
ICOTS-7, 2006: Nolan and Temple Lang

 1

DYNAMIC, INTERACTIVE DOCUMENTS FOR TEACHING
STATISTICAL PRACTICE

Deborah Nolan

University of California - Berkeley, United States
Duncan Temple Lang

University of California- Davis, United States
nolan@stat.berkeley.edu

Along with many others, we propose that statistical thinking and literacy are the important
elements to teach rather than rules and methods. We propose that this is true for all levels of
statistics education. We further argue that we must teach our students how statistics can be used
to answer scientific questions and how to connect relevant statistical methods to these questions.
We outline an approach that allows authors to create documents describing data analyses and
tutorials that combine the description of the analysis with the computations performed along with
the thought process. These documents can contain the different branches of exploration which
the author pursued, along with the more traditional distilled approach. The document can also
contain interactive controls that allow the reader to modify the computations. The documents are
thus dynamic (outputs can be recalculated), interactive (controlled by reader) and contain the
thought process of the author and also methods for reproducing and exploring the results.

INTRODUCTION
 Leading statistics educators call for reforming the way we teach our introductory courses
to place greater focus on statistical thinking and data analysis, and less on derivations and
computational recipes (see Cobb and Moore, 1997, and Moore, 1997, 2005). In response, new
introductory textbooks now include case studies to motivate statistical topics and activities for
students to help convey basic concepts. Examples include Ramsey and Schafer (2002), Utts and
Heckard (2003), Schaeffer et al. (1996), Utts (1999) and Watkins et al. (2003). We applaud these
and others efforts to change the way statistics is taught by revealing the basic principles in
statistics and the power that statistics has to address important issues in science. Yet, we have not
gone far enough in this direction. And, in some respects, we are not necessarily positioning
ourselves to be able to sustain even these initial directions in the future in terms of new
applications and methodologies.
 We fundamentally view statistics as a science of data, and we need to rebalance
statistical education from this vantage point, where statistical concepts flow from contextual
problem solving with data. It is ironic that many of us use the term “applications” to refer to
examples of applying a particular method to some data. We feel that the process should be
entirely in reverse - a scientific application calls for the selection and use of statistical methods.
Of course we must illustrate methodology with examples by applying it to data, but this shows
that our teaching is more in the spirit of tutorials on statistical procedures than the statistical
process itself. We further contend that reform must extend beyond our introductory courses to the
entire curriculum, both undergraduate and graduate.
 Our attempts to address these problems have led us toward a novel design for interactive,
dynamic, electronic documents that support the synthesis of theory and practice and employs
multiple approaches to convey statistical concepts. We describe this design and provide an
example of such an interactive document. Along with this example, we discuss the technical
infrastructure that is in place to produce and interact with it.

STATISTICS AND THE SCIENTIFIC QUESTION
 While many courses teach methodology, either the theory or the application, very few
focus primarily on teaching the skills of approaching a scientific problem from a statistical
perspective. Even case studies hide much of the thought process that is actually needed for real
analyses. An analysis is typically presented as a completed work, but the thought process that led
to the conclusions and approaches is usually omitted. There is rarely mention of alternative
approaches that were not fruitful or that were not pursued for various reasons. We also do not

