetic, where n is initially 32 and ca
Function names that end in u or ui do unsigned arithmetic; others do signed arith
pute their results before raising MP_Overflow or MP_DivideByZero. It is a c
MP function. It is an u.r.e. to pass a T that is too small to any MP function.

T MP_add(T z, T x, T y)
T MP_addi(T z, T x, long y)
T MP_addu(T z, T x, T y)
T MP_addui(T z, T x, unsigned long y)

set z to x + y and return z.
T MP_and(T z, T x, T y)
T MP_andi(T z, T x, unsigned long y)

set z to x AND y and return z.
T MP_ashift(T z, T x, int s)

sets z to x shifted right by s bits and returns z. Vacated bits are filled with x’s si
int MP_cmp(T x, T y)
int MP_cmpi(T x, long y)
int MP_cmpu(T x, T y)
int MP_cmpui(T x, unsigned long y)

return an int <0, =0, or >0 if x<y, x=y, or x>y.

MP_Overflow
MP_Overflow

a c.r.e. for m<2.
w, MP_DivideByZero
w, MP_DivideByZero
MP_DivideByZero

w, MP_DivideByZero

_div.

 printf’s %d and %u. It

MP_Overflow
MP_Overflow

MP_Overflow

P_fromstr.

a c.r.e. for s<0.
T MP_cvt(int m, T z, T x)
T MP_cvtu(int m, T z, T x)

narrow or widen x to an m-bit signed or unsigned integer in z and return z. It is
T MP_div(T z, T x, T y) MP_Overflo
T MP_divi(T z, T x, long y) MP_Overflo
T MP_divu(T z, T x, T y)
T MP_divui(T z, T x, MP_Overflo

unsigned long y)
set z to x/y and return z. The signed functions truncate towards −∞; see Arith

void MP_fmt(int code, va_list *app,
int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision)

void MP_fmtu(int code, va_list *app,
int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision)

are Fmt conversion functions. They consume a T and a base b and format it like
is c.r.e. for the b<2 or b>36, and for app, *app, or flags to be null.

T MP_fromint(T z, long v)
T MP_fromintu(T z, unsigned long u)

set z to v or u and return z.
T MP_fromstr(T z, const char *str, int base,

char **end)
interprets str as an integer in base, sets z to that integer, and returns z. See A

T MP_lshift(T z, T x, int s)
set z to x shifted left by s bits and return z. Vacated bits are filled with 0s. It is

w, MP_DivideByZero

w, MP_DivideByZero

MP_DivideByZero

w, MP_DivideByZero

MP_Overflow

MP_Overflow
MP_Overflow

MP_Overflow
MP_Overflow
MP_Overflow

MP_Overflow

ailed, MP_Overflow
T MP_mod(T z, T x, T y) MP_Overflo
sets z to x mod y and returns z. Truncates towards −∞; see Arith_mod.

long MP_modi(T x, long y) MP_Overflo
returns x mod y. Truncates towards −∞; see Arith_mod.

T MP_modu(T z, T x, T y)
sets z to x mod y and returns z.

unsigned long MP_modui(T x, MP_Overflo
unsigned long y)

returns x mod y.
T MP_mul(T z, T x, T y)

sets z to x⋅y and returns z.
T MP_mul2(T z, T x, T y)
T MP_mul2u(T z, T x, T y)

set z to the double-length result of x⋅y and return z, which has 2n bits.
T MP_muli(T z, T x, long y)
T MP_mulu(T z, T x, T y)
T MP_mului(T z, T x, unsigned long y)

set z to x⋅y and return z.
T MP_neg(T z, T x)

sets z to −x and returns z.
T MP_new(unsigned long u) Mem_F

creates and returns a T initialized to u.
T MP_not(T z, T x)

sets z to ~x and returns z.

