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The conjecture driving this study is that if statistics curricula were to put 

more emphasis on helping students improve their intuitions about variation and its 

relevance to statistics, we would be able to witness improved comprehension of 

statistical concepts (Ballman, 1997). Both the research literature and previously 

conducted research by the author indicate that variation is often neglected, and its 

critical role in statistical reasoning is under-recognized.  

A nontraditional approach to statistics instruction that has variation as its 

central tenet, and perceives learning as a dynamic process subject to development 

for a long period of time and through a variety of contexts and tools, is laid out in 

this thesis.  The experiences and insights gained from adopting such an approach 

in a college level, introductory statistics classroom are reported. 
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The prevailing methodology employed by researchers examining 

conceptions of data and chance of taking snapshots of students’ thought processes 

by posing cognitive tasks to them in order to catalogue their misconceptions, 

provides little guidance as to how one might systematically research conceptual 

change.  The conjecture-driven research design (Confrey and Lachance, 1999) 

employed in this study, which sees research and practice as interwoven, and 

advocates curriculum construction based on an ongoing process of development 

and feedback, offered an alternative path.  It allowed finding similarities and 

differences between students’ informal intuitions and formal statistical reasoning, 

and working with students’ intuitive notions to help them develop ways to map 

new and richer concepts onto the ones that they already possessed.  

The results of the study point to a number of critical junctures and 

obstacles to the conceptual evolution of the role of variation, including the 

following:  (1) Understanding of histograms and other graphs; (2) Familiarity 

with abstract notation and with statistics language; (3) Appreciation of the need to 

be critical of data and always examine the method it was collected; (4) 

Distinguishing between population distribution, distribution of a single sample, 

and sampling distribution; and (5) Understanding of the reason behind finding 

confidence intervals when producing an estimate of some parameter based on a 

sample. 
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Chapter I: Introduction 

Pupils in the future will bring away from their schooling a 
structure of thought that whispers ‘variation’ matters. 

         (Moore, 1992, p.426) 

In the last decade, there has been a significant move towards modernizing 

statistics education and a general acknowledgment that learning occurs most 

effectively when students engage in authentic activities.  Although many statistics 

students from higher institutions are still being taught in traditional classrooms, a 

large number of statistics instructors have already adopted alternative approaches 

to teaching statistics, and many statistics classrooms are experiencing wide-scale 

incorporation of technology.  Nonetheless, research on statistical thinking 

indicates that students’ difficulties in reasoning about the stochastic persist despite 

the reform efforts.  The conjecture driving this study is that the reform movement 

would be more successful in achieving its objectives if it were to put more 

emphasis on helping students build sound intuitions about variation and its 

relevance to statistics (Ballman, 1997).  The study describes a nontraditional path 

to statistics instruction that has variation as its central tenet.  The experiences and 

insights gained from adopting such an alternative path in a college level, 

introductory statistics classroom are reported. 

The current study is part of an ongoing research effort to understand the 

obstacles to the learning of statistics and use this understanding to find ways to 

create learning environments that facilitate deeper understanding.  It builds on a 

previously conducted study which compared the learning experience of a group of 

students from a technology-based introductory statistics course following the 
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PACE (Projects-Activities-Cooperative Learning-Exercises) approach developed 

by Lee (1997a), with that of a group of students with non-technology based 

instruction.  Findings from that previous study (Lee, 1997b; Meletiou, Lee & 

Fouladi, 1998; Meletiou, Lee & Myers, 1999) indicated that the use of technology 

had a positive impact on PACE students’ motivation and appreciation of statistics, 

and gave them increased familiarity with the practical aspects of the subject.  At 

the same time however, confusion about the nature and purpose of statistics was 

observed in both groups of students.  Those findings agreed with the main 

findings of the considerable research literature done in the last thirty years in the 

area of probability and statistics education.  According to this literature, people (i) 

tend to believe that any difference in means is significant, (ii) have unwarranted 

confidence in small samples, (iii) have insufficient respect for small differences in 

large samples, and (iv) underestimate the effect of variation in the real world 

(Landwher, 1989; in Shaughnessy, 1992).  

This led me to conjecture that students’ difficulties in comprehending 

statistical concepts might be due to instructional neglect of variation.  As Wild 

and Pfannkuch (1999) point out, understanding of variation in data includes 

comprehension of the following ideas: (1) variation is an observable reality; (2) 

some variation can be explained; (3) other variation cannot be explained based on 

current knowledge; (4) random variation is the way in which statisticians model 

unexplained variation; (5) this unexplained variation may in part or in whole be 

produced by the process of observation through random sampling; (6) 

randomness is a convenient human construct which is used to deal with variation 
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in which patterns cannot be detected.  Traditional approaches to statistics fail to 

help students develop understanding of these ideas.  Although variation is a 

critical issue throughout the statistical inquiry process, from posing a question to 

drawing conclusions (Pfannkuch, 1997), a tendency to ignore variability is hidden 

in standard approaches to statistical inference (Biehler, 1994).  As a result, 

students do not develop the skills necessary to recognize uncertainty and variation 

and to distinguish among the different types of variation. 

The research literature also neglects variation.  There is an almost 

complete absence of research on variation.  Truran (1994) points out that, whereas 

there has been much investigation of people’s understanding of randomness, there 

has been very little investigation of their understanding of the variability arising 

when groups of outcomes are observed.  Loosen, Lioen, and Lacante (1985) and 

Batanero, Estepa, and Godino (1994) have also noted the absence of research on 

variability and the overemphasis that statistics textbooks seem to put on looking at 

centers in data rather than on variability. 

In addition to seeing as problematic the lack of research on variation, I 

also became dissatisfied with the prevailing methodology employed by most 

researchers examining people’s conceptions of data and chance.  This 

methodology, situated within the misconceptions movement, has been very 

successful in documenting people’s erroneous beliefs and conceptions about 

probability but has done a very poor job of documenting success (Shaughnessy, 

1997a).  The common practice is to take snapshots of students’ thought processes 

by posing cognitive tasks to them in order to catalogue their misconceptions.  
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Little guidance as to how one might systematically research conceptual change is 

provided.  There is hardly any information about the sources of students’ 

difficulties.  Rarely does one do any follow up of the students’ initial thinking to 

watch for future transitions (Shaughnessy, 1997a). 

The conclusion I drew after reviewing the literature was the same as that 

drawn by Shaughnessy (1997a).  Reflecting on the recent literature on statistics 

education, Shaughnessy concluded that three areas of opportunity for research on 

the teaching of probability and statistics that have gone largely unnoticed are:  

(i) investigating students' thinking on variability 

(ii) posing research questions that begin with what students can do 

rather than pointing out what they cannot do, and  

(iii) following up on students' initial thinking to watch for future 

transitions   

I decided to conduct a study that would provide insights into all three of 

these areas.  The ultimate goal of the study would not be to add to the plethora of 

existing research documenting people’s difficulties with probabilistic phenomena, 

but to document their successes, to show that “research on variability is an 

untapped well in research on data and chance” (Shaughnessy, 1997a, p. 137).  By 

investigating introductory statistics students’ intuitive understanding of variation 

and using the knowledge acquired to design, implement, evaluate, and refine 

some meaningful interventions, this study would aim at helping students develop 

and expand upon their understanding of variation.  I conjectured that if I provided 

learners with an environment where they experienced the omnipresence of 
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variation and came to value statistical tools as a means to describe and quantify 

that variation, I would help them develop statistical thinking that goes beyond the 

superficial knowledge of terminology, rules and procedures.  

In designing and implementing the study, I took the stance that students’ 

conceptions are transitional conceptions rather than mis-conceptions, their 

thinking is always under construction (Shaughnessy, 1997a).  Since for me 

intuitions are dynamic rather than static, the nature of evidence in research on 

learning is also dynamic.  The researcher’s goal, for me, should be to do “research 

on the process of learning” (Shaughnessy, 1997a, p. 131) and use the data 

obtained to develop and successively refine curricula.  The transformative and 

conjecture-driven research design developed by Confrey and Lachance (1999) as 

a response to the need for establishing a better connection between educational 

research and practice was much more suitable to my research purposes than more 

traditional research models.  Just as traditional probability and statistics 

instruction with its emphasis on formalism fails to establish links with students’ 

intuitive thinking, traditional positivist research methodology has been 

unsuccessful in helping understand the real reasons for people’s impoverished 

probabilistic and statistical reasoning.  The conjecture-driven research model, 

which sees research and practice as interwoven, and advocates curriculum 

construction based on an ongoing process of development and feedback, was 

much better suited for expanding my understanding of the components that 

promote development and growth of students’ understanding. 
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The study took place in the summer of 1999 in an introductory statistics 

course at a mid-Midwestern university.  I worked jointly with the instructor Dr. 

Lee – who was also a major collaborator in the research I had previously 

conducted – towards designing and implementing learning experiences that aimed 

at improving students’ intuitions by raising their awareness of variation.  The 

format of the course was such as to encourage the kind of instruction that extends 

students' responsibility for their own learning in order to make learning 

meaningful and promote active knowledge construction.  In such an environment, 

just as content could not be fully captured, learning goals could not be fully pre-

specified.  The conjecture-driven model permitted both curriculum and conjecture 

to be revised in light of student responses.  Through close listening of the study 

participants, it offered more than numbers and flat descriptions, it was “able to 

capture the voices of many” (Nau, 1995), to provide “thick description” (Geertz, 

1973) of the classroom setting and the interactions within this setting.  The 

insights it provided led to an ever growing “understanding of themes, patterns, 

and meanings within context.” (Beard, Schmitz, and Domahidy, 1997)   

Embracing a growth-and-change view of intuitions allowed us to use the 

results of the existing literature and our own research, not as proof of innate 

limitations in students’ ability to reason about the stochastic, but as a signal of the 

areas for which intuitions needed to be strengthened.  By identifying similarities 

and differences between students’ informal intuitions and formal statistical 

reasoning, we were able to work with students’ intuitive notions and help them 
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develop ways to map new and richer concepts onto the ones that they already 

possessed (Mokros, Russell, Weinberg, and Goldsmith, 1990, 15).  

The nature of the study helped me identify the kinds of intuitions students 

use to make sense of stochastic phenomena and the ways in which their intuitions 

are shaped by the learning environment.  It allowed me to find out the structures 

that facilitate, as well as those that inhibit, the articulation of intuitions about the 

stochastic.  In contrast to the heuristics research that took snapshots of how people 

might make sense of stochastic phenomena at a specific point in time, I was able 

to gain more insights into students’ thinking by examining how their intuitions 

evolved during the course. 

At the time the study was conducted, little was known about people’s 

understanding of variation.  Employing the conjecture-driven research design has 

helped bring the learners’ voice to the front.  By giving validation to the students’ 

personal voice (Confrey, 1991), not only students’ notions about variation 

changed, but my notions were also enriched with varied and ingenious insights 

offered by the students.  By reporting in this thesis the findings of the study, I aim 

to contribute towards the development of alternative approaches to the notion of 

variation than the sterile ones dominating both the curriculum and the research 

literature (Shaughnessy, 1997a).  
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OUTLINE OF DISSERTATION  

The dissertation proposal is organized into six chapters.  In the first 

chapter, an overview of the study was provided.  Below is a summary of each 

subsequent chapter: 

Chapter II: Literature Review 

This chapter gives a review of the research literature that has provided the 

framework for the study.  I focus on work on the role of variation in statistics, 

research on statistical reasoning, and work on the role of technology.  I also 

outline some specific aims of the study that emerged out of the review of the 

literature. 

Chapter III: Theory and Methodology 

In this chapter, I describe how the conjecture was developed and how it 

was linked to classroom practice.  I also provide an overview of the philosophical 

foundations underlying the conjecture-driven design model and outline how this 

approach was employed in the study in terms of research design, data collection, 

data analysis and rigor.  

Chapter IV: Assessment Prior to Instruction 

In order to ensure that instruction is adapted to students’ existing 

experience and their pre-knowledge, and also to be able to follow students’ 

conceptual development process, good understanding of their thinking prior to 

instruction is required.  In Chapter IV, I outline the findings from the pre-

assessment on variability given on the first day of class and the follow-up 
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interviews of the primary group.  I then discuss how the insights gained led to 

elaboration of the conjecture and, consequently, the instructional program. 

Chapter V: The teaching experiment 

In Chapter V, I give a brief description of some teaching episodes and 

class activities, which are characteristic examples of how the course was 

organized and how the meaning of main statistical concepts was constituted in 

social interaction.  I also give some examples of how the continuous monitoring, 

both formal and informal, of student thinking shaped instruction.  I also outline 

and discuss the findings from the assessment given at the end of the course and 

the follow-up interviews of the primary group.   

Chapter VI: Conclusions 

This final chapter summarizes the findings of the study and discusses how 

experience with the setting led to a much better understanding and further refining 

of the conjecture.  It also discusses the implications of this research for statistics 

learning and pedagogy and examines future research directions. 
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Chapter II: Literature Review 

In this chapter, I consider some existing literature that has provided a 

framework for my study.  This literature includes work on the role of variation in 

statistics, research on statistical reasoning in general and variability in particular, 

and work on the role of technology in statistics education.  I also outline some 

specific aims of the study that emerged out of the review of the literature. 

RESEARCH ON STATISTICAL REASONING 

I give in this section some analysis of why research on variability has been 

neglected.  I then provide an overview of the research literature on students’ 

understandings of samples and centers, and of a very influential body of research 

on people’s reasoning when making judgments under uncertainty that has come to 

be known as the heuristics literature.  Although not having students’ notions of 

variability as their main object of study, these two bodies of literature have 

offered me some useful insights into people’s thinking about variability. 

Neglect of Variation 

Shaughnessy (1997a) ponders about the almost complete absence of 

research on variability.  He notes that, in contrast to the varied and extremely rich 

models of central tendency found in the literature, sterile approaches to the notion 

of variability dominate not only the curriculum, but the research literature also.  

One possible reason put forth by Shaughnessy may be that research often mirrors 

the emphases in curricular materials.  There is, in the US curriculum in data and 

chance, a lack of focus on variation and an overemphasis on center.  Another 



 11 

reason may be the over-reliance of many statisticians on standard deviation as the 

measure of spread, a statistic that is computationally messy and difficult for both 

teachers and curriculum developers to motivate to students as a good choice for 

measuring spread.  A third reason for the neglect of variability might be that, 

since centers are often used to predict what will happen in the future, or to 

compare two different groups, the incorporation of variation into the prediction 

confounds people’s ability to make clean predictions or comparisons.  Finally, 

Shaughnessy (1997a) concludes, “this whole concept of variability is outside of 

many people’s comfort zone, and may even outside their zone of belief” (134). 
Shaughnessy et al. (1999) have come to believe that there may be “an 

overemphasis in the teaching, assessing, and researching of students’ conceptions 

of center to the detriment and neglect of their development of conceptions of 

spread or variability” (p. 2).  They note the complete lack of items on dispersion, 

spread, and variation among the Statistical and Probability tasks of the 1996 

National Assessment of Educational Progress (NAEP) as an example of this 

neglect.  While there were several items on this assessment involving measures of 

center, there was only one, low-level computational item on spread.  Not a single 

conceptual question involving statistical variation was included. 

I have found only one study in the research literature focusing directly 

upon students’ conceptions of variability.  Shaughnessy, Watson, Moritz, and 

Reading (1999) describe an exploratory study they conducted to investigate 

elementary and high school students’ understanding of variability.  They gave a 

sampling task that was a variation of an item on the 1996 National Assessment of 
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Educational Progress, to 324 students in Grades 4-6, 9, and 12 in three different 

countries.  Responses to the task, which was also used in this study and will be 

discussed in more detail in Chapter V, were categorized according to both their 

centers and spreads.  The results from the study indicate a steady growth across 

grades on center criteria, but no clear corresponding improvement on spread 

criteria.  Shaughnessy et al. (1999) speculate that the observed growth on center 

criteria might be the result of the emphasis placed on centers in the mathematics 

curriculum.  They attribute the lack of clear growth on conceptions of spread and 

the inability to integrate the two concepts (centers and spreads) to the instructional 

neglect of variability. 

Insights from Research on Sampling and Centers 
Sampling is one of the main determinants of the validity of statistical 

inference.  Because “statistical inference is almost by definition imperfect - all 

sampling introduces some error” (Jacobs, 1997, p. 4), students need to be aware 

of the potential threats to valid statistical inferences.  A paper by Jacobs (1997) 

describes two studies that have investigated Grades 4 and 5 children’s informal 

understanding of sampling issues in the context of interpreting and evaluating 

survey results.  The findings show that while many of the children were aware of 

potential bias issues such as self-selection and restricted sampling and 

acknowledged the advantages of random sampling procedures, most children 

seemed to prefer stratified to simple random sampling.  They were pre-occupied 

with issues of fairness and wanted to make sure all types of individuals were 

included in the sample. 



 13 

Rubin, Rosebery, and Bruce (1990; in Hawkins, 1997b) observed that 

many students find it difficult to understand what it means for something to 

represent something else.  They do not understand the “distinction between how a 

histogram is meant to represent a sample accurately, and how a sample is meant 

to represent a population probabilistically” (p. 10) and expect the distribution of 

the sample to look the same as that of the population.  If this does not happen, 

they conclude that there must have been an error in the sampling process.  Bar-

Hillel (1982) found in her experiments that students described as “accurate” those 

samples with a statistic exactly matching the population parameter.  Hawkins 

(1997b) reports encountering among students widespread confusion about the 

meaning of the statistical term precision, for many students often being 

“semantically indistinguishable from accuracy1” (p. 12).  It is also often hard to 

convince students that when designing a survey or an experiment, one can 

manipulate its precision and should do so “if statistical and meaningful or 

practical significance are to be equated” (Hawkins, 1997b, p. 10), and that such 

manipulation is not cheating. 

Rubin, Bruce, and Teney (1990), after having investigated the teaching 

and learning of statistical reasoning for several years, have come to the conclusion 

that grasping the basic concepts of sampling and statistical inference is extremely 

hard for students.  Understanding, according to the researchers, seems to break 
                                                           
1  Precision of a statistic describes its variation from the population parameter and has a magnitude 
that is a function of the population variation and the sample size.  Students tend to confuse this 
statistical meaning of precision with the everyday notion of the word.  Since the everyday notion 
of precision is synonymous to accuracy, they think that the two terms have the same meaning.  
Consequently, they consider as “precise” or “accurate” those samples whose statistic exactly 
matches the population parameter. 
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down “as soon as non-determinism enters the classroom” (Rubin et al., 1990, p. 

2).  In a study where they wanted to see how high school students conceive the 

relationship between sample and population, they found a tension existing 

between the ideas of sample variability and sample representativeness.  On some 

instances, students’ comments suggested they believed that a random sample has 

to be representative and that not randomness but some other mechanism must 

have caused sampling variability.  On different situations, however, which 

actually had the same underlying ideas, students “acted as if sample variability 

were the most relevant fact about sampling” (Rubin et al., 1990, p. 11). 

The purpose of a study by Pfannkuch and Brown (1996) was to investigate 

the understanding of issues related to sampling of a small group of college 

students who had just completed an introductory statistics course.  Students in 

Pfannkuch and Brown’s study seemed “oblivious” to probabilistic thinking for 

problems posed in real-world contexts and to have a minimal understanding of 

variation in small samples.  However, when context was removed, students were 

comfortable thinking probabilistically.  All the participants responded correctly, 

and “without equivocation”, to a typical coin toss problem and appeared to be, in 

this context, comfortable with the notion of long-run relative frequency.  The 

authors interpreted the results of the study as a reflection of students’ lack of 

awareness of the role that variation plays in the social domain. 

Garfield and delMas (1990) have also reported that students’ ability to 

solve problems involving random devices does not transfer very effectively to 

more applied problems.  The two researchers created a computer program named 
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Coin Toss, which was designed “to repeatedly confront students’ intuitions and 

assumptions” (Garfield and delMas, 1990, p. 6).  They found that, when in the 

context of simulated coin tossing, many of the college students in their study 

seemed comfortable with the basic concepts of randomness, runs, and sample 

variability.  When, however, the same students were given tasks that required 

them to apply their knowledge in solving problems that were not based on coin 

tossing, they were often unable to do so.  Other researchers have also shown that 

students’ understanding of probability is more limited in real-world contexts than 

in the contrived context of standard probability tasks.  Some have speculated that 

the reason is the fact that use of real-world context increases the likelihood of 

prior beliefs and knowledge about the issues under investigation.  Lord, Ross, and 

Lepper (1979) have suggested that individuals tend not to be equally critical of all 

sampling methods; they might not be as critical of sampling methods that result in 

conclusions consistent with their prior knowledge and beliefs as of studies that 

contradict them. 

While the results of the heuristics literature that will be discussed in the 

next section suggest that students do not have a good understanding of the law of 

large numbers because they tend to ignore sample size, a study by Nisbett, Krantz, 

Jepson, and Kunda (1983) made contradictory claims.  According to their 

findings, even people with no formal statistical training are able to use the law of 

large numbers in real-world situations.  In addition, the ability to apply the law of 

large numbers can be enhanced by training.  In order to resolve the contradictory 

evidence, Well, Pollatsek, and Boyce (1990) did a series of experiments of 
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statistically naïve college students, which showed that students’ intuitive 

understanding of the law of large numbers is not a simple task and that task 

variables have a big effect on performance.  Students were presented with 

different versions of the problems.  In the “accuracy” version, they were just 

asked whether the average from a large sample or that from small sample would 

be closer to the population average.  In the “tail” version, however, they had to 

estimate how likely it is that the sample average was a certain distance from the 

population mean.  Students tended to do well on the “accuracy” version and very 

poorly on the “tail” version.  In a follow up experiment, although students 

generated and observed computer graphic displays which showed the distribution 

of 100 samples of size 10 and 100 samples of size 100, many students still 

believed that the variability will be the same in both sampling distributions.  

Shaughnessy (1992) interprets the finding of the study by commenting that 

students’ poor understanding of the law of large numbers is the result of the little 

attention paid to variability issues when teaching about sampling distributions: 

Without explicit teaching on the concepts of variability in sampling 
distributions, and how sample size affects this variability, students will not 
improve in their understanding of the law of large numbers.  Mere 
exposure to the graphic displays of sampling distributions is probably not 
enough.  Someone must explicitly point out the patterns in variability in 
sampling distributions, and the quantitative relationships that are involved.  
The fact that there are numbers involved in the tail version in the Well 
study makes it significantly more difficult than the accuracy version. (p. 
478) 

Biehler (1997) has found that when students make interpretations of 

summary statistics, they generally lack the flexible knowledge and critical 
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awareness required to take into account their robustness, or reliability and to 

realize the importance of sample size even when data do not come from a random 

sample.  When for example, examining a box plot, they fail to realize that the 

interquartile range tends to be quite robust to outliers that can be the result of 

either individual inaccuracies or errors in the data.  They do not appreciate that  “a 

difference of one hour in the interquartile range has to be taken more seriously 

than the difference of one or two hours in the range or whisker differences, except 

for very small sample sizes” (Biehler, 1997, 181).  He argues that this lack of 

understanding is observed because instruction does not encourage students to 

explore variability issues.  Students who have been exposed to properties of 

distributions such as skewness and symmetry through the demonstration of ideal 

mathematical distribution curves might not be able to appreciate the boxplot’s 

capability to show these properties by displaying several measures of spread. 

The essence of the statistical perspective for Konold, Pollatsek, Well, and 

Gagnon (1997) is “attending to features of aggregates as opposed to features of 

individuals” (p. 151).  Statistical estimates such as mean percentage of marriages 

leading to divorce or life expectancy, refer to features of the aggregate and not of 

individual elements.  Although they might be used to make individual forecasts, 

since there is natural variability in every statistical endeavor, what they really give 

information about are group tendencies or propensities.  The authors suggest that 

some of the difficulty people have in formulating and interpreting statistical 

arguments and making statistical comparisons are due to their tendency to think 

about individual cases or about homogeneous groupings rather than about group 
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propensities.  They report the results of a study with high school students who had 

just completed a year -long course in probability and statistics to make the point 

that this tendency might be the result of an avoidance strategy when having to 

deal with variability issues: 

Our findings suggest that one reason it is easier to think about attributes of 
objects as opposed to attribute spaces, or dimensions, is that in focusing on 
attributes one can circumvent the issue of variability.  Once there is no 
variability in collections of values, one can use nonstatistical methods of 
comparison. (Konold et al., 1997, p. 160) 

Konold (1998) argues that to make the “conceptual leap required in 

moving from seeing data as an amalgam of individuals, each with its own 

characteristics, to seeing data as a group with emerging properties, properties that 

are often not evident in any individual members” (in NCTM, 1998, p. 70), 

students need to experience variation personally.   

Insights from  Heuristics Literature  

The 1970s and 1980s saw the development of a very huge and influential 

body of research that has examined the informal strategies or heuristics people use 

when making judgments about the stochastic.  This literature has been greatly 

influenced by the pioneering work of Daniel Kahneman and Amos Tversky 

(Kahneman and Tversky, 1973; 1982; Tversky and Kahneman, 1973; 1974; 

1983).  Kahneman and Tversky were the first to discover a number of systematic 

and persistent errors people – even ones with substantive formal training in 

probability – commit when attempting to make decisions concerning stochastic 

events. 
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Kahneman and Tversky’s work suggests that even people who are able to 

correctly compute probabilities tend to rely on incorrect intuitions when asked to 

make inferences about uncertain events (Garfield, 1998).  Several other 

researchers have subsequently studied the heuristics that people employ when 

making judgments of chance.  The findings of most of them have confirmed 

Kahneman’s and Trersky’s findings and have uncovered additional errors of 

reasoning when analyzing statistical information (e.g., Cohen, 1979; Nisbett and 

Ross, 1980; Nisbett et al., 1983). 

Garfield (1998) summarized the findings of the heuristics literature.  She 

put the identified errors in statistical reasoning into the following categories: (i) 

misconceptions involving averages, (ii) the outcome orientation, (iii) good 

samples have to represent a high percentage of the population, (iv) the law of 

small numbers, (v) the representativeness misconception, and (vi) the 

equiprobability bias.  Next, I briefly describe each of these of these categories of 

errors in statistical reasoning as they relate to my topic of interest. 

Misconceptions involving Averages 

People tend to ignore the possibility of outliers and to think that to find the 

center of a dataset, one should always add up all the numbers and divide by the 

number of data values.  When asked to compare groups, they focus exclusively on 

the difference in averages, not considering variability. 
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The Outcome Orientation 

This approach was identified by Konold (1989), who has noticed that 

people tend to interpret in deterministic terms phenomena that are actually 

stochastic.  Lacking awareness of the stochastic dimension of these phenomena, 

they make predictions based solely on causal factors (Pratt, 1998).  They assign 

probabilities by focusing on single events rather than looking at a series of events, 

and disregard frequency information, treating outcomes as either happening or not 

happening.  They deal with uncertainty by predicting what the next outcome will 

be and then by evaluating the prediction as either right or wrong.  A probability of 

50% is often assigned when no sensible prediction is possible.  Thus, for people 

adopting the outcome approach, the information that there is a 50% chance of rain 

tomorrow sounds totally useless, a probability of 30% implies that there is no 

possibility of rain, whereas a probability of 70% means that it will definitely rain.  

Konold (1989) does not consider the outcome approach to be a belief system.  His 

extensive research of mainly undergraduate students learning probability and 

statistics has led him to conclude that individuals tend to switch between different 

approaches depending on the context of the situation.  However, it does seem to 

him that some people are more likely to adopt the outcome approach than others 

are. 

Good Samples Have to Represent a High Percentage of the Population 

No matter how large a sample is and regardless of how well it was chosen, 

it cannot for many people be a good sample unless it represents a large percentage 

of the population. 
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The Law of Small Numbers  

People often tend to think that small samples should resemble the 

populations from which they are sampled and use them as a basis for inference 

and generalizations (Kahneman, Slovic, and Tversky, 1982).  They mistakenly 

apply the “law of large numbers” to small samples and show unwarranted 

confidence in the validity of conclusions drawn from small samples.  As 

Shaughnessy (1992) points out, for statistically naïve people the effect of sample 

size on variation is not a factor to be taken into account.  To them, it is not 

apparent that extreme outcomes are more likely within small sizes. 

The Representativeness Heuristic 

People who use the representativeness heuristic when making likelihood 

judgments, estimate the likelihood of an event based on how closely it resembles 

the population.  They “look for an ideal type that represents their answer and then 

judge probability by closeness to this type” (Wilensky, 1993, p. 22).  Thus, they 

end up predicting the outcome that appears as the most representative under the 

circumstances (Kahneman and Tversky, 1973; Tversky and Kahneman, 1983). 

The representative heuristic is a strategy that often is very helpful and leads to 

valid conclusions.  At other times, however, it leads to serious biases even by 

people with sophisticated knowledge of probability.  Some variations of the 

representativeness heuristic that Kahneman and Tversky have identified include 

(i) insensitivity to prior knowledge of outcomes, (ii) insensitivity to sample size 

and (iii) local representativeness. 
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Insensitivity to prior knowledge of outcomes refers to the phenomenon 

where people’s tendency to look for similarities between outcome and evidence 

might be so strong that they ignore base-rate frequencies or prior distributions 

when making their judgment.  Kahneman and Tversky (1973) showed through 

different tasks they gave to their study participants that prior probabilities were 

often ignored, and saw this as evidence of the use of the representativeness 

heuristic which dominates any sensitivity to prior probabilities.   

When making judgments about the probability of an outcome involving a 

sample, people often tend to consider the population as a whole and show 

insensitivity to sample size.  A classic example of this tendency is people’s 

response to the following question, first given by Tversky and Kahneman (1974) 

to a group of undergraduates: 

A certain town is served by two hospitals.  In the larger hospital about 45 
babies are born each day, and in the smaller hospital about 15 babies are 
born each day.  As you know, about 50 percent of all babies are boys.  
However, the exact percentage varies from day to day.  Sometimes it may 
be higher than 50 percent, sometimes lower.  For a period of 1 year, each 
hospital recorded the number of days on which more than 60% of babies 
born were boys.  Which hospital do you think recorded more such days? 
(p. 1125)  

Ignoring the difference in the average number of children born everyday 

in each of these two hospitals, most of the people participating in the study judged 

that both hospitals had the same probability of obtaining more than 60% boys.  

Several other researchers have given this or similar questions and have obtained 

similar results.  Kahneman and Tversky consider this as evidence of the 
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representativeness heuristic; the two events are equally likely since the data 

provided is equally representative of the general population. 

Local representativeness is the phenomenon where “people believe that a 

sequence of events generated stochastically will represent the essential 

characteristics of that process, even when the sequence is quite short” (Pratt, 

1998, p. 37).  For example, when tossing coins, people consider it less likely to 

obtain HHHTTT or HHHHTH than to obtain HTHTTH, because HTHTTH seems 

to better represent the two possible outcomes.  Similarly, the fallacy of the 

gambler who, after a long sequence of red outcomes, expects the next outcome to 

be a black is, for Kahneman and Tversky, the consequence of employing the local 

representativeness heuristic and perceiving a pattern in random data.  The 

gambler’s fallacy is also called the “law of averages” because it describes 

people’s tendency to believe that things should balance out to better represent the 

population distribution.  This is the same idea as that which Shaughnessy (1992) 

calls an active balancing strategy.  For him, an active balancer is the person who, 

when given the problem “The average SAT score for all high school students in a 

district is known to be 400.  You pick a random sample of 10 students.  The first 

student you pick had an SAT of 250.  What would you expect the average to be?” 

(p. 477), would predict the average of the remaining 9 scores to be higher than 

400, in order to make up for the “strangely” low score. 

The Equiprobability Bias 

People tend to assume that all the different possible outcomes of a 

possibility space are equally likely (Lecoutre, 1992; in Pratt 1998, p. 44).  They, 
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for example, assume that when shaking two dice, it is equally likely to get a 9 and 

a 7.  Such incorrect notions are resistant to change and are often exhibited by 

people well acquainted with probability theory. 

Although not directly studying people’s understanding of variability, the 

heuristics literature does point to people’s tendency towards to the deterministic 

and their limited understanding of variability.  Landwehr (1989; in Shaughnessy, 

1992) summarized people’s over-reliance on averages and their lack of 

understanding of variability when he noted in his list of common stochastic 

misunderstandings that people: 

(a) have the misconception that any difference in the means between 
groups is significant 

(b) inappropriately believe there is no variability in the “real world” 

(c) have unwarranted confidence in small samples 

(d) have insufficient respect for small differences  in large samples 

Criticisms of the Heuristics Research 

Two inferences according to Wilensky (1993) can be drawn from the 

heuristics literature: either that people make errors when judging under 

uncertainty because (i) the human brain is “hard-wired” not to be able to think 

intuitively about the stochastic, or because (ii) intuitions are insufficiently 

developed to generate probabilistic judgments in a more sophisticated way than 

that observed.  Both views have important ramifications for probability and 

statistics instruction.  If one adopts the first view, then the implication is that 

probability concepts should be taught in a formal way with no connection to 
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everyday intuitions.  Adopting the second view does pose the question of what 

learning environments should be used to help sufficiently develop students’ 

intuitions. 

Pratt (1998) raises several criticisms of the heuristics literature.  One such 

criticism is the lack of a theoretical framework characterizing this work, which 

leads to contradictions and confusions.  To make his point, he notes the 

contradictions in the rationale that  Tversky and Kahneman claim drives their 

focus on people’s systematic errors: 

They claim that their approach: 

•   exposes our intellectual limitations and suggests ways of improving the 
quality of our thinking; 

•   errors and biases reveal the psychological processes that govern 
judgment and inference; 

•   mistakes and fallacies help the mapping of human intuitions indicating 
which principles are non-intuitive or counter-intuitive. (Pratt, 1998, p. 51) 

As Pratt (1998) indicates, whereas the first reason seems to be consistent 

with the second inference which gives room for improving students’ intuitions 

through the development of better learning environments, the third reason 

presents a view of intuitions that is very static.  Indeed, the literature on heuristics 

has been interpreted by many people as indication that the human mind is not able 

to generate accurate judgments concerning stochastic phenomena (Wilensky, 

1993). 

Pratt (1998) goes on to criticize the methodology that Tversky and 

Kahneman employed.  He argues that if their aim had not been to expose the 
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limitations of the human brain but to develop a theoretical framework of change 

in intuitions then, instead of taking “snapshots” of students’ intuitions, they 

should have looked closely at the psychological processes involved.  In addition, 

Pratt (1998) considers as problematic also the fact that the heuristics literature 

ignores the influence of the setting on the shaping of intuitions: 

If our ultimate aim is to apply research findings to teaching and learning 
contexts, then it makes no sense to remove setting from the experiment.  
Indeed, if it were true that we could infer from the heuristics research that 
setting was not influential (and I do not see how we can possibly make this 
inference when setting was intentionally ignored) then we are in a position 
of no hope from a pedagogical perspective. (p. 35) 

Lave’s (1988) theory of situated cognition, which draws heavily from 

anthropology and sociology, also sets as problematic the practice of researchers 

on heuristics to take snapshots of how people might make sense of stochastic 

phenomena at a specific point in time, without considering the role of context.  

Her research findings, as well as those of other researchers that have investigated 

the relationship between situation and cognition (Hiebert and Carpenter, 1992; 

Brown, Collins, and Duguid, 1989; Nunes, Schliemann, and Carraher, 1993), 

have indicated that learning is highly specific.  They have cast doubt on the 

validity of research that considers culture as a factor exerting a constant influence 

on the learner’s cognition and have caused a shift of cognitive analysis “from 

focusing on the abstract, disembedded character of internal representations to 

describing cognitive actions within the situation.” (Hiebert and Carpenter, 1992, 

p. 76) 
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Another weakness of the heuristics research according to Pratt (1998) is its 

emphasis on fallibility, which leaves the reader with the impression that human 

actions essentially lack rationality.  Lopes (1991) also criticizes Kahneman and 

Tversky’s research, arguing that it caused, during the 1970s, a shift in view of 

humans from one of effective decision makers to one of ineffectiveness.  He does 

not refute the claim that people use heuristics when making decisions concerning 

stochastic phenomena, but criticizes the emphasis of this literature on the 

fallibility of judgments and the unfair image it provides about the frequency in 

which these poor judgments occur.  The focus of this research, Lopes argues, is 

not to identify heuristics but to show the bias in these heuristics, to emphasize 

errors and irrationality.  The language employed is evaluative rather than neutral.  

The impression it leaves about humans’ judgment is a very bleak one and the 

assistance it offers as far as pedagogy is concerned is minimal.    

The heuristics approach is part of the misconceptions movement of the 

1960s and 1970s which aimed at discovering fallibilities in students’ reasoning.  

