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Abstract
This paper provides a brief review of the more popular methods for comparing models in a

Bayesian framework. Personal experience in implementing these methods in problems
requiring mixture models is also referenced.

1 Introduction

Model comparison is required for a diversity of activities, including variable selection in re-
gression, determination of the number of components in a mixture model or the choice of
parametric family. As with frequentist analogues, Bayesian model comparison will not inform
about which model is ‘true’, but rather about the preference for the model given the data and
other information. These preferences can be used to choose a single ‘best’ model or improve
estimation via model averaging, in which expected values obtained from different models are
weighted by their corresponding posterior probabilities (Congdon, 2001).

In the Bayesian arena, common methods for model comparison are based on the following:
separate estimation including posterior predictive distributions, Bayes factors and approxi-
mations such as the Bayesian information criterion (BIC) and deviance information crite-
rion (DIC); comparative estimation including distance measures such as entropy distance or
Kullback-Leibler divergence; and simultaneous estimation, including reversible jump MCMC
and birth and death processes. Each of these is briefly summarised below. Our experiences
in applying these approaches to real problems involving mixture models are then described.

2 Description of Methods

2.1 Separate estimation

Consider two models M1 and M2, not necessarily nested. If the aim of the modelling is
prediction, it is natural in a Bayesian framework to compare models in terms of their posterior
predictive distributions. Simulations from these distributions can be compared with respect to
goodness of fit or proposed inferences (Gelman et al 1995). Posterior predictive p-values and
conditional p-values are also emerging as popular measures of model fit (Bayarri and Berger
2000, Perez and Berger 2002, Aitkin et al 2004).

Another natural approach is to compare models on the basis of the posterior probability
of the model given the data. Using Bayes’ rule, this is proportional to the prior probability
for the model, p(M) multiplied by the likelihood of the data given the model, p(y|M). Thus
the choice between M1 and M2 can be made on the basis of the ratio p(M2|y)/p(M1|y) =
{p(M2)/p(M1)} × {p(y|M2)/p(y|M1)}. A large value of this ratio gives support for M2 over
M1. The second term in this expression, the ratio of the marginal likelihoods, is called the
Bayes factor BF21 (Kass and Raftery 1995). Unlike a likelihood ratio, it is obtained by
integrating over θ instead of maximising, so that p(y|Mi) =

∫
p(y|Mi, θi)p(θi|Mi)dθi, i = 1, 2.

A change to 2 log(B21) gives same scale as usual deviance and likelihood ratio statistics. Many
variants of the Bayes factor have been proposed (Aitkin 1997, Berger and Pericchi 1998, Chen
et al 2000) and their strengths and weaknesses have been actively debated; see for example
Gelman et al (1995), Congdon (2001), Berger, Ghosh and Mukhopadhyay (2003) and Robert
and Casella (2004), and references therein.
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Because the Bayes factor is often difficult or impossible to calculate, especially for models
that involve many random effects, large numbers of unknowns or improper priors, a popular
alternative is to adopt an approximation to the Bayes factor. For a model M , the Bayesian
Information Criterion (BIC) is equal to log p(y|θ̂,M) − p/2 log n . The first term is the fa-
miliar probability of the data given the model, computed at the value θ̂ that maximises
this probability. The second term promotes model parsimony by penalising models with in-
creased model complexity (larger p) and sample size. The Deviance Information Criterion
(DIC) also penalises against higher dimensional models (Spiegelhalter et al, 1999): with de-
viance denoted by D, DIC = E[D(θ)|y] + {E[D(θ|y)] − D(E[θ|y])} = D̄(θ) + pD, where
D̄(θ) = Eθ[−2logp(y|θ)|y] + 2 log p(y) and pD denotes the effective number of parameters. It
can thus be seen that the DIC comprises terms that are a function of the data alone and a
measure of the complexity of the model. The use of the DIC is a topic of ongoing discus-
sion. While its original formulation as described above is appropriate in most generalized
linear modelling problems, it fails in other contexts. Celeux et al. (2003) discuss alternative
representations of the DIC for latent variable models, including mixtures and missing value
problems.

2.2 Comparative estimation

If the ‘distance’ between two posterior (or posterior predictive) distributions is sufficiently
small, the more parsimonious model may be preferred. Such distributional distances can be
derived in a variety of ways. Mengersen and Robert (1996) use a Kullback-Liebler measure
and define an ‘indifference zone’ within which models are accepted to be equivalent. Sahu
and Cheng (2003) also discuss the use of entropy distances for model comparison.