t is a c.r.e. for s<0.
Mem_Failed

MP_Overflow
MP_Overflow
MP_Overflow
MP_Overflow

MP_Overflow
MP_Overflow

Mem_Failed

se, and returns str. If
T MP_or(T z, T x, T y)
T MP_ori(T z, T x, unsigned long y)

set z to x OR y and return z.
T MP_rshift(T z, T x, int s)

sets z to x shifted right by s bits and returns z. Vacated bits are filled with 0s. I
int MP_set(int n)

resets MP to do n-bit arithmetic. It is a c.r.e. for n<2.
T MP_sub(T z, T x, T y)
T MP_subi(T z, T x, long y)
T MP_subu(T z, T x, T y)
T MP_subui(T z, T x, unsigned long y)

set z to x − y and return z.
long int MP_toint(T x)
unsigned long MP_tointu(T x)

return x as a long int or unsigned long.
char *MP_tostr(char *str, int size,

int base, T x)
fills str[0..size-1] with a null-terminated string representing x in ba
str=null, MP_tostr ignores size and allocates the string. See AP_tostr.

T MP_xor(T z, T x, T y)
T MP_xori(T z, T x, unsigned long y)

set z to x XOR y and return z.

T is opaque Ring_T

 has no elements. Pointers
nges its origin. It is a c.r.e.

Mem_Failed
en elements; see Str. It is

Mem_Failed
Mem_Failed

h of ring.
Mem_Failed

Mem_Failed
_get for c.r.e.

) of ring. It is a c.r.e. for
Ring
Ring indices run from 0 to N−1, where N is the length of the ring. The empty ring
can be added or removed anywhere; rings expand automatically. Rotating a ring cha
to passed a null T to any Ring function.

void *Ring_add(T ring, int pos, void *x)
inserts x at position pos in ring and returns x. Positions identify points betwe
a c.r.e. for pos < −N or pos > N+1, where N is the length of ring.

void *Ring_addhi(T ring, void *x)
void *Ring_addlo(T ring, void *x)

adds x to the high (index N−1) or low (index 0) end of ring and returns x.
void Ring_free(T *ring)

deallocates and clears *ring. It is a c.r.e. for ring or *ring to be null.
int Ring_length(T ring)

returns the number of elements in ring.
void *Ring_get(T ring, int i)

returns the ith element in ring. It is a c.r.e. for i<0 or i≥N, where N is the lengt
T Ring_new(void)

creates and returns an empty ring.
void *Ring_put(T ring, int i, void *x)

changes the ith element in ring to x and returns the previous value. See Ring
void *Ring_remhi(T ring)
void *Ring_remlo(T ring)

removes and returns the element at the high end (index N−1) or low end (index 0
ring to be empty.

 is the length of ring.
Mem_Failed

null pointer.

<0 or >N, where Nn n
void *Ring_remove(T ring, int i)
removes and returns element i from ring. It is a c.r.e. for i<0 or i≥N, where N

T Ring_ring(void *x, ...)
creates and returns a ring whose elements are the “…” arguments up to the first

void Ring_rotate(T ring, int n)
rotates the origin of ring n elements left (n<0) or right (n≥0). It is a c.r.e. for
is the length of ring.

T is opaque Sem_T

ed T to any Sem function.
 calling Thread_init.
 a T.

_Alerted.

the same T.
Mem_Failed

Thread_Alerted

Thread_Alerted
Sem

typedef struct T { int count; void *queue; } T;

It is an u.r.e. error to read or write the fields in a T directly, or to pass an uninitializ
It is a c.r.e. to pass a null T to any Sem function, or to call any Sem function before

The syntax of the LOCK statement is as follows; S and m denote statements and

LOCK(m) S END_LOCK

m is locked, statements S are executed and m is unlocked. LOCK can raise Thread

void Sem_init(T *s, int count)
sets s->count to count. It is an u.r.e. to call Sem_init more than once on

Sem_T *Sem_new(int count)
creates and returns a T with its count field initialized to count.

void Sem_wait(T *s)
wait until s->count>0, then decrements s->count.

void Sem_signal(T *s)
increments s->count.

