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Modeling and simulation with the software Fathom has become an important part of an introduc-
tory course on probability and statistics for future mathematics teachers at our institution. We 
describe our conception of modeling and simulation competence that students are supposed to 
acquire. We use various means such as modeling guidelines, simulation plan and a guidebook 
with examples for simulations to support students’ learning processes. We report on results of 
empirical studies that made us change and extend our initial educational approach. 
 
INTRODUCTION 

The role of simulation in an elementary course on probability and statistics is dependent 
on the goals one intends to achieve in the course. Many studies address the role of simulation for 
developing the concept of sampling distribution and for preparing concepts and methods of infer-
ential statistics (delMas, Garfield, and Chance, 1999). We focus more on the role of simulation in 
elementary probability. In this respect, we build on ideas developed by Gnanadesikan, Scheaffer 
and Swift (1987) and Konold (1994) and on ideas in the German tradition where more emphasis 
is given to modeling and simulation in elementary probability.  

Ideally the use of simulation can serve two different pedagogical purposes (Biehler, 
1991). Students are to develop “modeling competence” related to elementary probability, and 
simulation competence can be part of it. Instead of setting up a formal model and determining 
unknown probabilities mathematically they can set up a model, implement it in a computer and 
develop estimates of unknown probabilities by means of simulation. In this sense simulation re-
places mathematics. A different purpose is to use simulation for making probabilistic situations 
more experiential. The observed phenomenon can be used as a reference for concept develop-
ment, for elaborating probabilistic intuitions, and for overcoming misconceptions. In this sense 
simulation replaces the real world, which is to be modeled. 

An appropriate software tool is essential for putting such an approach into practice. Stu-
dents should work actively on analyzing data, simulating, analyzing methods and building mod-
els. The software Fathom achieves best our criteria for a software tool that supports both the 
learning and the use of probability and statistics in problem solving (Biehler, 1997).  
 At the department of mathematics and informatics in our University we are in the process 
of redesigning our introductory course on stochastics (probability and statistics) for future 
mathematics teachers. This is obligatory for student teachers that are going to teach in grade 5 to 
10 (pupils’ ages 11 to 16 years). In the last years the software Fathom was used in this course. 
The course starts with exploratory data analysis and descriptive statistics. In the first part of the 
course the students learn how to work with Fathom to analyze real data. The students can use 
these capabilities to analyze simulated data in the later parts of the course. Simulation as a method 
is introduced in parallel to the concept of probability. Situations are modeled mathematically and 
by simulation and results are compared.  
 
A PRIORI DIDACTICAL ANALYSIS OF FATHOM’S SIMULATION CAPABILITIES 

Developing Fathom as students’ cognitive tool for modeling probabilistic situations im-
plies that students develop a kind of mental model of the tool with regard to simulation problems. 
It also implies that they are to develop a certain style of working with the tool. Our a priori analy-
sis aimed at supporting this process of instrumental genesis (Lagrange, 1999). As a result we con-
structed several concepts and notions that we communicated to the students. We distinguish three 
types of simulations (simultaneous, sequential, and sampling based), we developed the notion of a 
step-wise “simulation plan,” and we had to develop the traditional concepts of event and random 
variable as bridging concepts between the world of probability and the world of Fathom. In other 



ICOTS-7, 2006: Maxara and Biehler 

 2

words these traditional concepts had to gain new meanings in the software context but we were 
aware that meaning conflicts may arise (Godino and Batanero, 1998). 
• Three types of simulations. In a simultaneous version each particular step of a multi-step ran-
dom experiment is represented by a separate attribute. One realization of the experiment is repre-
sented by one row. In a sequential simulation each step of the random experiment is represented 
by one case of the same attribute. In the third, sampling-based version, the simulation of the ran-
dom experiment is realized by drawing a sample from a collection of data (an urn) where the 
number of cases in the sample represents the number of steps. The three different versions of 
simulations in Fathom are visualized in the following picture. The example is the simulation of a 
double throw of a coin. 

