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1. Overview 

For the past several years we have been studying the teaching and learning of 
statistical reasoning, in the context of a United States National Science Foundation- 
supported project called ELASTIC. One of the most impressive realisations we have 
had is just how difficult the basic concepts of sampling and statistical inference can be 
for students - and often teachers - to grasp. This paper explores some of the underlying 
conceptions and heuristics students bring to the study of statistics, and makes some 
initial hypotheses as to how these approaches might complicate students' learning the 
foundations of statistical inference. 

We have organised our investigations around a set of concepts about sampling 
that are central to understanding statistical inference. One way of stating the central idea 
of statistical inference is that a sample gives us some information about a population - 
not nothing, not everything, but something. In practice, this allows us to put bounds 
on the value of a characteristic of the population - usually either a proportion or a 
measure of centre (mean or median), but not to know precisely what that characteristic 
is. 

This kind of reasoning follows from the somewhat antithetical notions of 
sampling representativeness and sample variability. Sample representativeness is the 
idea that a sample taken from a population will often have characteristics similar to 
those of its parent population. Thus, the proportion of girls in a classroom is likely to 
be close to the proportion of girls in the entire school, and the mean family size of the 
students in the class is likely to be close to that of the whole school. Sample 
variability is the contrasting idea that samples from a single population are not all the 
same and thus do not all match the population. Thus, some classrooms in a school are 
likely to have many more girls than boys, even if the school population is evenly 
divided. 

Sessions A6 and A9 314 

ICOTS 3, 1990: Andee Rubin et al.



One of the keys to mastering statistical inference is balancing these two ideas, 
interpreting more precisely the meaning of "likely" in each. Because they are 
contradictory when seen in a deterministic framework, it is possible that people have a 
tendency to over-respond to one or the other in various contexts. Over-reliance on 
sample representativeness is likely to lead to the notion that a sample tells us everything 
about a population; over-reliance on sample variability implies that a sample tells us 
nothing. 

In order to investigate students' naive conceptions of sampling representativeness 
and variability, we interviewed twelve senior high school students who had never taken a 
statistics course. The interview consisted of six open-ended questions related to 
sampling and statistical inference and took approximately half an hour. The data consist 
of transcribed audiotapes of the interviews plus the scratch paper students used to work 
on the problems. The complete texts of the questions are available from the authors. 

Our analysis of their responses indicates that students have inconsistent models 
of the relationship between samples and populations, even in problems where the 
underlying mathematical models are all binomial distributions. In some situations, the 
notions of sample representativeness hold sway, in others, those of sample variability 
are more powerful. Sample size does not seem to operate appropriately to separate the 
two; in fact, in the problems we analyse here, sample representativeness appears to be a 
stronger guiding factor in the problem with the smaller sample six. In the remainder of 
the paper, we analyse two of the problems students encountered from this single 
perspective of sample representativeness and variability and note the inconsistency of 
their responses. 

2. Gummy bears question : effects of focussing on sample representativeness 

Students were told that the Easter Bunny made many packets of six Gummy 
Bears from a large vat containing two million green and one million red Gummy Bears 
and distributed them at an Easter Parade. Students were first asked how many green 
Gummy Bears they thought might be in their own packet. They then estimated how 
many kids out of 100 would have that same number of green Gummy Bears. Finally, 
we asked them to specify the entire distribution by answering the questions, "How many 
kids out of 100 had N green Gummy Bears in their packet?" for N = 0 through 6. 

The theoretical model for this situation is a binomial distribution with p = .66 
and sample size 6. The distribution peaks at the sample containing 4 green and 2 red 
Gummy Bears, which accounts for about 33% of the distribution. 

Students answered the first several questions in a manner consistent with the 
concept of sample representativeness, focussing on the samples of 4 green and 2 reds 
that mirrored the population proportion of 2G: 1R. All twelve of the students answered 
"4" to the question of how many green Gummy Bears might be in their packet. No 
student answered in a way that indicated a probabilistic solution. Instead, their explan- 
ations indicated that they regarded the question as a ratio problem. 

When asked if every kid's packet would contain four green Gummy Bears, all of 
the students responded that there would be variation among samples, but some answers 
betrayed a resistance to thinking probabilistically. For some, this took the form of 
evoking a mechanism to explain the existence of non-representative samples. Others 
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saw the existence of non-representative samples as "imperfections" in the process of 
making up packets, which, if it had been done "right", would have given every student 
four greens and two reds. 