ICOTS-7, 2006: Nolan and Temple Lang

 2

typically identify alternative approaches that led, or would lead, to almost equivalent solutions to
the one we present in the final analysis. For those learning data analysis and statistics, the
intuition and experience that are used in data analysis are the hardest things to learn, and less
often taught.
 Intuition and experience in data analysis is somewhat of an art, and it is very hard teach.
Perhaps that is why we don’t do so more. Another reason is that there are few good examples
from which to work. At the heart of this problem is the missing link between statistics educators
and researchers and data analysts. Instructors outside the realm of statistical consulting and
research have great difficulty finding new, real, interesting scientific problems with
accompanying data to use in their classes and have little exposure to the use of modern statistical
methods in the scientific context.
 We need active statisticians contributing case studies to the education community, and to
facilitate this flow between the two groups we need the cooperation to be cost-free in terms of
time and effort. The approach we outline later in the paper proposes a programming and
authoring environment designed for professional statisticians that supports communication of
statistical results and the data analysis process at all levels including students projects, consultant
reports, topic tutorials and research papers. Thus educators can take documents written by
researchers and enhance them for students by, for example, adding controls to explore the
computations or contrasting alternative approaches side-by-side within the context of the
document.
 To make this remotely feasible, authors of these “case” or data analysis studies must be
able to easily provide information about the entire thought process and the analyses they
performed to get to the final conclusion. The collaborative model of Open Source software
development, and specifically of R within the statistical community, can enable this to happen.
As much as the R environment has provided high quality software to the statistics profession,
perhaps more importantly, it has shown the incredible benefit of a community of similarly
focused people developing a very large and comprehensive library of packages covering a vast
array of statistical methodology. The CRAN, BioConductor, and Omegahat repositories
combined contain over 700 packages for different tasks. Building from StatLib, R has fostered a
spirit where researchers and developers contribute useful software as add-ons to the base system
to provide enormous value.
 We believe that good infrastructure for statistical tutorials, research, and pedagogy can
have the same passive accumulation effect. By leveraging many researchers, some of who also
teach, we have the opportunity to build up a large collection of data analysis problems, tutorials
about statistical methods, and glossaries of terms that no individual group could hope to create.

AN EXAMPLE

We outline an example of one of these documents. We will not present the entire
document but merely indicate the different sections and how the author and student/reader might
interact with the document. The topic is spam - unsolicited email - and approaches for using
statistics to classify a message as spam or the alternative, ham.

We start by describing the problem and asking the students to think about what
characteristics of a mail message indicates to them that a message is spam. And we ask them also
to think about what identifies a message as being ham. This brings them towards identifying data
at hand that can be used to solve this problem, such as the sender of the message and the topic of
the subject line.

We then introduce information found in the mail message whose existence they may not
be aware of such as the route the message took to get to the mailbox, or the application used to
compose the message. We illustrate the anatomy of an email message made up of the header
information (like an annotated envelope) and the body along with any attachments which have a
similar header and body structure. We feel that it is important to connect the student to the raw
data. It shows them that there is more information than initially comes to mind and also that they
must decide which are useful. To show them these data, we present an interactive interface as a
collection of email messages in a single folder. Like a regular email reader (e.g., Thunderbird,
Outlook, pine or mutt) we present the messages as an ordered list by time, with each record

ICOTS-7, 2006: Nolan and Temple Lang

 3

having a subject, sender and date. When the reader selects a message, she sees the raw text of the
entire message including header information, etc. We display the header as a table of name-value
pairs, emphasizing that this is not just text, but structured information. This interface is
embedded directly within the document. It is a “live” email reader application that allows the
student to explore the data as they would interact with their own email.

We move to a more traditional dataset consisting of 30 variables computed for each of the
9000 messages in our dataset. (Note, the students can introduce their own messages at any point
in time and the variables will be automatically computed for that data as the document contains
the workflow and computational framework.) We provide numerical summaries of the different
variables and collections of graphs of some potentially interesting sets of variables. We provide a
visual tool to allow the student to connect the records in a data sheet with the points in a plot and
with the individual mail messages. For example, when the students identifies a point in a scatter-
plot by clicking on it, the corresponding row in the data sheet is displayed and the mail message is
also displayed. The corresponding parts of the text in the mail message are highlighted to show
how the values of the variables displayed in the plot were computed. For example, for the hour-
sent variable giving the hour of the day the message was sent, a click on a point in the plot would
highlight the Date entry in the header of the message and perhaps color the hour value in the
entry. Identifying the presence of spam-related words in the subject would be done by
highlighting those words in the subject entry of the header. Showing the absence of a feature
(e.g., that the message is not in response to an earlier message via the absence of Re: at the start
of the subject) is more difficult. Interesting ways to illustrate such “non-features” are needed.

We use linked plots (using GGobi, iSPlot or iplots) to explore the data. These plots are
displayed within insets within the document, surrounded by the text. The goal is to let the reader
get a sense of the data and to explore the multivariate nature of the relationship to spam and ham.
Advanced readers can add, delete or modify the variables by providing an R function to compute
the variable for each message. This allows her to explore alternative measurements rather than
sticking with what the author has presented.