 
 

It is tempting for a student to choose among the three different possibilities according to the simi-
larity to the real situation. The simultaneous simulation seems to be most adequate if two coins 
are thrown simultaneously and the sequential one is adequate if one coin is repeatedly thrown. 
However, due to the specificities of the software, an optimal choice has to take into account the 
purpose of the simulation. Depending on the type of simulation, some events or random variables 
can be defined only in a complicated way or they cannot be defined at all. Moreover the possibili-
ties of generalizing or modifying a simulation depend on the type. For instance, the waiting time 
until the first occurrence of a “T” can be easily defined by little modifications of the sampling-
based simulation but not at all with the other two types. We regard this as a source of problems 
for the students. 
• Guidebook “An introduction into simulation with Fathom.” As part of our a priori analysis we 
developed a comprehensive overview of possible simulations in Fathom. We constructed a set of 
working environments with simulation components (about 200). Based on these results, a Guide-
book “Introduction into Simulation with Fathom” with many examples in Fathom was developed. 
This guidebook was especially prepared for the students in our elementary statistic course and 
contains only a selection of examples and options. The guidebook contains further aspects of our 
a priori analysis that we describe below. 
 
WORKING STYLES WITH SIMULATIONS: MODELING GUIDELINES AND THE ‘SIMU-
LATION PLAN’ 

The simulation in the course and in the guidebook recommends a three step process for a 
stochastic simulation: setting up a stochastic model, writing a simulation plan and the realization 
in Fathom. This three step process is used as a guideline for stochastic modeling.  

In the first step, setting up a stochastic model, the students should build a model of a real 
situation with a random outcome by describing the situation for example by a concrete urn-model 
or in a more abstract way. They have to specify the set of possible results (the sample space), the 
probability distribution, the number of steps of the experiment and the interesting events or ran-
dom variables. In the second step the students are to transfer the constructed model in a plan for a 
simulation of a random experiment in Fathom. The simulation plan was an important aspect in the 
conception of the courses. It aims at supporting students to reflect about the simulation process 
before (or after) the realization of their simulation in Fathom. 

We became aware of the need for such a “modeling guideline” when observing our first 
generation students at work and when doing interviews with them. The students often directly 
jumped into using the software without enough stochastic thinking beforehand. At least after fin-
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ishing the simulation in Fathom the modeling guideline and the simulation plan becomes relevant 
for them, when they have to communicate and document their simulation. 

The simulation plan is always composed of five steps. We will illustrate these compo-
nents with the following famous example: 

A math course consists of 23 students. What is the probability that the birthday of at least 
two students are on the same day of the year? We assume that every day of the year is equally 
likely as a birthday. Estimate the probability by a simulation. 

 
Stochastic Modeling 
 Concrete model. We’re modeling the problem with sampling from an urn with 365 con-
secutively numbered balls (1-365). From this urn we’re sampling 23 balls with replacement. 
Every drawn ball represents the birthday of one student. If two or more numbers are equal at least 
two students’ birthdays are at the same day. 

Formal model of single experiment. We describe the set of results of one step of the ran-
dom experiment with 1 {1, 2,3,...,364,365}Ω =  with an uniform probability distribution 

1
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365
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 Formal model of compound experiment. The whole random experiment consists of 23 
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tively students can leave the model for the compound experiment implicit and work and think 
with more concrete representations of results of compound experiments as paths in a tree dia-
gram. 
 
Plan of Simulation 
Step: Example: General: 
1 We create a new collection “birthday” with 

an attribute “birthday” and intend to repre-
sent every student by a case (sequential 
simulation). 

Defining a collection and one or more 
attributes; choice of the type of the im-
plementation in Fathom (simultaneous, 
sequential, or sample). 

2 We choose the random function randomIn-
teger(1,365) to define the attribute. The 
function randomly generates an integer rep-
resenting the birthday of a student. We add 
23 cases to the collection. Each case stands 
for the birthday of one student.  

Choice of an appropriate random machine 
for the probability space and for the simu-
lation of the random experiment. 

3 For the event E: “the birthdays of at least 
two students are on the same day” we de-
fine a measure “E” with the formula: 
uniqueValues(birthday)≤ 22. If this expres-
sion is true the event occurs. 