Even students who were comfortable with the concept of variability, however, 
had incorrect ideas about the relative number of packets containing different combin- 
ations of green and red Gummy Bears. Their initial estimates of how many kids out of 
100 would receive packets containing 4 green and 2 red Gummy Bears provide more 
evidence for the power of representativeness in this problem. Most students were 
convinced that a majority of samples would be representative of the population. While 
only one student believed that every sample would look the same, every student but one 
estimated that at least half of the packets would look the same. 

In the next part of the interview we asked students to generate all possible 
combinations of green and red Gummy Bears. We originally thought of this request 
simply as a prelude to having them generate the entire distribution of packets, but we 
discovered, to our surprise, that 8 of the 12 students had trouble listing the seven 
possible combinations for a packet of candies. With the possible combinations listed 
(albeit sometimes painfully), we asked students to estimate how many kids would 
receive packets in each category. Now students were faced with a potential conflict 
between their initial guess, heavily influenced by the representativeness heuristic, and 
the necessity to distribute 100 packets among seven categories. For those whose initial 
estimate had been 75 or 80, there was a dilemma: how could they &read such a small 
number of remaining packets (20 to 25) six additional categories? 

FIGURE 1 
Student responses 

(X : Final estimates: # in 100 with 4 green; 0 : Change from fist to final estimate) 

The general trend of students' responses to this dilemma can be seen in Figure 1, 
which shows the distribution of students' final estimates for the number of kids receiv- 
ing packets with 4 green and 2 red Gummy Bears (X) and the distribution of changes 
from their initial estimates (0). The most obvious pattern that emerges h m  these data 
is that 7 of the 12 students lowered their estimates - in some cases by as much as 40 or 
50% - when faced with the distribution problem. However, even after specifying the 
entire distribution and lowering their estimates of the frequency of the modal category, 
half of the students still significantly overestimated the frequency of the representative 
packet. 

When distributing the packets among categories, students predictably retained 
their correct intuition that the 4G,2R packets would be most frequent. No student's 
distribution contained a peak at a point other than 4G,2R, and only three students 
constructed distributions in which a second category was tied with the peak. So their 
intuitions about the shape of the distribution were correct - but their estimate of the size 
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of the peak was, in general, significantly higher than the underlying model. 
In general, in the Gummy Bears problem, students appeared to be unduly swayed 

by the implications of sample representativeness in constructing a distribution. They 
underestimated the frequency of samples near the tails of the distribution and over- 
estimated the frequency of the modal sample, even when they were aware of the number 
of categories among which they had to spread their packets. 

3. Runners : it's hard to get it right 

The second problem asked students to evaluate two different ways of dividing up 
400 runners - 200 fast and 200 slow - into blue and red teams. One way was to 
determine teams by the running ability of each runner, so as to make the teams as even 
as possible. The other was to assign runners to each team randomly, by choosing 
names out of a hat and assigning alternate runners to each team. The questions probed 
students' assessments of the "fairness" of the hat method, i.e. how likely it was to 
produce teams that were balanced in terms of fast and slow runners. 

This problem provides a look at the influence of the concept of sample 
variability on students' thinking, as opposed to sample representativeness. After 
describing the two methods, we asked students to show us "how many fast and slow 
runners you think you would get on each team using the two methods. You can assume 
there are 200 fast and 200 slow runners." Without exception, students reported that the 
straightforward assignment of runners to teams based on their running ability would 
result in evenly-matched teams, with 100 fast and 100 slow runners on each of the two 
teams. With the hat method, however, many students reported that grossly unequal 
teams were possible. While several students claimed that the hat method could produce a 
fair assignment, most thought that teams with 150 fast runners and 50 slow ones were 
also possible outcomes of using the hat. 

Fast 100 102 110 115 120 125 130 140 150 150 150 150 

Slow 100 98 90 85 80 75 70 60 50 50 50 50 

The above table illustrates students' estimates of how many fast and slow runners 
would end up on the red team. Eight of students' twelve estimates of team composition 
are very unlikely to occur. All of these eight are likely to occur less frequently than 1 in 
100 samples; the seven most uneven samples are likely to occur less than 1 in 1000 
times. Yet, some students were adament about how unfair the hat method would be. 