Confrey (1991) raises serious criticisms of this movement.  She points out that too 

often researchers fall into the misconceptions trap and fail to acknowledge the 

potential legitimacy of students’ novel constructions.  This leads to the 

suppression and destruction of student “voice”.  Smith, diSessa and Rochelle 

(1993) consider research on misconceptions to be an ineffective way of 

examining human learning that is applied in a very narrow range of contexts, has 

little explanatory power, and provides no account of productive ideas that might 

facilitate learning.  Although acknowledging that the misconceptions movement 
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has significantly advanced our understanding of student learning by producing 

detailed characterizations of the students’ ideas, they see fundamental problems 

with its tendency to characterize most of students’ ideas as misconceptions.  Also, 

they reject the idea inferred from this literature, of replacing misconceptions by 

appropriate expert learning. 

Instead of casting misconceptions as flawed ways of viewing the world 

that instruction ought to confront and replace, Smith et al. (1993) consider them 

as useful resources for the acquisition of new knowledge.  They disagree with the 

misconceptions movement’s overemphasis on discontinuities between novice 

students and experts because “it conflicts with the basic premise of 

constructivism: that students build more advanced knowledge from prior 

understandings” (Smith et al., 1993, p. 125).  They argue that the road from being 

a novice is a continuous one and use case analyses to dispute some often cited 

dimensions of discontinuity and to identify important continuities previously 

ignored.  Studies on misconceptions have been unfair to novices since they have 

tested them in areas unfamiliar to them and in situations where there were no 

appropriate tools available for them to explore the question.  Such conditions 

make people feel uncomfortable and do not allow them to show their 

competencies.  The authors’ analyses indicate that novices do possess intuitive 

knowledge with abstract features and, given the right environment, they can 

employ abstract thinking.  Hence - the authors suggest - if we find ways to put 

students in learning environments closer to their own experiential world instead of 

situations outside their area of competence, we might be able to observe not 
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failure, but effective search for underlying principles to make sense of the 

stochastic. 

Smith et al.’s (1993) model of cognitive development is one of 

“refinement and reorganization, rather than replacement” (p. 116).  Novice 

conceptions are not only flawed but productive also, and they can support 

cognitive growth.  The move from novice to expert is a continuous process of 

transforming and refining of prior knowledge into more sophisticated forms.  It is 

therefore much more useful to study the productive role that novice conceptions 

continue to play in expert knowledge than to cast them as flawed and try to 

replace them, something which is impossible anyway, since learning is both 

constrained but also made possible by prior knowledge.  Emphasis should be 

given not on misconceptions, but on intuitive knowledge that characterizes not 

only novice but expert knowledge also.  

A group at the 5th International Conference on Teaching Statistics (ICOTS 

V, 1997) was devoted to discussing the state of empirical research on the teaching 

and learning of probability and statistics.  The group noted that although quite a 

lot of research has been done on students’ conceptions and beliefs about chance 

and data, this research seems to have put too much emphasis on the uncovering of 

misunderstandings.  They raised the question as to whether what we are studying 

are “misconceptions” or “missed—conceptions” (Shaughnessy, 1997b, p. 219).  

The conclusion was that if “missed-conceptions” are what we are studying, then it 

is probably better for us to start thinking of our students’ conceptions and beliefs 

about chance and data as being in transition.  Consequently, we should 
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concentrate our research efforts on longer-range studies of students’ growth in 

thinking over time rather than on snapshots of students’ thinking. 

A number of more recent studies suggest that, under certain conditions, 

people are in fact able to use rational statistical reasoning.  Nisbett et al. (1983) 

identified three factors whose presence seems to help increase the possibility that 

people will employ statistical reasoning appropriately.  The first factor is clarity 

of the sample space and the sampling process.  People tend to use the 

representativeness heuristic in cases where the random generating process is not 

clear and the sample space not well understood, which is often the case in the 

social domain.  They tend to employ statistical reasoning in tasks concerning 

randomizing devices, since these devices have an obvious sample space and the 

repeatability of trials can be easily imagined.  The second factor is recognition of 

the operation of chance factors.  The random nature of social events is often not 

as explicit as that of randomizing devices, although experience does help identify 

the role of chance.  The third factor is cultural prescriptions for statistical 

reasoning.  Cultural knowledge does have an effect on people’s ability to reason 

statistically.  In our days, European children are more capable of reasoning 

statistically than mediaeval children, because of the wide use of statistics in social 

domains such as sports.  The continuous increase of the importance of statistics 

implies that people in the future might be able to reason more effectively about 

the stochastic than people today. 

Jacobs and Potenza (1991) found that the kind of setting influences the use 

of heuristics.  They witnessed a tendency not to make reference to frequencies 
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when making social judgments and this led them to distinguish between social 

and object judgments.  In addition, a group of psychologists at the University of 

Chicago has been challenging some of the claims of the earlier psychological 

research, and has found that students tend to be more successful when questions 

are posed in terms of frequencies (Gigerenzer, 1994, 1996; Gigerenzer and 

Hoffrage, 1995; in Shaughnessy, 1997a). 

The implication of these research findings on the influence of setting is 

that the nature of the learning environment in which students experience 

stochastic phenomena can have an important effect on the use of statistical 

reasoning.  This implication leaves open the room for improvement of statistical 

intuitions, suggesting that by providing the appropriate environment we can 

increase students’ awareness of the underlying random effects. 

Moving Away from Misconceptions: Intuitions as Dynamic  

The effect of the heuristics literature on probability and statistics education 

has been profound.  However, as already noted, a growing number of researchers 

have lately become critical of this view.  These researchers do not disagree that 

people’s intuitions about probability and statistics often run counter to stochastic 

reasoning and that this disparity may be partly responsible for the difficulties they 

encounter in learning probability and statistics.  However, they do not take this as 

indication of cognitive constraints regarding the stochastic, but rather as an 

indication that more needs to be done in order to deal effectively with intuitions.  

They believe that students are capable of statistical and probabilistic reasoning 
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and that their difficulties are primarily due to limitations in the learning methods, 

tools and cognitive technologies employed (Wilensky, 1997). 

Shaughnessy (1992), reminds us that the heuristics people use are not 

necessarily bad and they do not always result in biases but often give good 

information.  We should not forget that, for example, representativeness is 

fundamental to the epistemology of statistical events.  Being “the very reason we 

try to draw a random sample from a population” (Shaughnessy, 1992, p. 479), 

representativeness is the statistical idea which allows us to draw conclusions 

about the underlying population based on the sample.  We should understand that 

“it is not that there is something wrong with the way our students think, just that 

they –and we – can carry the usefulness of heuristics too far” (Shaughnessy, 1992, 

p. 479).  We should try to create a curriculum that builds on the strengths of 

students’ conceptions while helping improve those intuitions that are 

counterproductive.   

More research according to Shaughnessy (1997a) needs to be done on 

what students can do rather on what they cannot do.  The problem he sees with 

most of the research investigating students’ statistical reasoning is that the 

questions researchers have been asking are often posed in the wrong way which 

exposes what students cannot do rather than what they can do.  For example, the 

problem on the number of boys born in a large vs. a small hospital mentioned 

earlier, causes lots of confusion because it actually focuses the attention of the 

responders on centers, while presumably dealing with the concept of spread.  

Shaughnessy (1997a) believes that if we want to see what our students can do 
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with variability, we should pose questions in a sampling context as a range of 

likely values, rather than in a context forcing students to compare the point value 

probabilities of two particular events.  He describes one such question he gave to 

his students that had very encouraging results: “Imagine you have a huge jar of 

M&M’s with many different colors in it.  We know that the manufacturer of the 

M&M’s puts in 40% browns.  If you reached in and pulled samples of 20 M&M’s 

at a time, what do you think would be the likely range for the number of browns 

you found in your samples?” (p. 135).   

Such types of questions can, for Shaughnessy (1997a), be a point of 

departure for the kind of instruction builds on students' intuitions in order to help 

increase their understanding of what the likely spread of outcomes is for a sample 

from a certain population.  By focusing on tasks that elicit conceptions of 

variability and difference rather than centers and sameness, students can begin to 

appreciate more the fact that there is lots of variability in the real world but also 

that we are often still able to detect patterns in the data.  They will gradually begin 

to get some idea of what is likely and what is unlikely to occur by considering the 

entire distribution of outcomes and to develop some sense of the effect of sample 

size on the spread of likely outcomes. 

Borovcnik and Peard (1996) also believe that instruction should start 

taking students’ intuitions more seriously into account in order to “describe when 

and why students encounter problems and how teaching should be designed to 

intervene with inadequate conceptions” (p. 249).  They assert that intuitions are 
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not necessarily bad but, on the contrary, they are a prerequisite to real 

understanding that transcends mere recollection of formulas and procedures:  

There is some sort of imagination which seems to act as a driving force 
when concepts are under construction, when mathematics is in statu 
nascendi.  These intuitive ideas are too vague to be communicated.  On the 
other hand, these abstract concepts seem not to be understandable without 
sharing similar images.  There seems to be an indissoluble interrelation 
between intuitions (intuitive ideas, intuitive conceptions) and theory 
(abstract models, concepts).  It is not possible to separate these two aspects 
of the “object”. (Borovcnik and Peard, 1996, p. 248)   

Borovcnik (1990) perceives intuitions not as something static but as 

something dynamic that undergoes continuous change.  He distinguishes between 

“primary intuitions” and intuitions that emerge due to instruction.  Primary 

intuitions “have a longlasting effect on our cognitive behavior” which can 

facilitate or hinder the reconstruction of concepts.  Consequently, it is vital for 

instruction to establish a direct link between primary intuitions and abstract 

concepts.  This will be very beneficial for students both for getting them 

motivated but also for improving their understanding of abstract concepts.  

Probability and statistics education will not be successful in helping students “get 

their world of vague intuitions ordered” and adequately understand abstract 

concepts, unless it develops a dynamic interplay between the intuitive and 

theoretical level.  Instruction ought to start with the students’ primary intuitions 

and try to develop secondary intuitions that will help raise their awareness of  

“probabilistic interpretation”, and will allow them to understand how stochastic 

thinking is related to causal and logical thinking. 
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Borovcnik and Peard (1996) have, along with others, argued that one 

reason for the underdevelopment of probabilistic intuitions might be the lack of 

consistent feedback from stochastic phenomena.  Since concrete operations are 

not available when making judgments about uncertainty, the learning process is 

handicapped and leads to the domination of unreliable intuitions and to causal 

thinking.  Conventional instruction often fails to establish enough links between 

the learners’ primary intuitions and “the clear cut codified theory of the 

mathematics” (Borovcnik and Bentz, 1991; in Pfannkuch and Brown, 1996).  

Even if people understand probabilistic theory, we often see them falling back 

into the trap of causal thinking because, Borovcnik and Peard (1996) remark, 

“conceptual thinking can be reduced neither to mathematics nor to its 

applications.  To justify a concept necessitates modes of thought different from 

those required to understand the concept” (Borovcnik and  Peard, 1996, p. 243).  

To make their case, they give the example of the concept of independence.  

Although independence is mathematically reduced to the multiplication formula 

and “gains an important role within theory”, becoming the basic ingredient of 

theorems such as the law of large number or the Central Limit Theorem, “its 

mathematical definition cannot affect the causal ideas individuals relate to it in 

general.” (Borovcnik and  Peard, 1996, p. 243)   

Borovcnik and Peard (1996) stress that “learning should be more than 

simply remembering what one has been told” (p. 247) and that the individual 

formation of concepts cannot be provoked by a hierarchical sequence of actions 

and reflections.  They also warn us that traditional instruction has underrated the 
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complexity and dangers of using pseudo-real examples: “If the required mapping 

onto an artificial context conflicts with emotions or with common sense, then a 

breakdown of teaching is likely.” (p. 274) 

Intuitions for Fischbein (1987) play an essential role in the acquisition of 

new knowledge, they are the key to the understanding and acceptance of theory.  

He believes that, given the right environment, intuitions can be developed in ways 

that can make them a very powerful tool in guiding thinking and plans of action.  

Fischbein (1975) indicates that intuitions about relative frequencies exist from a 

very early age but they are suppressed by schooling in favor of deterministic 

thinking.  In order to make his point, he reports on a study where participants 

were asked to predict the outcomes of a repetitive series of stochastic trials, and 

where even young children were able to make predictions based on the relative 

frequencies of the different outcomes.  The reason that the intuition of chance 

remains outside of intellectual development is the emphasis of schooling on 

causality and determinism and its sole focus on deductive reasoning.  Due to the 

lack of nourishment of probabilistic intuitions, learners develop a series of 

heuristics often subject to bias, in an effort to rationalize stochastic events. 

Fischbein (1975) argues that powerful probabilistic intuitions will not 

develop simply by practicing probabilistic formulae.  Neither is it enough to 

engage students in activities such as throwing dice, playing computer games, or 

watching sports for probabilistic reasoning to develop.  Although unpredictable 

events happen constantly in these activities, the structure of the activities is such 

that the underlying probabilistic principles lie hidden.  Stochastic experiences 
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should be structured in ways that make the underlying probabilistic ideas explicit 

by actively engaging the learner throughout the meaning-making process.  

Wilensky (1993) maintains that probabilistic intuitions are not innately 

made but are constructed.  The lack of sound probabilistic intuitions is not the 

result of inherent limitations but of lack of concrete experiences from which such 

intuitions can develop.  Although many of the results of Tversky and Kahneman 

hold for many people today, it is unwise to conclude that we are inherently 

incapable of thinking intuitively about probability.  The process of building 

intuitions takes time and “is not the kind of change that can be measured by a pre 

test and then a post-test after being instructed in the correct approach” (Wilensky, 

1993, p. 187).  Also, because of the relative stability of intuitions over time, 

people tend to forget that these intuitions have developed and often mistakenly 

assume that “what is intuitive is built-in, is always there, and does not change” 

(Wilensky, 1993, p. 187).  To make his point, Wilensky gives an analogy with 

conservation experiments of Piaget.  In such experiments, young children are 

typically shown two full water glasses, one taller and one wider glass and are then 

asked which glass has more water.  Children before a certain stage (usually 

around age 7) say that the tall glass has more.  If the tall glass is then poured into 

another wider glass and fills it, then the children say the two glasses have the 

same amount of water, but if the water is poured back into the tall glass, they 

again assert that the tall glass contains more water.  A year later, these same 

children when shown videotapes of their earlier interviews, cannot believe how 

they could have possibly made such a “stupid” mistake.  Students’ difficulties 
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with the stochastic might parallel those of the young children who think that the 

taller glass has more water.  Given the right resources, these same students might 

end up constructing probabilistic intuitions so sound that their previous 

difficulties will seem as distant to them and as hard to acknowledge as they 

seemed to the older children in Piaget’s experiments. 

 Pratt (1998) perceives intuitions as complex and dynamic, “sense-making 

devices”, which “are not static but constantly change in the light of experience, 

cued by aspects of the setting and shaped by the experience of using those 

intuitions” (p. 126).  He argues that “the notion of misconception ignores the 

potential for those same intuitions to act as a springboard for successful sense 

making” (Pratt, 1998, p. 342).  His dissertation study suggests that to make sense 

of long-term behavior of random phenomena, children initially use local 

meanings such as unpredictability and unsteerability.  Although these local 

meanings appear to be misconceived, Pratt considers them as very important since 

they are the only resources available to the child.  He does not follow the example 

of the heuristics approach that would “add these misconceptions to the ever 

growing list of ways in which people, in this case children, behave irrationally 

when making judgments in the stochastic domain” (Pratt, 1998, p. 341).  Rather, 

he shows how the children in his study used the tools he designed based on the 

close investigation of their thought processes to make sense of the long-term 

behavior of stochastic phenomena utilizing local meanings.  Thus, he concludes, 

local meanings “may have the characteristics of misconceptions when the 

circumstances lie beyond the child’s area of competence, but, set in a carefully 
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designed domain of abstraction, they become the raw materials of new meanings” 

(Pratt, 1998, p. 342).   

Konold (1995a) insists that the “forget-everything” approach probability 

and statistics teachers often embrace in the hope that what they convey to students 

will be accurately encoded does not work simply because  “learning is both 

limited and, at the same time, made possible by prior knowledge”.  The only way 

people can cope with new information is to relate it to things they already know, 

since “there is no blank space in our minds within which new information can be 

stored so as not to "contaminate" it with existing information” (Konold, 1995a).  

We cannot overwrite students’ beliefs and intuitions with more appropriate ones.  

The only solution to explain and bridge “the frequent gap between what students 

report and what we, as teachers, thought we clearly communicated” (Konold, 

1995a), is to use assessment methods that help reveal the intuitions that hinder 

learning and then find ways to improve them. 

Beliefs about the Nature of Mathematics: Impact on Statistics Instruction 

Wilensky (1993) claims that the failure in developing sound probabilistic 

intuitions is similar to other failures in mathematical understanding and is the 

result of deficient learning environments and reliance on “brittle formal methods”.  

It is, in my opinion, these same reasons which also cause the neglect of variability 

observed both in the curriculum and in the research literature.  Deep-rooted 

beliefs about the nature of mathematics are imported into statistics, affecting 

instructional approaches and curricula and acting as a barrier to the kind of 
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instruction that would provide students with the skills necessary to recognize 

uncertainty and variability and be able deal intelligently with them.  

Formalist vs. Relativistic View of Mathematics  

In recent years, the “formalist” tradition in mathematics and science has 

come under attack and a second agenda, which aims at “the preservation of 

meaning in mathematical statements” (Wilensky, 1993, p. 27), has begun to 

emerge.  This interpretive view sees mathematics as a meaning-making activity of 

a society of practitioners.  The emergence of the new paradigm has been the result 

of developments in the history and philosophy of science which have caused a 

general shift, in the last thirty years, of virtually every social science and field of 

humanities away from rationalistic, linear ways of thinking.  In the social sciences 

several critics have attacked formalist tradition in mathematics and science.  

Hermeneutic critics (Packer and Addison , 1989; in Wilensky, 1993, p. 26) have 

criticized it, among other things, for its detachment from context, its foundation 

on axioms and principles rather than practical understanding, and its formal, 

syntactic reconstruction of competence.  Feminists have criticized it for alienating 

a large number of people and especially women.  Sociologists such as Latour 

(1987) have maintained that science can only be understood through its practice.   

Kuhn (1962) has argued that the progress of science rather than being 

linear and hypothetico-deductive as claimed by logical positivists, is made 

possible through revolution.  New theories are not incremental modifications of 

existing ones but theories that posit basic entities of the world, which are 

fundamentally incompatible with old theories.  An anomaly occurs, which is an 
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event that cannot be explained by the existing theory. In effect, the 

theory/paradigm is disproved.  A whole new paradigm takes over, which explains 

everything the old paradigm explained and also explains the anomaly (Wiesman 

and Wotring, 1997).  Polya (1962) and Lakatos (1976) have argued that, “by 

placing such a strong emphasis on mathematical verification and the justification 

of mathematical theorems after their referent terms have been fixed, mathematics 

literature has robbed our mathematics of its basic life” (Wilensky, 1993, p. 34).  

Mathematics for Lakatos is a human enterprise and advances happen through the 

negotiation of meaning among a community of practitioners.  It is not given in 

advance but is constructed through the practices, needs, and applications of this 

community of practitioners.  Proofs are not developed in a linear way, but follow 

“the “zig-zag” path of example, conjecture, counter-example, revised conjecture 

or revised definition of the terms referred to in the conjecture” (Wilensky, 1993, 

p. 34).  In the new paradigm, the history of mathematics takes an important role.  

Its examination reveals that “mathematics is messy and not the clean picture we 

see in textbooks and proofs”, that “the path to our current mathematical 

conceptions was filled with argument, negotiations, multiple and competing 

representations.” (Wilensky, 1993, p. 17)  

In response to criticisms following research findings and reports of the 70s 

and early 80s exposing students’ impoverished understanding of mathematics and 

science, leaders and professional organizations in mathematics education are now 

finally promoting a relativistic view of mathematics (Confrey, 1980; Nickson 

1981).  They have come to believe that current teaching approaches are deficient 
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in that they do not give students the chance to encounter a number of different 

perspectives on the nature and uses of mathematics: 

It is difficult for us who have been socialized into the peculiar culture of 
university faculty to recognize how esoteric we have allowed university 
mathematics in particular to become.  We imagine (incorrectly) that 
dominance of the abstract over the concrete, absence of ties to 
applications, and an emphasis on rigor over fluency of use are inherent in 
the discipline.  We value, in Richard Feynman’s words, precise language 
over clear language.  Reformers urge a change of culture toward the 
concrete, toward applications, toward ability to use mathematical concepts 
and tools over rigor of detail.  They offer pedagogical reasons, but they are 
also responding to the pressures of democratization. (Moore, 1997, p. 124) 

Reformers argue that the culture of the mathematics classroom should 

change.  Mathematics should be presented as open to discussion and 

investigation, as a socially constructed discipline which, even at the classroom 

level, “is not held to be exempt from interpretations that require “reconsideration, 

revision and refinement” ” (Nickson, 1992, p. 104).  The emphasis should not be 

“with mirroring some unknowable reality, but in solving problems in ways that 

are increasingly useful to one’s experience” (Confrey, 1991, p. 136).  The teacher 

should encourage discussion, and allow students to generate and test their own 

theories.    

These ideas embraced by many members of the mathematics education 

society are influenced by the acceptance on constructivism as a learning theory.  

Although a wide spectrum of beliefs are covered under the label of 

constructivism, with traditional constructivists emphasizing individual thinking 

and creation of meaning (Piaget, 1970) and neo-constructivists incorporating 

more ideas about culture and social learning (Vygotsky, 1986), there are some 
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overarching ideas defining constructivism as it relates to instruction.  In general, 

constructivism tends to be more holistic and less mechanistic than traditional 

information-processing theories.  According to constructivism, people make sense 

out of their world by taking in information from the environment and assimilating 

it into their pre-existing schemas.  This meaning-making process depends on prior 

knowledge as well as on interaction with others.  Learning then is a personal 

interpretation of the world as well as a collaborative process with meaning 

negotiated from multiple perspectives. 

Wilson, Teslow, and Osman-Jouchoux (1995) warn us that although 

recent models of cognition are clearly challenging our traditional notions of 

learning and teaching, changing long-held beliefs and attitudes towards 

mathematics is not easy.  There is an enormous gap between the mechanistic-

instrumental portrayal of the nature of mathematics and the more realistic-

fundamental view that reform efforts try to advance.  The formalist tradition has 

been around for too long and it runs deeply into people’s veins.  For people raised 

in this objectivist tradition, it is very difficult to accept the fallabilist nature of 

mathematics. 

Impact of Formalist View on Statistics Education 

In the statistics domain, there has already been a significant move towards 

modernizing statistics education and a general acknowledgment that learning 

occurs most effectively when students engage in authentic activities.  Although 

many statistics students from higher institutions are still being taught in traditional 

classrooms, there is already a large number of statistics instructors who have 
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adopted alternative approaches to teaching statistics and many statistics 

classrooms are experiencing wide incorporation of technology.  But, as Hawkins 

(1997a) points out, for reform efforts to be successful, it is “necessary not only to 

provide the infrastructure and finance to support technological innovations, but 

also to change attitudes and expectations about statistical education” (viii).  The 

deep-seated beliefs of many people about the nature of statistics as “as a branch of 

the older discipline of mathematics that takes its place alongside analysis, 

calculus, number theory, topology, and so on” (Glencross and Binyavanga, 1997, 

p. 303), hamper the reform efforts. 

The linear and hierarchical and approach adopted by statistical courses and 

syllabuses is testimony to the profound and continuing effect of the formalist 

mathematics culture on statistics.  The structure of almost every introductory 

statistics course is to first start with descriptive and exploratory data analysis, then 

move into probability, and finally go to statistical inference.  Biehler (1994) warns 

us that the danger of a curriculum with such a structured progression of ideas is 

that students get the impression that “EDA (Exploratory Data Analysis), 

probability and inference statistics seem to be concerned with very different kinds 

of application with no overlap” (Biehler, 1994, p. 16).  This leads to 

compartmentalization of knowledge: “The degree of networking in some 

students’ cognitive tool system seems to be rather low, otherwise the trial and 

error choice of methods that we observed quite frequently would be difficult to 

explain.” (Biehler, 1997, p. 176)  
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In statistics courses, effort is often put on simplifying the process of 

learning by organizing it step by step, assuming that this helps to remove 

difficulties from students’ path by gradually leading them from more basic to 

more complex connections (Steinbring, 1990).  However, the linear and 

consecutive structure of the course comes in sharp contrast with “the complex 

nature of stochastical knowledge which can only be understood as a “self-

organizing process” (Steinbring, 1990, p. 8).  The static image projected through 

the formalization of the chance concept to probability is misleading and hides the 

dynamic and complex nature of chance events.  It is inadequate in helping 

students make the conceptual shift that is needed to understand the difference 

between long-run stability and variation in finite samples (Biehler, 1994). 

The assumptions posed are often too simplistic.  Although not necessarily 

denying underlying causal explanations in case of chance events, a probabilistic 

approach views them as impractical and, “accepting a current state of limited 

knowledge, adopts a ‘blackbox’ model according to which underlying causal 

explanations, if not denied, are ignored” (Biehler, 1994, p. 10).  As Biehler (1994) 

indicates, the assumption of independence is not plausible in many real-world 

contexts.  Even “coin flipping can also be done in a way that independence has to 

be rejected in favor of serial correlation, and physical theories can be developed to 

explain some aspects of coin flipping” (Biehler, 1994, p.10).  Similarly, Von 

Mises principle of an impossible game does not rule out the possibility of 

improving chance by observing variables from which the roulette result is not 

independent.  As a matter of fact, people have actually constructed computer 
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programs that gather and process physical data such as the velocity and position 

of the ball and the wheel in order to make better predictions than those offered by 

just the uniform distribution.  

In standard approaches to statistical inference, “distributions are reduced 

to the mean values and the question ‘are the mean values different’ is posed - 

assuming that distributions are equal in all other respects (normally distributed 

with known variance).  The problem of whether a difference is statistically 

significant steals into the foreground, masking the basic conceptual question of 

the difference of distributions” (Biehler, 1994, p. 14).  This is problematic and 

projects a static view of reality that does not take into account the fact that the 

world is continuously changing and distributions change too.  

The over-emphasis of the traditional mathematics curriculum on 

determinism and its “orientation towards exact numbers” (Biehler, 1997, p. 187) 

affects statistics instruction, becoming an obstacle for the adequate judgment of 

stochastic settings.  The law of large numbers is often presented as a canon in the 

statistics classroom, giving students the false impression that the stabilization of 

the relative frequency of repeated sampling to the ideal value is guaranteed.  

Similarly, instruction leaves students with the impression that a larger random 

sample guarantees a more representative sample.  There is a deterministic 

mindset and an over-reliance on rules and theorems, forgetting that we are dealing 

with uncertainty, and the variability accompanying all finite statistical processes 

implies that a sample is almost never totally representative of the population from 

which it was selected.  People have a hard time distinguishing between the real-
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world problem and the statistical model.  At one extreme are many people who 

use statistical methods for solving real-world problems in the same way that they 

would use an artificial mathematics problem coming out of a textbook.  On the 

other extreme, we find people who distrust statistics completely due to the fact 

that, unlike mathematics, it deals with uncertainty.  Both of these two extreme 

attitudes suggest inadequate understanding of statistics as a decision-support 

system (Biehler, 1997). 

Technology, however, does have the potential to transform both the 

content and the pedagogy of statistics and to change people’s ideas about the 

nature of statistics.  There is currently an ongoing debate among statistics 

educators on the role of technology in statistics teaching and learning.  In the next 

section, I will give an overview of the increasing literature examining the role of 

technology in statistics instruction.  

ROLE OF TECHNOLOGY 

Where is the knowledge that is lost in information?  

(T. S. Eliot)  

Technology can help statistics turn information into knowledge, by 

allowing us not only to do old things in new ways but, more importantly, by 

allowing things that were not possible before (Burrill, 1997a).  The developments 

in computers during the last decades have been so profound that it is not 

surprising they have had an immense impact on the practice of statistics.  The 

availability of computing technology has freed statistics from many of the 

constraints of the past and has radically transformed the culture of practicing 
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statisticians.  The calculating power of the computer has relieved the burden of 

computations, and its ability to generate data from which to make conjectures and 

simulate the behavior of complex systems has opened new and exciting avenues.  

Statistics is not a fixed subject, but one that is ever growing and changing 

as demands for its application become stronger and as technology enables us to 

think of new and more revealing ways to process information and make decisions.  

The different forms of representation and data analysis and the wider range of 

problems that computers allow, are turning statistics into a “data science” with 

close ties not only to mathematics but also to computer science and its related 

fields of application (Batanero et al., 1997).  Computers have revolutionized the 

view of what statistical knowledge means and statistics instruction should adjust 

accordingly to accommodate the changing nature of statistics: 

Educational technology does afford us with a greater variety of strategies 
for teaching statistics.  Moreover, it offers us new ways of doing statistics.  
Our education processes often reflect somewhat conservative (if not 
actually reactionary) ideas of what statistics is and how it should be 
taught.  The changing nature of statistics is an ongoing challenge, often 
demanding quite radical reforms in statistical education. (Hawkins, 1997a, 
vii) 

Although in the traditional curriculum, it is inconceivable to teach 

statistics independently of mathematics (Steinbring, 1990), there are now many 

other requirements in addition to mathematical knowledge for teaching statistics 

effectively.  These include “organizing and implementing projects, encouraging 

work and cooperation between students, and understanding graphical 

representations, computation, and so forth, not as didactic tools, but as essential 

statistical means of knowing” (Batanero et al., 1997, p. 195).  While some 
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statistics instructors still choose to ignore the need for change in their teaching 

objectives, many others have already responded to the calls for reform and have 

taken advantage of technology to create new learning environments that adopt to a 

more data-driven approach to statistics. 

Technology has provided the opportunity to create an entirely new 

learning environment, it has significantly increased the range and sophistication 

of possible classroom activities (Hawkins, 1997b).  Situations in real life are not 

as simplistic or as black and white as they are presented in many texts.  With 

advances in technology, statistics education can be enhanced to teach, in a flexible 

manner, skills that are not learned during lectures.  Rossman (1997) sees three 

main uses of technology in the statistics classroom: (i) performing calculations 

and presenting graphical displays of real datasets, (ii) conducting simulations in 

order to experience the long term behavior of sample statistics under repeated 

random sampling, and (iii) exploring statistical phenomena by making predictions 

and testing and revising these predictions using technology in an iterative manner.  

Thus, computers and calculators can not only take the burden of calculations 

away, they are, above all, powerful tools for illustrating concepts and ideas in 

ways that would not be possible without technology, for “bring[ing] specificity to 

the abstract language of statistics” (Behrens, 1997).  By easily moving among 

tabular, graphical, and symbolic representations, students can analyze real data, 

they can make comparisons of expected to observed results, they can create and 

revise models to describe relationships, and they can perform simulations to help 

them understand probabilistic phenomena (Burrill, 1997a).  
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Recent technological advancements have changed both the computer and 

the image of the computer.  Computers are no longer simply number crunchers.  

They are now multifaceted technologies, which facilitate unlimited opportunities 

in application, use and vision.  They can provide a risk-taking, open-ended 

climate where there is a shared responsibility, a climate where students’ voices 

can be clearly heard as they affirm their feelings, opinions, and ways of knowing 

their worlds (Christie, 1997). 

Research Findings: Limitations of Technology 

The agreement on the potential benefits of technology on student learning 

of statistics is unanimous.  However, having a vision of what technology can do is 

not the same as knowing how to take advantage of these possibilities in a teaching 

context (Hawkins, 1997b).  While some statistics educators believe that the 

progress in computer technology has had a significant effect on statistics 

instruction (Starkings, 1997), others are not as confident that the use of computers 

has had the expected impact in the classroom (Moore, 1993).  Researchers such as 

Behrens (1997), warn us that “coupling the student with technology alone is 

generally insufficient to reach the desired effect” (p. 120) and that technological 

interventions might not work quite as well as we would like to think.  They have 

brought attention to the fact that, despite the wide use of technology in many 

statistics classrooms, relatively little published research exists describing its actual 

impact on student learning and curricula are often developed and implemented 

without the benefit of research on their effects in terms of student learning. 
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Lipson (1997) notes that, although the trend in statistics education is to 

replace probability-based courses with courses where computer-based simulation 

exercises develop the idea of probability distribution, there has been little formal 

research done to study the kinds of understanding that develop as a result of these 

exercises.  For example, the development of the idea of the sampling distribution 

is an area that has often been supported by computer simulation exercises.  Many 

instructional programs have taken advantage of the ease of programming 

computers to draw repeated samples from a population and then summarize the 

results and draw the emerging patterns to help students empirically develop the 

idea of the sampling distribution.  Lipson (1997) warns us that these approaches, 

although widely promoted and now commonplace activities in introductory 

statistics courses, may not have been as successful in developing in students the 

notion of sampling distribution as statistics educators have hoped:  

ICOTS 2 delegates were treated to “101 ways of prettying up the Central 
Limit Theorem on screen”, but if the students are not helped to see the 
purpose of the CLT, and if the software does not take them beyond what is 
still, for them, an abstract representation, then the software fails. (p. 138)  

Lipson (1997) goes on to report on a study she conducted to examine the 

effect of computer-based strategies that were designed to introduce the idea of the 

sampling distribution to a group of students in an introductory university level 

statistics course.  Students in the study were graduates from a variety of courses, 

and although some had taken statistics courses in the past, for many others this 

course was their first experience studying any quantitative discipline.  Lipson (1997) 

found that “many of the propositions that seem paramount in an a priori analysis 
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to an understanding of sampling distribution do not seem to have been evoked by 

the computer sessions, even though the sessions had been specifically designed 

with these in mind and students were led to these propositions by the focus 

questions” (p. 146).  The ideas students had a particularly hard time with were 

that a sample mean has a distribution, parameters are constant, and the spread of 

the sampling distribution is related to sample size. 

At the 5th International Conference on Teaching Statistics (ICOTS V) 

which had the role of technology in statistics instruction as its central theme, 

several discussants raised questions about the effectiveness of educational 

software.  Behrens (1997), discussing the implementation of a graphical 

simulation program developed by Yu and Behrens to help students learn about 

statistical power, said that their experience showed them that without clear tasks, 

students simply move the sliders without any real purpose or understanding.  

Hawkins (1997b) pointed out that computer-based technology has brought with it 

not only new possibilities, but “many new challenges for the teacher who seeks to 

determine what it has to offer and how that should be delivered to students” (p. 1).  

She warned that the belief that introduction to technology automatically enhances 

the teaching and learning of statistics is simply not true, and that there is still a lot 

that we have to learn about the use of technology.  Hawkins also argued that 

although there is a large selection of software available which allows students to 

quickly, efficiently, and under different conditions explore important statistical 

ideas, one should not take it for granted that students will actually grasp these 
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ideas without having had some experience with the concrete versions of the 

experiments symbolized by the computer software.  

Other statistics educators have also questioned the effectiveness of 

computer simulations in helping students develop the important ideas of statistics.  

An article by Wilder (1994), expresses reservations about the use of computer-

based simulations of random behavior in statistics instruction.  Wilder indicates 

that the implicit assumption made by many curriculum developers that students 

accept the computer-based simulations as exhibiting random behavior is 

questionable.  He also stresses the need for investigating how students’ mental 

models of random behavior compare to their understanding of the computer 

representation of randomness: “The student needs to relate her own mental model 

of the problem to the computer representation: how she does this may depend on 

how she understands the computer generated model of random behavior.” 

(Wilder, 1994, p. 2) 

DelMas, Garfield, and Chance (1998) have, for several years, been 

engaged in extensive research that tries to investigate the ways in which 

undergraduate introductory statistics students’ conceptual understandings are 

affected as a result of the interaction with an educational software called 

Sampling Distributions developed by delMas.  Their research has been “a 

continuous cycle in which increases in [their] understanding of how and what 

students learn about sampling distributions lead to further revisions of the 

software and research methods, as well as to a better understanding of how to 

teach this complex and rich topic in statistics” (delMas, 1997, p. 87).  They have 
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come to “recognize that good software and clear directions do not ensure 

understanding” (delMas et al., 1998, p. 24) and that learning is improved when 

students are engaged in carefully guided activities structured to help them become 

aware of their own beliefs and intuitions about chance events.   