Defining events and random variables as 
attributes or measures. (A measure is a 
technical concept in Fathom that will be 
described later.) 

4 We collect 1000 measures. (The simulation 
is repeated 1000 times.) 

Realization and repetition of the simula-
tion. 

5 We analyze the results with a summary ta-
ble and a bar chart. 

Statistical data analysis of the simulated 
results. 
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Realization in Fathom 
The realization of the simulation plan in Fathom is the third step in the overall process. 

This is the most practical part of the activity. The simulation plan is getting real. In addition the 
students can experiment with their assumptions, with the sample size, with the number of repeti-
tions of an experiment and so on.  
 The steps easily transfer one to one in Fathom. Each particular step corresponds to a cer-
tain action in Fathom. This is an advantage of the software Fathom because this supports the 
problem solving use of the software tool. 

 
The simulation of random experiments consisting of several steps may be realized in one 

of the three mentioned versions. We realize the example of the birthday-problem in a sequential 
simulation, in which each particular step of the random experiment is represented in one case.  

 
Most important is Fathom’s notion of a measure. A measure can be defined by a formula. 

It refers to a collection as a whole. The inspector window of a collection contains a panel for de-
fining measures. The mental model about measures that students have to develop is that measures 
are properties of a collection as a whole. In this case, a measure is a random property of the com-
pound random experiment. If we rerandomize the values of the attributes in the collection the 
value of the measure will vary accordingly. In this sense, a measure in Fathom is a new reifica-
tion of the abstract concept of a random variable or event, and we expected new learning oppor-
tunities from this aspect. On the other hand we expected several semiotic conflicts (Godino and 
Batanero, 1998) at this point. In everyday language, the occurrence of an event is either true or 
false and the Fathom notion of an event as a Boolean expression directly corresponds to this no-
tion. On the other hand the notion of an event as a subset of the sample space is not directly sup-
ported by this reification. The notion of a random variable as a function on the compound sample 
space is supported. However the distinction between events and random variables may become 
blurred, because both can be defined as measures. Moreover, the above problem could be solved 
by observing the random variable X defined as uniqueValues(birthday), and in the next step read-
ing off from a histogram of the distribution of X the relative frequency that X ≤ 22 occurred – 
without explicitly using the concept of event. 

 
SIMULATION AND A NEW CONTENT STRUCTURE IN THE COURSE 

In the first course with an emphasis on simulation, the students had to work with the three 
step design: stochastic model, simulation plan, realization in Fathom. In the lectures the simula-
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tion was continuously integrated in the different versions (simultaneous, sequential, with sam-
pling), but not so explicitly in these three steps. The concept of probability was initially defined 
by elementary events in discrete probability spaces following a step by step extension to events, 
random variables and results in random experiments consisting of several steps. The concept of a 
random variable was introduced about the same time as the concept of event. The introduction of 
combinatorial-mathematical methods for calculating probabilities was always done in parallel to 
simulation methods. Further mathematical contents were among others the empirical law of large 
number, probability distribution of random variables, the mean, the expected value, fair games, 
(in)dependence, the path rule, binomial coefficient, binomial distribution, hypergeometric distri-
bution, the variance, the standard variation, 1/ n − law. In working sessions and homework as-
signments students had to solve problems in several textual contexts, particularly with stochastic 
contexts like urns, dies, and game contexts. 

 
CHANGES OF OUR CONCEPTION OF MODELING COMPETENCE AS A RESULT OF 
OUR EMPIRICAL STUDIES 

After the courses we performed interviews with a selection of students, we observed them 
while working in pairs on modeling tasks and we analyzed written homework assignments. We 
cannot go into details of these studies in this paper but we will summarize some changes in our 
didactical conception of simulation and modeling competence and changes in the content and ori-
entation of the course as a consequence of these studies. 

The modeling guidelines, the guidebook and the concept of simulation plan proved its 
worth. Nevertheless, we saw several limitations in the students’ competence. 
• The status of the modeling guideline was more emphasized particularly the stage of stochastic 

modeling. We had observed unsatisfactory limitations in students’ knowledge and language, 
which often was close to the software processes but not to the probabilistic concepts. More 
emphasis was put on the explanatory aspect of the simulation plan instead of being just a 
technical advice how to run the simulation. 