2.3 Simultaneous model estimation

A number of model choice methods are based on enlarging the parameter space to include all
of the models of interest (George and McCulloch 1993, Carlin and Chib 1995). A very popular
and conceptually elegant alternative is reversible jump MCMC (RJMCMC), also termed trans-
dimensional MCMC (Green 1995), in which the model itself is conceived as another unknown
and the MCMC algorithm is enlarged to allow ‘jumps’ between models. A prior is required
over the model space, but with judicious choice of jumps the number of models does not need
to be specified in advance and each model does not require separate estimation. For example,
in a mixture context in which the number of components is unknown, Richardson and Green
(1997) suggest an additional Metropolis-Hastings step that involves proposals for the ‘birth’ of
a new component or ‘death’ of an existing component, or a ‘split’ or ‘combine’ of two existing
components. These moves then require (reversible) bridges to be built between parameters
of models of different dimensions, for example the generation of a new mean from the two
existing means or the collapse from three to two means. The posterior probability of a model
is then estimated by the proportion of times that the particular model is accepted in the
MCMC run. The RJMCMC approach has been employed and discussed in many contexts;
see Robert and Casella (2004) and references therein.

An alternative birth and death MCMC (BDMCMC) formulation was developed by Stephens
(2000). Here, the time between jumps to a model of larger dimension (for example the number
of MCMC iterations to the next birth of a component) is taken to be a random variable with
an underlying rate, and there is an analogous rate of time between steps to lower-dimensional
models. In contrast to RJMCMC, moves between models are always accepted and the prob-
ability of a model is instead determined by the length of time that the MCMC chain remains
in that model. Split and combine steps have been included by Cappé et al (2003) in their
consideration of more general continuous time algorithms and comparison with RJMCMC.
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3 Applications to Mixture Models

3.1 Model comparison for zero-inflated data

Kuhnert et al. (2004)describe and illustrate Bayesian modelling of the impact of grazing lev-
els on bird density in woodland habitat, with priors based on expert opinion. The authors
describe and illustrate the use of the DIC and posterior predictive checks for the compari-
son of two models that accommodate the excess zeros in these data: the two-component (or
conditional) model and the mixture model which allows a point mass at zero. In this case,
the mixture model is well defined so the effective number of parameters and the DIC were
computable. Moreover, the DIC values were consistent with the graphical posterior predictive
checks for both models. A second problem considered by Kuhnert and other coauthors in-
volves quantification of components of flow or discharge entering catchments caused by heavy
rainfalls and storm events. This has important consequences for the Great Barrier Reef and
surrounding areas. The data may be described by mixtures of ambient or base flow conditions,
wet season conditions and storm events. The standard DIC in the context of loads monitoring
is unsuitable in this situation so three alternative estimators proposed specifically for mixture
models by Celeux et al. (2003) are presently under investigation.

3.2 Mixture models for bioregionalisation

Bioregions are nationally accepted sets of boundaries encompassing areas considered to be ho-
mogeneous with respect to broad scale environmental elements such as climate and geology.
Subregions further identify areas that share common soils as indicated by broad vegetation
groups. Current methods for constructing terrestrial bioregions and subregions are either
data-driven or expert-driven. Pullar, Low Choy and Rochester (2004) have investigated the
feasibility of a Bayesian model that combines these two sources of information. Mixture
models are used to identify regional clusters and provide information about the relative im-
portance, average and range of values for each environmental variable within each region.
Regional boundaries derived from expert-driven approaches are used as priors. Model as-
sessment involved a comparison of Bayes factors, residual plots and the eight modified DIC
measures proposed by Celeux et al (2003). The favoured measure was DIC3 in Celeux et al.

3.3 Mixture models for CT scans

The effect of drought or different dietary regimes on sheep can potentially be assessed through
the proportion of fat, muscle and bone tissue detected in CT scans. Alston et al (2004) describe
and implement a Bayesian mixture representation of the greyscale frequency plots correspond-
ing to the scans, with the number of components determined by the BIC. The application
of BDMCMC and RJMCMC was also considered. In this context, the RJCMC returned a
much smaller number of preferred components (2-3 compared to 5-7 under BIC) and gave a
much poorer fit based on visual plots and posterior predictive checks. It is postulated that
the low acceptance rates for birth/death and split/combine models is due to poor separation
of components and large sample size. Simulation studies confirm this (Alston et al 2005, in
preparation).

3.4 Mixture models for nonparametric density estimation

Nonparametric density estimation on [0, 1] has been investigated using Bernstein polynomi-
als (Petrone 1999) and triangular distributions (Perron and Mengersen 2001) McVinish et al
(2004, in preparation) establish conditions for strong and weak consistency of the posterior
distribution under two forms of triangular mixtures (fixed partitions and variable weights;
fixed weights and variable partitions) that compare favourably with convergence of Bern-
stein polynomial representations. The behaviour of the Bayes factor in testing a uniform or
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parametric family against a nonparametric alternative using these triangular mixtures is also
considered. Consistency of the Bayes factor can be obtained provided the nonparametric prior
does not place too much probability near the parametric family.
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