Similarly to delMas et al. (1998), Jones (1997) also stresses that intelligent 

partnerships with technology do not seem to be self-generating and that teachers 

have to develop instructional strategies that encourage their formation.  Biehler 

(1997) conducted a study of twelfth graders at an American high school who had 

completed a statistics course that used the software DataScope (Konold & Miller, 

1994), which was aiming at the reconstruction of different patterns of software 

use in the context of a data analysis problem.  He found that most often students 

seemed to jump directly to particular methods or graphs offered by the software 

without much reflection on the things they had learned during the statistics 

course.  His conclusion was that superficial experimentation with the statistical 

methods offered by the software is a first step, but we should also find ways to 

“improve the degree of networking in the cognitive repertoire of statistical 

methods” (Biehler, 1997, p. 175).  This is necessary if students are to overcome 

the belief that it is adequate to use just one method or display.  

Wood (1997), suggests that in cases where the underlying ideas are too 

complex for the users, the computer package has to be treated as a black-box 

because trying to follow the algorithms employed by the program would be too 

difficult for the user.  He warns, however, that this creates “a potential problem 

here if the black-box is used incorrectly, if the output is misinterpreted, or if key 
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assumptions are not recognized” (Wood, 1997, p. 271).  He reports on “a large 

unsuccessful” earlier attempt to build and use an expert system that would enable 

college students with little background in statistics to use standard statistical 

distributions.  The reason for the failure was that students did not have an 

adequate understanding of the notions of “sampling size” and “probability 

distribution”.  Also, because they “had no image of what a statistical distribution 

was nor of the types of situations that the standard distributions will model 

adequately” (Wood, 1997, p. 268), they failed to appreciate the importance of the 

assumptions underlying the software’s answer.  The computer output “was correct 

in their minds, because it was produced by the computer, but also mysterious to 

them, because they had no idea of the rationale behind it” (Wood, 1997, p. 274).  

Wood (1997) believes that “the process of experimenting to see how the model 

works is likely to require encouragement or education”, otherwise we run the risk 

of students “simply keying in the data, looking at the result, and leaving it at that” 

(p. 271).  Other researchers also warn us that use of technology might lead to a 

lack of intimacy and “feeling for what is being done in the analysis, and a blind 

assumption that if the computer or calculator has done it then it must be right.” 

(Nicholson, 1997, p. 31) 

The black-box approach is the conventional technological approach to 

probability and statistics.  The learner is expected to execute various commands 

or push certain buttons in order to perform simulations and obtain graphical 

images.  Pratt (1998) gives the following limitations of the black-box approach: 

(i) Not convincing 
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The black-box approach is often not convincing to the user who does not 

participate in the construction of the computer software.  This can lead to a lack of 

intimacy that does not allow the user to recognize the key assumptions underlying 

the models generated by the computer. 

(ii) Data is not forceful 

Because, Pratt (1998) argues, our beliefs about stochastic phenomena are 

resistant to change, “we are more likely to find stories and explanations for the 

vicissitudes of the data than to believe an alternative interpretation of the data”(p. 

113).  In order to make the point that the evidence suggested by the data might not 

be forceful enough in changing people’s views about the stochastic, Pratt 

describes an experiment by Konold, in which Konold placed bets against a 

student about the outcomes of a series of coin tosses (Konold, 1995b).  In this 

experiment, Konold was the one who was using an incorrect mental model of the 

situation and although he kept on losing money, he was reluctant to accept the 

force of the data.  
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(iii) Attention is a limited resource 

Technology is not necessarily interesting by itself and how involved the 

student becomes with a computer activity depends both on the design of the 

computer-based tools and the nature of the tasks accompanying these tools.   

(iv) Collection of Enough data  

Although it is very easy to collect data in a computer simulation, students 

may continue to underestimate how much data is needed to draw conclusions that 

are reasonably sound (Konold, 1995b).  

(v) Variability is typically ignored 

As Pratt (1998) posits, although the computer’s ability to repeat 

experiments is a potential advantage that could be exploited to study variation, 

this is rarely encouraged.  Simulations tend to focus on relative probabilities and 

to ignore variation.  

(vi) The focus might not be on sense making 

Simulations offer us a way of testing our theories, not replacing them, and 

the simulation approach runs the risk of leaving the informal intuitions that 

students bring into the classroom untouched.  If people reason from a variety of 

perspectives and make incompatible predictions, computer simulations might 

have very little impact on their beliefs (Konold, 1995b). 

Need for More Systematic Research 

Several statistics educators have stressed the need for more systematic 

research of the effectiveness of programs incorporating information technologies 

on student learning of both the theoretical and practical aspects of statistics.  
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Schuyten and Dekeyser (1997) maintain that very little is currently known about 

the educational effect of instructional technology and that “case studies, effect 

studies of software, and evaluation of new curricular materials in natural settings 

of teaching are needed” (p. 210).  Starkings (1997) calls for continued research 

that tries to determine the purposes for which calculators and computers are best 

suited and the ways in which technological developments impact statistical 

courses and curricula.  She also points to the need for monitoring and evaluating 

statistical software that is developed for inclusion into statistical lessons.   

Hawkins (1997a) laments the “paucity or lack of synthesis of good quality 

research to guide any developments in statistical education” (p. vii).  She regards 

the belief that research is guiding our progress as simply a myth.  Effective 

introduction of technology “requires empirical evidence about the optimal 

materials to be used, the methods for presenting them, and how to integrate them 

into the overall teaching process” (Hawkins, 1997b, p. 6).  Carefully carried out 

cognitive research evaluating in depth the effect of particular technological 

approaches on students’ understanding of some of the fundamental statistical 

concepts is urgently needed: 

It is one thing to claim that more dynamic and interactive software can 
allow students to gain insights by exploring and experimenting with 
statistical concepts.  It is quite another to find empirical evidence of how, 
why, and when these enhanced insights are gained. (Hawkins, 1997b, p. 
12) 

Delegates of ICOTS V expressed concern that there are still examples of 

large amounts of money being hastily thrown at development projects of dubious 

educational or statistical merit, in response to what they perceived as the 
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“technology expansion crisis in education” (Hawkins, 1997a, viii).  They 

identified the need for research to provide a deeper understanding of statistics 

learning in technological settings (Garfield, 1997).  A working group formed at 

the conference to discuss the ways in which technology is changing the teaching 

and learning of statistics in secondary schools stressed that efforts to find ways of 

using technology to enhance statistical understanding should be research 

informed.  They noted the need for promoting research that intensively studies the 

relationship among student understanding, statistical reasoning, and the role of 

technology (Burrill, 1997b).  Similarly, among the research recommendations on 

teaching and learning statistics at the post-secondary level were the following: (i) 

investigate how to develop intelligent partnerships with technology; (ii) determine 

how the use of technology could enhance intuitions and understanding of specific 

probability and statistics topics; (iii) develop more and better methods to measure 

cognitive and affective effects of technology on all aspects of instruction; (iv) 

determine what forms of technology are optimal for what topics; and (v) 

determine what students learn when doing simulations (Blumberg, 1997). 

Watson and Baxter (1997) point out that whereas R&D (Research and 

Development) is a central aspect of successful industrial practice, in education the 

link between educational practice and theoretical constructs is, at best, tenuous.  

They stress that the abundance and continuous development of technological 

innovations makes the employment of R&D nowhere as pressing as in the field of 

statistics education, since “a good feeling about an innovation is not enough to 

indicate its validity in terms of producing change” (Watson and Baxter, 1997, p. 
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285).  McCloskey (1997) argues that the failure of many designers of educational 

software to show any evidence as to whether their stated aims have been achieved 

is the result of the “lack of a culture of assessing teaching quality in universities” 

(p. 98).  In higher institutions, only student performance is assessed, and no 

standards against which we could measure the success of a new teaching method 

exist.  Also, most of the assessment is being currently carried out by the software 

developers themselves.  In addition to the partiality of such an approach, 

McCloskey also points out that software developers can only be held accountable 

for the quality of the content and the performance of the software.  The 

effectiveness and efficiency of software are, to a big degree, determined by the 

way and the context in which they are employed and, for this reason, the only way 

of making a fair and meaningful assessment is to make our assessments “in situ”. 

 

REDEFINING STATISTICAL EDUCATION  

Need for Synergy of Content-Pedagogy-Technology 

There are many educators now pushing for introductory statistics courses 

that put more emphasis “on data collection, understanding and modeling 

variation, graphical display of data, design of experiments and surveys, problem 

solving, and process improvements, and less emphasis on mathematical and 

probabilistic concepts” (Ballman, 1997).  This has caused a movement away from 

statistical content emphasizing the abstract and the memorization of a list of 

formulas and procedures, toward content emphasizing exploratory data analysis. 
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Although Scheaffer (1997) finds the emphasis on data now permeating 

many introductory statistics courses to be “generally positive” compared to more 

traditional approaches, he stresses that, for effective development of statistical 

reasoning, there needs to be more emphasis at both ends of the continuum from 

data to inference.  He warns for the tendency in both teachers and students to 

“grab data wherever they can find it and rush to plot it on whatever plot they may 

have learned most recently” (Scheaffer, 1997, p. 157).  Lack of attention is paid 

on “how the data originated, what the numbers might mean, if anything, and what 

plot or numerical summary might be appropriate” (Scheaffer, 1997, p. 157).  As a 

result, one often sees “categorical data get put on stem plots and averaged; age get 

subtracted from heart rate” (Scheaffer, 1997, p. 157).  Also, because so much time 

is placed on data exploration, not enough attention is given to helping students 

develop the concepts of statistical inference, which is necessary for them to 

understand how statistics allow us to make decision in the face of uncertainty: 

Some introductory statistics courses either have become pure data 
exploration or have remained exercises in formula manipulation with the 
formulas now residing on a piece of technological equipment.  Some 
instructors view a modern course in the subject as a mixture of the two.  
All three outcomes are undesirable.  The key is to find ways of teaching 
inference that are in keeping with the notion of construction (naïve, of 
course) but still allow closure on a few critical ideas. (Scheaffer, 1997, p. 
157) 

Scheaffer (1997) sees the technological developments as a major cause of 

the shift in emphasis towards “too much data exploration and too little inference” 

(p. 157).  Technological advances have made data exploration “fun and quick”, 

whereas “inference is still a black box, whether done by hand or on the computer” 
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(Scheaffer, 1997, p. 157).  In fact, Scheaffer (1997) argues, “black-box inference 

can be even more of a problem now that a computer or graphing calculator can 

automatically fit a variety of models to data in almost no time” (p. 157).  He 

stresses the need for more thoughtful and constructive use of technology in the 

classroom, and especially for developing new ways of helping students discover 

the principles underlying inference.  Hoerl, Hahn, and Doganaksoy (1997) also 

advise for more caution and careful thinking about the purpose for which 

technology is used in the statistics classroom.  Similarly to Moore (1997), they 

also point that technology should be used not for its own sake but with the 

purpose of serving content and pedagogy: 

We agree with Moore’s fundamental point that technology should serve 
content and pedagogy.  Unfortunately, we are sometimes infatuated with 
technology to the point where technology becomes the “what” to teach, 
rather than the “how”.  Our concern is that computer science will 
dominate statistics in the next century, just as mathematics has dominated 
in the past.  (Hoerl et al., 1997, p. 151) 

Hawkins (1997c) also agrees with Moore (1997) that discussions of one of 

the triad content-pedagogy-technology are often partial and argues that the nature 

of any reforms should not be uni-dimensional, but there should be synergy among 

the three domains: 

Many of the developments in statistical education in the past quarter of the 
century have been proposed from one particular perspective.  Some have 
indeed evoked controversy.  This is not to say that all such developments 
have been counter-productive.  In general, the picture that emerges of 
present-day statistical education gives cause for optimism.  However, 
there are certainly those, and I would count myself among them, who 
regret that such developments have largely been made in the absence of 
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evidence-based understanding about the teaching/learning process. 
(Hawkins, 1997c, p. 144) 

Current practices in statistics education have evolved from a background 

quite different from today’s needs and possibilities.  For this reason, Hawkins 

(1997c) argues that nothing should be taken for granted.  Reform efforts “must 

have the momentum and energy to challenge even the most fundamental and 

widely-held ideas about statistical education, and the ways in which these are 

currently manifested” (p. 142).  Both existing and proposed practices should be 

“open to empirical scrutiny that can sort the ‘better’ or ‘best’ from the ‘good’ or 

the ‘bad’, in order to find out when and why content or pedagogy or technology 

do and do not work.” (Hawkins, 1997c, p. 142) 

Before achieving the synergy among content, pedagogy and technology, 

Hawkins (1997c) believes that we should first change the emphasis in our 

teaching objectives.  She is skeptical as to whether we have yet determined the 

right framework for reform:  

Reform is certainly required, but I am reminded of a traveler who, upon 
asking a local resident for directions to another town, receives the reply, 
“Well, to be sure now – I wouldn’t be starting out from here at all”! 
(Hawkins, 1997c, p. 142)   

New values and new competencies are necessary for survival and 

prosperity in the rapidly changing world where technological innovations have 

made redundant many skills of the past (Ghosh, 1997).  The pressure for 

democratization of mathematics education has created new opportunities for 

statistics education.  The shift of mathematical studies towards a more “utilitarian 

approach” (Moore, 1997, p.124), has opened up a larger place for statistics which 
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now, at the post-secondary level, is probably studied by more students than any 

other topic (Philips, 1999).  At the same time, the forces of democratization 

demand fundamental pedagogical as well as curricular changes that would make 

statistics instruction more accessible to all students.    

Changing of Emphasis in Teaching Objectives 

In a world where “recognition of uncertainty as a characteristic of reality 

and how to behave within, forms a fundamental part of the intellectual 

development of the individual”(Azcarate and Cardnoso, 1994, p. 1), Hawkins 

(1997c) believes that we should not remain satisfied with “Statistics for All” 

policies.  She argues in favor of “‘Statistical Literacy for all’ that emphasizes 

understanding over facts and tools, with specialists acquiring progressively more 

‘Statistical Literacy Plus’, where the ‘plus’ possibly relates to more 

sophisticated/specialized techniques” (Hawkins, 1997c, p. 142).  Although, she 

points out, there is unfortunately no universal agreement even within the 

statistical community on what statistical literacy means, some of its defining 

characteristics are the following: 

In its simplest terms, statistical literacy can be interpreted as meaning an 
ability to interact effectively in an uncertain (non-deterministic) 
environment.  It is not merely the possession of an ever-increasing 
collection of analytic tools and techniques, although this is the outcome 
that often results from present approaches to teaching statistics.  A 
statistically literate person must understand the strategies for data 
collection and analysis, as well as the nature of chance processes and their 
relevance to data collection, and the assumptions that underlie statistical 
reasoning. (Hawkins, 1997c, p. 144) 
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Kettenring (1997) informs us that his many years of experience in industry 

have taught him that “gross inefficiencies, major tactical and strategic errors, and 

expensive mismanagement of the enterprise result from a collective inability to 

learn from relevant data” (p. 153).  He argues that if introductory statistics courses 

are to help improve the situation, they should ensure that sound intuitions about 

the stochastic “become part of the permanent intellectual bloodstream of the 

student” (Kettenring, 1997, p. 153).  Developing statistical reasoning means 

having an appreciation of data management.  Although this does not require a lot 

of theory, “it does require ample exposure to real problems in order to gain 

experience and to develop the instincts that will be needed on the job.” 

(Kettenring, 1997, p. 153) 

Joiner and Gaudard (1990) consider awareness of variation and how it 

affects processes as one of the main determinants of success of business 

management.  Hoerl et al. (1997) point out the gross inefficiencies that occur in 

industry because most managers and technical personnel tend to think 

deterministically even though many of them have had formal statistics education: 

They expect mass balances to match exactly, or actual financial figures to 
exactly equal budget.  Any “variance” from budget must be explained.  
The costs incurred by US businesses searching for “explanations” for 
random processes should be the cornerstone of statistical education, but 
most students are not coming out of the current intro course with this 
understanding.  Why not? (Hoerl et al., 1997, p. 149) 

A partial explanation Hoerl et al. (1997), see for the shortcomings in 

statistics education goes back to the math vs. statistics issue: 
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Perhaps because of the over-emphasis on mathematics, statisticians seem 
uncomfortable with statistical concepts which cannot be derived or proven 
mathematically.  The omnipresence of variation is admitted, but often not 
clearly explained (Simulating a histogram on the computer does not teach 
business people how to interpret a financial report).  Process thinking is 
generally not taught, hence reducing the motivation to learn and apply 
statistics.  Data quality is ignored while data quantity is emphasized.  The 
concept that in the real world we most frequently sample not from static 
populations, but rather from dynamic processes is not well documented or 
taught.  Deming (1953) wrote on this last issue, using the terminology 
“analytic” versus “enumerative” studies over forty years ago, but as a 
whole the profession still doesn’t get it. (p. 150) 

Hoerl et al. (1997) argue that we must completely rethink the sequence of 

topics in order to achieve the objectives for introductory education, which for 

them should be to “help students unlearn their deterministic view of the world, 

and view outputs as the result of a process” (p. 152).  Instead of treating “data as a 

commodity”, emphasis should be put on teaching students issues of quality of 

existing data and the importance of proper planning of investigations in order to 

collect measurements appropriate for the problem at hand.  Although students 

might be taught how to answer the question “What is the required sample size?”, 

the more fundamental questions that need to be addressed are  “What information 

is really required to solve the problem?  To what degree do the data at hand meet 

this need?  What additional information needs to be obtained in the future and 

how?”(Hoerl et al., 1997, p. 149).  Such a change in instructional emphases is 

necessary because otherwise companies will continue to spend significant 

resources on obtaining large amounts of the wrong type of data. 



 67 

Changes in Pedagogy 

In addition to deep curricular changes, democratization of education 

demands fundamental pedagogical changes.  Democratization “needs new levels 

of self-discipline and tolerance of different points of view” (Ghosh, 1997, p. 154), 

it requires making room for student perspectives (Confrey, 1995).  Instruction 

should revolve around student ways of thinking and understandings, and not 

around a pre-determined curriculum.  If we do not want to mute the polyphony of 

student voice, classroom activities and assessments should allow for a variety of 

perspectives and approaches, “rather than molding and shaping students to do 

[statistics] a certain way, and rewarding those with the ‘best fit’.” (Scarano and 

Confrey, 1996, p. 32)  

As it has been already discussed, the practice of almost every introductory 

course to present statistics content as a sequenced list of curricular topics fails to 

communicate to students the interconnectedness of the different statistical ideas 

they encounter in the course.  Therefore, statistics instruction should adopt a more 

dynamic view of learning.  The assumption that by building concepts “separately 

but directly”, students would eventually have an array of statistical ideas at their 

disposal (Lachance and Confrey, 1996, p. 5), is a very simplistic view of the 

development of understanding: 

A structural model of the mind that envisions a network with information 
nodes and connections between them tends to connote a process of adding 
connections in a cumulative way.  Full understanding is achieved by 
piecing partial understandings together building ever larger networks.  
Following students’ partial understandings over time reveals that the 
actual process is much more chaotic than this.  The connected network 
may still be a useful analogy, but there seems to be a continuing process of 
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reorganization.  Disconnecting, connecting, and reorganizing appear to be 
the rule rather than gradual addition to a stable structure.  The appropriate 
model for the development of understanding may be one of change and 
flux and reorganization rather than steady monotonic growth. (Hiebert, 
Wearne, and Taber, 1991, p. 339; in Lachance and Confrey, 1996, p. 3). 

Learning about a statistical concept without exploring its connection to the 

other main statistical constructs can only lead to weak and narrow understandings.  

As Lachance and Confrey (1996) assert, “the best route between two points is not 

always a straight line” (p. 23).  Instruction should instead provide an 

interconnected path which, along with an emphasis on building on students’ 

experience, would “better encourage students to follow their own, unique 

“nonlinear” developmental paths from “smaller” to “larger” ideas” (Lachance and 

Confrey, 1996, p. 7).  Following such a path, rather than a compartmentalized 

statistics curriculum, should lead students to stronger and deeper understandings. 

VARIATION AT THE CORE OF STATISTICS EDUCATION 

Ballman (1997) believes that current reform efforts are still unsuccessful 

in providing the intuitions and understandings necessary to develop statistical 

reasoning because they do not succeed in helping students develop their 

understanding of variation and its role in statistics.  She argues that the objectives 

of an introductory statistics course might be better met through topics and 

activities which help build a sound intuition about the characteristics of random 

variation and its role on statistics rather on topics and activities that emphasize 

traditional probability concepts (Moore, 1992; Ballman, 1997).  She thinks that, in 

the introductory classroom, probability should not be viewed a series of topics 
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with no connection to the rest of the course but rather as a means of quantifying 

and explaining the variation that is present in almost all processes. 

Rubin et al. (1990), emphasize the central role that variation plays in 

statistical thinking.  As they explain, statistical reasoning follows from two 

notions which, when seen from a deterministic framework, seem antithetical - the 

notion of sample representativeness and the notion of sample variability.  

Whereas sample representativeness is “the idea that a sample taken from a 

population will often have characteristics identical to those of its parent 

population”, sample variability is “the contrasting idea that samples from a single 

population are not all the same and thus do not all match the population” (Rubin 

et al., 1990, p. 3).  In order to comprehend the purpose behind statistical 

inference, one has to balance these two ideas and realize that “a sample gives us 

some information about a population - not nothing, not everything, but 

something”(Rubin et al., 1990, p. 2).  Due to sample representativeness, we can 

put bounds on the value of a characteristic of the population; due to sampling 

variability however, we never know exactly what that characteristic is.  Balancing 

the idea of sample variability with that of sample representativeness lies at the 

heart of statistical inference. 

Moore (1990) argues that essential components of statistical reasoning are 

recognition of “the omnipresence of variation”, of the fact that “chance variation 

rather than deterministic causation explains many aspects of the world” (p. 99), 

and familiarity with the ways in which variation is quantified and explained.  He 

considers the following elements to be the core of statistical thinking: 



 70 

(i)  the presence of variation in all processes, 

(ii)  the need for data,  

(iii) the design of data production with variation in mind, 

(iv) statistical analysis seeks to quantify and explain variation. 

Pfannkuch (1997) considers the two essential and inter-linked components 

of statistical thinking to be:  

(a) Recognition of variation, critical evaluation and ability to distinguish 

between the different types of variation:  

(i) “Special cause variation” – variation that can be assigned to an 

identifiable source “  

(ii) “Common cause” variation – variation that is hard to link to 

any particular source  

(b) Realization that a sound judgment of a situation can only be made by 

collecting and analyzing data. 

Pfannkuch (1997) discusses the characteristics of statistical reasoning laid 

out by a practicing as well as teaching statistician during an in-depth interview he 

conducted to investigate his perspective on the nature of statistical reasoning. 

Based on the insights obtained from the interview, Pfannkuch (1997) offers the 

following epistemological triangle, which has the development of understanding 

of variation at its core, as a model for introductory statistics instruction: 
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Figure 2.1:  Pfannkuch’s epistemological triangle 

What the epistemological triangle suggests is that a combination of 

statistical knowledge and context knowledge is essential for conceptualizing 

variation (Pfannkuch, 1997).  The inter-linked arrows indicate the strong linkage 

that has to be created between the statistical tools and the context of the problem.  

Emphasizing “the interplay of data and theory” is vital since the main purpose of 

statistical tools such as graphs and statistical summaries is to help understand or 

make predictions about stochastic real-world phenomena using a statistical model 

of them.  The assumption underlying the epistemological triangle is that “the 

concept of variation would be subject to development over a long period of time 

with different tools and different contexts” (Pfannkuch, 1997, 177).  In 

encouraging students to develop their understanding of the broader construct of 

variation, instruction should aim to “develop statistical thinking which could be 

regarded as the interaction between the real situation and its statistical model and 

Concept 
Variation 

Real Situation 
Interpretive Contexts 

Statistical Model 
Statistical Tools 
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between these and the resulting conceptual development.” (Pfannkuch, 1997, p. 

177) 

CONCLUSIONS AND EMERGING FOCUS FOR THIS STUDY 

As the review of the literature indicates, most people, even ones with 

substantive formal training, tend to think deterministically and to have weak 

intuitions about the stochastic.  Students’ difficulties persist despite the significant 

reform efforts that have led to wide-scale incorporation of technology and 

interesting activities in the statistics classroom.  A reason for students’ difficulties 

in comprehending statistical concepts might be the neglect of variability and the 

statistical determinism hidden in standard approaches to statistics instruction.  

Instruction, assessment, and research tend to overemphasize the development of 

students’ conceptions of center, while neglecting their development of 

conceptions of variability (Shaughnessy, 1997a).  Very little is currently known 

about student understanding of variability; research investigating students' 

thinking on variation is urgently needed. 

Another serious gap identified in the research literature is the lack of 

studies which perceive learning as dynamic, and intuitions not as static, but as 

“sense-making devices”, constantly changing in light of experience (Pratt, 1998).  

It often appears that the main objective of much of the research literature on 

peoples’ understanding of probability and statistics seems to be to discover (or 

confirm) intuitions running counter to stochastic reasoning and catalogue them as 

misconceptions that ought to be replaced.  Snapshots of how students make sense 

of a stochastic situation at a particular point in time are taken, and there is almost 
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never any follow-up on student thinking.  It seems that it would be more 

constructive if research findings were rather used as an indication of areas where 

more needs to be done in order to help students improve their intuitions.  By 

identifying the similarities and differences between the students’ informal 

intuitions and formal statistical reasoning, the researcher could then work with 

students’ intuitive notions and help them develop ways to map new and richer 

concepts onto the ones that they already possess (Mokros et al., 1990). 

Current practices in statistics education have evolved from a background quite different 

from today’s needs and possibilities.  Technological advances and the forces of democratization 

demand fundamental pedagogical as well as curricular changes that would make statistics 

instruction more accessible to all students.  These changes should come about after careful re-

consideration of what the objectives of the introductory course ought to be.  Also, unlike the uni-

dimensional nature of many current reform efforts, there should be a synergy among content, 

pedagogy and technology.  

Reflecting on the research literature led me, similarly to Ballman (1997), 

to conclude that reform efforts would have been more successful in achieving 

their objectives if they had put more emphasis on helping students build sound 

intuitions about variation and its relevance to statistics.  Despite the movement 

away from statistical content emphasizing the abstract and the memorization of a 

list of formulas and procedures, traditional probability topics are still being 

taught, albeit in a later part of the course, as a separate chapter with little 

connection to what preceded or what will follow.  I conjectured that if we 

provided learners with an environment where they experienced the omnipresence 
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of variation and came to value statistical tools as a means to describe and quantify 

that variation, we would help them develop statistical reasoning that goes beyond 

the superficial knowledge of terminology, rules and procedures.   

Pfannkuch’s (1997) model, which offers a nontraditional path to statistics 

instruction that has variation as its central tenet, seemed like a promising 

alternative to standard approaches.  Unlike more conventional approaches, which 

ignore the influence of the setting, Pfannkuch’s (1997) model acknowledges that 

the nature of the learning environment in which students experience stochastic 

phenomena can have an important effect on the use of statistical reasoning.  

Consequently, it views the construction of meanings about variability in 

particular, and the stochastic in general, as demanding the building of connections 

between informal and formal views of stochastic knowledge (Pratt, 1998).  It 

perceives learning as a dynamic process subject to development for a long period 

of time, and through a variety of contexts and tools.   

In the next chapter, I illustrate in more detail how I conjectured this radical 

restructuring of the curriculum as leading to stronger and deeper understandings 

by helping students see the “big picture” of statistics (Moore, 1997).  I also 

describe the methodology and theoretical framework guiding this study, and the 

ways in which the model was linked to classroom practice.  
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Chapter III: Theory and Methodology 

INTRODUCTION 

The prevailing methodology employed by researchers examining 

conceptions of data and chance of taking snapshots of students’ thought processes 

provides little guidance as to how one might systematically research conceptual 

change.  There is hardly any information about the source of students’ difficulties.  

Rarely does one do any follow up of the students’ initial thinking to watch for 

future transitions (Shaughnessy, 1997a).  Researchers such as Pratt (1998), who 

perceive cognition as an activity that is socially situated, are casting doubt on the 

validity of this research tradition, which ignores the influence of the setting on the 

shaping of intuitions.  They stress the need for investigation of students’ 

conceptions and beliefs in natural school contexts, and for a prolonged period of 

time. 

A new trend now witnessed in educational research is an increase in the 

study of exemplary instructional practices based on the argument that new 

classroom practices need to evolve from these “best practices”.  However, this 

type of research might not be ideal for wide-scale implementation because it 

requires “a significant period of study and theory building” and “might result in a 

reform movement that is too constrained, too incremental, or too delayed” 

(Confrey and Lachance, 1999, p. 231) to meet students’ needs.  Rather, there is a 

pressing need for more speculative classroom research where some of the 
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constraints of typical classrooms are relaxed but others do remain in force 

(Confrey and Lachance, 1999). 

This study has employed a research design model suggested by Confrey 

and Lachance (1999) called transformative and conjecture-driven research 

design.  It is a model developed as a response to the need for establishing a better 

connection between educational research and practice.  This model “utilizes both 

theory and common, core, classroom conditions in order to create and investigate 

new instructional strategies...meant to change and even to reform current teaching 

practices drastically.” (Confrey and Lachance, 1999, p. 231) 

The conjecture driving the study is a claim that if statistics curricula were 

to put more emphasis on variation, then we would be able to witness improved 

comprehension of statistical concepts.  In this chapter, I describe how the 

conjecture was developed and how it was linked to classroom practice.  I also 

provide an overview of the philosophical foundations underlying the conjecture-

driven design model and outline how this approach was employed in the study in 

terms of research design, data collection, data analysis and rigor. 

DEVELOPING THE CONJECTURE 

Ideological Stance 
I learned a lot from my teachers, and even more from my 
colleagues, but from my students - I learned the most. 
 (Talmud; in Ben-Zvi and Friedlander, 1997, p.45) 

As Confrey and Lachance (1999) posit, “one’s ideological stance informs 

and saturates one’s research design model” (p. 234).  I chose the conjecture-

driven research model because it is a methodological perspective that fits my 
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ideological stance both as a mathematics educator and as a researcher.  It is 

consistent with my view of mathematics as a human enterprise, and with my 

belief that there is a lot that both researchers and instructors can learn by giving 

voice to students.  It is a design well suited for helping me achieve the aims of my 

study, which are to establish a direct link between intuitive and formal 

understandings of variation that will allow more students to succeed in statistics. 

The ideological stance on which the transformative and conjecture-driven 

teaching experiment2 is based is commitment to equity.  Confrey and Lachance 

(1999) believe that the premature emphasis of mathematics education on “the 

abstract and the formal” leads to unnecessary failure and prevents many students 

from accessing the mathematical concepts.  I am also convinced that an approach 

to learning that does not allow students to link abstract concepts to their everyday 

experiences and intuitions impedes the majority of students from doing well in 

statistics.  Epistemological anxiety (Wilensky, 1993) is one of the main factors 

why students do so poorly in statistics, and research and instruction which 

“validate [student] opinions, encourage them to think, to wonder, to question, to 

ask, to agree or disagree” (Goldstein, 1997, p. 74), are needed.  This is especially 

critical given that statistics is now considered to be a crucial part of the education 

of students at all levels, and from many different disciplines.  

The study adopts the view of statistics as an informal, creative, human 

enterprise and aims at developing alternative ways of teaching statistics, which 

                                                           
2 Confrey and Lachance (1999) explain that they have chosen to retain the label teaching 
experiment despite the connotations of the term experiment because teaching experiment has 
established itself with a varied set of meanings in mathematics education. 
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will raise students’ awareness of the stochastic.  I chose a research model that 

recognizes the novelty and power of students’ ideas and gives validation to their 

personal voice (Confrey, 1991) in the anticipation that not only students’ notion 

of variation would change, but my notion also would be enriched with varied and 

ingenious approaches by students.  In contrast to traditional instruction and 

research models, which “make one unlikely to hear students’ constructions”, the 

conjecture-driven research is based on the belief that “a novice can often envision 

possibilities, arrangements, and logical relations that experts have been trained to 

overlook” (Confrey and Lachance, 1999, p.234).  It is willing, despite curricular 

constraints and limitations set by the learning environment, to give validation to 

student voice and to continuously examine and revise the “expert” perspective in 

light of student voice (Confrey and Lachance, 1999). 

The Conjecture 

Definition of Conjecture  

The conjecture is a very important aspect of the kind of research described 

in this study.  Confrey and Lachance (1999) explain: 

The conjecture is a means to reconceptualize the ways in which to 
approach both the content and the pedagogy of a set of mathematical 
topics.  Most often, it comes from a dissatisfaction in the researchers’ 
mind with the outcomes of typical practices.  It transforms how one views 
teaching and learning activities.  Over the course of the teaching 
experiment, a strong conjecture should shift one’s perspective and bring 
new events, previously insignificant or perplexing, into relief.  At points in 
its evolution, the conjecture should feel like a grand scheme beginning to 
emerge from many, previously disparate pieces, making them more 
cohesive. (p. 235) 
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The conjecture has two dimensions, a content dimension, and a 

pedagogical dimension.  The content dimension answers the question “What 

should be taught?”  The pedagogical dimension guides instructional decisions; it 

answers the question “How should this content be taught?” (Confrey and 

Lachance, 1999, p. 235).  The conjecture also has a theoretical aspect.  It is 

situated within a theoretical framework, which helps to structure the activities and 

methodologies used in the teaching experiment and link together the content and 

pedagogical dimension of the conjecture.  A thorough review of the existing 

research literature is a critical element of the theoretical framework.  A robust 

conjecture does not “fall full-blown from the sky” (Confrey and Lachance, 1999, 

p. 236).  It comes by carefully and critically reading and reflecting on the existing 

literature to relate one’s ideas about the phenomenon under study to those of other 

researchers (Romberg, 1992), and “to discern an anomaly that has been 

overlooked, unsolved, or addressed inadequately by one’s colleagues.” (Confrey 

and Lachance, 1999, p. 236) 

A conjecture is “not an assertion waiting to be proved or disproved”, but 

“an inference based on inconclusive or incomplete evidence”(Confrey and 

Lachance, 1999, p. 235).  In research following the positivistic paradigm, 

hypotheses or theses are set before the study begins and the whole purpose of the 

study is to confirm or disprove the truth of these hypotheses.  In contrast, a 

conjecture-driven research design perceives theory development as an inductive 

process.  The purpose of the conjecture is to serve as a guide and not to constrict 

the collection of data.  During the course of data collection and analysis, as 
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experience with the setting increases, the conjecture is subjected to several 

alterations and modifications (Confrey and Lachance, 1999). 

Variation as the Central Tenet of Statistics Instruction Conjecture 

My beliefs and considerations about the epistemology and pedagogy of the 

stochastic guided the development of the conjecture.  I embraced a dynamic view 

of learning that allowed me to use the results of the existing literature and 

personal research not as proof of innate limitations in students’ ability to reason 

about the stochastic, but as a signal of the areas for which current intuitions 

needed to be strengthened.  I conjectured that the reason students’ intuitions about 

the stochastic are weak might be the instructional neglect of variation as well as 

the neglect of students’ intuitions.  I decided to conduct a study where statistics 

instruction would have variation as its central tenet, and which would allow me to 

investigate in depth how students’ intuitive notions of variation developed over 

the course, through the use of different tools and different contexts.  Pfannkuch’s 

(1997) epistemological triangle, which calls for the re-structuring of statistics 

instruction by offering a nontraditional path with variation at its core, seemed well 

suited for meeting my research aspirations. 

This epistemological triangle views variation as the broader construct 

underlying statistical reasoning and, in encouraging students to develop their 

understanding of the concept of variation, it at the same time aims to promote 

richer understanding of all the other main statistical ideas.  The epistemological 

triangle indicates that for conceptualization of variation, a combination of subject 

and context knowledge is essential (Pfannkuch, 1997).  The inter-linked arrows 
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show the strong connections that have to be created between the statistical tools 

and the context of the problem.  Emphasizing “the interplay of data and theory” is 

essential since the main purpose of statistical tools is to help understand or make 

predictions about stochastic real-world phenomena using a statistical model of 

them.  

