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This paper discusses the Three Prisoners paradox in the light of three different procedures for the 
updating of probabilities - Bayesian conditioning, superconditioning and Jeffrey's rule - as well 
as assuming the unpredictability of receipt of information by prisoner A. The formulation of the 
paradox in this temporal setting brings new insight to the problem and, on the other hand, the 
paradox is a good way to explain the different updating probability procedures and the difference 
between conditional probabilities and posterior distributions.  
 
INTRODUCTION 

The three prisoners. Two are to be shot and the other freed; none is to know his fate until 
the morning. Prisoner A asks the warden to confide the name of one other than himself 
who will be shot, explaining that as there must be at least one, the warden won’t be 
giving away anything relevant to A’s own case. The warden agrees, and tells him that B 
will be shot. This cheers A up a little, by making his judgement probability for being freed 
rise from 1/3 to 1/2. But that’s silly: A knew already that one of the others would be shot, 
and (as he told the warden) he’s no wiser about his own fate for knowing the name of 
some other victim.” (Jeffrey, 1992, p. 122) 
 
The Three Prisoners paradox, just presented, is an old problem from Probability Calculus 

which has been discussed from many different points-of-view. This “paradox” is also an excellent 
tool in teaching some different procedures for the updating of probabilities and the difference 
between posterior distributions and conditional probabilities. On the other hand, these updating 
procedures provide new insight in the paradox. 

Apparently the answer provided by prisoner A is a contradiction since, as prisoner A tells 
the warden, the information given about the other two prisoners does not apprise prisoner A of his 
own condition. Thus, the prisoner A’s opinion about the event “A will live” ought to be the same 
after the receipt of the information provided by the warden, i.e., the posterior probability of this 
event should also be 1/3. On the other hand, we should notice that the solution presented by 
prisoner A does not change the prior opinion of indifference among the prisoners revealed by the 
prisoner A’s prior distribution. What is the right answer? 

According to Jeffrey (1992), prisoner A follows erroneously the council of parochialism - 
that is, prisoner A constructs his posterior distribution using Bayesian conditioning. Prisoner A 
considers the sample space 1Ω = {A, B, C}, where X represents “X will live,” X = A, B, C. On this 
space the information provided by the warden does not generate a sufficient partition for {P, P*}, 
which makes the use of Bayesian conditioning inappropriate. (See de Finetti (1972), for the 
difference between Bayes’ formula and Bayesian Conditioning.) 

Some alternative procedures for the updating of probabilities are proposed in the 
literature. See, for example, Diaconis and Zabell (1982), Jeffrey (1992), Howson and Urback 
(1993) and others. However, there is no guidance for coherent temporal behavior which produces 
an inevitable probability updating procedure (Goldstein, 1985; Dawid, 1985). Consequently, 
prisoner A may update his/her prior opinion by means of a complete reassessment of his/her 
opinion. 

This paper extends previous works by presenting alternative explanations to the Three 
Prisoners paradox using Bayesian conditioning, superconditioning and Jeffrey’s rule as well as by 
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considering (when it is possible) two different settings: i) prisoner A plans to ask the warden for 
information and ii) prisoner A receives unexpectedly the information. It will be argued that the 
solution presented by A may be correct if we do not arbitrate, as it is usually done, that: the 
receipt of information about B and C is planned from the beginning; the received information 
always takes prisoner A to the certainty that B will die; and prisoner A judges that the warden has 
the same chance to reveal the names of prisoners B and C, in case A is the one to be freed. 
Therefore, we will point out some limitations to Bayesian conditioning as well as highlight the 
influence of the way by which the information is received on the construction of the posterior 
distribution. In this paper, it will be assumed that the prior probabilities declared by prisoner A for 
the events “X will live,” X = A, B, C, are the same. We denote by P and P* two probability 
measures defined on the measurable space ( )ΑΩ, , where Ω  is a countable set, and interpret P 
and P*as the prior and posterior opinions of prisoner A about events in Α , respectively.  