T is opaque Seq_T

mpty sequence has no ele-
d (index N−1); sequences

Mem_Failed
Mem_Failed

th of seq.
Mem_Failed

size of the sequence. It is

et for c.r.e.

q to be empty.
Mem_Failed

 first null pointer.
Seq
Sequence indices run from 0 to N−1, where N is the length of the sequence. The e
ments. Pointers can be added or removed from the low end (index 0) or the high en
expand automatically. It is a c.r.e. to passed a null T to any Seq function.

void *Seq_addhi(T seq, void *x)
void *Seq_addlo(T seq, void *x)

adds x to the high or low end of seq and returns x.
void Seq_free(T *seq)

deallocates and clears *seq. It is a c.r.e. for seq or *seq to be null.
int Seq_length(T seq)

returns the number of elements in seq.
void *Seq_get(T seq, int i)

returns the ith element in seq. It is a c.r.e. for i<0 or i≥N, where N is the leng
T Seq_new(int hint)

creates and returns an empty sequence. hint is an estimate of the maximum
c.r.e for hint<0.

void *Seq_put(T seq, int i, void *x)
changes the ith element in seq to x and returns the previous value. See Seq_g

void *Seq_remhi(T seq)
void *Seq_remlo(T seq)

remove and return the element at the high or low end of seq. It is a c.r.e. for se
T Seq_seq(void *x, ...)

creates and returns a sequence whose elements are the “…” arguments up to the

T is opaque Set_T

et_diff, Set_inter,

Mem_Failed
 of s or t. It is a c.r.e. for
nctions.

Mem_Failed
.e.

o change set.

Mem_Failed
Set_diff for c.r.e.

Mem_Failed

ation of hint, cmp, and
Set
It is a c.r.e. to pass a null member or T to any Set function, except for S
Set_minus, and Set_union, which interpret a null T as the empty set.

T Set_diff(T s, T t)
returns the symmetric difference s / t: a set whose members appear in only one
both s=null and t=null, or for nonnull s and t have different cmp and hash fu

void Set_free(T *set)
deallocates and clears *set. It is a c.r.e. for set or *set to be null.

T Set_inter(T s, T t)
returns s ∩ t: a set whose members appears in s and t. See Set_diff for c.r

int Set_length(T set)
returns the number of elements in set.

void Set_map(T set,
void apply(const void *member, void *cl), void *cl)

calls apply(member, cl) for each member ∈ set. It is a c.r.e. for apply t
int Set_member(T set, const void *member)

returns 1 if member ∈ set and 0 otherwise.
T Set_minus(T s, T t)

returns the difference s − t: a set whose members appear in s but not in t. See
T Set_new(int hint,

int cmp(const void *x, const void *y),
unsigned hash(const void *x))

creates, initializes, and returns an empty set. See Table_new for an explan
hash.

Mem_Failed

ved member; otherwise,

Mem_Failed
order and returns a pointer

Mem_Failed
void Set_put(T set, const void *member)
adds member to set, if necessary.

void *Set_remove(T set, const void *member)
removes member from set, if member ∈ set, and returns the remo
Set_remove returns null.

void **Set_toArray(T set, void *end)
creates a N+1-element array that holds the N members in set in an unspecified
to the first element. Element N is end.

T Set_union(T s, T t)
returns s ∪ t: a set whose members appear in s or t. See Set_diff for c.r.e.

T is opaque Stack_T

Mem_Failed

Mem_Failed
Stack
It is a c.r.e. to pass null T to any Stack function.

int Stack_empty(T stk)
returns 1 if stk is empty and 0 otherwise.

void Stack_free(T *stk)
deallocates and clears *stk. It is a c.r.e. for stk or *stk to be null.

T Stack_new(void)
returns a new, empty T.

void *Stack_pop(T stk)
pops and returns the top element on stk. It is a c.r.e. for stk to be empty.

void Stack_push(T stk, void *x)
pushes x onto stk.

tween characters; e.g., the

e space for their results. In
d j. It is a c.r.e. to pass a
cified for Str_catv and

et, or 0 otherwise. It is a

Mem_Failed

Mem_Failed
ecifies an s[i:j].

herwise.