I conjectured that instruction adopting this model should lead to improved 

statistical thinking, since statistical reasoning “may not occur unless there is 

recognition of the underlying variation and an understanding of how to critically 

evaluate that variation from a real situation and a statistical model perspective” 

(Pfannkuch, 1997, p. 177).  Also, since understanding the context of the situation 

might be required to operationalize statistical reasoning, teaching variation 

through a variety of different contexts students have prior knowledge about has to 

be central to statistics instruction and reasoning: 

Historically probability has roots in two different lines of thought: the 
solution of gambling problems and the handling of data (Lightner, 1991).  
Today the gambling root of probability dominates teaching and textbooks.  
The other root in data needs to flourish alongside with the emphasis being 
on exploring variation rather than exploring probability as it is now in 
some curricula (Ministry of Education, 1992).  Variation in all its contexts 
needs to be central to statistics teaching and thinking.  And since context 
knowledge may be needed to operationalize statistical thinking then this 
implies that students should be taught from contexts that they have 
knowledge about. (Pfannkuch, 1997, p. 177) 

This model, which bases instruction on contexts directly connected to 

students’ experience, seems like a promising alternative to typical approaches to 

statistics, which attempt to develop probabilistic reasoning through standard 

probability tasks.  Expecting students to transfer the understanding obtained 
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through coins, dice, and games of chance to everyday contexts is (as the literature 

review has already indicated) a naïve assumption, since understanding of 

variation in random devices is very different from understanding variation in data 

(Pfannkuch and Brown, 1996).  Statistics instruction deals not only with difficult 

concepts, but also “with psychological issues involving chance and data that can 

be deeply rooted in students’ experiences or in their beliefs about chance 

phenomena” (Shaughnessy, 1997a, p. 130).  Students bring to each situation a 

great variety of prior beliefs, conceptions, and interpretations that instruction has 

to take into account in order to communicate statistical ideas in a clear and 

intellectually accessible language (Shaughnessy, 1997a).  If the goal is to help 

students gain sound understanding of statistical concepts, instruction should start 

by building on their intuitions, even when those are weak.  Instruction that 

neglects or attempts to replace students’ intuitions suppresses their intellectual 

development and is bound to failure.  

The underlying assumption of the model I adopted is that  “the concept of 

variation would be subject to development over a long period of time with 

different tools and different contexts” (Pfannkuch, 1997, p. 176).  Rather than 

viewing learning as a linear and monotonic process that comes once through 

insights that make everything clear, it proposes a model of understanding 

composed of “successive cycles of development, modification, clarification and 

evaluation of conceptual tools” (Confrey, 1996, p. 4).  Its dynamic view of 

learning contrasts the practice of almost every introductory statistics course, 
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including the ones that made significant moves towards modernizing statistics 

education, to follow a structured progression of statistical ideas with little overlap.   

This model, sees the inconsistencies in students’ approaches and levels of 

understanding as indication that developing conceptions are overlapping and 

concurrent, rather than disjoint and sequential (Confrey, 1988).  It recognizes that 

student knowledge of a certain concept is a complex system:  

For a concept or given property we cannot simplify the possible 
manifestations that the students make about it by stating that they “know 
it” or they do not “know it”; it is worthwhile differentiating between the 
different types of mistakes and strategies, which, generally speaking, 
cannot be put in order on a numerical scale. (Batanero and Godino, 1994, 
p.1) 

Pfannkuch’s model shares the assertion of Lachance and Confrey (1996) 

that “the best route between two points is not always a straight line” (p. 23).  It 

calls for development of the concept of variation through a variety of experiences 

and contexts that are related to a variety of interrelated statistical ideas.  The 

interconnected path it provides, along with its emphasis on building on students’ 

experience, “better encourage students to follow their own, unique “nonlinear” 

developmental paths from “smaller” to “larger” ideas” (Lachance and Confrey, 

1996, p. 7).  The appreciation of the interconnectedness of variation to all of the 

different ideas encountered in the course should lead to stronger and deeper 

understandings than a compartmentalized curriculum. 

This study adopts an instructional approach that offers a re-visioning of 

the introductory statistics instruction.  Content is no longer a sequenced list of 

curricular topics but “an interrelated repertoire of conceptual tools that can assist 
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one in making sense of, and gaining insight and prediction over interesting 

phenomena” (Confrey, 1996).  It recognizes that adequate statistical reasoning 

requires more than understanding of the different ideas in isolation.  It demands 

“integration between students’ skills, knowledge and dispositions and ability to 

manage meaningful, realistic questions, problems, or situations, both as 

generators as well as interpreters of data, findings, or statistical messages.” (Gal 

and Garfield, 1997, p. 7) 

The theoretical framework within which the pedagogy of the conjecture is 

embedded is influenced by the acceptance of constructivism as a learning theory.  

Classroom activities encourage students to explore statistics in familiar and 

meaningful contexts and to elaborate on and refine their partial understandings 

and the subtleties in their thinking rather than to suppress them (Confrey, 1996).  

Use of both physical and technology tools is encouraged.  There is a synergy of 

content, pedagogy, and technology. 

DEVELOPING THE TEACHING EXPERIMENT 

A transformative and conjecture-driven experiment is a planned 

intervention, which takes place in a regular classroom over a significant period of 

time and involves a dialectical relationship between the conjecture and the 

different components of instruction (Confrey and Lachance, 1999).  What makes 

this research model unique and leads to a re-definition of the research-practice 

relationship, is that its research questions and methods of data collection are 

informed both by the conjecture and the components of instruction (Confrey and 
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Lachance, 1999).  Theory and ideology also influence all of the components of 

instruction (Confrey and Lachance, 1999).   

Due to the need to continuously discuss and refine plans and 

interpretations, a transformative, conjecture-driven teaching experiment requires a 

team of researchers working together (Confrey and Lachance, 1999).  In this 

study, I worked jointly with the instructor towards designing the different aspects 

of the curriculum, towards refining and elaborating the conjecture and the 

components of instruction.  The short duration of the summer course meant the 

instructor would have to cover a huge amount of material in five weeks.  

Consequently, the different activities used in the course had to be carefully 

planned so that, while being flexible and open-ended, they also took the time 

constraints and the confines of the curriculum into account. 

One of the main research findings of our previously conducted research 

(Meletiou, Lee, and Myers, 1999; Meletiou, Confrey, Lee, and Fouladi, 1999; 

Meletiou, Lee, and Fouladi, 1999) was the need for improving the way in which 

technology was used in the PACE course.  We had found out that although use of 

technology provided PACE students much more familiarity with the practical 

aspect of statistics, it did not adequately contribute into improving their statistical 

reasoning.  One software I had become familiar with by participating in a 

workshop during the 1998 NCTM (National Council of Teachers of Mathematics) 

meeting, was the object-oriented computer learning environment Fathom (Key 

Curriculum press; developmental release).  Unlike the more conventional black-

box use of technology that PACE students had experienced in the past, Fathom 
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offers a learning environment where students can build and modify their own 

statistical models.  Such an environment provides an explicit interactive feedback-

structure for checking, improving and modifying one’s comprehension of 

statistical concepts (Steinbring, 1990).  It allows students through interaction with 

the technology to build on, refine, and reorganize their prior understandings and 

intuitions about the stochastic. 

During the course-planning period, I laid down all the possible benefits in 

terms of learning outcomes that I could see coming out of students’ use of 

Fathom.  The instructor was interested in exploring Fathom’s potentials, but his 

lack of familiarity with the software, and the fact that it was still at the 

developmental stage with no research having yet been conducted in terms of 

learning outcomes, made him uncomfortable using it as the primary technological 

tool.  What we ended up deciding was that, other than a couple of activities using 

Fathom that the instructor would introduce in the classroom, I would work 

independently with a group of students outside class to assess the effectiveness of 

the software as an aid to conceptual understanding.  These open-ended 

investigations of individual students interacting with technology, would further 

help redefine and strengthen the conjecture. 

Context 

The site for the study was an introductory statistics course in a mid-size 

Midwestern university.  The study lasted over the span of five weeks.  The 

observations took place during the scheduled times for the PACE course.  The 
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course began on the last week of June and ended on the first week of August.  The 

class met four days a week, for two hours each day.  

Participants  

Recruitment of Students  

The number of students in this class was thirty-three.  Given the number of 

students involved, it was impossible to observe closely every single student in the 

course.  Therefore, I chose to study two groups of students.  The primary group 

consisted of a subset of about eight students and the secondary group 

encompassed the whole class.  Although data from both groups were used in the 

analysis, my focus was on investigating and describing the learning experience of 

students in the primary group.  The selection criterion for the primary group was 

willingness to participate in the study.  

Characteristics of Students 

The class was made up of nineteen males and fourteen females.  Most of 

the students in the class (twenty-two students) were majoring in a business related 

field of study.  Very few students had a strong mathematics background.  Only 

thirteen students had taken a pre-calculus, and just seven a calculus course.   

The primary group was representative of the students in the class.  It was 

made up of five males and three females.  Their degree specializations were 

similar to those of the rest of the students: five students were specializing in 

Marketing, one in Economics, one in Manufacturing Systems Engineering, and 
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one in Sports Medicine.  Out of these eight students, only two had taken a pre-

calculus course, and none had taken any calculus. 

Risk Protection for Students 

Any time people are being interviewed, observed, or otherwise studied, 

their well being must be protected.  To that end, I took several procedures to 

protect the rights of my informants.  The choice to take part in the study was 

voluntary.  Only those students who gave their permission to do so participated.  I 

followed all guidelines established by the university’s Human Subjects 

Committee.  Participants were given a written statement asserting them that the 

research was conducted with the consent of their instructor and their university 

and that their participation was entirely voluntary.  They were also assured that 

participation or non-participation would not affect their grades in any way, and 

that they would be able to withdraw from the study any time they wished.  Their 

written consent was obtained before they were audio-taped or video-taped.  

Finally, the privacy of participants’ responses was guaranteed.  Students 

were assured that the notes, audio and video-tapes taken during data collection 

would be kept locked in a file cabinet and the data would not be made available to 

any other person than the principal investigator unless specific consent was 

received from them.  They were also assured that, when reporting the results of 

the study, I would change their names to pseudonyms to protect their identity. 
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Four Design Components of Instruction  

The four components of instruction are (a) the curriculum, (b) the method 

of instruction, (c) the role of the teacher, and (d) the methods of assessment.  I 

will next offer a general description of how each of the components was 

conceived and progressively carried out in this study.  

Curriculum 

In a transformative and conjecture-driven experiment, it is the conjecture 

that exerts the biggest influence on the content of the intervention, the choice of 

activities, as well as their sequence and duration (Confrey and Lachance, 1999).  

However, because the experiment takes place in a regular classroom, there might 

be need for a modification of the curriculum that is a compromise between the 

researcher’s intentions and the practical demands of the setting (Confrey and 

Lachance, 1999). 

In planning for the intervention with the instructor, we had to make sure 

our intervention covered the set curriculum that is typically supposed to be 

covered in an introductory statistics course.  However, we expanded the 

curriculum by including throughout the course activities that aimed at raising 

students’ awareness of variation.  We approached the different topics through the 

lens of the conjecture.  Following Pfannkuch (1997), the characteristics of 

statistical reasoning that instruction should aim at developing were categorized 

from a modeling perspective of statistics.  The three categories used were: (1) 

understanding the dynamics of the real-world problem, (2) moving towards a 

statistical model, and (3) using statistical tools.  
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1. Understanding the context of the problem.  When dealing with a real-

world problem, the first thing one ought to do is to understand its dynamics.  This 

sets an inquiry process in motion whose success is dependent upon the ability to 

adopt a view that notices variation, wonders why that variation is present and tries 

to find ways to collect data or use existing data, that will help answer that 

question (Pfannkuch, 1997).  Acquiring broad background knowledge about the 

situation requires a mixture of deterministic and non-deterministic thinking.  It 

demands being able to conceptualize variation and distinguish between the 

different types of variation.  “Special cause variation” is variation that can be 

assigned to an identifiable source, whereas “common cause” variation is hard to 

link to any particular source.  In-depth investigation is necessary for acquiring 

knowledge on how to improve a system. (Pfannkuch, 1997) 

2.  Moving towards a statistical model.  Once a broad background 

knowledge about the situation under study has been developed, one can then 

narrow down the problem and refine it to measures and stratifications “that will 

capture the essence of the problem, that will reflect a partial truth or model of the 

actual situation” (Pfannkuch, 1997, p. 173).  This stage is very important, and it is 

because not enough attention is paid to it that so many organizations often end up 

collecting data using the wrong data production process or collecting and storing 

data for no reason (Pfannkuch, 1997).  The choice of appropriate measurements 

depends on the ability to recognize the presence of variation and decide how to 

most effectively deal with it.  When using data that has already been collected, 

one should not take it at face value but should examine it careful and try to 



 91 

understand what this data means in context and how valid conclusions drawn 

from that data are likely to be.  One should notice, understand, and critically 

evaluate the variation in the data, looking for biases that might distort the data or 

measurement errors that are of such a magnitude that they completely obscure any 

signals (Pfannkuch, 1997). 

The model constructed to describe the data will have both a deterministic 

and a non-deterministic part.  The so-called deterministic part is formed by the 

systematic influences that the person identifies, whereas the causes underlying the 

remaining observed variation that cannot be directly analyzed, “are conveniently 

described as random”  (Pfannkuch and Brown, 1996).  Although random variation 

is often viewed as unexplained variation, at an intuitive level one could explain 

variation in individual data, especially if the data was not obtained from random 

devices: “All variation is caused.  Unexplained variation in a process is a measure 

of the level of ignorance about the process” (Pfannkuch, 1997, p. 175).  

Probability is employed to model this unexplained variation.  One should then 

view random variation as a model superimposed to deal with variation in which 

one cannot discern any reliable patterns (Pfannkuch, 1997). 

Whether planning for the collection of data or having been presented with 

existing data, it is very important that one be aware of how one’s personal beliefs 

and biases could influence the interpretation of the situation and the available 

statistical information, and actively seek alternative explanations (Pfannkuch, 

1997).  One should always examine differing points of view, employing a 

combination of deterministic and non-deterministic thinking:  
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Much effort must be spent in dialogue with the data, looking for and 
extracting multiple explanations.  One explanation that does not seem to 
naturally occur to some is the possibility that the difference is due to 
chance and that some statistical tools will evaluate that possibility or if 
there is a difference, that statistical tools will take into account the size of 
the sample. (Pfannkuch, 1997, p. 173)  

3. Using statistical tools.  When planning for a statistical investigation, one 

needs not only context, but also subject matter knowledge.  To be able to 

recognize the similarities and differences between the real-world problem and its 

mathematical model, and the connection between the summary statistics and the 

situation at hand that generates those patterns, one needs sound understanding of 

statistical tools.  This encompasses understanding that behind those analytical 

tools lies the concept of variation.  Graphs, for example, “should be inspected and 

fundamental questions asked, such as, what is going on here, is this common 

cause variation or is this special cause variation?” (Pfannkuch, 1997, p. 174).  

Adequate understanding of sampling includes appreciation of how statistical tools 

take into account the variation from sample to sample so that “samples will say 

something about the population from which they are drawn and will help gauge 

whether the system is stable (common cause variation) or not ” (Pfannkuch, 1997, 

174).  Understanding variation in relation to significance testing implies 

“recognition that special cause can be revealed in what is thought to be common 

cause variation in the summary statistics.” (Pfannkuch, 1997, p. 175) 

The initial design of the intervention was based on the literature review 

and findings from previously conducted research.  Findings from a questionnaire 

given on the first day of class to investigate students’ intuitive understanding of 

variation prior to instruction, and which will be discussed in the next chapter, led 
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to further elaboration of both the conjecture and the instructional design.  Also, 

since in the conjecture-driven teaching experiment instruction changes over the 

course of the intervention in response to students’ needs and inputs, we could not 

design a complete curriculum before the experiment began.  Curricular activities 

were structured in a way that made them flexible and open-ended in order for us 

to be able to adapt them in response to feedback from students.  Curriculum 

development was “responsive and emergent” (Confrey and Lachance).  Changes 

in the conjecture also occurred as a result of the insights gained from the teaching 

experiment.  However, they were of a smaller magnitude than curricular changes.  

Confrey and Lachance (1999) describe changes in the conjecture as “evolutionary 

refinements” and “elaborations”. 

Classroom Interactions 

The format of the course was based on the PACE model.  It was a 

combination of lecture, group work, and whole class discussions.  Each class 

meeting included laboratory time where students would work collaboratively on 

activities carefully designed to help them explore different statistical concepts.  

Classes were sometimes held in a regular classroom and sometimes in a 

microcomputer-equipped lab.  Some of the activities involved the use of 

technology.  Minitab was the main software employed, although Fathom was also 

used a couple of times. 

The structure of the course was such as to encourage students to express 

their partial and incomplete understandings.  Throughout the course, there was 

validation of personal voice and negotiation of meaning (Confrey, 1991).  Both 
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group and whole-class activities stressed the importance of communication skills.  

As students worked through the different activities, they would constantly read, 

write, and talk with one another and with the instructor.  Because we viewed 

learning as a socially constructed meaning, everybody’s personal view was taken 

seriously into account in informing instruction.  

The Role of the Instructor 

Dr. Lee, the course instructor, is a statistics professor of Taiwanese 

descent with a strong interest in education.  He is an instructor who is 

continuously striving to improve his course and is always open to new ideas about 

teaching.  At the time of the study, he had already taught statistics for over sixteen 

years.  The instructor’s pedagogy, which stresses the importance of students 

constructing their own knowledge, served to support the research purposes of this 

study.  In addition, the distinction between research and teaching within this 

methodology was blurred.  Dr. Lee is a statistics education researcher with whom 

I have been collaborating for three years.  He is the developer of the PACE model 

and a major partner in research I had previously conducted.  He was therefore 

very familiar with the conjecture and acted as a research collaborator.  He was 

actively participating in the intervention’s development and assisted in both the 

preliminary and final analysis of the data (Confrey and Lachance, 1999).  The fact 

that he was the one teaching the course gave me more time to spend observing 

student interactions and evaluating the effects of the intervention.  I was 

continuously presenting him with data that I had collected and analyzed, and we 
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would jointly draw our interpretations and decide how to use the feedback 

provided by students to adapt the curricular activities accordingly.  

The instructor was continuously trying to actively engage each student 

with learning the material through reading, thinking, discussing, computing, 

interpreting, writing and reflecting (Rossman, 1996).  His role in the classroom 

varied.  During group activities, he acted as a facilitator.  In the whole-class 

discussion which followed each group activity to summarize what had been 

learned, the instructor would act as a discussion leader guiding students and 

helping them see how the specific topic is related to the big ideas underlying 

statistical reasoning.  When necessary, he would also act as an expert source 

offering “mini-lectures” (Rossman, 1996), he would however always make sure 

he used examples students would relate to.  His instruction would consistently try 

to make connections to students’ everyday experiences and he would adjust it 

depending on feedback received by the students.  The following conversation we 

had during one of our meetings is indicative of this instructor’s teaching 

philosophy: 

Int.: So, you said that in the past you were trying many different activities, 
but you saw that they don’t transfer from one context to the other. 

Inst.: No, no they don’t.  So I decided to focus on one thing – everything 
related to their experience in the world and always start from there.  And 
that’s what I think introductory statistics is for anyway.  You want to do 
real world, you have to come from their experience.  From experience, 
going to the real world, that’s the approach I use.  When I see students 
coming here and pretending listening, I can see from their eyes if they are 
into it or not.  When I see they are not, I quickly think about something 
different and then immediately change the thing I’m going to do next.  
That’s why my class lectures and activities always change.  Today, when I 
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asked them about that situation to compare the two (a certain activity they 
had engaged in), it didn’t come to my mind till I got there.  That’s why my 
notes are so brief.  Almost any class you see, I don’t have notes.  I use 
different examples each time.  

Int.: Not many people can do that, adjust in a second. 

Inst.: You have to observe and then analyze right away. 

Int.: Not many people have that gift. 

Inst.: Not many people are interested in doing that. 

Assessment 

 In order to determine what students know, we need a better understanding 

of how knowledge of the related statistical concepts develops (Friel, Bright, 

Frierson, and Kader, 1997).  The current literature provides very little knowledge 

about the development of key concepts related to variation.  A major objective of 

this study was to shed light on this much neglected but urgently needed area of 

statistics education research.  By assessing students’ understanding prior to 

instruction, and then monitoring changes in their thinking throughout the course, 

it attempted to develop a detailed description of the processes students go through 

in order to become able to intelligently deal with variability and uncertainty. 

A major factor affecting how successful a study is in gaining true insights 

into students’ thinking, is the careful choice of assessment techniques.  

Assessment tasks that uncover in detail students’ understanding of the statistical 

concepts under investigation and allow the research to distinguish between 

relational and instrumental understanding (Kelly, Sloane, and Whittaker, 1997) 

are needed.  Multiple assessment practices, “informed by and consistent with the 
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content, pedagogy, and theoretical framework of the conjecture along with the 

other components of the intervention” (Confrey and Lachance, 1999, p. 248), 

were employed in this study and they are discussed in the next section titled “Data 

Generation”. 

The assessment strategies that we used to support and evaluate this 

conceptual development (Friel et al., 1997), which encouraged students to explain 

in detail their thinking, helped both us and students further clarify their reasoning 

strategies.  The continuous monitoring of the effect of instruction on student 

learning was constantly supplying valuable information on their levels of concept 

attainment.  This informed instruction, which was adjusted to promote deeper 

understandings, and it guided the evolution of the conjecture. 

The teaching and learning of statistics is remarkably complex because it 

involves not only new and difficult concepts but also belief systems resistant to 

change (Metz, 1997).  For this reason, I was examining students’ emergent 

understandings of variation not only along the cognitive, but also along the 

epistemological and cultural dimension (Metz, 1997).  The epistemological 

dimension examined how beliefs came into play in whether or not students 

thought to apply statistical ideas in their attempts to make sense of patterns.  The 

cultural dimension investigated how the classroom culture supported or subverted 

students’ grasp and utilization of the big ideas related to variation.  Although the 

culture of the society at large also influences the kinds of situations in which 

individuals are likely to consider a stochastic interpretation and although some 
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attention was paid to its effect on student interpretations, this was not a focus of 

the study. 

1. Epistemological dimension.  Students’ understanding of randomness 

and chance variation involves not only conceptual construction, but also beliefs 

about the place of chance in the world.  The students’ epistemological set was an 

important dimension of my assessment of students’ understanding and application 

of ideas related to variation, and especially chance variation.  An epistemological 

set is an individual’s inclination to interpret the world in relative deterministic or 

stochastic terms, based on their beliefs about the place of chance and variation in 

the world (Metz, 1997).  Individual beliefs about the place of chance and 

uncertainty in the world can affect students’ ability to grasp the main ideas behind 

inferential statistics and their propensity to apply chance interpretative schemas.  

Understanding, for example, that a population proportion of ¾ is a ratio of the 

expected relative distribution over an infinite number of repetitions of the event, 

but that this ratio is only approximated across many repetitions, requires more 

than having constructed the concepts of randomness and chance.  It also requires 

an inclination to interpret the situation in terms of chance and uncertainty (Metz, 

1997). 

Although all individuals have both chance and deterministic 

interpretations within their cognitive repertoire and which one they utilize 

depends on many factors including the context of the situation, different 

individuals have varying tendencies of interpreting phenomena toward one or the 

other end of the stochastic/deterministic continuum (Metz, 1997).  There are 
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people with epistemological sets that are relatively deterministic and others with 

epistemological sets emphasizing chance and uncertainty.  I judged students’ 

epistemological set based on the assumptions they made about causality and 

chance, on their propensity to assume deterministic explanations vs. their 

willingness to seriously consider the possibility that the outcomes might be the 

result of chance.  Differences in epistemological stance were manifested in the 

difference in ways in which students interpreted the same data set – whether they 

saw “determinism in variability” or whether they saw “probabilistic patterns” or 

“uninterpretable uncertainty” (Metz, 1997, 234). 

2. Cultural Dimension: Assessment of Instruction. To adequately 

understand how students construct meanings about variation, we need to consider 

the culture in which students participate.  The extent to which individuals assume 

that deterministic causality underlies variation, as opposed to the possibility of 

random variation, depends in part upon the orientation of their classroom culture 

(Metz, 1997).  I investigated how the culture of the classroom influenced 

students’ beliefs and ideas.  I tried to assess the extent to which the culture of the 

classroom, in the activities it structured and the interpretations it valued, 

embodied a deterministic vs. nondeterministic view of the world (Metz, 1997).  I 

considered assessment from the cultural perspective of messages about the place 

of variation, chance and determination, implicit in the values and habits of the 

learning environment.  Indicators of classroom epistemological set included the 

choice of subject matter, the structuring of problems, the instructor’s reaction to 

students’ claims about causality, the aesthetics of what constitutes a good solution 
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or explanation, and the instructor’s willingness to accept multiple strategies and 

viewpoints (Metz, 1997). 

Understanding of the connections between the different statistical concepts 

and techniques is essential for statistical reasoning and should be an explicit goal 

of instruction (Schau and Mattern, 1997).  I investigated the degree to which 

instruction assisted students in gaining understanding of the interrelationship 

among the different statistical concepts.  I assessed the degree of integration of the 

different topics to the general construct of variation. 

DATA GENERATION 

In order to enhance the understanding of the research setting and be able 

to provide answers to the research questions, a transformative and conjecture-

driven experiment needs to use multiple forms of data generation.  The data 

gathering techniques I employed included (1) direct and participant observations, 

(2) interviews with the students and the instructor, (3) samples of student work 

and (4) other relevant documents.  Drawing data from several different sources 

permitted cross-checking of data and interpretations.  This practice, called 

triangulation of data, increases the strength of the design and, consequently, the 

credibility of a study. 

In addition to data triangulation, I also used methodological triangulation.  

The data generation process followed a mixed-methods approach.  I employed 

both qualitative and quantitative techniques to gather data from correspondents. 

The purpose of including quantitative methods was to indicate directly observable 

relationships and corroborate the findings from qualitative data.  Linking the 
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depth of qualitative data with quantitative breadth provided me with 

complementary information and a more holistic picture of students’ understanding 

of variation. 

There was also investigator triangulation since Dr. Lee was not merely a 

statistics instructor, but also a research collaborator.  Undoubtedly, the comments 

and suggestions offered by a fellow researcher and a much more experienced 

instructor provided me with some invaluable insights that have led to a much 

better understanding and elaboration of the conjecture. 

I will now explain the specific data that I generated.  I have found it useful 

to describe the data generation process separately for each of three phases of the 

course: (a) beginning of course, (b) duration of course, and (c) end of course.  
 

A.  Beginning of Course 

Questionnaire on Variability 

A diagnostic questionnaire (Appendix A) was given the first day of class 

to assess students’ conceptual understanding of variability prior to instruction.  

Follow-up Interviews of Primary Group 

Soon after the primary group was identified, I conducted individual 

interviews with each of the members of the group.  The interviews, which were 

audio-taped, were semi-structured.  I began by asking some general questions that 

helped me get information about the participants’ background and interests.  Then 

I asked them the set of questions included in Appendix A.  The final part of the 
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interview was a follow-up of the questionnaire on variability taken by the whole 

class.  I went over the questionnaire with the students in order to clarify the 

reasons for the different responses they had given.  Despite the open-ended nature 

of the diagnostic questionnaire, one-to-one communication with students allowed 

a more thorough investigation of their reasoning. 

B.  Duration of Course 

Class Observations 

In qualitative research, the primary instrument for data collection is the 

inquirer him/herself.  For Lincoln and Guba (1985), the human instrument is the 

instrument of choice regardless of any imperfections because its adaptability best 

meets the research requirements tied to the interpretive paradigm.  My prolonged 

and persistent observation of the setting was a major source of information.    

Prolonged engagement is necessary if one is to study a setting holistically.  

Although the study lasted only five weeks, being a constant presence in the class 

gave me a total of more than forty hours in this classroom setting.  This was 

sufficient time for me to become familiar with the setting and develop what 

Erlandson, Harris, Skipper, and Allen (1993) call “shared constructions” with the 

study participants. 

Persistent observation is related to prolonged engagement and it aims at 

providing depth to our investigations.  It involves the researcher either as 

nonparticipant or participant observer of the setting.  I assumed the role of 

nonparticipant observer when the professor was lecturing and leading discussions, 
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a role that gave me the opportunity to write fieldnotes.  Being a nonparticipant 

observer helped me to get some general idea of the classroom setting and the 

interactions of the people in the setting.  Gaining, however, a deep understanding 

of a phenomenon under study is hard to achieve from the detached perspective of 

nonparticipant observer.  It is for this reason that my own role during the lab and 

other group activities was that of participant observer.  

Participant observation means immersing oneself in the setting under 

study in order to closely examine the meanings people give to events and 

experiences in their social environment.  It requires much more than mere 

observations.  It necessitates direct involvement in the daily life of the people 

under study, getting a direct first-hand experience with events as they occur, 

listening to what people in the setting have to say, questioning people, “walking 

in the shoes” of people (Cantrell, 1990).  I was interacting with the students while 

they worked individually or as groups on hands-on and computer-based activities.  

I was probing in order to get a better idea of their thinking processes and, 

whenever necessary, to help them reach solutions to their problems. 

I exploited different forms of expression (discussed in Pratt, 1998) to help 

me get a rich picture not only of students’ performance, but also of the thinking 

that stimulates or arises out of their actions: 

(i) Discussions among the students; 

(ii) Discussions between myself and the students which were often 

used to validate and probe more deeply into the thinking behind 

their actions and discussions; 
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(iii) The button clicks, menu choices and various ways of pointing on 

screen when using the computer learning environments. 

Observing behaviors in their natural context and following these behaviors 

in detail over time served as check against selective perceptions, prejudice and 

bias (Cantrell, 1990).  Participating in the daily routines of the setting allowed me 

to collect data on a larger range of behaviors, and develop ongoing relations and 

more open discussions with the students (Tsourvakas, 1997).  These observations 

complemented formal assessments as a basis for instructional adjustments.  The 

triangulation of sources gave me more confidence in my interpretations. 

Fieldnotes 

Fieldnotes are  “the mainstay of qualitative research...a written account of 

what the researcher hears, sees, experiences, and thinks in the course of collecting 

and reflecting on the data in a qualitative study" (Bogdan and Biklen, 1982, p. 

74).  They begin with jottings (brief written records of impressions, key words 

and phrases) while in the field and end as expanded notes fleshed out after the 

field, and have both a descriptive and a reflective aspect.  The descriptive aspect 

captures the details of the observations in a way that tries to give “as full and 

objective a rendering as possible of the subjects, dialogue, non-verbal 

communication, behavior, physical setting, events and activities” (Cantrell, 1990).  

Detailed, thick descriptions of the setting try to counter the fact that there is 

always subjectivity present when reporting on anything.  The reflective aspect, 

which can be indicated either within the notes or as separate notes, focuses on the 

researcher as both a person and a researcher.  The researcher tries to be self-
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reflective and sincere about his or her personal relationship to the setting: his or 

her feelings, biases, reactions, prejudices, personal meanings.  He or she also tries 

to keep an accurate record of the methods, procedures and evolving analysis, and 

to reflect critically on initial methodology and analysis. 

Since the researcher is the main instrument of data collection and analysis, 

the role of fieldnotes is critical.  The quality of the data depends on the depth and 

thoroughness of the fieldnotes.  It is vital that the researcher “writes down in 

regular, systematic ways what she observes and learns while participating in the 

daily rounds of the life of others” (Emerson, Fretz, and Shaw, 1995, p. 1).  For 

this reason, I took during the study every opportunity to write fieldnotes that 

preserved initial impressions and unique qualities of the setting before those 

became commonplace (Emerson et al., 1995).  This was easier to do while 

assuming the role of nonparticipant observer during whole-class discussions, 

when I was able to take extensive notes in my journal.  During lab activities I did 

not have much time for taking notes, I thus put down some jottings to remind me 

later of things I observed which I considered important to include in the 

subsequent analysis of the data.  Also, since I was not able to take extensive notes 

during lab activities, all the lab sessions were audio-taped and transcribed.  Some 

of the lab activities, as well as some of the whole-class activities, were also video-

taped. 

The fieldnotes I took while in the field were of a mostly descriptive nature. 

After finishing a day’s entry in my journal, I would reread the fieldnotes in the 

evening and fill them in with additional phrases and comments.  In order to 
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facilitate the process of data analysis I was, during the course of data collection, 

engaged in writing analytic asides, commentary, and in-process memos, which 

allowed me to capture on the spot valuable insights that could otherwise go 

unnoticed or fade away (Emerson et al., 1995).  Asides were reflective comments 

inserted in the midst of descriptive paragraphs and commentaries were more 

elaborate reflections on some specific event or issue, contained in a separate 

paragraph (Emerson et al., 1995).  In- process memo writing involved elaborating, 

while still actively in the field, the reflective comments included in asides and 

commentaries, in order “to flesh out ideas and tie them together, specifically as 

they pertain to emerging theories and patterns.” (Cantrell, 1990) 

As Emerson et al. (1995) argue, in-process writing should offer “probing 

reflections, tentative musings, and open questions” (p. 105).  When writing 

commentaries and in-process memos, I tried to remain open-minded and avoid 

conclusive analytic statements in favor of possibilities and alternatives.  I also 

used the member-checking technique to confirm, modify or correct my initial 

premises.  Member-checking is a very crucial process that is essential to the 

qualitative research process.  It entails asking the informants to verify their own 

realities and assure that the data obtained are accurate and the interpretations are 

plausible.  The reactions of people close to the setting helped me check for 

“correctness and completeness” and recognize where the interpretation seemed 

“overblown or underdeveloped” (Wolcott, 1990, p. 132). 
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Documents 

Any document germane to the investigation, such as instructor’s records, 

files, journal articles, textbooks, and other materials used during the course, was 

also examined in order to provide additional information as well as to clarify or 

verify other data.  The use of documentation provided a wealth of information, 

some of which was not accessible through observation or interviewing.  

Documents served to triangulate the evidence obtained from other sources. 

Video-taping of Group Activities 

Observing students working in small groups can be a very valuable source 

of information, since “in small groups, the articulation of students’ voices is rich 

and revealing of their conceptions” (Confrey and Lachance, 1999, 250).  Four 

group activities were carefully chosen to elicit the kind of responses and actions 

that would help bring to the front the students’ mental mechanisms regarding 

variation.  For each of those activities, I chose a group of students to observe 

closely.  Although my initial intention was to follow the same group of students 

throughout the course, absenteeism and mobility among groups did not permit 

this.  During the group activity, students were video-taped.  I also closely 

observed the strategies students were using to pursue the tasks in the activity and 

followed their metacognitive processes.  My role during the activity was that of a 

participant observer.  My main aim was to allow students to be in control of their 

explorations, making decisions and moving in directions of their own choice.  

When students would be turning to me for an explanation of some phenomenon, I 

always tried to turn back their questions.  In a few occasions however it seemed 
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appropriate for me to intervene.  When actions of the students were less than 

transparent, I would intervene by asking questions that helped them express more 

clearly the reasons or intuitions lying behind their actions.  These interventions 

were carefully recorded and have become part of the data analysis since they 

somehow modified and influenced the research context.  

In addition to following the conceptual development of one group, by 

accompanying each of these activities with a worksheet which students had to 

complete individually, I was able to also collect data from the rest of the class.  

This allowed me to partially make up for the fact that following the conceptual 

development of a single group means giving up the chance to broaden the 

sampling of students’ methods by observing multiple groups (Confrey and 

Lachance, 1999). 

Pre- and Post-Activity Assessment 

Low-stakes assessments involving short but nonetheless open-ended items 

were frequently given to students at several points during the course in order to 

monitor their evolving understandings.  In addition, there were some longer, end-

of-unit assessments.  

Samples of Student Work 

The course instructor used multiple methods to assess student learning, 

such as daily homework, open-ended and essay type questions in exams and 

quizzes, worksheets completed when engaged in hands-on and computer tasks, 

and reports on project assignments.  At several points during the course, analyzing 
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samples of student work provided me with valuable information regarding their 

level of conceptual development. 

Intermittent Interviews of Primary Group 

These were short, unplanned, and unstructured interviews of students in 

the primary group that would take place during class whenever I felt I needed 

some clarification about an emerging issue. 

Instructor 

Open-ended interviews with the instructor were conducted several times 

during the course.  The purpose of the open-ended interviews, which were audio-

taped and transcribed, was to give the instructor the opportunity to express his 

opinion about the effectiveness of instruction: what aspects he considered to be 

successful, as well as what concerns he had.  In addition to the formal interviews, 

there were also informal daily conversations with the instructor before and after 

class, during which collaborative decisions as to how we should proceed with the 

course were taken.  I was writing fieldnotes describing our casual conversations 

and how my study design and his instruction were affected by the discussions. 

Outside-of-Class Data Generation 

Four of the students in the primary group and one other student agreed to 

participate in an outside of class intervention.  I met with these students several 

times during the course.  The meetings took place in the computer lab.  Students 

worked either individually or in groups on technology-based activities that made 

use of the object-oriented computer learning environment Fathom.  The activities 
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were carefully designed and structured to explore and at the same time support 

students’ evolving meanings about the stochastic.  During the activities, I 

assumed the role of a participant observant. 