Next we move to introduce statistical methodology that can be used to classify the
messages. We start with classification trees. The document has a link to a tutorial that introduces
the concept of classification trees and then goes further into the details of using them. This
includes aspects of pruning, cross-validation, surrogate splits, and the code to fit and work with
the trees. The tutorial is another of these dynamic, interactive documents written in the same
manner, but here focused on statistical methodology rather than a particular analysis. We do not
need to repeat this material in our document, but have a link to it so that the reader can familiarize
herself with the ideas. (We can insist that they go and work through the tutorial before continuing,
but that again is an option for different readers that can be controlled when generating the view
from the original document and/or when initially displaying it to the reader.)

When the reader returns from the tutorial, we proceed to fit the classification tree for our
messages and derived variables, and then explore how well it did. We present displays of the
tree, the residuals, and confusion matrix to see how it performed. We let the reader control some
of the parameters in the fitting of the tree. For example, we let them control the maximum depth
of the tree by using a slider to specify a value between 1 and 30. A plot of the resulting tree is
displayed beside the vertical slider and the different plots and tables for the fit are updated. The
component containing the slider and plotting of the tree are taken from the tutorial. In this way,
we reuse the elements and code from other documents. We have to connect the changes to our
other elements and some assistance is provided for specifying this for the author.

Having performed the diagnostics on the original dataset, we then focus on using an
entirely different set of messages to try our classifier and see how it performs. The original
document will have an analysis on a particular validation dataset. The reader can look at that
analysis and understand the comments of the author. For students or curious readers, we want
them to do more. The reader can use the dataset we provide for this purpose or, preferably, bring
in their own. We explore linked plots, tables and data sheets to try to understand where the
classifier did well and where it did poorly. The students should try to find some underlying
patterns in the cases where the classifier under-performed on the new data.

ICOTS-7, 2006: Nolan and Temple Lang

 4

Just as we try to understand why a classification method does well or poorly on a
validation set, we also compare and contrast two different classification methods. In our
example, we use classification trees and k-nearest neighbor classification. Again, we defer the
introduction of the concepts and details for k-NN to a tutorial. For these data, we have to select
the distance measure and value of k to use. While the author proposes the final selected
combination, the document contains but does not display information about other combinations.
The student can drill down and examine these in parallel to the presented “solution.” We can do
this as part of the content the author provides, or alternatively provide an inset that provides a
convenient interface for the reader to select different combinations.

If the author includes the results for the different combinations, the reader can explore
them in either way without having to recompute the values. However, they can also perform the
computations if they wish or with new data.

Having fit the two models (a tree and k-NN) in the preceding parts of the documents, we
explore the predictions for the validation set and the fits and misfits for the two classifiers with
respect to the predictor variables. We investigate what makes these messages easy or hard to
classify, for which observations do the two sets disagree, and importantly, why do the classifiers
perform differently on the original and the validation datasets. In addition to exploring potential
over-fitting, we compare the distributions of the two datasets to see if they are the same.

With this type of document, the students have a lot of flexibility to control the analysis
and computations with which they are working. They can change the depth of the tree or
introduce new data. They can even change the variables used within the analysis. For example,
some of the derived variables have thresholds associated with their “definition.” For instance, we
have a binary variable indicating whether the subject line of the email has any words from a set
associated with spam. We can define this to be true if there are more than m words, where m can
be changed to create new variables. For interested students, we allow them to vary m via a slider
and to follow the effects of this modified variable on the subsequent computations and results in
the document. Additionally, the student can go back to the top of the document and introduce
new data to the entire problem, or introduce it as the validation set.

In short, the document is a “live” worksheet with which the student can interact to modify
some of the inputs and computations. Importantly, they are not programming the computations.
Rather, they are working with the embedded and hidden computations at the level of the analysis
to explore different scenarios and approaches. They are “doing what we do,” but are not
responsible for the details. Also, they are being driven by statistical reasoning rather than
mathematical formulae and application of rules. And yet mathematics can appear in tutorials to
help them understand different concepts and methods.

