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Our comparative studies investigate the influence of different representations (i.e. formulas or 
graphical models and numeric formats) on the understanding of ”big ideas” in stochastics (e.g. 
characteristics of probability, conditional probability, distribution, significance). We know from 
previous work (e.g. Sedlmeier & Gigerenzer, 2001) that special tree-representations combined 
with frequency-formats increase the performance in understanding dramatically. Another aspect 
of the experiments is the utility of different presenting-modes (e.g. static vs. dynamic, imitation vs. 
learning by doing). The pupils of age 15-19 receive a computer-based training with different 
representations resp. modes on basic probability tasks. The effects of the training are measured 
by subsequent tests. Thus we obtain insight, if they succeed easily in using the learned 
representations and if they benefit from it. The first results support the assumption that groups of 
pupils trained with frequency-representations have a better understanding of key-problems in 
stochastics.  
 
INTRODUCTION 

Probability theory has a right and a left hand. On the right is the rigorous foundational 
work using the tools of measure theory. The left hand thinks "probabilistically”, reduces problems 
to gambling situations, coin tossing, etc. (Leo Breiman, 1968, preface iii). 
 

In some fields of Mathematics an adequate representational environment has been used 
for centuries. One important example is the differential calculus. In fact, a crucial moment in the 
history of the differential and integral calculus, and consequently in the history of analysis and 
physics, was René Descartes’ inception of what we call today the cartesian product, or also, the 
coordinate system. Descartes’ first use of the cartesian product was in the melting of algebra and 
geometry into what is called analytic geometry that allowed, for instance, representing the conics 
in terms of simple algebraic expressions (an ellipse is given by ax2 + by2 = c). Later on, this 
representational environment made concepts like “velocity” and “space as a function of time” 
transparent and understandable. It was, in fact, the adequate representational environement for 
Newton’s dynamical approach to his formulation of the laws of mechanics. Another, even older 
example of a successful process of search for the adequate representation: the representation of 
numbers as linear combinations of a base. Imagine how much more difficult multiplication is 
using Roman numerals (for those who have not worked extensively with them) than using Arabic 
base-ten notation.  

Probability theory is a relatively young field in mathematics that is still searching for its 
adequate representational environment, that is, a combination of visual aids with notational tools 
that will connect the two hands described by Breiman above. Note that, while the right hand 
described above reduces probability to a Kolmogorov measure, the left hand counts events, going 
back (in history) to Laplacian quotients. The bridge between these two worlds is a formal edifice 
of theorems, of which the law of large numbers is the basic cornerstone. In essence, the 
representational environment is still basically reduced to the notations of measure theory and 
Venn diagrams (with the eventual addition of contingency tables and probability-labeled trees) 
for visualization of probabilistic concepts. This combination has many shortcomings. The 
phenomenon that is changing the representational problems of probability theory is the advent of 
the computer, which is finally providing visualizations that successfully link its two hands. At the 
same time, the tendency is now to go back to a more pre-set-theoretical treatment, and use 
Laplacian probabilities.  
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The aim of the paper is to show that an extensive use of "natural frequencies" combined 
with the adequate use of the computer for graphically exhibiting the bridge between frequencies 
and probabilities may provide the adequate representational environment for teaching probability 
in schools improving students’ transfer of formal concepts into problem solving and also allowing 
“learning by doing”. First results confirming these conjecture – namely improvements obtained 
by interventions in German Gymnasia – will be described and analyzed.  
 
THE SITUATION OF TEACHING STOCHASTICS IN GERMAN SCHOOL  

Recent questionnaire-surveys (Wassner & Martignon, not published.) show that German 
school students consider probability theory an extremely appealing branch of Mathematics. Yet, 
the same surveys reveal that in spite of its appeal, probability theory is considered more difficult 
than other mathematical fields. The problem seems to be the transfer of abstract concepts to 
problem solving, where the wordings of problems describe real-life situations. Whereas the 
probability-problems they encounter in daily life are concrete and numerical, the instruments are 
presented to the students in a highly formalized language. Often mnemonic rules are taught, like 
the “path rules” and the “rule of total probability”, which are easily forgotten. Another aspect is 
that task contexts are seldom motivating or extracted from students’ experience, being, in general, 
quite artificial.  
 
THE PROBLEM OF REPRESENTATION 

As already stated above, the way in which mathematical ideas are represented is 
fundamental to how people can understand and use those ideas. As Gigerenzer and Hoffrage 
(1995) have pointed out, the adequate representation makes the computation and often produces 
the solutions of the problems treated. When students gain access to good representations they 
have a set of tools that significantly expand their capacity to think the right way. “Representations 
must be treated as essential elements in supporting students' understanding of mathematical 
concepts and relationships; in communicating mathematical approaches, arguments, and 
understandings to one's self and to others; recognizing connections among related mathematical 
concepts; and in applying mathematics to realistic problem situations through modeling. New 
forms of representation associated with electronic technology create a need for even greater 
instructional attention to representation” (NCTM, 2000 p.66). 

What we want to address here is the need of good representations for Bayesian inference 
tasks, assessing conditional probabilities and understanding the meaning of significance. If these 
basic tools become well enrooted in students’ minds, they will easily remember and adopt them to 
everyday problems.   