• We introduced more and new tasks that required more thinking and idealization in the first 
stage of modeling. In the first generation we concentrated too much on the interface “stochas-
tic problem – software” and lost sight of the interface “real world – probability model.” Initial 
situations should be idealized and simplified by students themselves. Students were asked to 
make assumptions themselves. They should decide whether a model fits a situation or not. For 
example, we used subtasks as: 
(1) Express the following situations as multilevel random experiments. (2) Would you classify 
the levels of the random experiments dependent or independent of each other? Justify your 
decision. Give real conditions under which independence is likely to be an adequate model. 
(3) In which cases you think is an empirical test with data necessary to support or reject the 
assumption of (in)dependence?  
The goals of such new problem types were to improve the modeling competence, the compe-
tence of giving reasons, a deeper understanding of important terms (in this case: independ-
ence), and more reflective activities. 

• We added examples, where a model was compared to real data in order to exercise model 
validation. 

• We found that the students were not really sufficiently reflecting on the usefulness and rela-
tive advantages of using simulation as compared to theoretical mathematical solutions. We 
added more tasks, where we used both methods in combination. The accuracy and the limits 
of simulation methods became a larger topic. We used simulation for developing hypotheses 
that were explained and proved by theoretical analysis and we used simulations to check the 
validity of theoretical solutions. 

• We found that intuitive conceptions and misconceptions persisted or co-existed more than 
expected. Although the reality of the simulation well showed that intuitions are wrong, simu-
lation as such often did not help to improve. Therefore we addressed intuitive expectations 
explicitly in the course as “intuitive theories” that should be expressed before starting simula-
tion and modeling. We think it’s important that students better reflect about their intuitions 
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before they begin to model or try to compute something. So we asked “What do you think 
about this problem? What’s your estimate?” For example, estimates of the students regarding 
the birthday problem were - as expected - much too low. To the question “What’s the prob-
ability for at least two birthdays at the same day of 42 random picked persons?”, the median 
of the students’ estimates was < 10%. Such wrong or inadequate intuitions are taken up again 
after the simulation and theoretical analysis of the problem. The contradictions between the 
intuitive theory, the mathematical theory and simulation have to be discussed. This discussion 
is essential, because the simulation in itself doesn’t explain the contradictions and doesn’t 
necessarily improve stochastically understanding. We had been aware of this problem, which 
is well discussed in the literature, but still underestimated the problems of the students. 

• We found the need for new tasks formats in order to stimulate students’ flexible modeling and 
simulation competence. There is a long tradition with tasks in elementary probability that re-
quire from students more or less the determination of single probabilities or expected values 
of random variables instead of a more general exploration of the situation by means of the 
model. We found it difficult to formulate open subtasks that direct the students’ attention to 
general aspects of the model and to further explore and vary the model. Similar to guidelines 
for problem solving activities we found it helpful to add a step to our simulation and model-
ing plan, namely the step “Asking further questions.” The questions and the model should be 
varied. In the birthday problem possible further questions are: “What are the probabilities for 
10, 20, 300 persons?”, “How many persons must be there for a probability > 50% of at least 
one double birthday?”, “What happens if the equal probability assumption is not true?”    

  
CONCLUSIONS 

In the process of redesigning the course we will expand our modeling guidelines. The ini-
tial three step design is now expanded in a six step process: 
 1. Intuitive theories and expectations, 2. Building a stochastic model, 3a. Generating a 
simulation plan, 3b. Theoretical analysis of the problem, 4. Comparing simulation and theoretical 
analysis, 5. Comparing the intuitive theory with theoretical analysis and/or simulation; debugging 
of misconceptions, 6. Exploring further questions: Varying assumptions, contexts and questions. 

We think that explicitly extending the course that was supposed to be “only” about prob-
ability and modeling in the direction of probabilistic thinking and more subjective aspects of 
modeling is an important step. 
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