Next, we will briefly present Bayesian conditioning and responses to that paradox using 
this procedure for the updating of probabilities. The difference between posterior distribution and 
conditional probabilities is briefly discussed.  
 
BAYESIAN CONDITIONING AND THE CALCULUS OF PRISONER A 

 Bayesian conditioning is the procedure for the updating of probabilities which links prior 
and posterior distributions using Bayes’ formula, that is, for all event E inΑ such that P(E) > 0, 
the posterior distribution P* is obtained from the prior distribution P using the expression: 

P* (.) = P(.| E) .                    (1) 
Using some properties of probability measure, Jeffrey (1992) states some conditions 

under which Bayesian conditioning can be performed. These conditions are presented in the 
following theorem. 
 
Theorem 1: Let Α∈E  be an event such that P(E) > 0. Then, for every Α∈A , P*(A) = P(A|E) 
if, and only if 
 

1. P* (E) = 1 
2. P*(A|E) = P(A|E). 

 
Theorem 1 is named by Howson and Urback (1993) The Principle of Bayesian 

Conditionalisation and conditions (1) and (2) are respectively known as certainty and sufficiency. 
Using this terminology it can be stated that Bayesian conditioning is an acceptable procedure for 
the updating of probabilities if the received information makes You move from an initial state of 
uncertainty about the conditioning event E  to the posterior certainty of its occurrence and if, 
beyond this, the partition { E , E }, generated by the received information, contains all relevant 
information to the construction of your posterior distribution - i.e., { E , E } is a sufficient 
partition to the family {P,P*}. Notice, moreover, that certainty and sufficiency (conditions (i) and 
(ii), respectively) are subjective evaluations and depends on your judgement. 

To analyze the Three Prisoners paradox using Bayesian conditioning, firstly, consider that 
prisoner A plans to ask the warden about the situation of the other two prisoners from the 
beginning. The sample space which appropriately describes the experiment performed by prisoner 
A is the space 2Ω  = {Ab, Ac, Bc, Cb} where Xy denotes the event “X will live and the warden 
names y.” Thus, initially we have that P(Ab) = p =1/3 - P(Ac) and P(Bc) = P(Cb)= 1/3, where 
p∈[0,1/3). Notice that, in this case, the prior conditional probability that the warden informs that 
B will die, supposing that A will be freed is 3p. 

At the very moment A declares his prior distribution, he also reveals his probabilities, 
supposing that the event “the warden informs that B will die” occurs. Denote this event by E and 
notice that E = Ab ∪Cb. Supposing that E occurs and being coherent from the static point-of-
view de Finetti (1937), the prior conditional probability of the event “A will live” is obtained 
from Bayes’ formula as follows P(Ab ∪ Cb | E) = 3p/(3p + 1). 
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If prisoner A judges that the conditional probabilities in E declared before are kept after 
consulting the warden and if his new opinion about the event E is P*(E)=1, Bayesian 
conditioning can be performed and the posterior probability for the event “A will live” is the 
probability obtained in the expression (1), i.e., P*(A)=P(Ab ∪Cb | E) = 3p/(3p + 1).  

Notice that the posterior probability of A is 1/3 only if p = 1/6. This choice of p shows 
that, for prisoner A, the warden has equal chances to tell the names of either B or C, in case A is 
the prisoner who will live. On the other hand, if A thinks the warden would never tell the name of 
C, in case A were the survivor, that is, if he declares p = 1/3, the posterior distribution provided in 
(1) would agree with the posterior distribution divulged by prisoner A.  

Conversely, suppose now that prisoner A has not planned to ask the warden about the 
conditions of prisoners B and C. In this case, the suitable sample space to describe the experiment 
performed by A is the space 1Ω defined in above. 