The term representation applies to processes and products that are observable externally 
as well as to those that occur "internally", in the minds of people doing mathematics. Humans – 
and students in particular - have primary intuitions about probability and we believe, in contrast 
to the heuristics and biases (Kahneman & Tversky, 1982) position, that these intuitions are 
“correct” in a normative sense. Thus our question is: What are these correct intuitions and to 
which representational environments do they apply? Our position is, that they are the result of 
genetic selection and learning processes and interaction with the natural environment. The mind 
works with representations of the environment to which it is well adapted (Cosmides & Tooby, 
1996). The mind, Gigerenzer claims, is adapted to a representation via "natural frequencies", 
which is based on simple counting and is the same used by our ancestors, when they had to make 
inferences under uncertainty. The phylogenetic selection process is, of course, not a matter of 
some hundred years. Thus, one didactical recommendation is to use natural frequencies as often 
as possible to gain students’ insight in the problems.  
 



ICOTS6 2002: Martignon and Wassner 
 

 3

EXAMPLE: BAYESIAN INFERENCES  
Perhaps the most striking examples of cognitive illusions with conditional probabilities 

are tasks solvable with the Bayes theorem. The use for  medical risk communication or judgment 
at court give an impression of the relevance of this rule for the daily life. With respect to this, it is 
astonishing how small the attention to that rule and to related problems at German school is. Not 
to mention that the rule gives the basis for another approach to statistics that has already found a 
lot of followers in the statistical methods research. 
 The predominance of frequency representations on typical bayesian inference tasks in the 
context of medical diagnosis appeared very clearly within training-studies. With the help of 
frequency-tree representations long-term performance-rates of over 90% were attainable 
compared to rates of  20% in groups getting a formula-based training (Sedlmeier & Gigerenzer, 
2001). A study which used a frequency tree in the complete version (see Figure 1) and detailed 
frequency information (e.g. "10 out of 1000 women of age 40 have cancer" etc.) for a typical 
bayesian task ("what is the probability of positive test result given the women has cancer?") 
achieved a performance-rate of nearly 80% which was given to people without training.  
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Frequency Tree, Complete Version. 
 

We attribute this unusually high performance-rates from a didactical viewpoint in 
addition to the advantages and reasons described above to the close conformity of the frequency 
tree representation with the inductive way of information processing in the bayesian inference 
tasks. First we divide any sample of the relevant totality by a given base-rate (base-rate neglect 
will not be possible any more). We build up the first level of the tree, the first branching, from 
which we have a clearly separated subset of the totality - in the binary cue situation one subset 
with the condition and one without. The next step is the including of the information given for the 
conditional events, which leads to the second level of the tree. We reach the segmentation 
required by the task structure (conjunctive subsets). Henceforth we add the subsets regarding the 
“new” condition (which is in the 2x2 situation easy to identify) and get supersets, one superset 
with the “new” condition and at least one without (equivalent to the rule of total probabilty or 
second path rule). We reach the third level of the tree. Now it is possible to read off the solution 
simply by combining the relevant nodes. Combining means just calculating a Laplacean 
probability, that is dividing the number in the subset-node by the number in the corresponding 
superset-node.  

Mathematically we would derive the Bayes formula from a definition of conditional 
probability (Laplacean probability) and do exactly the same but the other way round, in a 
deductive way. The mind is able to do both, but the more intuitive and plausible way is the 
inductive one. That´s what we know from learning theory. Just to mention that the fourth level, 
built by adding third level nodes, leads to the proof that we haven´t changed totality which could 
be misunderstood and is equivalent to the important so-called "first path rule".   
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Another advantage of this representation is that you can derive any bayesian “inversion” 
possible with the given information. The obvious advantage over the 2x2-table is that this tree-
representation keeps the inductive information-processing-structure even in the general case, 
which means with more than 2 dichotomous cues (e.g. Monty-Hall-dilema, Krauss & Wang) or 
more levels (e.g. Simpson-paradox). 
 
SOME EMPIRICAL RESULTS  

In a study with school-students of secondary level (age 16-18) we compared frequency-
representation-training with probability-representation-training. Within a computer-based training 
the students learned step-by-step to solve typical bayesian tasks with the help of a certain 
representation. The effects of the training were measured by subsequent tests. It was also required 
from the participants, to give statements about their solutions and to answer transfer questions. 
Thus we obtained insight, if they were able to succeed easily in using the learned representations 
and if they were able to benefit from it.  
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Figure 2  Performance Rates (Pre-post) of Students Trained with Frequency-Tree ("Baum") and 
Probabilty-Formats ("Form"). 
 

One result (see Figure 2) showed clearly that students trained with frequency-trees like in 
Figure 1 perform much better than students trained with probability-labeled representations. Note 
that in spite of the fact that the students had been taught at school in this topic beforehand, they 
didn´t perform well in the pretest. With frequency-trees they were able to reach performance-rates 
of  95% and were also much better in answering transfer questions. The empirical results are 
consistent with the theoretical result that the frequency format can be handled by an algorithm 
that is computationally simpler than that required by the probability format. 
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