What we ended up deciding was that, other than a couple of activities using Fathom that the instructor would introduce in the classroom, I would work independently  with a group of students outside class to assess the effectiveness of the software as an aid to conceptual understanding.  These open-ended investigations of individual students interacting with technology , would further help redefine and strengthen the conjecture. 

Using the computer as an expressive medium, I studied and analyzed 

students’ actions articulated through button presses, choices from menus and 

changes to programming code (Pratt, 1998; Noss and Hoyles, 1996).  This helped 

me identify the kinds of intuitions students use to make sense of stochastic 

phenomena and the ways in which their intuitions are shaped by technology.  It 

allowed me to find out the structures that facilitate the articulation of intuitions 

about the stochastic and the forging of new connections between intuitions and 

formalisms (Pratt, 1998).  In contrast to the heuristics research that examined how 

people make sense of stochastic phenomena at a specific point in time, I was able 

to gain more insight into students’ thinking by examining how their intuitions 

evolved as they came in contact with technology. 

My assessment of the effectiveness of technology as an aid to conceptual 

understanding tried to provide answers to the following questions: 

(i) How do students’ initial understandings evolve as they interact 

with the technology?   

(ii) What aspects of a technological tool such as Fathom optimize the 

articulation of intuitions and the building of connections between 

the students’ informal and formal understandings of variation? 

(iii) When might technology be confusing?  
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C.  End of Course 

In order to assess students’ understanding at the completion of the course, 

multiple forms of assessment were employed: 

End-of-Course Questionnaire 

The questionnaire included in Appendix D was administered to students in 

order to investigate their understanding of variation.  Several of the items in the 

questionnaire were taken from a pilot investigation (Meletiou, Lee, and Fouladi, 

1999) which had taken place a few months before the experiment began in an 

attempt to gain insights on students’ informal experiences and understanding of 

variability.  Three groups of students across two campuses had participated in that 

investigation: 44 students enrolled in a statistics course following the PACE 

model, 106 students enrolled in two non-PACE introductory statistics courses, 

and 102 students enrolled in a Human Sexuality course where the majority of 

students (69 students) had not yet taken any statistics courses.  In reporting the 

results of the current study and comparing them to those of the pilot investigation, 

I use four categories: Non-Statistics (n=69), Non-PACE (n=139), PACE-Previous 

(n=44), PACE-Current (n=33).  The Non-Statistics category includes those 

students in the pilot investigation out of the Human Sexuality class who had never 

taken any statistics course.  Non-PACE includes both students in the pilot 

investigation who were taking a non-PACE course, as well as students in the pilot 

investigation enrolled in the Human Sexuality course who had taken statistics in 
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the past.  PACE-Previous refers to PACE students in the pilot investigation, 

whereas PACE-Current to PACE students in the current study.  In addition to 

including items from the pilot investigation, items from research conducted by 

other researchers were also included in the end-of-course assessment to allow 

additional comparisons with other populations of students. 

Follow-up Interview of Primary Group  

In this individual interview with each of the students in the primary group, 

we went over both the questionnaire they took in the beginning and the one they 

took at the end of the course, and also over some assessment tasks they had 

completed during the course.  Students were probed to explain the reasons behind 

their answers to different questions.  Also, they were reminded of some of the 

responses that they had given in order to see whether their reasoning changed in 

any way since then. 

Interview of Instructor 

An open-ended interview with the instructor was carried out, to get his 

opinion about the overall effectiveness of the course and how it compared with 

the kinds of experience his students had in previous semesters.  

DATA ANALYSIS 

Preliminary Data Analysis and Curricular Revision 

In a transformative and conjecture-driven experiment, there are two types 

of data analysis (Confrey and Lachance, 1999).  The first type is the ongoing 

preliminary analysis, taking place throughout the course, guiding instruction and 
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pointing towards necessary curricular revisions.  This preliminary analysis, which 

begins simultaneously with the data generation process, “is necessitated by this 

design’s anticipation of emerging issues” (Confrey and Lachance, 1999, p. 251).  

Throughout the course, I would meet with the instructor on an almost daily basis.  

Each time we met, I would try to make sure I presented him with some 

preliminary analysis of the data I had collected since our previous meeting, 

although it was not easy to keep up with all the new data coming in every day.  

The implications of the feedback gained from students guided our decisions as to 

how instruction should proceed and what modifications of our plans were 

necessary.  In addition to substantial revisions of the curricular interventions, this 

initial analytical work of cycling back and forth the existing data also led to a 

revision and elaboration of the conjecture.  Fledging hypotheses continuously got 

tested and evidence began to build (Cantrell, 1990).  This analysis generated ideas 

for collecting new and often better quality data (in Cantrell, 1990). 

 

Final Data Analysis  

After the data collection stage was completed and all data had been 

generated and transcribed, the process of analysis continued in a more formal and 

explicit way.  This final stage is the most time-consuming one, since at this stage 

the researchers “return to the data to attempt to construct a coherent story of the 

development of the students’ ideas and their connection to the conjecture” 

(Confrey and Lachance, 1999, p. 255).  In order to answer the research questions, 

I used a variety of both qualitative and quantitative data analysis techniques. 
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Qualitative Data Analysis Techniques 

I subjected the raw data to an inductive data processing method called 

constant comparison analysis (Glaser and Strauss, 1967).  This method is 

concerned with “generating and plausibly suggesting (but not provisionally 

testing) many categories, properties, and hypotheses about general problems" 

(Glaser and Strauss, 1967, p. 104).  It is designed to aid the analyst generate a 

plausible and consistent theory, which stays close to the data.  The constant 

comparison method, which involves unitizing, categorizing, chunking, and coding 

by choosing words, phrases, or sentences that specifically address the research 

questions, assisted me in the search for patterns and themes that were used to 

develop the study’s interpretation.  Once recurring patterns and themes in the data 

had been identified, they were compared across classifications, and categories 

collapsed, merged, or were redefined.  I developed working hypotheses 

accordingly by noticing similar patterns across data.  The hypotheses were being 

modified and refined continuously.  I reached closure only after many sweeps 

through the data, which helped me eventually achieve some degree of theoretical 

saturation.  Throughout the coding process, I continued writing memos which 

helped me keep track of all the categories, properties, hypotheses and generative 

questions evolving from the analytical process (Pandit, 1996).   

During the final data analysis, I was taking measures to avoid the 

researcher’s tendency to quickly reduce the data by focusing only on what is 

familiar and central to the study.  Such a tendency might lead the investigators to 

miss the opportunity “to know what might not be known to them prior to the 
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study”, to overlook the fact that “the margins of a project often provide some of 

the most interesting and informative patterns for investigators” (Chenail, 1992, p. 

44).  In addition to looking for cases that illustrated recurring patterns of behavior 

and typical situations in the research setting, I was also looking for departures 

from those patterns.  I employed the Chenail Qualitative Matrix (Chenail, 1992), 

which gave me the opportunity to “discover the serendipitous or unexpected 

instead of staying focused only on what was known through literature searches 

and previous observations” (Cole, 1994).  The Chenail Matrix has two 

dimensions, the first dimension covering the Central Tendencies-Ranges 

spectrum, and second dimension the Expected-Unexpected spectrum.  The 

Central Tendencies-Range spectrum served in reminding me that in addition to 

describing how the data chunk together into common themes and categories, I 

also had to describe differences within those themes and categories.  The 

Expected-Unexpected spectrum was set to organize the data presentation, with 

Expected referring to data which confirmed my assumptions and the findings 

described in the literature review, while Unexpected referring to data that defied 

pre-set assumptions and previous research finding. 

Quantitative Data Analysis Techniques 

In addition to performing qualitative data analysis of the written 

assessments, I sometimes also looked at them in purely quantitative terms 

(Confrey and Lachance, 1999).  For example, I would draw conclusions about the 

performance of the class as a whole, or I would make comparisons of the class 



 116 

performance to the performance of other groups of students who had taken the 

same assessment task. 

As has been already noted, several of the items at the end-of-course 

assessment were taken from a pilot investigation (Meletiou, Lee, and Fouladi, 

1999) that was conducted to gain insights on students’ informal understanding of 

variability, as well as from studies conducted by other researchers.  Quantitative 

analysis was used to compare the performance of students in the current study, to 

that of students in other studies.  Linear model methods were employed using the 

CATMOD procedure (SAS Institute 1988) which, by default, treats all variables 

as categorical.  These methods are a natural extension of the usual Analysis of 

Variance approach to continuous data.  The permitted us to investigate the effect 

of the course students belonged to (the explanatory variable) on the probability of 

success in a question (the response probability).   

CRITERIA FOR QUALITY OF RESEARCH FINDINGS 

While any researcher should strive for results that others would consider 

rigorous and trustworthy, criteria for assessing those qualities differ depending on 

the nature of a study.  Positivists typically speak of validity, reliability and 

objectivity when assessing the worth of a study.  Based upon the underlying 

assumptions, the novelty and the emergent nature of a transformative and 

conjecture-driven teaching experiment, these concepts do not seem to transfer 

directly.  Adhering to the rigid principles of traditional research would not fit this 

kind of inquiry with its evolving conjectures and shifts in curricula (Confrey and 



 117 

Lachance, 1999).  Validity for example, is not relevant for this type of research 

where “there is no exact set of circumstances, no single and “correct” 

interpretation.” (Wolcott, 1990, p. 144)  

Despite the unconventionality of the conjecture-driven research model, 

one might still do powerful and relevant research.  As Confrey and Lachance 

(1999) point out, the fact that this kind of research is guided by an explicitly 

stated and well-developed conjecture makes it worthwhile and significant.  

However, in order to ensure that the development of the conjecture was indeed 

guided by the data and not by some independent agenda, the researcher must do a 

careful demonstration of the quality of the study (Confrey and Lachance, 1999).  I 

will next briefly discuss some of the strategies I have used to ensure the rigor, 

worth, and trustworthiness of my research and its findings.  Following Confrey 

and Lachance (1999), I employed standards that enhance the quality of both the 

internal processes of the research and its potential impact on educational practice.  

These standards address issues related to the components of the research model: 

the ideological stance, the theoretical framework, and the dialectical interaction 

between conjecture and intervention. 

Ensuring the Quality of the Internal Processes 

Perhaps the most important aspect of the conjecture-driven research 

process that needs to be evaluated in terms of its internal consistency is the 

explanatory power of its conjecture (Confrey and Lachance, 1999).  It is the 

conjecture, which originated from dissatisfaction with the way typical practices 

treat a certain set of mathematical topics, that drives the experiment.  Therefore, 
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one of the main questions this type of research must answer is: “Can the 

conjecture point to a better way to reconceptualize this set of topics that will allow 

all students to construct an understanding of these concepts?” (Confrey and 

Lachance, 1999, p. 259).  This question leads Confrey and Lachance (1999) to 

identify three targets for evaluating the quality of the conjecture-driven research.   

The first target is evaluating the quality of the conjecture in terms of its 

face validity in relation to peer review (Confrey and Lachance, 1999).  An 

audience of researchers or practitioners can assess the face validity of the 

conjecture by analyzing both its content and its relationship to the research 

literature.  Hopefully, through the careful elaboration of the conjecture, its content 

and pedagogical dimensions, and the theoretical framework in which they are 

situated, I have provided the reader with enough information to be able to make 

such a judgment in relation to the findings of the study (Confrey and Lachance, 

1999). 

The second target is judging whether the research process results in a 

rational reconstruction of the dialectical relationship between the conjecture and 

the events taking place in the classroom.  Audience needs to be provided with 

evidence of the research process that will allow them to answer the questions: 

“How closely are the two forces in the dialectic interwoven?  Does it result in a 

coherent story?” (Confrey and Lachance, 1999, p. 260).  I have provided ample of 

evidence in terms of both preliminary and final data analysis to ensure this.  

Finally, the study should be judged in terms of its fidelity to its ideological 

stance.  A study which claims to put student voices to the front, should make sure 
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“student expressions are extensive and authentic enough to convince a reader of 

the depth of the students’ commitment to and ownership of the ideas” (Confrey 

and Lachance, 1999, p. 260).  I have taken all the steps recommended by Confrey 

and Lachance to allow the emergence of students’ voice.  I have provided “ample 

data in the form of quotations from the students and examples of their work in 

discussions of the research” (Confrey and Lachance, 1999, p. 260).  I have 

included sufficient information “about the characteristics and contexts of the 

student-speakers, along with comments about how representative of the various 

student groups a given set of interactions is” (Confrey and Lachance, 1999, p. 

260).  I have made sure the data I presented came from a wide spectrum of the 

class population “to demonstrate that the educational benefits have been 

experienced widely” (Confrey and Lachance, 1999, p. 260).  I have also presented 

the results of many assessment tasks that support this claim. 

Since claims for the quality of the internal processes of a conjecture-

driven research design are based on interpreted data, one might question the 

trustworthiness of the data presented.  The research report is an interpretation of 

reality, and the readers might legitimately ask: “How do we know that the 

researcher saw what she wanted to see or only paid attention to the data that 

supported her conjecture?” (Confrey and Lachance, 1999, p. 259).  The quality of 

this kind of research is very dependent on how critically the researchers reflect 

upon the data and challenge themselves about the soundness of their evolving 

understandings.  Therefore, the researcher should provide evidence that re-assures 

the audience they can trust the methods employed and the interpretations made.  
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The credibility, dependability, and confirmability of the data obtained from a 

conjecture-driven research needs to be assured (Confrey and Lachance, 1999; 

adapted from Guba and Lincoln, 1989).  Also, since it is through the interaction of 

students’ voices and the researcher’s perspective that the conjecture evolves, the 

role of the researcher should be described. 

Credibility 

In judging the value of qualitative studies, the correspondence version of 

truth is replaced with the idea of credible or trustworthy accounts of multiple 

constructed realities (Lincoln and Cuba, 1985).  The researcher must try to show 

that his or her reconstructions are credible to the constructors of those multiple 

realities.  Erlandson et al. (1993), and Lincoln and Guba (1985) have suggested 

several different ways of establishing trustworthiness, or credibility.  I have used 

(1) prolonged engagement, (2) persistent observation, (3) triangulation, (4) 

member-checks, and (5) peer debriefing to enhance the credibility of my study.  

The first four strategies have already been discussed in the section on data 

generation.  The fifth, peer debriefing, involves sharing preliminary findings with 

colleagues.  Besides Dr. Lee, I also shared developing manuscripts with 

colleagues who are experts in the fields of mathematics education, statistics 

education, statistics, educational psychology, and qualitative research methods, 

who have provided valuable feedback, especially about the interpretations I was 

constructing from my informants. 
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Dependability 

Dependability is the qualitative parallel to reliability (Guba and Lincoln, 

1989).  It is the use of sufficient methods and techniques to assure that the study's 

results can be trusted.  In the postpositivist paradigm, reliability means stability 

over time.  However, in a conjecture-driven research experiment changes in the 

design resulting by increasingly refined understanding of the setting (Marshall 

and Rossman, 1995) are expected and acceptable.  Nonetheless, a publicly 

documentable record of the change process is required so that “outside 

reviewers…can explore the process, judge the decisions that were made, and 

understand what salient factors in the context led the [researcher] to the decisions 

and interpretations made” (Guba and Lincoln, 1989, p. 242; in Confrey and 

Lachance, 1999, p. 262).  In order to account for the ever-changing context within 

which this research occurred, I have kept a detailed record of the changes that 

occurred in the setting and how those changes affected my methodological and 

analytical decisions. 

Confirmability 

Confirmability refers to the degree to which the results of the study could 

be confirmed or corroborated by others.  It is the ability for others to examine all 

data sources and processes to assure that the findings are grounded in data and are 

not figments of the researcher’s imagination (Lincoln and Guba, 1985).  Thus, the 

criterion for judging the confirmability of a study is the degree to which the data 

confirm the general findings and implications of the study (Marshall and 

Rossman, 1995).  Following Marshall and Rossman’s (1995) advice, I have kept a 
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journal that explicates all the important design decisions taken during the study 

and the rationale behind them, so that others can judge if they were adequate and 

made sense.  In addition, by keeping all the data collected in a well-organized and 

retrievable form, I can easily make them available to any researchers challenging 

the findings and wanting to reanalyze the data.   

Role of the Researcher 

There were multiple voices in the research setting.  Each individual 

student, their instructor, and I, had our individual perspectives on each situation.  

Keeping this in mind, I tried to take different observational positions and address 

both my views, as well as the views of the students and their instructor. 

Wolcott (1990) recommends that the researcher should “talk little, listen a 

lot”.  He points out that, by talking too much and hearing too little, many 

fieldworkers “become their own worst enemy by becoming their own best 

informant” (Wolcott, 1990, p. 128).  He warns educational researchers that this “is 

especially serious problem in school research, where we often presume to “know” 

what is supposed to be happening and consequently may never ask the kinds of 

questions we would ordinarily ask in any other research setting” (Wolcott, 1990, 

p. 128).  One method I employed to help make members’ views more clearly 

heard is a method of analysis developed by Confrey (1994) called Voice and 

Perspective.  This method has two stages.  At the first stage, the researcher 

articulates the participants’ voice through what Confrey calls “Close Listening”.  

At the second stage, the researcher affirms his or her own perspective and how it 

has been influenced as a result of his or her interactions with the people in the 
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setting.  The structure of the course was ideal for employing Confrey’s method.  

Through providing an environment which gave validation to the students’ 

personal voice (Confrey, 1991), it enabled me to get valuable insights into 

students’ thinking processes that would not have been possible under more 

conventional instruction. 

I acknowledge that both the participants’ views and my views were 

affected by my interactions with the people in the setting.  As people interact with 

each other, there is an “ongoing resocialization”, a continuous adjustment of prior 

views (Eisner, 1985).  Whenever I describe members’ meanings, these 

descriptions are interpretive constructions that represent my knowledge and 

understanding of the participants’ experience.  However, my prolonged 

involvement has influenced the perspective from which I am reporting and has 

acted as warrant against the imposition of “exogenous categories and meanings” 

and of “a priori theoretical categories” (Emerson et al., 1995, p. 111).  Active 

engagement in the setting has given me the chance to look closely at what 

students said and did and to record the words, phrases and categories that they 

used in their everyday interactions.  It has enabled me to “attend consistently to 

members’ meanings and concerns” and develop descriptions and analyses that are 

“sensitive to local concerns, meanings and categories” (Emerson et al., p. 111, 

1995).  Because no event has a single or invariant meaning, I was constantly 

trying to put aside my inclination to assume that I knew “what significance 

members attribute to the events and objects that make up their world” (Emerson et 

al., 1995, p. 114).  I was observing closely and I am documenting multiple stories 
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in order to examine the different ways in which different members constructed 

and made meaning of the same event. 

Since attitudes and orientation toward the topic or the people studied 

affect what each researcher writes down, there exists a necessity of including the 

researcher in one's research.  Because “every research report tells a story, and 

every story has a storyteller” (Christie, 1997), I acknowledge that what I am 

reporting is not an objective story but an interpretation of reality reflecting my 

personal worldviews.  For this reason I have tried to explicate my beliefs and 

theoretical stance.  Also, at each point where I feel that my personal feelings and 

reactions are relevant, I try to be open about them (Wolcott, 1990).  

Recognizing my personal biases has, hopefully, made me more sensitive 

to the ways in which my views shaped my interactions with my study participants.  

Such recognition, according to Emerson et al. (1995), “can better guard against 

any overriding, unconscious framing of events” (p. 43).  I have tried, to the degree 

that this is possible, to avoid assuming that other people think the way I do and to 

impose my judgments.  I was constantly striving for some balance between my 

personal impulses and the need for students’ voice to be heard.  Hopefully, I have 

achieved what Wolcott (1990) calls rigorous subjectivity which encompasses 

“elusive criteria like balance, fairness, completeness, creativity” (p. 133).  This 

rigorous subjectivity is much more preferable for me than a detached objectivity.  

As Wolcott (1990) points out, it is not knowing, but understanding that captures 

the essence of things and what we should be after: “‘To understand’, he posits, ‘it 

may not be enough to know.’” (p. 147) 
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A researcher cannot understand the people she or he is researching unless 

immersing into their world and trying to make sense of it.  As Greene (1994) 

explains, "it is precisely the individual qualities of the human inquirer that are 

valued as indispensable to meaning construction" (p. 539).  My personal 

investment in the research setting was a self-conscious choice, and I consider the 

bias that comes with my being the main measurement instrument as a great asset 

rather than a weakness of my inquiry. 

Assessing the Potential Impact 

Bridging the gap between research and practice has never been efficient or 

easy (Confrey and Lachance, 1999).  However, since one of the main objectives 

of this type of research is to better connect research and practice, assessing the 

potential impact that this research has on bringing about “achievable” change in 

the statistics classroom is an imperative (Confrey and Lachance, 1999).  

The researchers should find multiple ways of disseminating research 

findings to educators, students, and other people who initiate changes in the 

system.  This will ensure that a diversity of audiences gets involved in further 

elaborating the conjecture.  It will also ensure that “the dialectical relation 

between conjecture and instruction carried out in the experiment is reproduced 

between the practitioner and the researcher as research results are prepared.” 

(Confrey and Lachance, 1999, 258)  

I perceive several potential products originating from this research. 

Through publications and conference presentations, I will inform other 

researchers about the study and its findings.  I also plan to use the insights 
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obtained in this study to develop curricular and professional development 

materials.  In my future plans I include a plan to develop and implement a course 

or a series of workshops for elementary/high school teachers that would aim at 

improving both their content and pedagogical knowledge of statistics.  Since 

students first introduced to statistics learn similar concepts and procedures 

regardless of age, findings of a study regarding one age group have implications 

for instruction with other types of students (Gal and Garfield, 1997). 

Confrey and Lachance (1999) identify five criteria for assessing the 

potential impact of the research products of this type of research.  The first 

criterion is feasibility.  The implementation of the research products should not 

make excess demand on financial and human resources, so that they can be 

implemented and useful for all classrooms.  The second criterion is sustainability.  

The impact of the research products should be endurable and sustainable for a 

considerable amount of time.  In addition, research findings should be compelling.  

The evidence of the research findings should not only attract the interest of 

practitioners, but its magnitude should be such as to convince them of the urgent 

need for change.  Research products should also be adaptable.  They should be 

flexible enough to be applicable to diverse populations and variety of settings.  

Finally, they should be generative, becoming “models for innovation” for 

practitioners, providing them with “a powerful means of reconceptualizing a 

variety of classroom events, relationships, and practices.” (Confrey and Lachance, 

1999, 264) 
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As Confrey and Lachance (1999) note, “because research has been 

relatively isolated from practice in the past, these criteria appear too demanding of 

any one team of researchers” (p. 264).  I am convinced of the value of the findings 

of the study; at this point in time however I cannot fully assess these criteria.  The 

fact that the conjecture guiding this study was tested and refined in a real 

classroom is a big advantage compared to studies that draw their conclusions by 

taking snapshots of students’ thinking.  Nonetheless, my experiences at the setting 

were unique and could not be replicated.  Bowen (1997) stresses the need for 

reconceptualizing generalizability when dealing with qualitative studies such as 

mine.  Transferability - the degree to which two contexts are congruent - proposed 

by Lincoln and Cuba (1985) is one such reconceptualization.  Thick description of 

the setting enhances the transferability of my study.  Although I acknowledge that 

this study focuses on a single classroom with unique characteristics, I still believe 

that the experiences and insights gained can be powerful and relevant for other 

statistics educators also.  By giving a detailed description of the research setting 

and participants, I allow the readers of this piece of work to determine intuitively 

the “fit” of my study with their own settings or contexts. 

I am well aware of the fact that raising students’ awareness of  

“probabilistic interpretation” and helping them see and feel how stochastic 

thinking is related to causal and logical thinking (Pfannkuch and Brown, 1996) is 

not an easy task and takes time to achieve.  It is not easy for students to shift from 

a deterministic view of reality to one that balances deterministic and probabilistic 

reasoning.  Probabilistic thinking is an inherently new way of looking at the world 
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and, to really learn to thinking in probabilistic terms, students need to undergo a 

revolution in their thinking (Falk and Konold, 1992).  However, I am convinced 

that providing a learning environment that emphasizes the omnipresence of 

variation allows students to make some steps beyond their deterministic thinking 

and start developing their statistical reasoning.  I hope that the evidence I provide 

in this study convinces the reader also that this is the case. 

In the next chapter, I outline the findings from the assessment given to 

students prior to instruction and the follow-up interviews of the primary group.  I 

then discuss how the insights gained led to elaboration of the conjecture and the 

instructional design. 
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Chapter IV: Assessment Prior to Instruction 

INTRODUCTION 

In order to be able to follow the students’ conceptual development 

process, good understanding of their thinking prior to instruction is required. The 

pre-assessment (Appendix A) on variability given on the first day of class and the 

follow-up interviews of the primary group (interview protocol in Appendix A), 

allowed a thorough investigation of student reasoning.  A small discussion of the 

results and the implications for instruction follows. 

DISCUSSION OF RESULTS 

The first question in the pre-assessment asked students to describe based 

on their experience, what variability means.  Several of them defined variability in 

ways that suggest they viewed it as variety, or as something that takes multiple 

values: “Having more than one choice of something or many choices”;  

“Different things, numbers, amounts.”  Others described variability not simply as 

variety, but also as a measure of how things differ: “How much or by what 

something is probable to change/vary from something else.” Some other students 

described variability as “range of something… from minimum to max.”  Still, 

others seemed to equate variability with the mathematical notion of variable: “A 

variable is something that is not constant. Ex.  2(x) +3, x is the variable as it 

could be a variety of numbers.” 

Students gave very reasonable responses to all five parts of Question 2 of 

the pre-assessment, where they had to decide whether it was more desirable for 
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variability to be high or low in each of five different cases.  Their responses 

indicate they recognized that low variability could be a good or bad quality 

depending on the context of the situation.  Twenty-seven students (90%), for 

example, understood that variability in the diameter of new tires coming off one 

production line needs to be as low as possible “so that there are no problems with 

different sized wheels unbalancing a car.”  In contrast, 80% of the students 

thought it would be preferable for scores on an aptitude test given to a large 

number of job applicants to have a high variability because this would aid the 

screening process by making it easier to select the most qualified applicants.  The 

reasoning of the four students (13%) who thought it is better to have low 

variability of scores, was not faulty either: “One would hope that the scores 

would all be in the high range.”  Finally, one student who argued that high 

variability could be either good or bad also gave a good justification: “A larger 

range would indicate clearly who will be the best applicant and a small range 

would mean applicants are all bad or all good.” 

In the follow-up interview, several students made remarks indicating some 

knowledge of quality control processes employed by companies to minimize 

variability and ensure products stay within specification limits.  Tim for example, 

realized that “it’s very hard to produce anything that is exactly the same every 

time...even if it’s very precise, it can’t be perfect.”  However, he stressed, 

companies “need to have someone who gauges what is permitted and what is not, 

because certain things have to be close together, otherwise it won’t work.”  
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In Question 3 of the pre-assessment, students were given the sets of scores 

of two statistics students and were asked to choose a study partner.  The aim was 

to see whether they would notice the difference in the amount of variation 

between two sets of scores having the same mean.  From their responses, it seems 

they did.  Fifteen students (50%) noticed the smaller variation in Student A’s 

scores and chose this student as a study partner “because although both have the 

same average, Student A is more consistent with the scores.”  On the other hand, 

ten students (33%) picked Student B as a study partner, viewing his “perfect” 

scores as evidence of his/her potentials: “His range is from 40 to perfect…straight 

As, so he’d do better given the right motivation.”  Finally, five students (15%), 

although realizing that the two sets of scores differ in variation, thought that in the 

end “it wouldn’t really matter who you study with since they both are essentially 

the same grade standing of 74%.  They compensate each other.” 

An important first step in data description is assessing shape.  Graphs are, 

along with numerical means, the main statistical tools used to assess the shape of 

a data distribution.  Histograms are among the most important graphical tools 

used in the statistics classroom.  Question 7 in the pre-assessment (taken from 

Garfield, delMas, and Chance, 1999), was given in order to see whether by 

looking at the histogram of two distributions of scores students could figure out 

which of the two distributions has more variability (Figure 4.1): 
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Figure 4.1 – Histograms of Distributions A and B 

Twenty-two students (71%) recognized that distribution B has more 

variability than distribution A.  Eight students (26%), however, thought A has 

more variability.  Finally, one student checked both distributions, arguing that “A 

has more variability because it’s bumpier, whereas B has more variability 

because it’s more spread out and has a larger number of different scores.” 

The purpose of the Question 10 (taken from Scheaffer, Gnanadesikan, 

Watkins, and Witmer, 1996) was, in addition to investigating students’ familiarity 

with histograms and bar graphs, to see how well they could relate features of a 

distribution to the shape of a graph.  Students had to match the following list of 

variables and set of histograms using their knowledge of the variables: 

(i) age at death of a sample of 34 persons  
(ii) the last digit in the social security number of each of the 40 students 
(iii) scores on a fairly easy test in statistics 
(iv) height of a group of adults 
(v) number of medals won by medal-winning countries in the 1992 Winter 

Olympics 
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Figure 4.2 – “Matching Histograms to Variables” Task 

Table 4.1 – Pre-assessment Results on “Matching Histograms to Variables” 
Question 

Answer % of Correct Responses 
Graph 1 33 
Graph 2 33 
Graph 3 20 
Graph 4 36 
Graph 5 30 

Only three students (10%) correctly matched every variable to its 

corresponding graph.  For Graph 1, ten students (33%) chose Variables A (age at 

death) or C (scores on a fairly easy test), which are both reasonable matches.  Ten 

students (33%) correctly matched Graph 2 with Variable B.  The 10 bars of the 

graph seems to be the only reason most of them did since just a couple of students 

made reference to the relative uniformity of the different outcomes.  Only six 
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students (20%) matched Graph 3 with the number of medals own by medal-

winning countries in the 1992 Olympics (Variable E).  Even they were not totally 

correct, since they perceived each bar of the graph as representing the number of 

medals won an individual country, arguing that in the Olympics, “not many 

countries win a high number of medals”, and “usually one country does much 

better than the rest.”  Eleven students (36%) correctly matched Graph 4 with 

either Variable A or Variable C.  Finally nine students (30%), realizing that the 

height of a group of adults would have a distribution that is “higher in middle 

range, low on extremes”, matched Graph 5 with Variable D. 

Especially noticeable was many students’ tendency to perceive the graphs 

as displays of raw data (i.e. as representations similar to dotplots, with each bar 

standing for an individual observation) rather than as presenting grouped sets of 

data.  For example, several students (23%) matched Graph 1 with variable E, 

because they perceived each bar of the graph as representing the number of 

medals own an individual country: “Some countries win a lot – some a few – and 

others win a zero.”  Similarly, 7 students (23%) matched Graph 5 with Variable 

C, thinking of each bar of the graph as representing the score of an individual 

student: “Almost all test scores are on a high range, with a few remaining low”.  

They did not seem aware of the data reduction involved. 

One of the only three students who correctly matched all graphs with their 

variables was Andrew.  When I asked him in the follow-up interview whether he 

knew anything about histograms before taking the class, he responded:  
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No, I first just looked at them and said when you look at a bar graph it 
usually goes …I started out by looking at the 5 examples and making my 
opinions/thoughts on what the graphs would look like.  Then one by one I 
placed the graphs that looked the most like what I thought they would look 
like with the 5 labels.  I then matched the labels with the variations/ranges 
and frequencies that I thought would match with the graph. 

In contrast to Andrew, most of the other students, whereas realizing that 

there is variation and thus each variable will assume different values, seemed not 

to seriously concern themselves with the patterns that emerge within the variation.  

Of course, the fact that the question was given before most students had ever been 

formally introduced to histograms is a main reason they did so poorly.  

Nonetheless if they had thought carefully about how to relate specific features of 

each variable with the shape of the graphs, they would have made more correct 

matches like Andrew, who was also unfamiliar with histograms and thought of 

them as bar graphs.  In trying, for instance, to decide which variable matches 

Graph 2, 5 people (17%) thought this graph represents the distribution of the 

height of a group of adults (choice D), because “heights fluctuate a lot.”  It is 

obvious that these students did not seriously think about how people’s heights 

fluctuate, otherwise they would not have matched height with an approximately 

uniform distribution.   

Question 6 (adapted from Jacobs, 1997), investigated students’ informal 

understanding of sampling issues.  They had to comment on each of the following 

six different approaches to conducting a survey by students of a middle school 

who were trying to estimate how many kids of the whole school would be 

interested in buying a raffle ticket to win a SEGA video-game system: 
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Survey 1: Tom asked 60 friends (75%, 25% no). 

Survey 2: Shannon got the names of all 600 students in the school, put them in a 

hat, and pulled out 60 of them. (35% yes, 65% no) 

Survey 3: John asked 60 students at an after school meeting at the Games Club.  

The Games Club met once a week and played different games-especially 

computerized ones.  Anyone who was interested in games could join (90% yes, 

10% no). 

Survey 4: Ann sent out a questionnaire to every kid in the school and then used 

the first 60 that were returned to her. (50% yes, 50% no) 

Survey 5: Claire set up a booth outside the lunchroom and anyone who wanted 

to could stop by and fill out the survey.  To advertise her survey she had a sign 

that said: “WIN A SEGA.”  She stopped collecting surveys when she got 60 

completed. (100% yes) 

Survey 6: Kyle wanted the same number of boys and girls and some students 

from each grade.  So he asked 5 boys and 5 girls from each grade to get his total 

60 students. (30% yes, 70% no) 

Surveys 1 and Surveys 3 involve restricted sampling procedures.  No 

student liked Survey 1, because “it would only show the likes of Tom’s friend” 

and all but one student found Survey 3 to be very poor, since “the Games Club is 

a directly related interest group to Sega.”  Several students described the method 

of sample selection employed by both surveys as biased.  A few others pointed 

out that the sample was not randomly selected.  One student, possibly perceiving 

variability as sample representativeness, did not like either of the two surveys 

because they led to decreases in variability: “Friends like the same things, which 

implies decrease in variability.  It does not give a good picture since he only did 

his friends that may only represent one grade and sex.”  
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Surveys 4 and 5 utilized self-selected sampling procedures.  Sixty-percent 

of the students argued that Survey 4 does not represent the whole school 

population because “the first 60 respondents could have been eager to say yes”, 

30% however considered it to be “a good survey” that gives a “fairly good 

picture.”  Four of these students characterized the sample as random and non-

biased since “everyone in the school was given the same opportunity.”  More 

students were able to detect the dangers of self-selection in Survey 5.  Everyone 

but two students considered it to be a very poor survey that attracts only those 

who are interested in winning a SEGA: “Win a Sega” slants participants 

immediately.  Their interest in the Sega brought them to the booth.  Not random.”  

Surveys 2 and 6 involved random sampling procedures.  Almost all of the 

students viewed positively Survey 2, which used a simple random sampling 

scheme: “It was a good way to get an unbiased account…they just pulled them 

out of the hat…this had nothing to do with them.”  Nonetheless, a few of the 

students that approved Survey 2, still seemed concerned that simple random 

selection might not lead to a representative sample.  There were also four students 

who did not approve the way Survey 2 was conducted and argued that, due to its 

randomness, extreme outcomes are possible: “She could pull out 50 girls and 10 

boys and usually girls don’t like video games as much as boys do.”    

All but two students approved the stratified random sampling scheme 

employed in Survey 6, emphasizing the “good diversity in age and gender”, the 

“big variety of people” that is guaranteed by this method.  Some of the students 

praised the study because it is “random and a good representation of population.”  
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A couple used the word variability having again the connotation of sample 

representativeness to express this idea: “Good student variability – both sexes and 

all grades, therefore got good overall picture.”  Three students did point out that 

Survey 6 “assumes that each grade has equal number of students and boys and 

girls are also the same in number”, and therefore its quality depends on whether 

these assumptions hold.  In the follow-up interview, I found that students had a 

good idea of what one has to do to collect a stratified sample when the different 

strata represent unequal proportions in the population.  

The second part of Question 6 was asking students to choose among the 

six surveys their preferred one.  Almost all of the students showed preference for 

random sampling procedures.  Forty-six percent of them chose the simple random 

sampling method (Survey 2) and 38% the stratified random sampling method 

(Survey 6), arguing that giving everybody the same chance to be selected should 

result in a sample more representative of the school.  Four students (15%) choose 

a self-selected method (Survey 5 or Survey 4), with the reasoning that giving 

everybody the chance to participate would “show how many people were truly 

interested.”  No student expressed preference for a restricted sampling method. 