As it has already been assumed, consider that each prisoner has a 1/3 chance of being the 
survivor. Consequently, the prior conditional probability for the event “A will live,” supposing 
that B will die, is given by:  

P(A|E) = P(A) / [P(A ∪C) ] = 1/2,               (2) 
in which E = A ∪C . 

After A states his opinion about his being the one who will survive, the warden tells him 
that B will die. If in possession of the information given by the warden, A judges that E is a 
certain event and that all the conditional probabilities in E are not modified, the posterior 
probability for the event “A will live” is given by the expression (2), confirming prisoner A’s 
initial statement. 

In both situations we assume that the received information is the same and Bayesian 
conditioning is the procedure adopted to update probabilities. Yet only in some situations the 
posterior distribution for the event “A will live” coincides with what seemed intuitive and logical 
at first. Besides, if the information is received unexpectedly, prisoner A will always be right. 

Notice that the way by which the information is received influences the posterior 
probability calculus for the event “A will live” as it interferes directly with the construction of the 
sample space appropriate for the problem. In case the receipt of information is not previously 
anticipated, the change in the value of the posterior probability declared by prisoner A is plainly 
justifiable (in this case there is a change in the expectation), and the assessment made by prisoner 
A is not contradictory. 

In the next section we present a different experimental design which could be performed 
by prisoner A. For this “new” design Bayesian conditioning can not be used as updating 
probabilities procedure. 
 
EXPLANING THE PARADOX VIA SUPERCONDITIONING 

Suppose that prisoner A has not planned to ask the warden for information - i.e., A 
considers the space 1Ω ={A, B, C}. Admit that prisoner A’s prior probabilities for the survival of 
each prisoner is 1/3. 

After eliciting his prior distribution for the events of 1Ω  (and before declaring his 
posterior distribution), prisoner A decides to ask the warden which of the other two prisoners will 
be sentenced, alleging that this information does not tell anything about his own condition. How 
can the posterior distribution on 1Ω  be determined? By doing so, prisoner A performs an 
experiment whose possible results are in the sample space 2Ω = {Ab, Ac, Bc, Cb}. Notice that this 
situation is slightly different from that one described previously, where prisoner A has planned to 
ask for information before declaring his prior distribution. Here Bayesian conditioning is not 
applicable. 

The superconditioning introduced by Diaconis and Zabell (1982) offers us an alternative 
way to explain the Three Prisoners paradox, in this situation. 
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Definition 1: (Superconditioning). The posterior distribution P* can be obtained from the prior 
distribution P by Superconditioning if there exist a probability space (Ω ,Α , Q) and a class of 
events D = { wE ∈  Α  }, Ω∈w , such that: 
(i) wE  occurs if, and only if w  occurs, for all Ω∈w ; 
(ii) )( wEQ = P({ w }), for all Ω∈w and 
(iii) P*({ w }) = )|( EEQ w for every Ω∈w and for an event Α∈E  such that )( wEQ >0. 
 

Notice that, as for Bayesian conditioning, the updating of probabilities via 
superconditioning is obtained multiplying the prior distribution by an appropriate likelihood 
function.  

To analyze the Three Prisoners paradox considering the design described before in this 
section, suppose that prisoner A specifies the following probability measure Q on 2Ω : 

Q(Ab)= 1q , Q(Ac)= 2q , Q(Bc)= 3q  and Q(Cb)= 4q , where ∈iq [0,1], for all i and ∑ =
i

iq 1, 

before asking the warden. Define E Α = Ab ∪ Ac, ΒE =Bc, E C =Cb and E= Ab∪Cb. Then we 
have that Q(E Α ) = 1q + 2q = 1/3, Q( ΒE )= 3q = 1/3 = 4q =Q(E C ) and Q(E)= 1q + 1/3. Thus, 
using superconditioning, the posterior probability for the event “A will live” is 
P*(A)=Q(E Α |E)=Q(Ab)/Q(E) = 1q /[ 1q +1/3]. 