:j1]=s2[i2:j2], or
Str
The Str functions manipulated null-terminated strings. Positions identify points be
positions in STRING are

Two positions can be given in either order. Str functions that create strings allocat
the descriptions below, s[i:j] denotes the substring of s between positions i an
nonexistent position or a null character pointer to any Str function, except as spe
Str_map.

int Str_any(const char *s, int i, const char *set)
returns the positive position in s after s[i:i+1] if that character appears in s
c.r.e. for set=null.

char *Str_cat(const char *s1, int i1, int j1,
const char *s2, int i2, int j2)

returns s1[i1:j1] concatenated with s2[i2:j2].
char *Str_catv(const char *s, ...)

returns a string consisted of the triples in “…” up to a null pointer. Each triple sp
int Str_chr(const char *s, int i, int j, int c)

returns the position in s before the leftmost occurrence of c in s[i:j], or 0 ot
int Str_cmp(const char *s1, int i1, int j1,

const char *s2, int i2, int j2)
returns an integer <0, =0, or >0 if s1[i1:j1]<s2[i2:j2], s1[i1
s1[i1:j1]>s2[i2:j2].

S
1
6– T

2
5– R

3
4– I

4
3– N

5
2– G

6
1–

7
0

Mem_Failed

r)
 otherwise. It is a c.r.e. for

ions and formats the sub-
 null.

t)
set at the beginning of

Mem_Failed

 from and to. Each char-
cter in to. Characters that
evious values are used. If
rom or to to be null, for
om=null and to=null on

tr)
s a c.r.e. for str=null.
char *Str_dup(const char *s, int i, int j,
int n)

returns n copies of s[i:j]. It is a c.r.e. for n<0.
int Str_find(const char *s, int i, int j, const char *st

returns the position in s before the leftmost occurrence of str in s[i:j], or 0
str=null.

void Str_fmt(int code, va_list *app,
int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision)

is a Fmt conversion function. It consumes 3 arguments: a string and two posit
string in the style of printf’s %s. It is a c.r.e. for app, *app, or flags to be

int Str_len(const char *s, int i, int j)
returns the length of s[i:j].

int Str_many(const char *s, int i, int j, const char *se
returns the positive position in s after a nonempty run of characters from
s[i:j], or 0 otherwise. It is c.r.e. for set=null.

char *Str_map(const char *s, int i, int j,
const char *from, const char *to)

returns the string obtained from mapping the characters in s[i:j] according to
acter from s[i:j] that appears in from is mapped to the corresponding chara
do not appear in from map to themselves. If from=null and to=null, their pr
s=null, from and to establish a default mapping. It is a c.r.e. for only one of f
strlen(from)≠strlen(to), for s, from, and to to all be null, or for fr
the first call.

int Str_match(const char *s, int i, int j, const char *s
returns the positive position in s if s[i:j] starts with str, or 0 otherwise. It i

index of s[i:i+1].

Mem_Failed

tr)

et)
 at the end of s[i:j], or

otherwise. It is a c.r.e. for

et)

Mem_Failed

t)
racter in set, or 0 other-
int Str_pos(const char *s, int i)
returns the positive position corresponding to s[i:i]; subtracting 1 yields the

int Str_rchr(const char *s, int i, int j, int c)
is the rightmost variant of Str_chr.

char *Str_reverse(const char *s, int i, int j)
returns a copy of s[i:j] with the characters in the opposite order.

int Str_rfind(const char *s, int i, int j, const char *s
is the rightmost variant of Str_find.

int Str_rmany(const char *s, int i, int j, const char *s
returns the positive position in s before a nonempty run of characters from set
0 otherwise. It is c.r.e. for set=null.

int Str_rmatch(const char *s, int i, int j,
const char *str)

returns the positive position in s before str if s[i:j] ends with str, or 0
str=null.

int Str_rupto(const char *s, int i, int j, const char *s
is the rightmost variant of Str_upto.

char *Str_sub(const char *s, int i, int j)
returns s[i:j].

int Str_upto(const char *s, int i, int j, const char *se
returns the position in s before the leftmost occurrence in s[i:j] of any cha
wise. It is c.r.e. for set=null.