TECHNOLOGICAL INFRASTRUCTURE
 As we have mentioned above, we are building on top of the R environment. This is
because it is widely used by professional statisticians and has a broad collection of existing
statistical methods. It is quite common that authors of data analysis studies will have done them
using R. And cutting-edge methodology is often developed first in R and immediately made
available to the statistical community via the R package mechanism. Importantly, R is a general
purpose, high-level programming language which allows us and the students to express statistical
computations relatively easily and which allows both groups to progress from simple calculations
to the full software development. Additionally, the Omegahat project provides another repository
of R packages with an emphasis on infrastructure and integrating systems. Over the past six
years, the Omegahat project has developed a number of extensions to R and other programs that
will be used within this project.
 The most natural choice in the current technological climate for a format for representing
dynamic, interactive documents is XML - the eXtensible Markup Language. XML is a markup
language for representing arbitrary data content in a standard manner. It is a general version of
HTML in that it uses the common HTML-like syntax to identify nodes within the markup tree.
XML differs markedly from HTML in that we can use our own names for the elements rather
than being restricted to a particular set. In this sense, HTML is a particular XML grammar. XML

ICOTS-7, 2006: Nolan and Temple Lang

 5

is very widely used in many contexts, and it is used as the primary representation for all data
within the modern office tools (i.e., word processors and spreadsheets).
 Many tools are available to manipulate XML. There are tools to parse XML documents
in all common programming languages including R via the XML package from Omegahat. There
is also flexible software that is used to transform XML documents to different formats such as
HTML, PDF and raw text. This is XSL - the eXtensible Stylesheet Language. This allows us to
specify rules for transforming XML elements or groups of elements in whatever way we choose.
Again, we can use this directly from within R to transform XML documents to different views of
our document.
 To view the document we transform the original XML document to a specific format. It
is natural to use a Web browser to interact with the HTML document because of the possibility of
using interactive controls, e.g., buttons, menus, etc. are provided via HTML forms. We have
explored this via the SNetscape package for R. However, rather than using a Web browser, we
prefer a different approach. Since the computations are typically in R (or can be sent to other
interpreters via R’s inter-system interface packages) and the XML document can be processed in
R, it makes sense to control the displaying of the document also in R. Using the RGtkHTML
package, we can display HTML documents within GUIs that we create entirely within R. This
also allows us to have complete control over the HTML content and the events such as processing
of links (hyper-links, images), form submissions, etc. The interactive controls such as sliders and
other non-HTML elements come directly via the general RGtk package for developing
professional GUIs using R code. This makes it easy to insert arbitrary composite GUI elements
within a document just as we would in a regular, stand-alone GUI window. Again, we provide a
library of such interactive components that can be easily included in documents.
 In addition to the interactive controls, we can also include live graphics displays in the
HTML viewer. The gtkDevice by Drake, Plummer and Temple Lang allows us to use any Gtk
drawing widget as a regular R graphics device and so we can display state-of-the-art,
sophisticated graphical displays within these documents and update them separately from the
display of the document. GGobi is a visualization tool for linked, dynamic graphics for
exploratory high-dimensional data analysis. Not coincidentally, GGobi uses gtk as the underlying
GUI toolkit and is tightly connected to R via the Rggobi package. This allows us to put linked
GGobi displays within our document view. And the extensible nature of the Rggobi package
allows programmers to easily add new forms of linking between GGobi displays and other parts
of the document or other visual components. The iSPlot is another simpler but powerful linking
facility for R that uses the gtkDevice package and so is immediately compatible with our
framework.
 The first stage in the life cycle of one of these dynamic, interactive documents is the
author writing the text and doing the computations for the analysis. To create a document, we
envisage the following setup. There will be an R session where the author issues different
commands which are collected into a tree structure and displayed. The nodes of the tree represent
different sequential steps in the analysis. Within each node, there may be alternative
computations or branches in the analysis. And within each of these nodes, there can be multiple
commands that make up a single “action.” A path in the tree represents a particular analysis from
beginning to end. The author can connect the analysis with text by dragging it from the tree into a
word processor. The code for the action is hidden within the document unless the author chooses
to view it in that mode. Also, a template for the output of the action is created such as a table or a
plot. This can be customized using a dialog that allows the author to control the way the output
appears or to specify an R command to create the desired output. To add interactive controls or
generally include material from the library of existing content, the author brings up another tool
that provides access to these components that have been created by us and other authors. These
tools can then be dragged into the document.
 Temple Lang has developed R packages that provide a general way to connect R and
applications such as Word, and Excel. These are the DCOM packages for R from the Omegahat
repository. They allow R to communicate with Word and to find out all about the documents it is
working on and to modify them from within R. This allows us to insert the action along with its
code and other components using pure R code. This high-level programming interface from