In the last part, which was asking students to give the best estimate of the 

proportion of children that will be buying a raffle ticket, several used their 

personal judgment and ignored the results of the surveys altogether.  For example, 

three of the students that had chosen Survey 6 did not seem to have taken the 

results of that survey into any account.  One wrote “50-50”, the second one “40% 

because less than half usually care for a particular cause”, and the third one 
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“62% will buy, 38% won’t”.  Andrew, who was this third student, said in the 

follow-up interview: “There is no way to compute it.  I just looked and estimated 

it.”  

One of the main things I investigated in the beginning of the course, was 

students’ informal understanding of issues related to sampling variation.  Several 

questions in the pre-assessment of the whole class and the follow-up interview of 

the primary group called students to make likelihood judgments involving 

stochastic events in order to get insights into their intuitive notions of randomness 

and chance variation.  In Question 8 (taken from Pfannkuch and Brown, 1996), 

students were told that a gambler has observed the ball landing on red six 

consecutive times in a roulette wheel that has 18 black and 18 red numbers, and 

were asked to predict the next outcome.  Only 20% of the students thought black 

and red are equally likely.  Most of the students (67%), excepted black to be the 

next outcome for things to balance out to better represent the population 

distribution: “If red or black have same probability then black is overdue.”  Four 

students (13%), though acknowledging the independence of random events, still 

found it hard to accept that red is as likely to come up as black: “Red or black a 

50/50 chance either way, I would bet on black though.  Seems less of a chance to 

have 7 red in a row.”  

Question 4 in the pre-assessment (adapted from Rubin et al., 1990) 

examined how students balanced the ideas of sampling variability and sampling 

representativeness.  Students were told that the Easter Bunny was distributing 

many packets of 6 Gummy Bears at the Easter Parade which he had made up by 
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grabbing handfuls of Gummy Bears out of a large vat containing two million 

green and one million red Gummy Bears.  They were first asked to estimate the 

number of green Gummy Bears in a packet.  Everyone gave “4 green, 2 red” as 

the estimate.  In the next part of the question, where students were asked whether 

they thought all kids got the expected number of greens, all of them realized that 

“not every student got exactly 4 green every time because there’s variability”.  

They intuitively understood that probability is the limiting relative frequency, 

which only approximately holds for real data:  

That is just the mathematical way of figuring it, that number will fluctuate. 

That is just the probability, the most likely not an exact answer. 

Expected ratios are a general rule, not a formula for each individual 
occurrence. 

It is nearly impossible for the ratio to hold perfectly, unless the Easter 
Bunny uses his Easter magic. 

Students recognized that random selection leads to variation: “There will 

be a variation on the pattern of green bears in each bag, because of the random 

grabbing of the beans when they were placed in the bags.”  However, when asked 

to estimate the proportion of packets with 4 greens, almost all of them 

underestimated the effect of sampling variability and greatly overestimated this 

proportion.  Only two students gave estimates that came close to 33%, the actual 

probability of 4 greens (found by modeling the situation as a Binomial 

distribution).  The estimates that the rest of the students gave, ranged from 50%-

92%.  Several students wrote that they expected 66% of the packets to have 4 

greens in them.  Rubin et al. (1990) who gave this question to high school seniors, 
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also noticed that “the population percentage itself (66%) seemed to influence their 

estimate, as they appeared to translate the preponderance of greens in the vat to a 

preponderance of people getting the representative sample.” (p. 8) 

The last part of the question reminded students that the Easter Bunny had 

started with 2 million greens and 1 million reds and asked whether they thought 

he ran out of one color long before the other one or whether both lasted until near 

the end.  Three students responded that he should have run out of red first, since 

they were fewer to start with.  All the others understood that, provided that the 

sample was “properly mixed and random”, “both should last near the end 

because when filling the bags, on average, you will have twice as many reds.”  

The conclusions drawn from this question are similar to those drawn by 

Rubin et al. (1990), who found that students answered this question by focusing 

on samples that mirrored the population proportion of 2G:1R.  They over-relied 

on sample representativeness, underestimating the frequency of samples near the 

tails of the distribution and overestimating the frequency of the modal sample. 

The tendency to underestimate the effect of sampling variability and 

expect small samples to match population properties was also witnessed in 

Question 9 of the pre-assessment, taken from Garfield and delMas (1990).  The 

question described how a worker of a student organization went about conducting 

a survey at a certain college where half the students were women and half were 

men and the several measures he took to ensure good representation of all 

students.  Students were told that out of the last 20 students interviewed, 13 were 

women and 7 were men and were asked whether they thought there would be 
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more women or more men in the next 20 students interviewed.  Only 35% chose 

response C which stated that one should expect about an equal number of men 

and women, since who has been selected so far does not affect who will be next 

selected.  Thirty-two percent of the students argued that since more women than 

men were selected so far, they expected the opposite trend to start happening 

(Response B).  Another 16% tried to find causes behind a difference that, given 

the small number of people interviewed this far, could be easily explained by 

chance variation (Response A).  Another 10%, employing the “law of small 

numbers”, thought that since the trend till now has been more females than males, 

this trend should continue (Response D).  Two students chose E and gave 

explanations suggesting reasoning similar to that of students choosing D. 

The tendency to underestimate the role of chance variation was also 

partially observed in student responses to Question 5 of the pre-assessment 

(adapted from Pfannkuch and Brown, 1996): 

On average there are 600 deaths due to traffic accidents each year in a city.  A 
person in the city observed the following: 
February Number of deaths 
Week 1:                      3 
Week 2:                      12 
Week 3:                      21 
Week 4:                      14 
March 
Week 5:                       2 
Assume that none of these weeks contain a holiday weekend.  Suppose the 
headlines in the newspaper claimed that week three was a "disastrous" week and 
police reported that speed was a factor.  The next week was described in the 
papers as more evidence that the city driving was deteriorating.  At the end of 
week five the police congratulated themselves for the low death rate - their extra 
patrols had succeeded.  What would you say to this person? 
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Some of the students in the class saw chance variation as the mere cause 

of the low rate of deaths in Week 5: “Real life occurrence has a high variability.  

Deaths don’t occur on a quota or required rate.”  A couple of students noted that, 

before congratulating themselves, the police should “take a look and see that 

there was a similarly lower death rate in the first week of February as well.”  

Several students pointed out that the number of weeks was too small and one 

should “wait to see what the results are for the next few months before jumping to 

a conclusion”.  About half, however, of the students in the class gave quite 

deterministic responses and tried to find reasons to explain the drop in the death 

rate: “Patrols may have slowed drivers down by giving them tickets.  Many 

drivers may have been reading the papers and decided to slow their driving; not 

drive so fast.”  Anna was one of the students who thought there must be some 

reason for the drop in the number of accidents.  In the follow-up interview, she 

repeated this conviction:  

3 to 21 is also is a big difference.  All of a sudden it just sky-rocketed and 
then all of a sudden it just dropped, so you want to hope that more patrols 
helped but there is a bunch of other reasons.  They cut down on speed, but 
may be they didn’t cut down on that…drunk driving and other things.  

Unlike the deterministic mindset with which many students approached 

the two previous questions, in the follow-up interview I found that students were 

much more willing to acknowledge the role of chance variation in the following 

question: “A fair coin is tossed 50 times resulting in 27 heads.  Two days later it 

is tossed again 50 times resulting in 30 heads.  What do you think of the results?”  

Similarly to the Pfannkuch and Brown (1996) study, everyone found the results to 
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be non-surprising.  Anna, for example, said this time that neither of the two 

outcomes sounded suspicious and that “even 20 heads are fine because you know, 

you’ve got to give yourself some variation in there.”  That students’ 

understanding of probability is more limited in real-world contexts than in the 

contrived context of standard probability tasks, was also observed in their 

responses to three other questions posed during the follow-up interview to 

investigate intuitive understanding of the effect of sample size on variation.  One 

of these questions (from Pfannkuch and Brown, 1996) was the following: 

 
Every year in New Zealand approximately seven children are born with a limb 
missing.  Last year the children born with this abnormality were located in New 
Zealand as shown on the map.  What do you think, given that one-third of the 
population lives in the top region and one-sixth of the population in each of the 
other regions? 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 – New Zealand Task 

Pfannkuch and Brown (1996) found that students’ understanding of 

variation in small samples was very poor in this context.  Whereas an analysis 

combining both probabilistic and deterministic thinking would have been more 

appropriate, all of the students interviewed gave deterministic explanations, and it 
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was only after repeated probing that some suggested the need for more data.  My 

findings are very similar.  I observed very strong deterministic reasoning in all of 

the students.  George, for example, “wouldn’t want to live in the middle of New 

Zealand”, and Julie was convinced that there must be an outside factor causing 

the difference: “There is always a chance that anything can happen but, 3 and 0 

in the other…there must be a reason for that.”  

Pfannkuch and Brown (1996) conjectured that students’ neglect of 

probabilistic thinking might be the rich experience they have with similar 

controversial data’s often appearing in the media and seldom being explored from 

a statistical perspective.  When asked what they think of the possibility of 

obtaining the outcome {3,3,3,4,4,5,5} (order unimportant) when rolling a fair die 

7 times, no student found such an outcome surprising.  They approached this 

problem very differently from the New Zealand one although it is analogous – 

obtaining 1 or 2 on the die corresponds to the top region of the map where one-

third of the population lives, and obtaining a 3,4,5, or 6 corresponds to each of the 

other regions.  Similarly, in the follow-up interviews I conducted, students found 

such a result pretty likely due to the small sample size that allows extreme 

outcomes: “I think nothing of the results.  After a thousand throws each number 

will be picked around 1/6 of the total throws.”  

The different way in which students approach the two problems indicates 

how much more prone we are to look from a stochastical perspective at standard 

probability tasks than problems situated in real-life contexts (Pfannkuch and 

Brown, 1996).  Students are not completely wrong since a lot of other factors 
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besides chance might influence the occurrence of birth defects, but they should 

still realize that 7 children is too small a sample for drawing conclusions.  They 

should have shown the same sensitivity to the effects of sample size they showed 

in the “Child Psychologist Question” (from Garfield and delMas, 1994).  In that 

question, students were asked to judge the validity of conclusions drawn by a 

child psychologist who, after studying 5 infants and finding that 4 showed 

preference for the one toy, concluded that most infants would show a preference 

for this toy.  Every single student interviewed challenged the psychologist’s 

conclusions.  Tim for example said: “4 out of 5, I know it’s good for like 4 out of 

5 dentists prefer this kind of toothpaste, whatever on the commercials, but I would 

say you need at least a 100 kids...I could get my 5 sons and persuade 4 of them.”  

His response comes in sharp contrast to how he responded to the “Map of New 

Zealand” question: 

Int.: Just by looking at the map, do you see any connection between where 
one lives and how many kids are born with a missing limb? 

Tim: Oh, yeah.  They correlate because the 1/3 that lives there has 0 
because probably there are more doctors and more hospitals and only 1/6 
lives there, so there must be something going wrong there.  So yes, there 
has to be a reason. 

Int.: Do you see that the numbers are small?  Do you think this is 
something you should take into account? 

Tim: Why? 
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CONCLUSIONS 

The general conclusion that can be drawn by looking at students’ responses to the 

pre-assessment, is that they had some sense of variation and of the statistical tools 

used to deal with it, which however was murky: 

• They recognized that low variability could be a good or bad quality 

depending on the context of the situation.  

• They made remarks indicating some knowledge of quality control 

processes. 

• They could notice the difference in the amount of variability between 

two sets of scores having the same mean.  

• They had poor understanding of histograms and bar graphs:  

(i) Many did not seem aware of the data reduction involved; 

(ii) Most were unable to relate features of the distribution with the 

shape of the graph; 

(iii) A sizable proportion gave the wrong response to a question 

asking them to look at the histogram of two distributions and 

figure out which of the two distributions has more variability.  

All students understood that different samples from the same population 

can (and usually do) vary.  They realized that the sample mean is not the same 

thing as the population mean and nobody expected the two to be exactly equal.  

All students also intuitively understood that larger random samples tend to 

produce better estimates and stressed that the larger the sample size, the more 

representative it will be of the population. 
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Although students did recognize the existence of variation among samples, 

they tended to underestimate its effect.  This tendency, which was more prevalent 

in real world-contexts, indicates limited understanding of randomness and makes 

it difficult for students to differentiate between chance variation in the data and 

variation due to some form of underlying causality.  Despite the fact that students 

seemed to intuitively understand the dangers of drawing conclusions from small 

samples, when asked to make judgments about real-life situations, they ignored 

these dangers and did not hesitate to use small samples as a basis for inference 

and generalizations.  For problems posed in real-world contexts, students seemed 

to expect small samples to resemble the population from which they are sampled, 

erring thus towards the deterministic side.  However, when real-world context 

was removed, students were comfortable thinking probabilistically.  They 

responded correctly to typical coin toss problems and appeared to be, in this 

context, comfortable with the notion of long-run relative frequency. 

Question 6 was an adapted version of one of the tasks Jacobs (1997) gave 

to 110 fifth graders.  As it has already been pointed out in the literature review, 

Jacobs found that although children did not like restricted sampling methods, they 

evaluated positively self-selected methods.  In addition, whereas children liked 

stratified random sampling because it allowed them to specify the mixture of the 

sample, they mistrusted the “unknown nature” of simple random samples.  When 

asked to indicate their preferred sampling method, 3.6% preferred restricted 

sampling, 39.1% self-selected sampling, 37.3% stratified random sampling, and 

only 5.5% simple random sampling.  Finally, even when able to identify potential 
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for bias for individual surveys, children often ignored survey quality when 

drawing conclusions from multiple surveys.  Comparing Jacob’s findings with 

those of this study, we see that older students are much more likely to recognize 

the potential for bias in self-selection, but that still there were several students 

either ignoring or not identifying this potential.  The mistrust of simple random 

sampling’s ability to produce a representative sample was to some degree also 

observed in several students.  In general, however, students evaluated simple 

random sampling much more positively than children in Jacobs’ study, since they 

chose Survey 2 more frequently than any other survey as their preferred method.  

However, we noticed similarly to Jacobs’ study that several students ignored 

survey quality when drawing conclusions from multiple surveys, although they 

had made correct judgments about the relative quality of data drawing from which 

of those surveys. 

IMPLICATIONS FOR INSTRUCTION: FURTHER ELABORATION OF THE 
CONJECTURE 

In Chapter III, I gave a description of the “Variation as the central tenet of 

statistics instruction” conjecture, which was based on the literature review and on 

previously conducted personal research.  Here, I briefly describe how insights 

gained from the pre-assessment and the follow-up interviews, led to further 

elaboration of the conjecture and consequently the instructional program.  

Because we viewed “learning [as] a process in which students reorganize their 

thinking to resolve situations that are problematic for them” (Jones, Thornton, and 
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Langrall, 1997, p. 43), we utilized the information gained to ensure instruction 

was adopted to the students’ existing experience and their pre-knowledge. 

Statistical Thinking is Contextual 

Students’ assessment prior to instruction as well as the research literature, 

indicate that students’ thinking about the stochastic is “linked to a complex web 

of personal, social and contextual factors” (Gordon, 1997, p. 146).  It is not only 

probabilistic reasoning that drives students’ thinking about the stochastic, but also 

impressions, prior beliefs, and expectations.  The pre-assessment has revealed the 

“manifold nature of probabilistic thinking.” (Jones et al., 1997, p. 42) 

In the increasingly many sectors of society relying on data, the purpose of 

statistical investigation is to help inform decisions and actions by expanding the 

existing body of context knowledge about the situation under study.  Therefore, 

“the ultimate goal of statistical investigation is learning in the context sphere” 

(Wild and Pfannkuch, 1999, p. 225).  This means much more than collecting new 

information, it also involves synthesizing new information and new ideas with 

existing ones in order to gain improved understanding that can then inform 

decisions and actions (Wild and Pfannkuch, 1999).  Thus, we need a re-evaluation 

of the position that teaching strategies applicable to any particular area of 

application results through “immersion in the subject matter area, through careful 

study of statistical applications in that area” (Breslow, 1999, p. 253), since 

statistical thinking ought to take place within a context.  Neither is the usual 

panacea for “teaching” statistical thinking to students by “let[ting] them do 

projects” (Wild and Pfannkuch, 1999, p. 224) adequate, although it does give 
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students the opportunity to experience more of the breadth of statistical 

investigations.  As Wild and Pfannkuch (1999) stress, “the cornerstone of 

teaching in any area is the development of a theoretical structure with which to 

make sense of experience, to learn from it, and to transfer insights to others” 

(Wild and Pfannkuch, 1999, p. 224).  In the next section, I lay out the theoretical 

structure that the instructional program described in this study aimed at helping 

students develop.  At the same time, I give a general overview of the path that, at 

the beginning of the course, we conjectured instruction should follow in order to 

optimize the possibility of development of this theoretical structure. 

Variation as the Central Tenet of Statistical Thinking 

Statistical thinking is concerned with learning and decision-making under 

uncertainty.  Variation is a critical source of uncertainty.  It is the fact that all 

processes vary which creates the need for statistics.  It is the need to deal with 

variation through measurements that provides a (numerical) basis for comparison 

that produces data (Snee, 1999).  We use statistical tools to analyze this data and 

observe the pattern that exists despite (or because of) the variation.  Thus, 

according to Snee (1999), the elements of statistical methods are variation, data, 

and statistical tools.  Understanding of variation and using this understanding to 

improve the performance of processes is the core competency and it should be the 

focus of statistical education, research, and practice (Snee, 1999).  Understanding 

what data is relevant and how to construct proper methods of data collection and 

analysis enhances successful application of this core competency (Snee, 1999). 
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Defining Statistics Instruction in Terms of Variation 

The central thus element of statistical thinking is variation, and instruction 

should aim to provide students with the skills necessary to be able to notice and 

acknowledge it, to explain and deal with it.  But, if variation is indeed to be “the 

standard about which the statistical troops are to rally” (Wild and Pfannkuch, 

1999, p. 235), we have to arrive at a common conceptualization of statistics 

instruction in terms of variation.  Wild and Pfannkuch (1999) offer the following 

three “variation” messages as a starting point: (1) variation is omnipresent; (2) 

variation can have serious practical consequences; and (3) statistics give us a 

means of understanding in “a variation-beset world”.  The subsequent messages 

of the statistics classroom provide information about tools and methods statistics 

offers to help us make sense of the omnipresent variation. 

1. Omnipresence: Variation is an omnipresent reality that affects all 

aspects of life and everything around us.  In addition to variation inherent to 

almost any process, whenever we collect data we supplement process variation 

with variation produced by the data collection and measurement systems (see 

Figure 4.6). 
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Figure 4.6 – Sources of Variation (from Wild and Pfannkuch, 1999) 

2.  Practical impact: Once we have established the omnipresence of variation, we 

have to demonstrate its practical impact on peoples’ lives.  Students have to 

understand that “it is variation that makes the results of actions unpredictable, that 

makes questions of cause and effect difficult to resolve, that makes it hard to 

uncover mechanisms” (Wild and Pfannkuch, 1999, p. 235).  There are three 

rational responses to variation in a system and Figure 4.4, taken from Wild and 

Pfannkuch (1999) depicts them.   
 
 

     Anticipate   Change system/ 
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Figure 4.4 – Practical Responses to Variation (from Wild and Pfannkuch, 1999) 

In some cases, we can ignore variation, pretending that it does not exist 

(e.g. pretend that every object is the same or differs in a deterministically known 

way).  This, in some circumstances, works wonders.  For example, applied 

mathematics and all its fields of application have made dramatic advances by 

modeling deterministic variation (Smith, 1999).  In other cases, we might decide 

to investigate the existing pattern of variation and come up with ways to deal with 

it, to allow for it.  For example, at the design stage of quality management 
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approaches to manufacturing they do this when they try to design a product 

“‘robust’ to the uses and conditions it will be subjected to (Wild and Pfannkuch, 

1999).  Finally, we might try to control the system and change to something more 

desirable its pattern of variation by identifying manipulable causes of the 

variation and controlling them through external treatments.  For example 

manufacturing quality control processes, and much of the medical research have 

this purpose (Wild and Pfannkuch, 1999). 

3.  Use of statistical tools to model and understand variation: Whenever we cannot 

ignore variation, but we have to allow for it, or even control it, statistics comes to 

our rescue.  It provides us with tools to measure and model variation for the 

purposes of Prediction, Explanation, or Control (Wild and Pfannkuch, 1999).  

Control is when the pattern of variation is changed to something more desirable.  

Prediction is what provides the main source of information to allow for variation.  

Explanation, i.e. gaining some understanding of why different units respond 

differently, improves the ability to make predictions and at the same time is 

necessary for control. 

Probability  

Probability is the relative limiting frequency of an event.  However, the 

theoretical statement that P(Head on next toss)=1/2, “seems to be in sharp 

contrast to the intuitively felt inability to make specific predictions on this 

outcome” (Borovcnik, 1990, p. 7).  Students coming to the statistics class have 

already experienced the highly fluctuating and irregular pattern of “Heads” and 

“Tails” in sequential coin tosses.  They might have already unsuccessfully tried 
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some idiosyncratic strategies and this might have led them to conclude that there 

is lack of any substantial knowledge that could help improve one’s situation 

(Borovcnik, 1990).  Thus, they might not be able to clarify at the intuitive level 

how the statement P(Head on next toss)=1/2 can be the answer to the “real” need 

of making a prediction for the next outcome (Borovcnik, 1990).  At the same 

time, their urge to order this chaos, to overcome the uncertainty, might activate 

“different mathematical “theories”, causal links, logical patterns, or even 

astrological links (or a combination of several of these)” (Borovcnik, 1990, p. 8). 

The assumption underlying stochastic experiments of being repeatable 

under the same conditions causes a lot of confusion on students, who might try to 

find causal explanations: “Now, what differentiates a stochastic experiment from 

a physics experiment?  Why do probabilists not study the physics of coin tossing 

and end up with such statements such as ‘If you toss a coin at that angle, with that 

speed, with…, then it will turn up “heads’?” (Borovcnik, 1990, p. 8).  Conversely, 

students might attempt to search for a logical pattern.  Such an approach “is 

highly interwoven with magic belief and astrology (the law of series, a change is 

overdue etc.), and the search for the signs to detect this early enough” (Borovcnik, 

1990, p. 8).  Searching for patterns is a very intuitive strategy, similar to that 

employed by children when learning a language.  It is often encouraged in 

mathematics teaching.  We saw manifestations of both logical and causal 

reasoning in several questions of the pre-assessment.  

What we observed in the pre-assessment was students’ tendency to over-

rely on sample representativeness.  We had students reasoning in terms of 
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patterns, but failing to conceptualize the chance involved in those patterns and 

hence exaggerating the information given.  In the “College Interviewer” question, 

for example, we saw many students viewing the distributions of males and 

females in the small sample drawn as an accurate reflection of the college student 

population.  The missing aspect of uncertainty took the form of the student’s 

failure to recognize how chance enters into the sample.  In the “Roulette Wheel” 

question, we witnessed the Gambler’s Fallacy, which denotes the expectation of 

local correction to random fluctuation in a sequence.  In questions such as the 

“Map of New Zealand” one, many students assumed fluctuations in the data must 

be causal and proceeded to develop causal explanations. 

Statistics instructors try, either through mathematical derivations or 

through simulations, to help students understand the law of large numbers.  They 

want students to understand that, in the long-run, relative frequencies vary around 

the value of ½ and that, since the next trial is representative of the system under 

study, one could utilize the knowledge provided by the law of large numbers to 

predict the next outcome.  Nonetheless, “this is not an easy secondary intuition: it 

is a whole bulk of images which is put together…shortcuts to it, or less carefully 

prepared ways to these intuitions, might lead to wrong associations” (Borovcnik, 

1990, p. 8).  Unless instruction establishes direct links between the intuitive and 

theoretical level, students’ understanding of probabilistic concepts will be 

impoverished.  Pfannkuch and Brown (1996) also argue that an effect of the clash 

between students’ intuitions and probabilistic reasoning might be that students 

learn to distrust their intuitions, but because they do not actually understand why 
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they are wrong, return back to them.  We might, for example, have students make 

claims such as that a “Tail” should follow the series HHHHH “in order to get the 

relative frequencies nearer to the value of ½ of the probability statement, as ‘the 

law of large numbers suggests’.” (Borovcnik, 1990, p. 8). 

The literature review as well as the pre-assessment findings suggest a clear 

tendency of erring toward the side of attributing too much to deterministic 

causality, and failure to appreciate the extent to which chance operates in what 

one experiences in the world.  It is then crucial for students to understand the idea 

that “chance variation, rather than deterministic causation, explains many aspects 

of the world” (Moore, 1990, p. 99).  This is a fundamental idea for students’ 

effective handling of data-based curricula, as well as their adequate interpretation 

and prediction of patterns outside of school.  Instruction should promote the 

development of secondary intuitions that clarify how stochastic thinking is related 

to logical thinking and causal thinking, both of which often seem to be intuitively 

more convincing for students than stochastic thinking (Borovcnik, 1990). 

Variation, Causation, and Probability  

Viewing as a negative quality students’ intuitive tendency to come up with 

causal explanations for any situation they have contextual knowledge about, is an 

attitude that will not take us far in our efforts to help students improve their 

intuitions of the stochastic.  Since most real-world problems are embedded in a 

desire to improve something by identifying and controlling causes, we should 

rather view this impulse of students to find causes for phenomena as a positive 

resource (Wild and Pfannkuch, 1999).  Probabilistic thinking should not be seen 
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as an alternative to deterministic thinking, but as “something to be grafted on top 

of the natural thinking modes that directly address the primary goal” (Wild and 

Pfannkuch, 1999, p. 238).   

Statistics instruction should by no means underestimate the fact that 

conducting any study to uncover possible causal factors always “proceeds from 

ideas about profitable places to look, ideas which draw almost exclusively on 

context-matter knowledge and intuition” (Wild and Pfannkuch, 1999, p. 238).  

The important point that instruction should make is that, “while on the one hand 

variation may obscure, it is the uncontrolled variation in a system that typically 

enables us to uncover causes” (Wild and Pfannkuch, 1999, p. 236), by looking for 

patterns in the variation.  Students should understand that “the randomized 

experiment is the most convincing way of establishing that a mooted relationship 

is causal” (Wild and Pfannkuch, 1999, p. 238).  Statistics helps us in our search 

for relationships and causes by allowing us to translate ideas into variables to 

measure, and providing us with methods for appropriate data collection and 

analysis: 

Solving most practical problems involves finding and calibrating change 
agents.  Statistics education should really be telling students something 
every scientist knows: “The quest for causes is the most important game in 
town”.  It should be saying, “Here is how statistics helps you in that quest.  
Here are some general strategies and some pitfalls to beware of along the 
way…” It should not just be preventing people from jumping to false 
conclusions but also be guiding them towards valid, useable conclusions. 
(Wild and Pfannkuch, 1999, p. 238) 

Instruction that ignores students’ prior context-knowledge and intuitions 

will not take us far from formal knowledge (even that quite shaky as the research 
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literature suggests) of statistical methods and procedures with no connection 

whatsoever to reality.  One does not measure and model variation in a vacuum but 

for a purpose which influences how this is done, and thus statistical tools should 

be taught in context (Wild and Pfannkuch, 1999).  Statistical thinking is not a 

separable entity but a synthesis of statistical knowledge, context knowledge, and 

the information in the data in order to produce implications, insights and 

conjectures (Wild and Pfannkuch, 1999).  It always necessitates a 

complementarity of theory and experience: 

One cannot indulge in statistical thinking without some context 
knowledge.  The arid, context-free landscape on which so many examples 
used in statistics teaching are built ensures that large numbers of students 
never ever see, let alone engage in, statistical thinking.  One has to bring 
to bear all relevant knowledge, regardless of source, on the task in hand, 
and then to make connections between existing context-knowledge and the 
results of analyses to arrive at meaning. (Wild and Pfannkuch, 1999, p. 
228)  

From Association to Causation 

In order to provide students with the tools necessary to make valid 

judgments when moving from association to causation, statistics instruction needs 

to supply them with more than the advice “correlation does not imply causation”.  

This advice is nothing but a “‘Hey, not so fast’ warning” (Wild and Pfannkuch, 

1999, p. 240).  The search for causes does not need to be explicitly taught since it 

comes naturally to people.  On the other hand, the tendency to “challenge the 

causal assumption, whether our own or somebody else’s”, to “rack our brains for 

other possible explanations and for strategies for testing these explanations” (Wild 

and Pfannkuch, 1999, p. 240), are dispositions which come naturally to only very 
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few people.  Thus, instruction should put much more effort towards helping 

students realize that the best way to search for real, non-ephemeral causes, is 

through an in-depth study and not just by looking among recent changes for a 

cause (Wild and Pfannkuch, 1999). 

Statistics instruction should be aiming at developing in students “a healthy 

skepticism and the imagination needed for alternative explanations” (Breslow, 

1999, p. 253).  These dispositions can be taught by gaining experience and seeing 

ways in which certain types of information turn out to be false and unsoundly 

based.  Also, learning possible threats to the reliability of a study, is something 

that can be (and is usually) taught.  Instruction should encourage students to adopt 

a critical attitude whenever receiving new ideas and information.  This critical 

attitude means being constantly on the outlook for logical and factual flaws, and it 

includes learning to counteract the human tendency to be less judgmental of 

results that agree with their predispositions, expectations, and worldviews.  A 

balance of stochastic and deterministic reasoning, also needs to be supplemented 

by logical reasoning in order to arrive at valid conclusions.  Skepticism needs to 

be accompanied by the ability to reason from assumptions to implications, which 

should then be checked against the data (Wild and Pfannkuch, 1999). 

Students know from everyday experience that even when studies are 

conducted under very similar conditions, they will give results which are different 

in detail, that the patterns observed in one study will never appear identically the 

same in another study.  What instruction should stress is that statistical strategies, 

based on probabilistic modeling are ways we can use to solve the problem of 
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distinguishing between genuine patterns and ephemeral patterns that are part of 

our imagination.  Students should come to view probability and statistical 

inference as ways we can use to counteract our natural tendency to view patterns 

even when none exists: 

As statistician (and zoologist) Brian McArdle put it so vividly in a 
personal interview, “The human being is hard-wired to see a pattern even 
if it isn’t there.  It’s a survivor trait.  It lets us see the tiger in the reeds.  
And downside of that is that our children see tigers on the wall.”  It is not 
entirely true that no patterns appear in purely random phenomena.  These 
patterns are real to the brain and in the sense that we can recognize 
features that would help us reproduce them.  However, such patterns are 
(i) ephemeral, and (ii) tell us nothing useful about the problem under 
study.  In other words, they are meaningless.  Part of our reasoning from 
random models is to say that we will not classify any data-behavior as 
“enduring” if it closely resembles something that would happen 
reasonably frequently under a purely random model. (Wild and 
Pfannkuch, 1999, p. 240) 

Statistical methods were developed by people in order to help filter out 

any “signals” in data from surrounding “noise".”  The “signal” is the messages, 

the meanings we find in explained variation, the patterns that we have not 

discounted as being transient.  The unexplained variation is the variation, the 

“noise” that remains after we have “removed” all patterns.  Although there might 

be multiple causes for unexplained variation, we are not able to detect them since 

we do not see any structure, thus we use probability to model it, assuming it had 

been randomly generated.  Even if random sampling was used, although there will 

be an element of randomness in the noise, unexplained variation will also 

typically include measurement error and components of the variation in the 

original process which we do not know whether they behave randomly or not.  
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Thus, randomness is a “human construct” developed to deal with variation for 

which patterns cannot be detected and make accuracy predictions.  It is “all part 

of an attempt to deal with complexity that is otherwise overwhelming.” (Wild and 

Pfannkuch, 1999, p. 241)  

Assuming that the data was randomly generated according to the model, 

we can then use probability as the link between the data and the 

population/process it originated from.  Every model is essentially an 

oversimplification of reality and it involves loss of information, but the hope is 

that we have caught the essential dynamics of the problem.  How successful 

probability models are, depends on their practically, and their potential to give 

useful answers to our questions.  In order to be able to use probability models, 

students need to be able to recognize situations in which it would be appropriate 

and useful to use them.  They also need to now how to build and fit an appropriate 

model, and draw conclusions from it.  Deducing implications from model 

involves some understanding of the behavior of random models. (Wild and 

Pfannkuch, 1999) 

The Behavior of Random Phenomena  

Since probability theory was developed as a means to model and describe 

phenomena for which no patterns can be discerned, “what probability is can only 

be explained by randomness, and what randomness is can only be modeled by 

means of probability” (Steinbring, 1990, p. 4).  Stochastical knowledge is created 

as “a relational form or linkage mechanism between formal, calculatory aspects 

on the one hand, and interpretative contexts on the other”(Steinbring, 1990, p.5).  
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However, the classroom culture often comes in sharp contrast with this 

conception of stochastical knowledge as being developed through a “self-

organized” process that balances the objective aspects of a situation and the 

formal means employed to model and describe it.  The linear, completely 

elaborated and hierarchical structure of knowledge presentation characterizing 

many statistics curricula and instructional approaches, encourages the 

development of the chance concept as a concrete, totally clear and unambiguous 

generalization defined by methodological conventions: 

There is an effort to give a clear-cut definition of the “basic concept of 
chance” as early as possible.  Thus, for instance, textbooks define: “If 
results cannot be predicted with certainty, but will happen by chance, we 
speak of chance experiments.”  In the curriculum, the concepts of 
“probability” and of “chance” are not organized under a dynamical 
perspective, but under a static one as ready-made elements. (Steinbring, 
1990, p. 8) 

Steinbring (1990) analyzed teaching episodes from several different 

classrooms in order to see how the concept of chance was introduced.  The basic 

pattern he observed in all of those episodes was that “chance” was first introduced 

through performing and discussing a chance experiment.  An attempt was then 

made to describe the experimental outcomes using a rule or a simple stochastical 

model.  Of course, there was always variation observed between the theoretical 

predictions and the empirical data.  The pattern of justification for the variation, 

regardless of its size, always was that the observed difference between the 

empirical result and the theoretical prediction was produced by “chance” 

(Steinbring, 1990).  The difference between theory and experiment was thus 

neutralized: “Chance degenerate[d] into a substitute for justification, which 
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serve[d] to deny the importance of the difference between theory and empirical 

facts in probability.” (Steinbring, 1990, p. 14) 

As Biehler (1994) points out, shifting from individual cases to systems of 

events, is a fundamentally new idea for many students.  Moving from an 

individual event to a system of events, “can reveal new types of knowledge, new 

causes, explanations and types of factors that can not be detected at the individual 

level also in many cases where a causal analysis of individual events would be 

informative” (Biehler, 1994, p. 13).  However this “picture of a deterministic 

dependence of long run distributions from conditions in contrast to the 

problematic individual level” (Biehler, 1994) has a basic limitation when applied 

to everyday statistical analysis.  When drawing inferences from samples, we have 

knowledge about an intermediate level where, due to the variation present in any 

finite sample size, conditions do not determine the sample completely (Biehler, 

1994). 

Instead of emphasizing individual irregularity, it is more constructive to 

promote in students a way of thinking that perceives a (probability) distribution is 

based on some conditions, which when changed might lead to changes in the 

distribution (Biehler, 1994).  Such an approach, which Biehler (1994) calls 

“statistical determinism”, is especially useful for dealing with more realistic 

situations: “Playing roulette with its well-defined chance structure is much 

different from individual risk assessment, where no unique reference set (system) 

exists” (Biehler, 1994, p. 13).  Students should understand that we can analyze 

causes of why an individual event took place, but at the same time realize that we 
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can get something from the transition to a system of events that we cannot get if 

we just focus on the individual level.  This complementarity of individual and 

system level, which is usually suppressed by instructors, who call attention only 

to the systems level, is more intuitively convincing and more productive: 

Let us take traffic accidents as another example: We can provide some 
causal explanation at the level of individual accidents in every instance.  
We can aggregate data for a longer period, however, and analyze how the 
number of accidents changed over the years, how different it is on 
weekdays and weekends, whether there is some seasonal variation.  The 
aggregation makes changes in boundary conditions detectable, which may 
not be detectable at the individual level.  Aggregating individual data or 
dissecting aggregated data are basic concepts that gain their importance 
from the above perspective. (Biehler, 1994, p. 14) 

As Steinbring (1990) maintains, instruction can indeed begin with the 

preliminary notion of chance as that which is “opposite of causal laws”, since this 

description is a direct continuation of intuitive ideas of chance.  This preliminary 

interpretation does depend on the relation between theory and experiment, and is 

in accord with the definition that real chance events do not occur with absolute 

certainty but only with a certain probability (Steinbring, 1990).  However, how 

instruction moves from here needs to be carefully thought out.  These intuitively 

convincing ideas open a direct connection between randomness and probability, 

but at the same time open relations to everyday notions of chance such as that of 

having good or bad luck.  The students in the pre-assessment who argued that 

with random sampling one could not make predictions about the likely outcome 

of a study since everything is possible, seemed to hold this view. 
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Instruction often fails to help students move beyond the intuitively based 

idea of chance towards the right direction.  Doing stochastic experiments and 

evaluating experimental outcomes provides a socially constituted teaching context 

that opens up two main possibilities for further development of the chance 

concept.  The first possibility is what is typically observed in classrooms: “a 

narrowing reduction of the chance concept to a formalized, conventional label” 

(Steinbring, 1990, p. 17).  Often stark contradictions between theoretical 

prediction and empirical observation are justified as being the result of “chance” 

in the naïve sense.  The second possibility is for instruction to broaden the chance 

concept “to become a means of analyzing the relation between experimental 

situation and stochastical model” (Steinbring, 1990, p. 17).  Rather than 

maintaining the prevailing concept of chance as that of irregularity, instruction 

could help develop it further by bringing to students’ attention the fact that the 

occurrence of a very rare and improbable event might indicate that there is 

something wrong with either the experimental conditions or the model. 