Students' answers to the runners' problem contrast with their answers to the 
Gummy Bears problem in an interesting way. In that problem, they emphasised the 
likelihood of the representative sample - 4 green and 2 red Gummy Bears. A similar 
strategy in this problem would influence them to answer that the fast and slow runners 
would be evenly divided among the two teams. But no student proposed that answer. 
Since the representative sample is the most likely (although nowhere near as frequent as 
the representative sample in the Gummy Bears problem), it is interesting to speculate 
which of the contrasting characteristics of the two problems were most salient in 
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students' conceptions. One possibility is that the number of possibilities in the runners 
problem is so great that students feel the "accurate" answer (100 slow, 100 fast) is 
unlikely. Indeed, the frequency of the modal category in this distribution is only about 
14%, compared to 33% in the Gummy Bears distribution. 

Another possible explanation for the difference is students' experience with 
random assigninent in situations of small samples. One student makes this quite clear: 

S2: "Well, usually, we do that in gym so you know, you go there, you go 
there, and they come out pretty uneven. One team is much better than the 
other team. It doesn't really work out very well." 

Since this student (and others) does not recognise the effect of sample size, it may be 
that she generalises inappropriately from her gym class experience with small samples 
to the runners problem with samples of size 200. 

The finite population in the running problem is another possible explanation for 
the different strategies that students adopted. It seems much less likely that a population 
of 400 will "split exactly" than that a small handful of Gummy Bears drawn from an 
enormous vat will reflect the population. 

4. Interpretation and perspectives 

Students' answers indicate that they lack experience thinking in terms of a 
distribution of samples generated from a particular population. Instead, they use 
heuristics - including, but not limited to, representativeness - to judge the likelihood of a 
particular sample. This heuristic-based thinking leads them to analyse different 
situations with similar underlying mathematical models from quite different 
perspectives. Thus, their answers in different problem settings fall in varying amounts 
under the influence of intuitions about sample representativeness or sample variability. 
This is not just a fact about aggregate student behaviour; in most cases, the same 
student answered the Gummy Bears question in a way consistent with sample represent- 
ativeness and the Runners questions in a way consistent with sample variability. 

There is some evidence in our interviews that the concept of "correctness", so 
prevalent in mathematics classes (and in school in general), may converge with students' 
tendencies to believe in sample representativeness. In the Gummy Bears problem, in 
particular, students' comments implied a tendency to regard the representative sample as 
the "correct" one. For example, one student commented that "the ratio is two to one so 
if you figure it out exactly that's what it would be exactly. And so I figured most 
people would get that." (Emphasis on tape.) Another student discussed the 
impossibility of "getting it right every time" in explaining why every sample would not 
necessarily look like the population. 

Additional evidence comes from some open-ended interviews we conducted with 
students who had completed a one-semester statistics course. These suggest that the 
emphasis on a correct, accurate answer in mathematics class may combine with students' 
natural tendency toward the representativeness heuristic to produce a conception in which 
the representative sample is the one you get if you sample correctly. In this view, 
randomness is not sufficient to explain sampling variability - some mechanism or bias 
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must be postulated to explain it. 
What we may be seeing here is an unfortunate collusion of the misconceptions 

students bring to statistics instruction and common patterns in school mathematics. 
Students start with the notion that samples are likely to be representative of the 
population a vast majority of the time; at times they even refer to such samples as 
"accurate". At the same time, the emphasis in school mathematics is (mistakenly) on 
accuracy, correctness, and lack of error. These two tendencies reinforce one another to 
undermine students' grasp of sampling variability. While they may be able to reproduce 
a sampling distribution in a structured problem, when faced with a more open-ended 
situation involving statistical inference, students often slip back into their notions of 
"accurate" samples, free of error. Even the use of the word "error" in the context of 
statistics is likely to be problematic, since it means random variation, a concept 
unrelated to the everyday use of the word in school. 

5. Conclusion 

The challenge to students learning statistical inference is significant. Their 
experiences in the world lead them to rely unduly on notions of sample representative- 
ness and sample variability without unifying them into a single model of a distribution. 
Pattems of teaching in school mathematics may interact with the use of these heuristics 
to render students less flexible in their understanding of distributions. Even the 
vocabulary of statistics may make the subject matter more difficult to master. 

Besides understanding better the structure of students' thinking about sampling 
and statistical inference, we need to evaluate different approaches to teaching the subject 
matter. We know that the way most of us were taught statistics was not pleasant - and 
was, in many cases, only minimally effective. We need to discover techniques that will 
help students keep what is useful of their prior intuitions and modify what is fuzzy to 
provide a solid basis for being a sophisticated consumer of statistical information. 
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