At first, suppose that prisoner A thinks the warden has an equal preference for both 
prisoners B and C, in such a way that Q(Ab) = Q(Ac) = 1/6 and Q(Bc) = Q(Cb) = 1/3. From (iii) 
we have that P*(A) = (1/6)/(1/2) = 1/3, which coincides with prisoner A’s prior opinion about this 
event. 

On the other hand, if A suspects that the warden will never tell that prisoner C will die, in 
case he is the survivor - which makes A declare Q(Ac) = 0 and Q(Ab) = Q(Bc) = Q(Cb) = 1/3 - 
the posterior probability of A being the survivor is P*(A) = 1/2, what confirms the reason for 
prisoner A’s excitement after talking with the warden. 

If prisoner A adopts the superconditioning and has not uniform prior distribution on 
singleton events of 1Ω , A will only change his initial opinion to 1/2 if there is any reason to 
judge that Q(Ab) = Q(Cb). In case prisoner A considers Q(Cb) = 2Q(Ab) the posterior probability 
of the event “A will live” will be P*(A) = P(A) = 1/3. 

However, we must notice that the posterior distribution P* is not always obtained from 
the prior distribution P by superconditioning. In the Three Prisoners paradox (if the experimental 
design performed by prisoner A is that one described in this section) we can always use this 
updating procedure because the sample space is countable, as we can see in the next theorem 
from Diaconis and Zabell (1982). 
 
Theorem 2: Let P and P* be probability measures defined on (Ω ,Α ), where Ω  is a countable 
set. P* is obtained from P by superconditioning if, and only if, there is a constant B≠ 1 such that 
P*(w) ≤ BP(w), for all w∈Ω . 
 

More about superconditioning can be found in Jeffrey (1992). In the next section, another 
way to explain the calculus done by prisoner A will be shown by considering Jeffrey’s rule. 
 
JEFFREY’S RULE AND THE THREE PRISONER PARADOX 

Another possible experimental design which could be performed by prisoner A is 
described in the following. Suppose it is not prisoner A’s intention to ask the warden for 
information about prisoners B and C, i.e., admit the sample space 1Ω = {A, B, C}. As before, 
admit hat the prior probability distribution stated by A for the singleton events of 1Ω are all 1/3. 
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After having declared his prior distribution on 1Ω , assume that prisoner A is unexpectedly 
informed by the warden that B will die, and that this information makes A change his opinion 
about the event E = A∪ C arbitrarily, establishing that P*(E) = p* < 1. Notice that, as for 
Bayesian conditioning, the events E and E  define a partition of the sample space, but here the 
information provided by the warden does not make prisoner A certain about the truth of E, that is, 
prisoner A believes that the warden can be lying. 

Jeffrey’s rule, presented in Jeffrey (1992), permits the construction of the posterior 
distribution in situations similar to the one we have just described. 
 
Definition 2: (Jeffrey's Rule). Let Ω  be a countable sample space. The posterior distribution P* 
is obtained from the prior distribution P by Jeffrey’s Rule if  

P*(.) = ∑
i

iEP )|(. P*( iE ), iE ∈ Ε ,     (3) 

where Ε  is a partition of Ω , P*( iE )≥0 for every i and ∑
i

iEP )|(.* )=1. 

Jeffrey’s rule also permits the arbitrary updating of the prior probabilities attributed to the 
elements of the partition. Its difference from Bayesian conditioning is that those arbitrary 
reassessments P*( iE ) may assume values smaller than 1 for every i. Notice that, since there is 
not a procedure to obtain the posterior probabilities P*( iE ) to elicit them can be such a 
psychologically complex task as stating the prior distribution.     

Notice that, as defined in (3), P* does not follows the laws of Probability Calculus, that 
is, P* is not necessarily coherent in the sense defined by de Finetti (1937). A posterior probability 
measure will be obtained by Jeffrey’s rule, if the partition of Ω  generated by the received 
information is sufficient to {P, P*} as we can see in Theorem 3 in the following. 
 