It is this second possibility that the statistics course should exploit in order 

to help students develop the theoretical nature of this concept in an appropriate 

way.  Development of the chance concept can be first examined through the 

notion of statistical independence which, according to Steinbring (1990) is “a 

theoretical generalization of the intuitive chance concept and it introduces a first 

differentiation between object [experimental situation] and sign [stochastical 

model] in elementary stochastics” (p. 17).  However, unlike conventional 

instruction which reduces the chance concept to “a universal object for explaining 
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the connections between outcomes of an experiment and the theoretical 

prediction”, it should take advantage of the contributions offered by students “to 

unfold and differentiate the development of this concept” (Borovcnik, 1999, p. 4).  

Probability should not be presented as a body of theory free of any concrete 

interpretations.  Particular attention should be paid to the relation between 

stochastical theory and empirical outcomes.  The role of chance should be “lifted 

out of naïve magical thinking to become a theoretical concept in scientific 

stochastical thinking”, it should change to that of a device for controlling the 

underlying connection between the stochastical model and the experimental 

situation (Steinbring, 1990, p. 18).  Contradictions between theoretical arguments 

and empirical results should not overlooked: 

An empirical outcome is not only a specific, concrete result of a quasi 
deductive experimental process, but it can be seen as a generalized 
outcome in the range of many possible outcomes and in this way may give 
rise to an inversion of the question of justification: Is it necessary to 
modify some basic assumptions or experimental conditions of the whole 
process?  In principle, all elements of the whole process have to be 
questioned when a very rare event is observed. (Steinbring, 1990, p. 18)  

In order to move stochastical knowledge beyond mere methodological 

conventions “completely pre-constructed by the teacher’s methodical intentions” 

(Steinbring, 1990, p. 21), classroom processes and interactions should adopt “a 

proper knowledge-epistemology” that takes the metaphor of “self-reference” 

seriously.  Experiments performed in the classroom and computer simulations 

should be perceived as fundamental sources for the students and not simply as 

motivations for step-by-step teaching of the teacher’s intended goals (Steinbring, 

1990).  The self-referent epistemological structure of stochastical concepts should 
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also be reflected in the social process of the classroom.  Stochastical knowledge 

necessitates direct subjective decisions and interpretations, and it is only through 

increased involvement by the learner that learning will become powerful: 

The learning subject has to decide how to take the statement: “There is 
something wrong in the relation between theoretical model and empirical 
observation!”  It is the self-referent character which makes knowledge 
alive and offers the learning subject participation in this developmental 
process.  Such an understanding of theoretical knowledge will permit the 
re-establishment of an appropriate balance between objective and 
subjective aspects of knowledge in processes of teaching, learning and 
understanding. (Steinbring, 1990, p. 21)  

Such an approach, of lifting chance from “a naïve intuitive concept, which 

only is defined negatively as non-existing regularity” (Steinbring, 1990, p. 18), to 

a theoretical concept that calls for careful analysis of experimental conditions and 

theoretical assumptions, lays solid foundations for the development of the most 

important stochastical concepts: 

Future advanced stochastical techniques and concepts can be used in a 
way of self-application or of feedback to re-analyze the experimental 
situation of the actual classroom teaching: According to the Bernoullian 
model, the outcome of the game played by the students…probability less 
than 0.1%=> plausible to assume discrepancy between assumptions 
underlying model and actual performing of experiment. (Steinbring, 1990, 
p. 18) 

There is a need for intuitive representations to help students see “the 

fundamental relationship between chance and regularity, between irregular, 

unpatterned phenomena on the one hand, and the mathematical intentions to 

model and describe them in a regular and formal way on the other” (Steinbring, 

1990, p. 3).  Students have to come to view theory of probability as an attempt to 
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attain a certain degree of certainty in contexts where “it is no longer possible to 

advance certain predictions about future events on the basis of strictly causal 

linkages” (Steinbring, 1990, p. 2).  We began the teaching experiment in the hope 

that the path we had decided to follow, which was based on both the research 

literature and the assessment of student knowledge prior to instruction, would 

help build connections between formal mathematical expressions of the stochastic 

and everyday informal intuitions.  In the next chapter, I describe the teaching 

experiment and how it led to further modifications of the conjecture.  I give a 

brief description of some teaching episodes and class activities which are 

characteristic examples of how the course was organized, as well as some 

examples of how the continuous monitoring, both formal and informal, of student 

thinking shaped instruction and re-defined the conjecture. 
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Chapter V: The Teaching Experiment 

INTRODUCTION 

The chapter begins with a brief description of the classroom culture, and 

how it supported students’ grasp and utilization of big ideas related to variation.  I 

then describe some teaching episodes and class activities characteristic of how the 

course was organized and how the meaning of main statistical concepts was 

constituted in social interaction.  I also try to give some examples of how the 

continuous monitoring, both formal and informal, of student thinking shaped 

instruction. I also outline and discuss the findings from the assessment given at 

the end of the course and the follow-up interviews of the primary group.   

CLASSROOM SETTING 

The classroom setting was such that it encouraged “statistical 

enculturation”.  The instructor’s knowledge and behavior contributed towards the 

creation of an authentic model of the “statistical culture” (Biehler, 1999).  It was a 

setting that modeled realistic statistical investigations, and in which statistical 

dispositions such as appreciation of data were valued and nurtured.  Instead of 

following the now common approach of progressing from data analysis, to data 

production, to probability and then to inference, students experienced statistical 

investigations as a dynamic process.  The instructor never taught any method or 

procedure in isolation.  In contrast to more typical approaches, where reference to 

problems is made to demonstrate statistical content, reference to statistical content 

in this class was made (in students’ mind at least) to help understand a situation, 
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to assist a statistical investigation.  The emphasis was on statistical process and, 

along the way, students got to learn different statistical methods and procedures.  

The hope was that by putting students in situations where they needed tools such 

as the standard deviation, they would realize their usefulness and not wonder why 

anyone would ever bother to invent them (Erickson, 2000). 

The instructor was trying to increase students’ awareness of variation, to 

help them realize that it is the existence of variation which creates the need for 

statistical investigations.  He would keep on emphasizing that the reason we use 

statistical tools is to describe trends and patterns and deviations from those 

patterns existing in the data because of the variation inherent in every process.  

The idea of making conjectures ran throughout the course.  Students would state 

what they believed may or may not be true, and then looked critically at the data 

to evaluate their statements.  While the instructor encouraged students to make 

conjectures he, at the same time, also tried to help them understand that 

conjecturing is not enough – one has to evaluate one’s predictions by looking 

closely at the data and making comparisons (Erickson, 2000). 

Evaluation of conjectures would typically begin informally by using one 

or more graphical displays from which the students would get a general idea as to 

whether their conjectures seemed reasonable.  The instructor would encourage 

students to describe the main features of the distribution displayed by the 

graph(s), always emphasizing the need to take into account not only the center, 

but also the spread of the distribution.  Students would look at the displays and try 

to give explanations for the patterns observed, which either confirmed or 
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challenged their original conjectures.  Sometimes these explanations would be 

proposals for a possible model to summarize the dataset (e.g. a straight line, or a 

probability distribution).  Other times the explanations would be as to why those 

patterns existed. 

The evaluation of conjectures would then become more quantitative.  An 

analysis using appropriate numerical summaries would be made in order to 

support or refute the conjectures suggested from looking at the displays.  In the 

beginning of the course, the analysis was made using simple numerical 

summaries.  Eventually, more tools were added to the students’ repertoire.  The 

mathematization of the data gradually became more and more formal. 

Even when the data agreed with their initial conjecture, the instructor 

would encourage students to also come up with alternative explanations.  He tried 

to help them see that there can be multiple explanations for a phenomenon, in the 

hope that this would make them “less likely to assume that their data ‘proves’ the 

obvious cause” (Erickson, 2000, p.2).  He was also trying to raise their caution for 

conjectures that went beyond the information provided by the data. 

A special emphasis of the course was on data production issues.  Unlike 

many other statistics courses where study design issues are discussed as a separate 

topic and almost never appear again, they were continuously brought up in this 

course.  Throughout the course, the instructor was stressing that data are numbers 

collected in a particular context that are studied for a purpose (Rossman, 1996), 

and the quality of the conclusions we draw depends on how the data were 

obtained.  When, for example, students were examining graphs, the teacher would 
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point to them that patterns in the data depend to a great extent on how the data 

was obtained and that if data collection had not been properly done the observed 

patterns might be misleading.  When they were discussing inferential methods, he 

would stress that those methods are based on the assumption of probability-based 

data production, and if this assumption does not hold, then the inferences drawn 

might not be sound.  With regards to the inferential advantages of a larger sample 

size, he did repeatedly stress to students that if there is bias in the sample selection 

process and/or the measurement system then increasing the sample size would 

probably not lead to more valid conclusions.  

The instructor would always situate instruction within contexts familiar to 

the learners.  He would use analogies from students’ everyday experience, and 

would try to simplify mathematical relations in order to help build links to 

students’ intuitions.  Borovcnik and Peard (1996) outline the potential benefits of 

such an approach: 

Starting with a context familiar to the learner and in which there are 
relations that are quite directly understandable, one has a possible basis to 
introduce students to the related mathematical concept, which can now 
easily be understood by referring to this analogous situation.  Or, starting 
with mathematical concepts which are known to the learner, one can 
thereby structure a vague situation.  Then one extends the mapping onto 
the connection between formal relations on the mathematical side and 
subject matter relations on the context side. (p. 269) 
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SAMPLE OF CLASS ACTIVITIES 

Distance from Home Class Activity 

The instructor began the first day of class by showing students a distorted 

picture of an elephant and a transparency with the following story: 

A Story 
Once upon a time, there was a King.  One day, he brought several 
blind men to his kingdom.  He asked them to touch an animal and 
then describe how they thought the animal would look like. 

• Those who touched the nose claimed that the animal would 
look like a huge rope. 

• Those who touched the leg said it would look like a huge pole. 

• Those who touched the tail said it would look like a snake. 

• Those who touched the stomach said it would look like a piece 
of wood. 

He used this story as a way to begin a discussion on the purpose of data 

collection.  He pointed its analogy to the fact that in statistics, when collecting 

data, we often aim to find information that would help us understand some 

unknown population.  He stressed: “The key point is that if I want to understand 

the population using a sample, I better make sure the sample will be 

representative of the population.”   

The first activity the class engaged in was the “How far away are you 

from your home town?” activity, where students calculated the class average 

distance from home.  Through this activity, which lasted three days, many 

important statistical concepts and ideas were introduced.  When, for example, 

students were debating what measurement they should use, the instructor stressed 
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the importance of choosing the right measurement system: “We should use 

something useful and objective.  Measurement system is very important.”  He 

wrote on the board: “Garbage In, Garbage Out.  Do the right thing.  Do the 

things right.”  

After having collected everybody’s distance from home, a discussion on 

how to present data began.  At a student’s suggestion, they first drew a “what it’s 

called…the one with dots” (a dot plot).  The instructor asked students to describe 

what the graph tells them about the distribution of distances from home.  Students 

made some general observations indicating that they were already familiar with 

this type of plot, and then one student said that they could more easily describe 

the shape of the distribution if they looked at a “bar chart”.  The instructor used 

this as an opportunity to explain the difference between histograms and bar graphs 

and to discuss how to construct them.  They constructed a histogram of the 

“distances from home” dataset and, through the instructor’s prompting, described 

the main features of the distribution displayed by the graph: its shape, center and 

spread.  Next, the instructor asked students what else other than graphs one could 

use to describe the data and one student suggested finding “things like the range 

and the mean.”  The instructor agreed, pointing out that although graphs help us 

get a general idea about the shape of a distribution, we also need numbers to 

“quantify the variation”.   

Through an extended discussion, different numerical summaries such as 

the mean, the median, the range, the standard deviation and the five-number 

summary were introduced and were used to describe the center and spread of the 
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dataset.  In discussing these numerical summaries, the instructor’s emphasis was 

on helping students understand their meaning and purpose and not on showing 

them how to calculate them.  The statistical summary students had the biggest 

difficulty with was, of course, the standard deviation.  The instructor told students 

they do not have to memorize the formula for standard deviation (they could bring 

a sheet with formulas during exams), but put a lot of effort into helping them 

understand why the way the formula is set up provides us with a measure of 

average distance from the mean.   

After the class were done with the calculations, the instructor said: 

From the distance data, I find out that the average distance is about 115 
miles and the standard deviation 75 miles.  Of course, if I take a different 
sample, would I still get miles? 75 ,115 == sx  No.  Different samples have 
different means and standard deviations.  Sample information, for example 

, and sx varies based on different samples.  But remember the elephant 
story?  I do not only want to know about the part of the elephant that I 
study, but about the whole elephant.  Inference means to use the sample to 
make decisions, to predict, to find a pattern in the population.  This is what 
we will be dealing with in this class. 

He then asked students whether the sample was representative of the 

distance from home of all the students in their university.  Students argued that it 

was not and gave reasons such as: “summer course, students might be closer to 

home”, “sample size of 33 is too small to represent the 18,000”, “sample is very 

subjective (a required class).”  Then the instructor asked them to discuss with 

their group what they needed to do in order to “do a better job and make sure 

they obtain a representative sample of all students.”  The group work was 

followed by a class discussion about the characteristics of the whole university 
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student body.  Students noted that there are different groups of students 

(“campus-off campus”, “freshman-sophomore-junior-senior” etc.).  This was the 

instructor’s opportunity to introduce different sampling schemes.  He wrote 

“REPRESENTATIVENESS” with big letters on the board and asked students to 

identify the important characteristics of samples that have this property.  The 

different characteristics that were brought up and discussed included “random 

selection”, “by stratum”, and “a large sample.” 

Matching Statistics to Graphs Activity 

Our past research findings were indicating poor understanding of the 

connection between numerical summaries and graphical representations of the 

dataset, despite the fact that there had always been plenty of activities in the 

PACE classroom giving students experience in exploring different features of 

distributions.  For example, an activity the instructor assigned during the first 

week of the course, where students had to find on the Internet and analyze three 

datasets, one of which had to be skewed-to-the-left, one skewed-to-the-right, and 

one symmetric, had also been assigned in previous semesters.  Nonetheless, 

problems persisted.  At a departmental seminar of graduate students held at the 

beginning of the summer session, in which the instructor was leading a discussion 

on statistics education, he said that for him, understanding of histograms and their 

relation to variation is one of the stumbling stones in statistics instruction: 

Inst.: So, when I did the interviews, I found out that, you probably don’t 
believe it, but it’s a really very simple thing that students miss and 
continue to miss – histograms.  If you think of histograms, they are a 
transformation from raw data into an entirely different form.  And you 
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think because they see it everyday…Yeah, they do, but if you ask them to 
describe: “Tell me verbally…” 

In order to make his point that understanding of histograms is not as trivial 

as some instructors might think, he gave as an example students’ performance on 

the following task which he had included in the previous semester’s final:  

 

When constructing a histogram for describing the distribution of salary for 

individuals who are 40 years or older, but are not yet retired: 

(i) Explain 

What is on the Y-axis: 

What is on the X-axis: 

What would be the proper shape of the salary distribution?  Explain why. 

What he had found was that only 3-4 students gave the correct response.  

Everybody else argued that the distribution would be right-skewed, not because 

they understood how the histogram would look like but because they confused it 

with scatterplots: “They say it’s going to be right-skewed because people who are 

near retirement, their salary gets less and less, and therefore the salary is smaller 

and smaller and therefore it’s skewed to the right.”  Because “histograms are 

related to everything”, he has decided to put even more emphasis on histograms 

“and have students do a lot more for homework”, although he was already doing 

“a lot more than all the instructors here do in this area.” 

Having a good understanding of spread when visually interpreting a 

distribution displayed in a histogram is necessary to be able to fully grasp the 

concept of sampling distribution.  Students, especially those that in the pre-

assessment could not figure which of two distributions had higher variation 
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(Question 7; Appendix A), had to improve their understanding of histograms.  

This was necessary since otherwise, when introduced to sampling distributions, 

students would not be able to recognize the reduction in variance resulting in 

moving from the population distribution to the distribution of a statistic.  In order 

to assess the effectiveness of instruction, after students had some exposure to 

histograms, we gave the question again.  The results were not very encouraging.  

There were still six people believing that distribution A had more variation than 

distribution B.  

We tried with the instructor to think of ways to help improve students’ 

ability to relate features of a distribution to the shape of a graph.  We decided to 

include activities that require students to use information they know about the 

variable to decide how its distribution looks like without actually collecting or 

analyzing data, as well as activities that require them to look at a distribution and 

try to estimate its parameters.  Such kinds of tasks, which are quite challenging, 

are typically not included in an introductory course – other than, of course, 

looking at some trivial cases such as drawing a curve to describe a normal 

distribution with a certain mean and standard deviation. 

One activity we used was the “Matching Statistics to Graphs” activity 

taken from Scheaffer et al. (1996).  The purpose of the activity, as the authors 

state, is to help students estimate the mean, median and standard deviation of 

different datasets by looking at their histograms, and also to see how boxplots are 

related to histograms.  Students worked on the activity in groups.  The group of 

three students I was observing and video-taping (Anna, Jim, and Tim) was able to 
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do all the right matches to the first part of the activity, which was asking them to 

find the variable corresponding to each of the following histograms: 

 

 

 

 

 

 

 

 

Figure 5.1 – Part A of “Matching Statistics to Graphs” Activity 

They first matched Histogram B with Variable 4, because “it has the most 

above 60 and the highest mean 53…and the standard deviation is the largest.”  

Noticing the symmetry and small variation of Histogram F, they matched it to 

Variable 6: “This one has to be like a mean of 50 because it has like 38 and it’s 

12 here and then 12 on the other side.”  For Histogram C, they decided that it had 

to correspond to Variable 5, which has the lowest mean because of the number of 

data points “that are way low”, the fact that “almost everything is below 60”, and 

also because “if that (the standard deviation of Histogram F) was 5, the deviation 

would be 10 something.”  Next, they conferred that Histogram D had to be 

Variable 2, since “the mean is in the middle” and it has the second largest 

variation due to the high frequency at the tails of the histogram.  They matched 
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Variable 1 with Histogram A because the numbers are spread out “even” around 

50.  Finally, they matched Variable 3 with Histogram E since there are extremes 

at the high end which make its mean higher than that of Variable 1 – there is “a 

whole bunch here that are close to 78.” 

Similarly, in the second part of the activity, where they were given the 

following sets of boxplots and histograms, they correctly matched all the 

histograms to their corresponding boxplots.  

 

 

 

 

 

 

 

 

Figure 5.2 – Part B of “Matching Statistics to Graphs” Activity 

They decided that Histogram A corresponds to Boxplot 2, Histogram B to 

Boxplot 3, Histogram C to Boxlpot 4, and Histogram D to Boxplot 1.  For 

example, they decided that Histogram C “which is low… where you have a couple 

of high one like this” corresponds to Boxplot 4, whereas Histogram D 

corresponds to Boxplot 1 “because all the high bars are here like that [at the right 
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tail].”  What is interesting is that the students were able to make the right matches 

while, as some comments they made indicate, they were under the impression that 

what the middle line of the boxplot shows is the mean.  Originally, for example, 

Jim disagreed that Histogram D corresponds to Boxplot 1 because, he argued, 

Boxplot 1 has a mean of 60 but Histogram D does not.  Anna however, argued 

that Histogram D has to be the one corresponding to Boxplot 1 because it has the 

highest mean.  Jim was now convinced and the students moved to the wrap-up. 

On the first part, they had to describe the features of a distribution that 

determine whether the mean and the median will be similar, and the features 

determining whether the mean exceeds the median.  They decided that what 

makes the mean and the median similar is “not having like high scores, not 

having extreme scores” and that “mean exceeds median when there is just a few 

extreme cases…a few high scores above the mean.”  In the second part, where 

they had to identify the features of the distribution that influence how large the 

standard deviation is, they decided that what determines the magnitude of 

standard deviation are the “wide number of scores” and also whether there are 

“higher bars at the ends.” 

A whole class discussion followed this group activity.  The instructor 

remarked that the purpose of the activity was “Trying to put the puzzle together.  

Which puzzle?  Mean, median, standard deviation, histogram, boxplots and how 

they are related to variability.”  He then asked students to describe the strategy 

their group used to go about doing the matching for the first task and a student 

responded that what they did was “to figure out if it’s left or right-skewed and 
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then if it’s right-skewed the median is less than the mean… If it is symmetric the 

mean and the median are the same.”  The instructor agreed and said to the class 

that their first strategy should then be, looking at the shape of the graph and 

determining if it is symmetric or skewed.  He drew a symmetric, a right-skewed, 

and a left-skewed curve on the board, and went through the six histograms with 

students, who decided what type each was.  Then, a student noted that the next 

thing they should do is to compare the mean with the median because “if it is 

right-skewed, the median is smaller”, whereas “if it is left-skewed, the mean is 

smaller than the median.”  The instructor wrote on the board µ≈m  under the 

symmetric curve, µ>m under to the skewed-to-left and µ<m  under the skewed-

to-right distribution, and commented: 

Inst.: Once you understand this, then basically you solved this problem.  
So, the key is understanding this.  Another point that you need to use is 
this.  If you have two distributions that look like this (draws two normal 
curves with the same mean but with 21 ss < )…they have the same mean.  
Is 1s  smaller or is 2s  smaller? (A student says that 1s  is smaller because it 
is “closer together”).  Those are closer together, that means they have a 
smaller variation… So, that’s what this is about.  This is what we are 
going to use.  The picture is related to the information, OK?  Once you 
understand these pictures here, basically you will be OK.  (He also drew 
below each of the curves a boxplot corresponding to it). 

Impact on Student Learning 

A couple of days after this class activity, students took their first test.  

Overall, they did pretty well, although the test was quite challenging.  However, 

the test results also indicated that student understanding of standard deviation and 

variation in general was still limited.  The question students had the hardest time 

with was the following:  
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Cholesterol level Question  

A health company is interested in the cholesterol levels for individuals with ages 40 or 

older in Mt. Pleasant.  A random sample of 100 individuals was chosen from the target 

population and the following information was obtained: Sample Size=100, Sample 

Average = 158 mg, Sample Median = 159 mg, Sample s.d. = 20 mg.  Based on this 

information, the shape of the cholesterol distribution is more likely to be approximately  

(i) skewed-to-the-left 

(ii) mound-shaped 

(iii) skewed-to-the-right   

Only 42% of the students answered this question correctly.  Fifty-eight 

percent of them, not considering the large variation, decided that since 158<159 

the distribution has to be skewed-to-the-left.  As my following conversation with 

a student indicates, even among those who did pick the right response, not 

everyone considered standard deviation: 

Keith: I said it’s mound-shaped because 1 is a small difference.  

Int.: 1 is a small difference here because the standard deviation is 20.  

Keith: I don’t understand standard deviation. 

We met with the instructor to discuss the results of the exam and to decide 

our next course of action.  Regarding students’ poor performance on the 

Cholesterol Level Question, he noted: “Part of this is my mistake because we first 

talked about skewed distributions before I stressed variation enough.”  He 

remarked that next time he teaches statistics, he will make sure students become 

well aware of the role variation plays in a distribution before introducing the 

notion of skewness, so that students will realize they should not follow rules as 
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recipes without considering the variation involved.  He added that understanding 

variation is very difficult for students: “Most important aspect of math vs. 

statistics is that of variation.  Unlike math, 21 is not always smaller than 20, and 

this is hard for students to understand.”  

In order to help increase students’ awareness of variation, we decided to 

use the activity described in the next section.  

SATs and GPAs: Classroom Activity 

In this class-activity, taken from Erickson (1999), students looked at sex 

differences in SAT scores and grade-point averages (GPAs) for 1000 first-year 

college students and tried to figure out how meaningful those differences were.  

The purpose of engaging students in this activity was to help them understand two 

“basic lessons of statistics” which are the foundation of sophisticated statistical 

methods: (1) one cannot compare measures of central tendency without taking 

variation into account; and (2) we can assess the salience of a between-groups 

difference by comparing it to the within-group variations (Erickson, 1999).  

Differences in means can be compared to standard deviation, while differences in 

medians can be compared to the interquartile range. 

After passing out the handout found in Appendix B, the instructor first 

asked students to look at the following Fathom summary table, and describe what 

they noticed based on the table alone.  
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Figure 5.3 – Summary Table of Mean Math and FYGPA scores for Males and 
Females 

A student remarked: “Because we have more guys than girls, this is not a 

fair comparison.  Guys have a higher average because they are more.”  The 

instructor had to give an example to help this student realize that a larger sample 

size does not necessarily imply a higher mean.  Some other students argued that 

men do better on the math part of the SAT, while females have a higher FYGPA 

(first-year GPA).  One student claimed: “Males are better in math”, and another 

one: “Males are better at math, but females on a whole are smarter.” 

Unlike the students who were ready to give causal explanations for the 

differences in the means, several other students argued that knowing mean scores 

is not adequate information for making comparisons between males with females.  

We need to look at the actual dataset, one student noted, because we need to find 

“things like the standard deviation”.  The instructor agreed with the need for 

looking more closely at the data and taking spread into account.  He pointed out 

that the explanations some students gave for the reasons behind the difference in 

means, although echoing different opinions and concerns of society, make claims 

Summary TableSATGPA
math FYGPA

sex
F

M

521.94215
484

2.5445868
484

564.59302
516

2.3960659
516

543.95
1000

2.46795
1000

Column Summary

S1 = ( )mean
S2 = ( )count
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which go beyond the information provided simply by comparing mean scores.  He 

added that what they would now do to check their conjectures was to retrieve the 

actual data and look more closely at it, analyzing it using Fathom.   

Graphical Comparisons 

After opening the file containing the dataset, students first drew a 

histogram of math SAT scores: 

Figure 5.4 – Math SAT scores 

The instructor asked: 

Inst.: Do you consider the distribution to be normal or not? 

Chris: Close to normal. 

Inst.: In statistics we use a lot the words close, fair enough.  Even though 
this bar here is very high, this is minor compared to the entire distribution 
shape.  In real situations, that’s how we should think.  So, this is actually 
very much a nice picture for demonstrating the normal distribution.  

He thus grasped the opportunity to remind students once again about the 

variability of real world data that makes perfect normal distributions idealizations. 

Next, students drew a histogram of the math scores separated by sex:  
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Figure 5.5 – Math SAT Scores separated by Sex 

The instructor asked students to write a statement comparing males and 

females using the new information provided by the graphs.  When I later looked 

at students’ work, I saw that most of them wrote that the two graphs are very 

similar and “although males are slightly higher than the females they are close.” 

Then, students drew histograms to compare FYGPAs:  

Figure 5.6 – FYGPA scores separated by Sex 

They noted that this time it is females who seem to outperform males, with 

more females than males having a FYGPA of 3 or higher, but that again there is a 

lot of overlap.  In order to get more insight, students compared results of males 

and females on the verbal part of the SAT and saw that they were similar.  The 
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instructor then asked students to go back and change their graphs to boxplots.  It 

is important, he noted, to look at data from different perspectives: 

Inst.: Distributions will never be perfect in the real world.  When you 
make any comparisons, look at more than one graph and don’t look at just 
two numbers.  Look at more than just two numbers.  The least you can do 
is to look at both the mean and the standard deviation.  

This is an advice he would often give to students.  He was trying to make 

them realize that different plots and numerical summaries each have different 

advantages and disadvantages and that using multiple data representations to look 

at data in different ways and numerical means to summarize it, often provides a 

much better understanding of the situation explored.  

Figure 5.7 – Boxplots of FYGPAs, Math SAT Scores, and Verbal SAT Scores, 
for Males and Females 

Comparing the boxplots of the three sets of scores, students saw that sex-

related differences are more noticeable on math SATs and on FYGPAs than on 

verbal SATs.  They then went to the next question asking them to describe how 

they knew, by looking at the graphs, that the difference in math scores is “more 

meaningful (not just bigger)” than the difference in verbal scores.  One student 

noted that, looking at the boxplot of math SATs, one sees that the difference in 

scores between males and females is “a sizable proportion of the interquartile 
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range.”  Another one thought the difference in math scores is more meaningful 

“because the box is not exactly lined up for the math scores like it is for the verbal 

scores.”  One student remarked: “Q2 (second quartile) for males is almost equal 

to Q3 (third quartile) of females, showing that the differences are much greater.”  

Finally, there was one student who claimed that by comparing the SAT and 

FYGPA distributions, we see that “Males are better than Females in overall.”  

The instructor challenged this student’s statement by saying that based on the 

displays, it seems that males do in general have a higher SAT scores, but one 

could not claim that males are better at math, since there is a substantial 

overlapping of distributions.  He added that even if such a claim seemed 

plausible, looking at a graph is not enough; one also needs numerical summaries 

to support conjectures drawn by looking at displays.  

Making it Quantitative 

Students followed the instructions on the handout in order to quantify the 

differences in mean scores by dividing them with the standard deviation, and used 

this relative to standard deviation scale to make comparisons.   

Figure 5.8 – Differences in Mean Math SAT Scores and FYGPAs divided by 
Standard Deviation 

The majority of students argued (in both the class-discussion of this 

question and the responses they put down) that comparing relative scales indicates 

Summary TableSATGPA
math FYGPA

0.50473743 -0.20048576

S1 = ? sex "M"=,( )mean ? sex "F"=,(mean−
( )stdDev
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that the difference in math SAT scores is higher than that for FYGPAs.  Some 

considered the difference to be large, others however considered it to be 

insignificant: “Both are very similar, within 1 standard deviation of each other.” 

Students then compared sex differences in median SAT scores and 

FYGPAs after they had divided them by the interquartile range.  

Figure 5.9 - Differences in Median Math SAT Scores and FYGPAs divided by 
Interquartile Range 

Their conclusions again varied.  Some students argued that results are very 

similar for both SAT and FYGPA while others noted that the difference in math 

SAT scores was higher.  One student attempted to give an explanation for 

women’s lower scores on the math part of the SAT: “The median for males on 

average is slightly lower, meaning that females were more focused on the task at 

hand than males were.”  We see here again how students’ background knowledge 

on an issue often discussed in the media affects the way they make sense of the 

data.   

The next question was asking students to include totalSAT score (sum of 

math and verbal scores) in the comparison.  Students added totalSAT to the 

summary tables and found the relative difference in mean totalSAT scores to be 

0.343, and in median totalSAT scores to be 0.25.  All of the students participating 

in the class discussion regarding this question argued that totalSAT shows males 

Summary TableSATGPA
math FYGPA

.4545 -.1731

S1 = ? sex "M"=,( )median (median−
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did better overall than females, but that the difference is not too big: “The mean 

and medians are still higher for males, but the verbal helped the females catch 

up.”  Looking however, at the students’ written responses, I found that not 

everybody in the class shared the same opinion.  There were indeed several 

students who did argue that there was some difference, but it was not large, others 

however found the difference to be quite significant: “TotalSAT shows that total 

SAT of females is definitely lower than that of males.” One student went as far as 

claiming that “Male has higher SAT.  Male has higher math skills.”  Another one 

was not as assertive, but still argued: “Male has higher SAT.  Males are better at 

this type of test format.  The test is biased to women.  Males may be better at 

math.”  These are observations that go beyond the data (Erickson, 2000), and if 

they had been brought up during the class discussion, the instructor would have 

challenged them.  We see here once again both the positive and the negative role 

that familiarity with the context of the problem can have.  Students’ world 

knowledge on this controversial issue allows them to probe more deeply into the 

meaning of the data, but at the same time leads them to express opinions that are 

too strong based on the data provided.  

The last question on the handout was asking students to explain why one 

could not argue that, since the difference in SAT scores is over 40 whereas that in 

GPAs only about 0.15, the difference in SATs is more significant “without using 

the words, ‘interquartile range’, ‘standard deviation’, or ‘variance’.”  Before 

discussing the question, the instructor asked students to put down an answer to 

this question.  When I analyzed the handouts, I found that many students did not 
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seem to have understood what this question was asking.  For example, some 

students wrote that we cannot compare high-school level with college-level 

assessments, and others made the correct but irrelevant here observation that, 

according to this data, SAT is not a very good predictor of performance in 

college, or of intelligence.  Less than half of the students noted the different scale 

of SAT and GPA scores: 

SAT scores range from 0 to 1600, GPAs range from 0 to 4.  Thus the 
difference in SAT scores is very large and the GPA difference is very 
small.  Thus a small difference in GPA is greater than a large difference in 
SAT. 

During the class discussion, a student noted that one could not draw 

conclusions just by looking at absolute differences “because they have a different 

scale.  The one is out of 800 and the other one is out of 4.”  Another student 

added: “Different range of scores.”  Other students agreed.  The instructor 

stressed that dividing the difference in the means by the standard deviation and 

the difference in the medians by the interquartile range allows us to transform 

scores coming from different scales to the same scale.  

This activity provided a link to the topic of standardization of scores 

coming from a normal distribution.  A student who was absent the day that the 

class engaged in the “SAT and GPAs” activity, but who did the assignment on his 

own and turned it in on a later day, saw the connection:  

Basis of scores on SAT and GPA are different.  GPA is on a 4.0 scale 
while SAT is out of 1600 – that’s why the formulas we used did a better 
job of comparison.  Similar to the purpose of Z-scores, comparing apples 
to oranges. 
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Impact on student learning 

The following question (from Pfannkuch and Brown, 1996) was given to 

students right after the class had engaged in the SAT activity: 
 
A small class was given a test on arithmetic and the results were recorded.  The 
same test was given a few weeks later.  The box plots for both sets of results are 
shown. 
Have the results changed significantly?  
 
 
 
 
 
 
 
 
 

Figure 5.10 – “Test Results” Task 

Five students who had just completed a statistics course and were 

participating in a study by Pfannkuch and Brown (1996) were also asked this 

question.  The authors report that when first interviewed, all five students relied 

on their experience and produced deterministic explanations for the difference in 

test results.  In this study, on the contrary, the proportion of students judging that 

test results changed significantly was only 25%.  Most students concluded that the 

almost identical interquartile ranges meant the difference in scores was small 

compared to the variation, and therefore might have simply been the result of 

chance.  The few students who saw significant changes, gave arguments such as: 

“Changes did occur – the high scores dropped and the median is also lower – it 

seems the students either forgot what they knew or were out in the sun too 
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much.”; “Perhaps they did not worry about the second test as much because they 

did all right on the first one.”  

At the same time though, this assessment task helped us see that a number 

of students had misunderstandings about what the boxplots represent.  Several 

students gave responses that suggested they were still confused about boxplots 

and thought that what their middle line shows is the mean of a dataset: “They 

have changed but not much.  The average score on the second test fell slightly.”  

The “Matching Histograms to Variables” task (Question 10, Appendix A), 

on which students had done extremely poorly in the pre-assessment, was given 

again along with the task discussed above.  Student improvement from pre- to 

post-assessment was substantial, as can be seen in Table 5.1, which shows the 

proportion of students correctly matching each of the five histograms with a 

corresponding variable: 

Table 5.1 – Post-assessment vs. Pre-assessment Results on “Matching Histograms 
to Variables” Question 

Response Pre-assessment 
% 

Post-assessment 
% 

Histogram I 33 97 
Histogram II 33 59 
Histogram III 20 63 
Histogram IV 36 72 
Histogram V 30 75 

Seventeen students (53%) correctly matched every variable to its 

corresponding graph compared to only three students (10%) in the pre-

assessment.  Students seemed much more aware of how features of a distribution 

are related to the shape of a graph.  For example, all of the students who matched 
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Histogram II with Variable B (last digit of Social Security Number) noted the 

approximate uniformity of the graph, whereas in the pre-assessment it seemed that 

the 10 bars of the histogram were the only reason behind the choice of most 

students who had made the same match.  Similarly, most of the students matching 

Histogram III to the number of medals won by medal-winning countries, now 

recognized what the graph represented: “Olympics are usually dominated by 1 or 

2 countries and many countries get 1 or 2 medals.”  Nonetheless, the tendency to 

think of bar graphs and histograms as representations of raw data, and not 

appreciate the data reduction involved, was still observable despite the 

improvement.  For instance, there were again some students who thought of 

Histogram III as representing the number of medals won by individual countries.  