ICOTS-7, 2006: Nolan and Temple Lang

 6

within R makes it relatively easy for us to create various advanced interfaces for the author to
manage the content within the documents she is preparing. In addition to being a useful interface
for authoring these documents, the R-Word connection can also be used to display the interactive,
dynamic document to the reader.

GLOSSARY OF TECHNICAL TERMS
• HTML - The Hypertext Markup Language used in creating Web page content.
• XML - The eXtensible Markup Language is a modern and simpler version of SGML and is

similar in style to HTML. It allows new dialects or grammars to be specified as it permits
new elements to be defined. Classes of documents, i.e., the grammars, can be formally
defined using XML schema or the older Document Type Definitions (DTDs).

• XSL - The eXtensible Stylesheet Language is a particular grammar for XML that is used to
specify rules for transforming XML content to other formats and outputs such as PDF. XSL-
FO (formatting objects) is the common mechanism for generating PDF from XML content.

• Excel – Microsoft’s spreadsheet application that is part of the Office suite.
• R - A high-level statistical programming language and interactive data analysis environment.

It is an Open Source implementation of the S language, and similar to the commercially
available S-Plus.

• Gtk - A toolkit for creating graphical user interfaces. This underlies the Gnome desktop and
numerous professional applications such as the Gimp, Gnumeric, AbiWord.

• Ggobi - An interactive, dynamic graphics system for data visualization. Built on Gtk, it can
be readily used directly within R via the Rggobi package.

• DCOM - Distributed Component Object Model from Microsoft that allows for client-server
communication in a language-independent machine across machines. This is very similar to
CORBA, the Common Object Request Broker Architecture, but is Microsoft-specific.

REFERENCES
Cobb, G. and Moore, D. (1997). Mathematics, statistics, and teaching. The American Math

Monthly, 104, 801-823.
Moore, D. (1997). New pedagogy and new content: The case of statistics. International Statistical

Review, 65, 123-165.
Moore, D. (2005). Quality and relevance in the first statistics course. International Statistical

Review, 73, 205-206.
Ramsey, F. and Schafer. D. (2002). The Statistical Sleuth. Belmont, CA: Duxbury Press.
Scheaffer, R., Gnanadesikan, M., Watkins, A., and Witmer, J. (1996). Activity-Based Statistics.

Emeryville, CA: Key Curriculum Press.
Utts, J. (1999). Seeing Through Statistics (2nd edition). Belmont, CA: Duxbury Press.
Utts, J. and Heckard, R. (2003). Mind on Statistics (2nd edition). Belmont, CA: Duxbury Press.
Watkins, A., and Scheaffer, R. and Cobb, G. (2003). Statistics in Action: Understanding a World

of Data. Emeryville, CA: Key Curriculum Press.

WEB REFERENCES
Drake, C. and Temple Lang, D. R DCOM package, www.omegahat.org
Drake, C. and Plummer, M. and Temple Lang, D. gtkDevice package http://cran.r-project.org
The Omegahat Project for Statistical Computing www.omegahat.org
The R Project for Statistical Computing www.r-project.org
Swayne, D. and Temple Lang, D. and Buja, A. and Cook, D. Rggobi package www.ggobi.org
Temple Lang, D. RGtk package www.omegahat.org
Temple Lang, D. RGtkHTML package www.omegahat.org
Temple Lang, D. SNetscape package www.omegahat.org
Whalen, E. iSPlot package www.bioconductor.org
Uranek, S. and Theus, M. iplots package www.rosuda.org/R