Theorem 2: Let (Ω ,Α ) be a probability space where Ω  is a countable set. Consider an Α -
measurable event A and suppose that for every iE Ε∈ , P*( iE ) > 0. Then P*(A) =∑ P(A| iE ) 

P*( iE ) if, and only if, for every A ∈ Α  and for every iE  Ε∈ ,  
P(A| iE ) = P*(A| iE ).        (4) 

 
The proof of this theorem and a valuable discussion on Jeffrey’s rule can be found in 

Jeffrey (1992). See more in Diaconis and Zabell (1982) and Loschi, Iglesias and Arellano-Valle 
(2002). 

Let us admit, however, that the condition (4) (the J-condition or sufficiency condition) 
above is verified for prisoner A’s prior and posterior opinions - i.e., for A the partition 

},{ EE=Ε , generated from the information provided by the warden, is sufficient to the family of 
probability measures {P,P*}. Since P*(E)=p*<1, the posterior probability obtained by Jeffrey’s 
rule for the event “A will live” is: P*(A) = P(A|E) p* + P(A| E ) (1-p*) = p*/2.  

Notice that the prior probability of event “A will live” remains unchanged afterwards if 
the information provided by the warden makes prisoner A less uncertain about the event E, but 
not totally convinced of its occurrence. In fact, A would have to declare p*=2/3 to have his prior 
distribution unchanged. In any other circumstances the posterior probability for the event A will 
live” will be different from the prior probability and also different from the posterior probability 
established by prisoner A. Notice also that the only reason for prisoner A’s excitement about 
having his chance of survival increased to ½ is when p* = 1, which would be the same as using 
Bayesian conditioning. 

On the other hand, if prisoner A intends to inquire the warden about his companions 
before stating his prior distribution, the information that B will die causes the occurrence of the 
event Ab∪Cb of the sample space 2Ω . In this case, updating probabilities via Jeffrey’s rule is 
equivalent to an updating by Bayesian conditioning; thus the posterior probability of A being the 
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survivor is given in (1). Notice that Jeffrey’s rule also does not apply to the problem considered 
by Morgan et al. (1991). In that problem, to use Jeffrey’s rule always corresponds considering 
Bayesian conditioning.  
 
FINAL COMMENTS 

In this paper we present several scenarios to explain the Three Prisoners paradox and 
different approaches are considered to explain it. However, the problem is more general and often 
occurs in practical situations. Suppose, for example, we are predicting a time series with a truly 
dynamic model. Then, before, seeing more data, news broke that a new terrorism attack has just 
taken place around the world. How are we going to make use of this relevant piece of 
information? In order to improve our predictions, this unpredictable information must be 
incorporated in the model. Notice that this real problem is very similar to the problem lived by 
prisoner A. 

The Three Prisoners paradox, as well as any other problem which involves the updating 
of probabilities, does not have a unique solution (for the Three Prisoners paradox we have seen 
that the number of solutions can be very large, and not only 1/2 and 1/3 as it is usually 
considered). One of the reasons is the lack of a normative rule for the choice of the procedure to 
be used for the updating of probabilities. In the absence of such a rule we may choose the 
procedure we judge the most adequate to the construction of our posterior distribution. We may 
even construct the posterior distribution by means of a completely arbitrary reassessment, that is, 
without using any mathematical formula. 

Besides, the way by which the information is received influences our judgement. For all 
the situations discussed, the information was the same. However, how it was obtained as well as 
its influence on prisoner A’s way of thinking generated distinct posterior distributions. We do not 
know how prisoner A designed his experiment, nor do we know which procedure he used to 
construct his posterior distribution. Therefore, we cannot affirm that A made a mistake declaring 
1/2 as the posterior probability of his being the survivor. 
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