T is opaque Table_T

 key.

fied order. It is a c.r.e. for

Mem_Failed

umber of key-value pairs.
. cmp and hash are func-
urn an int <0, =0, or >0 if
sh(y). If cmp=null or

Mem_Failed

evious value, or adds key
Table
It is a c.r.e. to pass a null T or a null key to any Table function.

void Table_free(T *table)
deallocates and clears *table. It is a c.r.e. for table or *table to be null.

void *Table_get(T table, const void *key)
returns the value associated with key in table, or null if table does not hold

int Table_length(T table)
returns the number of key-value pairs in table.

void Table_map(T table,
void apply(const void *key, void **value, void *cl),
void *cl)

calls apply(key, &value, cl) for each key-value in table in an unspeci
apply to change table.

T Table_new(int hint,
int cmp(const void *x, const void *y),
unsigned hash(const void *key))

creates, initializes, and returns a new, empty table that can hold an arbitrary n
hint is an estimate of the number such pairs expected. It is a c.r.e. for hint<0
tions for comparing and hashing keys. For keys x and y, cmp(x,y) must ret
x<y, x=y, or x>y. If cmp(x,y) returns 0, then hash(x) must equal ha
hash=null, Table_new uses a function suitable for Atom_T keys.

void *Table_put(T table,
const void *key, void *value)

changes the value associated with key in table to value and returns the pr
and value if table does not hold key, and returns null.

able does not hold key,

Mem_Failed
an unspecified order and

ay elements and the corre-
N is end.
void *Table_remove(T table, const void *key)
removes the key-value pair from table and returns the removed value. If t
Table_remove has no effect and returns null.

void **Table_toArray(T table, void *end)
creates a 2N+1-element array that holds the N key-value pairs in table in
returns a pointer to the first element. The keys appear in the even-numbered arr
sponding values appear in the following odd-numbered elements, and element 2

T is Text_T

rite them. Text functions
ull or len<0 to any Text

tring space or deallocate it
ause they can contain null

s; see Str. In the descrip-

" }
}

t, or 0 otherwise.

. It is a c.r.e. for str=null
Text

typedef struct T { int len; const char *str; } T;
typedef struct Text_save_T *Text_save_T;

A T is a descriptor; clients can read the fields of a descriptor, but it is an u.r.e. to w
accept and return descriptors by value; it is a c.r.e. to pass a descriptor with str=n
function.

Text manages the memory for its immutable strings; it is an u.r.e. to write this s
by external means. Strings in string space are not terminated by null characters, bec
characters.

Some Text functions accept positions, which identify points between character
tions below, s[i:j] denotes the substring in s between positions i and j.

const T Text_cset = { 256, "\000\001…\376\377" }
const T Text_ascii = { 128, "\000\001…\176\177" }
const T Text_ucase = { 26, "ABCDEFGHIJKLMNOPQRSTUVWXYZ
const T Text_lcase = { 26, "abcdefhijklmnopqrtuvwxyz"
const T Text_digits = { 10, "0123456789" }
const T Text_null = { 0, "" }

are static descriptors initialized as shown.
int Text_any(T s, int i, T set)

returns the positive position in s after s[i:i+1] if that character appears in se
T Text_box(const char *str, int len)

builds and returns a descriptor for the client-allocated string str of length len
or len<0.

Mem_Failed

Mem_Failed

s the string in the style of
be null.

eturns str. If str=null,
.

Mem_Failed
 and to; see Str_map. If
 of from or to to be null,
T Text_cat(T s1, T s2)
returns s1 concatenated with s2.

int Text_chr(T s, int i, int j, int c)
See Str_chr.

int Text_cmp(T s1, T s2)
returns an int <0, =0, or >0 if s1<s2, s1=s2, or s1>s2.

T Text_dup(T s, int n)
returns n copies of s. It is a c.r.e. for n<0.

int Text_find(T s, int i, int j, T str)
See Str_find.

void Text_fmt(int code, va_list *app,
int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision)

is a Fmt conversion function. It consumes a pointer to a descriptor and format
printf’s %s. It is a c.r.e. for the descriptor pointer, app, *app, or flags to

char *Text_get(char *str, int size, T s)
copies s.str[0..str.len-1] to str[0..size-1], appends a null, and r
Text_get allocates the space. It is a c.r.e. for str≠null and size<s.len+1

int Text_many(T s, int i, int j, T set)
See Str_many.

T Text_map(T s, const T *from, const T *to)
returns the string obtained from mapping the characters in s according to from
from=null and to=null, their previous values are used. It is a c.r.e for only one
or for from->len≠to->len.

int Text_match(T s, int i, int j, T str)
See Str_match.

Mem_Failed
 c.r.e. for str=null.

. It is an u.r.e. to use other
xt_restore.

Mem_Failed

Mem_Failed
int Text_pos(T s, int i)
See Str_pos.

T Text_put(const char *str)
copies the null-terminated str into string space and returns its descriptor. It is a

int Text_rchr(T s, int i, int j, int c)
See Str_rchr.

void Text_restore(Text_save_T *save)
pops the string space to the point denoted by save. It is a c.r.e. for save=null
Text_save_T values that denote locations higher than save after calling Te

T Text_reverse(T s)
returns a copy of s with the characters in the opposite order.

int Text_rfind(T s, int i, int j, T str)
See Str_rfind.

int Text_rmany(T s, int i, int j, T set)
See Str_rmany.

int Text_rmatch(T s, int i, int j, T str)
See Str_rmatch.

int Text_rupto(T s, int i, int j, T set)
See Str_rupto.

Text_save_T Text_save(void)
returns an opaque pointer that encodes the current top of the string space.

T Text_sub(T s, int i, int j)
returns s[i:j].

int Text_upto(T s, int i, int j, T set)
See Str_upto.

T is opaque Thread_T

a blocking Thread, Sem,
e. for t=null or to name a

alling thread to terminate.
code).

empt=1) scheduling and
read_init may accept
ated with a null. It is c.r.e.

Thread_Alerted
ad_join returns t’s exit
n returns 0. It is a c.r.e. for

Thread_Failed

, the new thread executes
(apply(p)), where p
ith its own, empty excep-
meters; the argument list
nd nbytes<0.
Thread
It is a c.r.e. to call any Thread function before calling Thread_init.

void Thread_alert(T t)
sets t’s alert-pending flag and makes t runnable. The next time t runs, or calls
or Chan primitive, it clears its flag and raises Thread_Alerted. It is a c.r.
nonexistent thread.

void Thread_exit(int code)
terminates the calling thread and passes code to any threads waiting for the c
When the last thread calls Thread_exit, the program terminates with exit(

int Thread_init(int preempt, ...)
initializes the Thread for nonpreemptive (preempt=0) or preemptive (pre
returns 1 or 0 if preempt=1 and preemptive scheduling is not supported. Th
additional implementation-defined parameters; the argument list must be termin
to call Thread_init more than once.

int Thread_join(T t)
suspends the calling thread until thread t terminates. When t terminates, Thre
code. If t=null, the calling thread waits for all other threads to terminate, and the
t to name the calling thread or for more than one thread to pass a null t.

T Thread_new(int apply(void *),
void *args, int nbytes, ...)

creates, initializes, and starts a new thread, and returns its handle. If nbytes=0
Thread_exit(apply(args)), otherwise, it executes Thread_exit
points to a copy of the nbytes block starting at args. The new thread starts w
tion stack. Thread_new may accept additional implementation-defined para
must be terminated with a null. It is a c.r.e. for apply=null, or for args=null a

void Thread_pause(void)
relinquishes the processor another thread, perhaps the calling thread.

T Thread_self(void)
returns the calling thread’s handle.

T is XP_T

 n digits, least significant
n Ts; it is an u.r.e. for n<1

 or a T that is too small to

y must be 0 or 1.

z[n-1]. It is an u.r.e. for

0..m-1], and returns 1,
ld at least n+m+2 digits. It
p to be too small.
XP

typedef unsigned char *T;

An extended-precision unsigned integer is represented in base by an array of
digit first. Most XP functions take n as an argument along with source and destinatio
or for n not to be the length of the corresponding Ts. It is an u.r.e. to pass a null T
any XP function.

int XP_add(int n, T z, T x, T y, int carry)
sets z[0..n-1] to x + y + carry and returns the carry out of z[n-1]. carr

int XP_cmp(int n, T x, T y)
returns an int <0, =0, or >0 if x<y, x=y, or x>y.

int XP_diff(int n, T z, T x, int y)
sets z[0..n-1] to x − y, where y is a single digit, and returns the borrow into
y> .

int XP_div(int n, T q, T x, int m, T y, T r, T tmp)
sets q[0..n-1] to x[0..n-1]/y[0..m-1], r[0..m-1] to x[0..n-1] mod y[
if y≠0. If y=0, XP_div returns 0 and leaves q and r unchanged. tmp must ho
is an u.r.e. for q or r to be one of x or y, for q and r to be the same T, or for tm

unsigned long XP_fromint(int n, T z, unsigned long u)
sets z[0..n-1] to u mod and returns u/ .

2
8

2
8

2
8n

2
8n

lue in the conversion, and
 points to the character in

o digit in x[0..n-1].

th fill, which must be 0

+m-1]. If z=0, XP_mul

ut of z[n-1].

[n-1]. It is an u.r.e. for

.r.e. for y=0 or y≥ .

qual to fill.

row must be 0 or 1.

2
8

int XP_fromstr(int n, T z, const char *str,
int base, char **end)

interprets str as an unsigned integer in base using z[0..n-1] as the initial va
returns the first nonzero carry out of the conversion step. If end≠null, *end
str that terminated the scan or produced a nonzero carry. See AP_fromstr.

int XP_length(int n, T x)
returns the length of x; that is, the index plus one of the most significant nonzer

void XP_lshift(int n, T z, int m, T x, int s, int fill)
sets z[0..n-1] to x[0..m-1] shifted left by s bits, and fills the vacated bits wi
or 1. It is an u.r.e. for s<0.

int XP_mul(T z, int n, T x, int m, T y)
adds x[0..n-1]⋅y[0..m-1] to z[0..n+m-1] and returns the carry out of z[n
computes x⋅y. It is an u.r.e. for z to be the same T as x or y.

int XP_neg(int n, T z, T x, int carry)
sets z[0..n-1] to ~x + carry, where carry is 0 or 1, and returns the carry o

int XP_product(int n, T z, T x, int y)
sets z[0..n-1] to x⋅y, where y is a single digit, and returns the carry out of z
y≥ .

int XP_quotient(int n, T z, T x, int y)
sets z[0..n-1] to x/y, where y is a single digit, and returns x mod y. It is an u

void XP_rshift(int n, T z, int m, T x, int s, int fill)
right shift; see XP_lshift. If n>m, the excess bits are treated as if they were e

int XP_sub(int n, T z, T x, T y, int borrow)
sets z[0..n-1] to x − y − borrow and returns the borrow into z[n-1]. bor

2
8

z[n-1]. It is an u.r.e. for

)
 0, and returns str. It is a
int XP_sum(int n, T z, T x, int y)
sets z[0..n-1] to x + y, where y is a single digit, and returns the carry out of
y> .

unsigned long XP_toint(int n, T x)
 returns x mod (ULONG_MAX+1).

char *XP_tostr(char *str, int size, int base, int n, T x
fills str[0..size-1] with the character representation of x in base, sets x to
c.r.e. for str=null, size to be too small, or for base<2 or base>36.

2
8

	Quick Reference
	AP
	Arena
	Array
	ArrayRep
	Assert
	Atom
	Bit
	Chan
	Except
	Fmt
	List
	Mem
	MP
	Ring
	Sem
	Seq
	Set
	Stack
	Str
	Table
	Text
	Thread
	XP