There also some students who still did not to seem to think carefully enough about 

how the features of a distribution affect the patterns emerging within the 

variation.  For example, one student thought it is Histogram V (approximately 

normal) that describes the distribution of the last digit of the Social Security 

Number because “it should vary a lot”.   

The assessment showed that students still had some difficulties 

interpreting histograms and boxplots.  Instruction continued to put a lot of 

emphasis on helping students improve their ability to read and understand graphs 

and relate features of a distribution to the shape of its graph (Scheaffer et al., 

1996). 
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What’s Common Here?  “Discovering” the Binomial Distribution. 

Practical application of any concept or technique involves three steps: (1) 

Recognizing applicability, (2) Applying method, and (3) Interpreting results 

(Wild and Pfannkuch, 1999, p.3).  Unlike conventional instruction that tends to 

focus on Step 2 - mechanical application of methods – the emphasis on this course 

was on Steps 1 and 3.  Recognizing applicability and interpreting results in 

context are much more challenging than learning techniques which one can teach 

“simply talking about them, establishing them with a few exercises and then 

moving on” (Wild and Pfannkuch, 1999, p. 231), but are necessary if Step 2 is to 

have any utility.  For this reason, the instructor’s main goal in introducing 

binomial distributions was for students to be able to recognize a binomial setting.  

He began by giving students a description of five different situations, all of which 

could be modeled using the binomial distribution, and asked them to figure out 

“the common properties that these different situations have.”  Group work was 

followed by a whole class discussion during which the four main properties of the 

binomial distribution were laid out: (1) Number of trials is finite; (2) For each 

trial, there are only two possible outcomes, Success and Failure; (3) P(Success) 

remains the same from trial to trial; and (4) Each trial is independent of other 

trials.  The instructor remarked: 

Inst.: Many real world problems have these properties.  We have now 
identified some properties that give us a nice distribution that applies to 
many real world situations including the five cases you have investigated. 

He pointed to students that )Success(P is nothing but “an assumption we 

make typically using experience, prior information.”  It was only after students 
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had brought up several examples of different situations which could be modeled 

using the binomial distribution, that he introduced the probability formula of the 

binomial distribution.  He did that noting that using the formula it would now be 

very easy to calculate, for example, the probability that Spurs wins 2 out of 10 

games against Nicks (a situation they had talked about when discussing 

combinatorics): “See how easy now?  We can use this simple formula to solve the 

problem.”  Students used the formula to calculate ),2X(P =  where X is the 

number of victories by Spurs in 10 games.  Then the instructor asked them to find 

),9X3(P ≤≤  in order for them to see that this would be time-consuming to 

calculate using the formula: “Too complicated for me.  So, I’m going to give you 

a way.  Statisticians are smart in this regard. Statisticians are smart in this way.”  

This was his way of leading to the introduction of the binomial table. 

In order for students to recognize that the probability of success is a key 

feature of a binomial distribution that helps deduce the likely shape of its 

distribution without actually collecting or analyzing data, the instructor asked 

students to build the probability distribution table for a certain binomial 

distribution with .2.0)Success(P =  After filling up the table, students drew the bar 

graph and saw that the distribution was skewed-to-the right.  The instructor then 

asked students to look at the binomial table and describe what the shape would be 

like for different probabilities.  This helped them see that when P=0.5 the 

distribution is symmetric, when P<0.5 it is skewed-to-the right, and when P>0.5 

it is skewed-to-the-left. 
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Is the Student’s A Score Rare?  What About Student’s B? 

The way the instructor approached normal distributions was not the typical 

approach used in introductory statistics courses.  The emphasis was not on 

teaching the formal properties of the normal distribution, but on helping students 

understand why one could use the normal distribution to model a certain variable 

and in what ways this is useful.  An idea he used to help students appreciate the 

usefulness of normal distributions was that of the “rare event”: 

Inst.: If they are going to learn something about the normal distribution, 
I’d rather have them think: “Oh, yeah, based on normal distribution, that 
means that we are way out, so we can consider this to be a rare situation.”  
That’s why once I understand that my situation is to find some probability, 
then I know I have the table to use.  But use of the table should not be the 
thing.  Otherwise, you spend hours and hours showing them how to use 
the table.  This is not the goal.  It doesn’t make any sense. 

The instructor introduced normal distributions through the following 

problem: 

Inst.: How can standard deviation be applied?  Other than measuring range 
and spread, standard deviation can help us do more.  Let’s give an 
example.  Let’s take the SAT scores distribution (drew a normal curve 
with a mean of 500 and a standard deviation of 80).   

He asked students whether it is a fair assumption to make that the SAT 

scores are normally distributed and students recalled that the distributions of SAT 

scores they had analyzed in the “SATs and GPAs” activity were.  He then asked:  

Inst.: Suppose now student A scored 750, and Student B scored 600.  Is A 
a rare event?  Is B a rare event?  In many situations, this application is 
very important. When you go out to work you will use that in 
manufacturing processes to decide if something is rare or out of 
specifications.  Just by looking at this picture, what can we say?  Is 750 an 
extreme score?  What do you think?  
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S: Yes. 

The instructor noted that they could do more than just looking at the 

picture.  He introduced the Empirical Rule as a means “to quantify”, “to help us 

see whether our performance is extremely high or not.”  He wrote down the rule, 

emphasizing that it is only approximately that it holds.  He then drew a normal 

curve with mean 500 and s=80, highlighted the area where X>750, and asked 

students whether based on the following rule 750 is rare: 

A case is rare if it falls outside 2 s of x  

Students responded that it is, since there is less than 5% chance to get a 

750.  A student then asked “Do I still have the same results when I don’t have 

bell-shaped?” and this led to a discussion where the students pointed out that if 

the distribution is skewed the rule would be wrong.  The instructor noted: “You 

brought up a very important point.  When you have some data, look at its 

characteristics so that you won’t do a trivial mistake.” 

The instructor then introduced Z-scores.  He drew a N(500, 80) curve 

corresponding to the distribution of SAT scores, and labeled the horizontal axis 

Scores, and the vertical axis Relative Frequency.  He also drew a histogram that 

had approximately the same distribution.  He noted that the normal curve is “a 

smooth curve”, whereas “this is real data” and that “with the smooth curve, I 

don’t do the histogram, I’m just looking at the curve that passes through it.”  He 

explained to students that, unlike real datasets that are only approximately normal, 

this normal curve is a formal model, it has a perfect normal distribution.   
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Next, the instructor asked the students to look at the normal curve and try 

to estimate P(X>450).  Students gave different guesses and he remarked that 

although their guesses “sound[ed] OK”, they “could do it more precisely.”  He 

introduced “the yellow table, which gives you much more than the empirical rule 

can do.”  He explained that using this table “we can find the information we need 

not only for 67% or 95%, but for any point on the curve.”   He described how the 

Z-score is a standardized scale free of measurement by outlining the properties of 

the Z-distribution, gave students the formula for finding Z, and showed them how 

to use the table.  Students calculated P(X>450).  The instructor stressed that this 

probability holds exactly for “the curve”, but only approximately for “the 

histogram”.  Use of the empirical rule and the Z-scores, he explained, gives us 

theoretical percentages or chances of different values of the “ideal” normal 

distribution, which only approximately hold for the actual data distribution.  

Students then worked in filling up a table where they were given the X 

score, found the corresponding Z-score, and decided whether it was rare or not.  

For 680, which translated to a Z-score of 2.25, the instructor asked: “So, you have 

2.25.  What would you do if you had to make a decision based on this?”  A 

student responded: “I’d say it’s rare.”  The instructor remarked that one could do 

this, but they could also think “Is the 2 standard deviations rule realistic?” 

because “sometimes it is, sometimes it is not.”  This led to some more discussion 

where it was pointed out that statistics provides an aid in decision-making, and 

not rigid rules that hold regardless of the nature of the situation. 
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Understanding that the tails of the normal distribution correspond to 

unusual outcomes is analogous to the idea of rejecting the null hypothesis when 

the distribution it assumes would make the data be at the tails of the sampling 

distribution (Cobb, Witmer, and Cryer, 1998).  Thus, the idea of looking for “rare 

events” when exploring normal distributions provided a link between exploratory 

and inferential statistics.   

Probability, Causation, and Variation 

For this instructor, the most important ideas about probability that need to 

be addressed in order to link what has already been taught to what will follow, are 

those of chance and independence.  Most statistics books and many statistics 

instructors, however, teach the chapter on probability as a separate topic, not 

connected to the rest of the concepts introduced in the course: 

Probability is a very important aspect of statistics, but the important part is 
to introduce the ideas of chance and independence.  For example, rare 
event…this won’t probably happen because it seems very unlikely…very 
small probability of occurring.  Many people teach probability without 
understanding how it is linked to what follows.  The point of 
independence is that random outcomes are i.i.d.[independent, identically 
distributed].  The way you take your sample will dictate whether your 
sample is i.i.d. or not.   

Introduction to Probability  

Students were introduced to the relative frequency definition of 

probability through the following experiment.  One student tossed a coin and they 

marked the number and ratio of heads, then two students tossed a coin and they 

did the same, etc.  Before the experiment began, the instructor asked students to 
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make predictions about the relative frequency of heads.  After they had completed 

the experiment, he drew a graph of the relative frequency of heads against the 

number of tosses and students confirmed their prediction.  They noted that the 

graph shows that “the more the experiment the closer the relative frequency of 

heads to 21 ”, but “when sample size is small, the relative frequency fluctuates a 

lot… there is high variation.”  The discussion continued and eventually the idea 

of probability came in.  They discussed the difference between probability and 

actual relative frequency.  The instructor wrote on the board: 

↑≈  sexperiment of # as (heads)Proportion

observe.cannot  that wesituation  ideal  theis  P(H)

2
1  

He stressed that such a claim is based on the assumption that the coin is 

balanced and that to figure out whether this or other claims are indeed true, one 

ought to do experiments similar to the one they did, and/or use prior knowledge.  

It was only after extended discussion that he introduced basic ideas and 

conventions of probability such as conditional probability and mutual 

exclusiveness. 

Independence 

When they were discussing independent events, the instructor made sure 

he emphasized the complexity of real-life situations rather making simplistic 

assumptions that would conflict students’ common sense.  After he had asked 

students to give examples of events that are independent and they had given 

typical examples such as coin tossing and die rolling, he asked them whether the 
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success of a “free throw” of a basketball player is independent from the success 

of his previous “free throw”.  Students argued that it depends on how the player 

responds to pressure, on how well he did on the previous throw etc.  The 

instructor remarked: 

Inst.: You see, in real world situations it’s hard to tell because for example 
here, it depends on the person’s psychology.  So, in real life it’s hard to 
say with a straight yes or no.   

Notice how the instructor did not reject students’ causal explanations.  

Nonetheless, “hot hand” is one of the main examples many statistics educators 

often use in their pleading for probabilistic reasoning.  Tversky and Gilovich 

(1989), using empirical data, showed that a binomial model well explains runs 

(streaks) in basketball player failures.  According to this model, the chance of 

success in a shot is independent from the previous shot, and Tversky and 

Gilovich, and subsequently many teachers and researchers, concluded that 

people’s tendency to detect patterns (hot hands) is often unwarranted.  One need 

not look for specific causes like nervousness since there is no other “pattern” than 

chance pattern explaining the data.  Some have even gone as far as concluding 

that the belief in “hot hands” is an illusion.  However, this instructor understands 

what Biehler (1994) has pointed out – that even when the binomial model well 

explains the variation in a dataset, it does not mean it is the “correct” and unique 

model for this phenomenon.  One cannot exclude alternative models which give 

better prediction and which suggest causal dependence of individual throws. 

Unlike some instructors who only emphasize the similarities of the streaks 

that sports fans see in sports data to the “gambler’s fallacy”, this instructor also 
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emphasized their difference.  This is a real-life situation he pointed out, and “in 

real life it’s hard to say with a straight yes or no.”  Similarly, when talking about 

slot machines in the casino, he noted that, although in theory “when you put a 

coin and you pull it down and then you put another coin and you pull it down, 

although those 2 events should be independent, mechanically they might not be.”  

Next, discussion revolved around random sampling.  They decided that 

randomly selecting a sample out of a small population would mean that there is no 

independence, but as long as the population size is large, we do have approximate 

independence.  The instructor stressed that statistical methods depend on the 

assumption of independence characterizing random sampling.  He emphasized 

again the importance of the data production stage: 

Inst.: That’s why random sampling works. What I’m trying to point out is 
that it’s important how you pick the sample.  Once you have the sample, 
you’ve already decided that.  It’s very important to understand 
independence before you collect the data…This kind of concept is not 
easy when coming to applications.  But, the way you should think about it 
in real situations is that independent or not is determined when you do 
sampling.  Independence is determined by sampling.  These things here 
are the consequence, OK?  

Then students split in groups and worked on the following problem: 

In the basketball championship games, Spurs won in 5 games (4 to 1).  In the 

regular season, Spurs played with Nicks 5 games and Spurs won 3 games.  

Assume that Spurs winning probability is 0.6 when against Nicks.  

(1) Find out all possible situations (combinations) for Spurs to win in 5 games 

(e.g. SSNSS) 

(2) If Spurs has a winning probability of 0.6, what is the probability Spurs will 

win in 5 games? 
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When the class got back together to discuss the problem, the instructor 

stressed that the different formulas for calculating probabilities are based on the 

assumption of independence.  It is because we assume that “each game is a fresh 

start…it’s not affected by previous outcomes” that we can use the formula 

)()()( NPSPNSP =∩ , to calculate the probability that “in the first game Spurs 

wins, and in the second Nicks wins.” He continued: 

Inst.: What if we have 5 games? Each game is a fresh start and so 
)S(P)S(P)S(P)S(P)N(P)NSSSS(P = .  Independence plays an important 

role here.  That’s why I keep on repeating that I assume each game is a 
fresh start...Independence plays a very important role.  If you don’t have 
independence then you cannot do it like this. 

Independence of random events was not a topic that was introduced on 

one day, and then never discussed again.  The instructor knew that grasping the 

statistical notion of independence is not that easy for students.  Students’ 

responses to a question given to them the day after independence was introduced, 

which was asking whether in a marketing survey where 400 individuals are 

randomly chosen from a large city we have approximate independence, were 

testimony of their difficulties.  Seventy-two percent of the students agreed, but 

only half of them gave an adequate explanation.  These were the students who 

explained that “because you are choosing such a small sample out of a very large 

population, you would be approximately starting from a clean slate.”  Several 

students gave explanations that were either too vague or wrong.  A couple of 

students thought independence means not including the same person twice in the 

sample, and argued that in a large city this would most likely be the case.  A few 

others thought of independence as the opinion of one person in the sample not 
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exerting an influence on the opinion of another, and concluded that we do have 

independence here because of the large population size.  Four of the eight students 

(28%) who argued that we do not have independence, gave explanations 

indicating they had a similar notion of independence: “There is a chance that the 

individual selected is not independent of the individual selected previously 

because the two individuals could have same job and same interests.”  The other 

four correctly put down that, since we are sampling without replacement, the 

samples are actually not independent of each other, but missed the idea on which 

random sampling is based – that when the population is large, this is not a serious 

problem and we can assume approximate independence. 

The concept of independence is very important, and for this reason the 

instructor continued grasping any available opportunity to help students 

understand statistical independence and not confuse it with connotations that the 

word independence has in everyday speech.  He would be constantly reminding 

students that many statistical methods are based on the assumption of 

independence, of “a fresh start”. 

Sampling Distribution 

The logic of inferential statistics is based on the notion of sampling 

distribution.  Sampling distribution is perhaps the hardest concept introduced in 

the introductory statistics course.  Comprehending sampling distributions means 

understanding the relationship between “three similar-seeming but in fact 

fundamentally different sets of numbers, each set with a different role and 

meaning – the population, the sample, and the set of values of the statistic” 
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(Cohen and Chechile, 1997, p. 208).  In the meeting I had with the instructor 

before formal introduction to sampling distributions, he stressed how difficult this 

idea is for students, since to grasp it “they need to understand the concept of 

distribution, shape, normal distribution, sample, of sampling variability.”  In 

addition, they need to realize that, with the sampling distribution “the X-axis has 

changed”.  The idea that, on the horizontal axis, “the scale has changed from one 

single observation to an average of observations” is very difficult for students. 

In regard to the role of technology, the instructor said he believes that 

“computer simulation helps students understand that different samples give 

different means, but that does not help transfer into the distribution and the 

standard error concept.”  He personally does not think students have a difficulty 

understanding that different samples have different means because of variability, 

and that a larger sample size is preferable.  It is “the degree of the fluctuation and 

how that should be quantified they have a hard time with”, because  

“quantification means precision and that’s very difficult, and so that is the 

hardest part.”  Standard error is a “very, very difficult” concept for students.  It 

involves ideas not used in the everyday world.  In order for students to understand 

standard error, they first need to understand histograms very well, to understand 

how standard deviation is related to a distribution, and also to realize that we have 

a transformation from single observations to a function of a set of observations.  It 

is much more complicated than estimating likely intervals for individual 

observations coming from the population: 
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Inst.: So, interval estimation, I think students are able to understand that 
concept much more easily because they use that in the real world.  The 
standard error concept is much harder.  Changing from descriptive to 
inferential statistics is a big jump.  They stick their mind to the descriptive.  
Even though we say confidence interval is an estimation, to them it’s 
nothing but descriptive because it’s coming from a sample.  Even though 
we talk about sampling distribution, to them it is just descriptive.  They 
don’t consider that as inferential, and then the jump is on the sampling 
distribution of x and that jump is just a heck of a job to do. 

He was hoping this time students would do better, but did not expect 

miracles: “I hope, I don’t know.  I used all different ways to do this before…very 

few students really grab the concept.”  He noted that the short duration of the 

summer course makes it even harder: “We just covered normal distributions a 

couple of days ago and we’re going to do this tomorrow, you know?” However, 

he was hopeful that the emphasis he had put this time on “investigating 

distribution and shape and variability”, had given students “some understanding 

they could apply here so that we don’t need to build everything from scratch.”  

SOS Scores Activity 

This activity, which lasted two days, was the main activity the instructor 

used to introduce the ideas related to sampling distribution to students.  Students 

retrieved a file that included 120 SOS (Student Opinion Survey) scores, belonging 

to 5 faculty members, who each had taught the same course 24 times.  They first 

drew a histogram of the 120 individual SOS scores, which revealed a skewed-to 

the left distribution.  Then, the instructor guided students as to how to get the 

average SOS scores of the 5 faculty members for each of the 24 semesters.  They 

then drew a histogram of the 24 averages.  The instructor asked students to 

compare this histogram of mean scores to the histogram of individual scores.  
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Because Minitab is not a dynamic learning environment, students got confused 

trying to bring both graphs right next to each other and also, at the instructor’s 

request, to adjust the graphs to make sure they both had the same scale.  Several 

students started complaining that they “do not have a clue about what is going 

on.”  It was the first time I was seeing students reacting like this.  Till then, they 

all seemed to enjoy the course and to feel quite confident.  Eventually, they 

managed to adjust the two graphs and bring them next to each other for 

comparison.  A student noted that the distribution of average SOS scores had a 

smaller spread and looked “more normal”.  They then calculated the mean and 

standard deviation of the set of 120 individual scores, and the mean and standard 

deviation of the set of 24 average scores and found that the two means were very 

similar, but that the standard deviation for the set of averages was smaller.  

Next day, class began with the instructor reminding students about the 

previous day’s activity, where they saw that there was variation among sample 

averages which, however, was smaller than the variation among individual scores.  

Since there is variation among sample averages, he added, “there is a distribution 

about sample average.”  In contrast to the population mean, “sample average 

varies for different samples” and “our goal is to make sure we do not come too 

much away from the truth – that’s the key.”  If the distribution of the sample 

mean has a big spread, we have the chance to be far away from the truth but if the 

spread is small then we are “guaranteed” to be close to the truth: 

Inst.: The key is we don’t know the truth, but it is guaranteed, it is 
guaranteed that if I have a small variation, that sample mean is not very far 



 211 

away, therefore I don’t make a big mistake regardless of what I pick.  
Sampling scheme will guarantee my sample is good.  

(Note how here, even this instructor who put so much emphasis on helping 

students increase their awareness of variation, uses the word “guarantee”, which 

has no place when dealing with finite statistical processes.  This statement of the 

instructor, might have left students with the wrong impression that a larger 

random sample guarantees a more representative sample.)  

The instructor added that how well the sample mean estimates the truth 

depends on its distribution and that the group activity they were about to engage 

in, which was a continuation of what they had done the previous day, would help 

them investigate further the properties of sampling distributions.  He asked 

students to assume that the 120 SOS scores they looked at the previous day, are 

the entire population of SOS scores.  He explained that although we do not 

actually know the population size, since “there are so many SOS scores every 

semester”, by assuming that those 120 scores are the entire population, we could 

then “make comparisons and summarize patterns.”  Students split into groups 

and worked together on the activity, where they had to: 

(1) Take 1000 random samples of 2 SOS scores from the population of 

120 SOS scores and obtain the sample mean for each of the 1000 

samples.  Draw a histogram and a boxplot of the 1000 sample means 

of size 2. 

(2) Repeat the same process for samples of size 5, 10, 15, 20, 25, 30. 
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(3) Create a table with numerical summaries (mean, median, standard 

deviation, min, max, Q1, Q3) for the original population and each of 

the 7 sets of sample means. 

(4) Use the graphs and numerical summaries to answer different 

questions about the properties of sampling distributions. 

After all the groups had completed the activity sheet, the whole class 

resumed.  The instructor told students that he hoped the activity helped them 

understand the idea of sampling distribution, the most difficult concept of the 

class.  He then went on to explain that the purpose of the course up until then was 

to equip them with the tools they could now use to make inferences.  If we need to 

make inferences about some unknown population mean for example, he 

continued, knowing the sample mean is not adequate.  We also need to know its 

distribution properties to decide how good that sample mean is.  He asked 

students to describe some properties of this distribution, and a student remarked 

“When your sample size gets larger, then your curve gets taller and narrower.”  

The instructor used the following example to get across to students the advantages 

of taking a large sample: 

Inst.: Does anybody have an orchard field at home?  If you sell apples, you 
will probably be able to have 1-2 rotten apples hidden in a large bag, but 
not in a small bag.  You can sell more easily the large bag.  That’s what 
average says.  Average of a large sample size takes care of those rotten 
apples.  If you have a large sample, it smoothes out extremes.  That’s why 
the distribution is so close. 
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The other properties of the sampling distribution were also brought up by 

students and were discussed.  He finally introduced the Central Limit Theorem as 

a summary of these properties: 

Putting these together becomes a notation of what we’ve been talking 
about: 

)
n

 ,N(~X:largen When σµ  

Confidence Intervals 

Shaughnessy (1997a) has found the idea of an interval of likely values in a 

sampling situation to be quite accessible for students.  In a previously conducted 

study (Meletiou, Lee, and Fouladi, 1999), we used one of the items Shaughnessy 

had used in his research.  The conclusions we drew were very similar to his.  We 

also found the idea of a range of likely values in a sampling context to be very 

accessible even for students with no statistics background.   

Although students seem to be quite comfortable with the idea of likely 

intervals, confidence intervals are among the most confusing topics in 

introductory statistics.  Erickson (2000) sees the way “official confidence 

intervals” are defined being a problem.  Understanding that 95% confidence 

interval means that if we were to draw many samples and calculate the confidence 

interval for each, 95% of the intervals would contain the true value, and not that 

there is a 95% chance that the true value is in our interval is hard for students.  

Also, the way we explain what makes a confidence interval work is even more 

confusing:  
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The definition above is all about taking multiple samples from a single 
unknown population.  Yet we use the interval to define a range of 
reasonable population values – derived from a single known sample.  It’s 
confusing, so we explain it by taking multiple samples from multiple 
hypothetical populations, which, while correct, can confuse students all 
the more. (Erickson, 2000, p. 269) 

Erickson (2000) believes that “although the tumult about confidence 

intervals is important for AP or college students” (p. 269), the most important 

issue for every student to understand is that whenever producing an estimate of 

some parameter based on a sample, our estimate is probably wrong due to chance 

error.  Therefore, the estimate is misleading unless we figure out how big the 

chance error is likely to be.  This is a belief that the instructor shared too.  His 

emphasis was on helping students understand the logic behind confidence 

intervals, instead of teaching them how to “plug in numbers and formulas” 

without understanding the real purpose behind what they are doing. 

No. of Raisins in a Box 

The instructor introduced confidence intervals through a whole-class 

activity where students tried to guess the number of raisins in a box.  He gave one 

packet of raisins to each student.  First each student estimated the number of 

raisins in their box and then counted them.  When students were done counting, 

they each gave both the estimated and the actual number of raisins.  The instructor 

had overhead projection and they entered the values in Minitab.  Students 

compared the column of Guess with that of Actual, and noted that “Guess is too 

low” since almost everybody underestimated the number of raisins.  They also 

noticed that “Guess has more variation.”  The instructor then told students that he 
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would now “use some of the tools [they] learned before, basic statistics.”  Using 

Minitab, he drew graphs and found summary statistics for each of the two 

datasets.  Students copied the summary statistics as well as the histograms of 

Guess and Actual.  Before drawing the two histograms, the instructor remarked:  

We have to use the same scale.  We need to.  It’s so easy to cheat by 
manipulating shape.  Tell you what: 3-4 years from now your boss asks 
you to present something.  You know he wants to see major improvement.  
Make your Y much wider.  Then you’re going to show a huge 
improvement, even if it actually was only 1%.  OK!  You’ve got a trick 
here.  And then you will be fired. 

Students looked at the two histograms and noted that it was obvious Guess 

had a more varied distribution.  Actual was more “compact” and also “closer to 

normal”.  The instructor agreed: “I’ve noticed it for many semesters that it comes 

very close to a normal distribution.”  Students also examined the boxplots of the 

two distributions and noted that the one for Actual had higher values, was tighter, 

and more symmetric.   

The sample mean of Actual they found was X =33.5.  The instructor 

asked: “How am I going to get µ?”   A student suggested to “count everything”, 

but at the teacher’s remark that this would mean “opening every box” he changed 

his mind and said instead that “you estimate it by X .”  The instructor approved 

the student’s idea but added: “It is an estimate, it is not the truth, right?  I say 

that’s a pretty good estimate, but how do you do better than that?”  What he tried 

to do here is an introduction to confidence intervals.  He continued: 

Inst.: Every time people ask you to estimate something, let’s say I ask you 
to estimate your average GPA, I’ll probably say it’s between 0 and 4. 
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S: Sure. 

Inst.: Can I do better than that?  Well, if you are able to stay in this class, 
chances are you have at least a C.  So, the average is probably at least 1.5 
to 4.  So, I can narrow it down.  What am I doing?  I’m giving you an 
interval.  In real life, if I’m not sure this is it, I say I think it’s between this 
and that.   

He then asked students to discuss with their group ways to come up with 

“a good interval”.  A class discussion followed, during which it was decided that 

intervals that are too wide are not very informative, whereas ones that are too 

narrow are very risky.  The instructor then asked students to come up with a 

reasonable interval for the mean number of raisins in a box.  He wrote on the 

board “True mean number of raisins is between ____(a number) and _____(a 

number)” and remarked: 

Inst.: That’s what an interval is.  Everybody write an interval and then 
we’ll discuss whether your estimate is good or not.  You can use any 
information here that you think is useful.  This is more than a guess now.   

Different students gave different intervals.  One student suggested “30 to 

36…one standard deviation on each side” (They had found s=3.34).  Another 

student suggested “27 to 40.  2 standard deviations.  Events that are not rare.”  

Then instructor remarked: “27 to 40 is from min to max…quite a big interval for 

true mean, right?” and the student responded laughing: “It’s guaranteed to be 

there.”  The instructor had to remind students that “we talk about sample mean, 

we are not talking about individual raisins, individual boxes”, for them to 

remember that they need to use the standard error and not the population standard 

deviation “to estimate how close X is to µ..”  He told students that their idea of 

“going up and down” a certain number of standard deviations was right, but they 
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should have used “some multiple of standard error.”  This, he noted, is the most 

important concept in confidence interval estimation and the rest is computation: 

“Be sure you understand that we add and subtract a certain amount of SE from 

  ,X because that measures error between µ and .X  Here, I have 67% and 95%.”  

He then added: “Of course, I can do more than that.  I can do any confidence 

interval I want” and introduced statistics notation to generalize the idea of 

confidence interval, “to cover any case”.  Whereas students seemed pretty 

comfortable till that moment, once notation was introduced, they got very 

puzzled.  Although the instructor told them that they “should not be confused by 

that notation”, since if they “understood how [they] came to this part, this will be 

nothing but a simple formula”, students seemed quite frustrated.   

After the class ended, I had a meeting with the instructor.  He remarked 

that one of the biggest obstacles is that students have a weak mathematical 

background and are intimidated by abstract notation.  I asked him whether he 

thinks statistics courses should change so as not to include as much mathematical 

notation.  He replied that although he tries to use mathematical symbols as little as 

possible, some use of notation is necessary because “if you don’t do that, they will 

be talking about 2 standard deviations and that’s it.  You’ve got to have some kind 

of notation.” 

Hypothesis Testing 

The instructor used the idea of rare event (corresponding to a small p-

value) to introduce students to hypothesis testing.  He tried to help students 

understand that a rare event could mean either that the initial assumptions are true 
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and an unlikely event happened by chance, or the initial assumptions are incorrect 

(Ballman, 1997).  He also tried to use as simplified a language as possible.  Other 

than that, the approach used in this class was similar to the one typically used to 

introduce hypothesis testing, as the short description of the following activity 

which was the main class activity related to hypothesis testing indicates. 

Drug for Reducing Cholesterol Level 

Students worked in-groups on this activity, which can be found in 

Appendix C.  They had to decide whether the reduction in the average cholesterol 

level of a sample of 64 high-risk patients from 285 mg (Sample S.D. = 100 mg) to 

250 mg, was significant enough for FDA (Federal Drug Administration) to 

consider the drug effective in reducing cholesterol level.  First they had to make 

this decision based solely on their “common sense”.  Then, the handout 

informally introduced them to hypothesis testing, by helping them see that a way 

to decide whether the drug reduced average cholesterol to a significantly lower 

level is to check if a sample average of 250 mg is rare when the true average is 

285 mg.  Students found the z-score corresponding to a sample mean of 250 mg 

and standard deviation of 100 mg, and decided that the reduction in average 

cholesterol level was “a rare event” (it fell outside the two s.d. of 285 range).  

Based on that, they drew their conclusions regarding the effect of the new drug. 

In the second part of the activity, the court case scenario was used to 

introduce students more formally to hypothesis testing, and the rationale it is 

based on.  The ideas of null and alternative hypothesis, of a decision rule based on 

sample information, and of the two Types of errors and the relative seriousness of 
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each were discussed.  In the third part of the activity, students returned to the 

“New Drug” case, and the analogy to the court case scenario was pointed out – 

that this problem also involves two decisions to choose from (Ho: the drug is 

effective, Ha: the drug is not effective), and there is always the possibility of 

drawing the wrong conclusion.  Students then had to define what “Not effective” 

and “Effective” meant in the context of the “New Drug” problem.  The handout 

then provided them with hints as to how a formal hypothesis test would be set up 

)mg285:Hamg285:H( o   , <= µµ and how the decision as to whether to reject the 

null hypothesis or not would be reached.  Finally, some more formal terminology 

such as critical value, level of significance, and p-value were introduced. 

Learning with Fathom: Outside-of-Class Investigation 

As already mentioned in the Methodology Chapter, in addition to 

investigating what happened in the PACE course, I also worked independently 

with a group of five students outside class to assess the effectiveness of the 

technological tool Fathom as an aid to conceptual understanding.  I met with these 

students – either individually or in small groups – several times during the course.  

More than thirty hours of open-ended investigations of students interacting with 

technology were audio-taped and/or video-taped and transcribed.  The 

information I gained about the kinds of intuitions students use to make sense of 

the stochastic and the ways in which their intuitions are shaped by technology is 

so rich that it could be the main theme of a dissertation study.  Since, however, 

technology is not the main theme of this dissertation, I only provide in this section 

a very brief description of just few of the many activities that students engaged in.  
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Before doing this, I first give some background information, taken from Erickson 

(2000), about Fathom and the way it is structured. 

Structure of Fathom 

A Fathom document lives in a window and contains different components.  

The main one is the collection.  The collection looks like a box with gold balls in 

it.  Each of these gold balls is a case.   

Figure 5.11 – A Fathom Collection 

A case has one or more attributes (i.e. variables) which can be continuous 

or categorical.  There are two kinds of attributes: regular attributes, which are 

Case Attributes – they have a separate value for each case in the collection of data 

points, as well as Collection Attributes - attributes with one value for the entire 

collection.  Collection attributes are then statistics summarizing a collection.  In 

Fathom, we also have Derived Collections – collections that automatically fill 

with data according to rules the user specifies in the Formula Editor.  The two 

most important kinds are Sample Collections and Measures Collections.  A 

Sample Collection is a sample of another collection, called its Source (the 

population it originates from).  A Measures Collection, on the other hand, 

converts Collection Attributes into Case Attributes in order to enable the user to 

Collection Rerandomize

a case a case a case
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record statistics (collection attributes) and thus build distributions of statistics.  

The user adds Collection Attributes to the collection using the Inspector, which 

he/she can access by double-clicking the box containing the collection. 

Graphs, Case Tables, and Statistical Tests are also components.  They do 

not contain data, but they provide ways of exploring data.  A Case Table looks 

like a regular spreadsheet, with each case appearing as a row in the table and each 

attribute appearing as a column.  Fathom also supports several different kinds of 

graphs, which the user can draw by dragging attribute names from either the Case 

Table or the Inspector to the appropriate axis of the graph, and then choosing 

from the menu in the corner of the graphing tool the plot desired.  The user can 

also add things such as functions to the graph by using the Formula Editor. 

Sliders are also components that can be used to control variable 

parameters. 

I now give the “Coin Toss” activity, which was one of the first activities 

students engaged in, as an example of the kinds of interactions students had with 

Fathom.  I then give a sketch of some of the other activities students worked on. 

Coin Toss Activity 

In this activity, students tested the predictions they had made in the pre-

interviews as to what outcomes are likely when tossing a coin 50 times.  I used 

the activity as an opportunity to informally introduce the notions of sampling 

distribution.  Students first collected a single sample of 50 coin tosses by building 

a Table with 50 cases.  Each of these cases had one attribute.  The attribute, 

named CoinToss, was a binary variable whose value was either “Head” or “Tail”.  
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Students entered the command RandomPick(“Head”, “Tail”) in the Formula 

Editor to simulate the tossing of the 50 coins.  Thus, the column containing the 

CoinToss value of each Case, is a Sample Collection whose Source (the 

population distribution it comes from) is a binomial distribution with P=0.5. 

Figure 5.12 – A Sample Collection of 50 Coin Tosses 

Students “dragged” a graph on which they “dropped” the CoinToss 

attribute, in order to get a bar graph of the outcomes.   

Figure 5.13 – A Bar Graph of the Sample Collection of 50 Coin Tosses 

Pushing Control-Y, re-randomizes the values in the table.  Students 

pushed Control-Y several time and saw how the bars of the graph, and the 

numbers in the table, would change.  This helped them get an idea as to what 

values were likely.  Also, I asked students to write down the number of heads that 

came up each time.  After they had repeated this re-randomization several times, I 
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let them know that Fathom has a feature, the Measures Collection, which actually 

allows us to record statistics – in this case the count of heads.  I explained to them 

that using Measures Collection one could collect many such statistics and then 

draw a histogram to see how those statistics are distributed.  I showed them how 

to use the Inspector to ask Fathom to add the Collection Attribute CountHeads.  

They specified it by using the command Count(CoinToss= “Head”) and checked 

that it gave them the same number as the number of heads displayed on the bar 

graph.  They then used the Collect Measures command, which automatically 

collected the counts of 5 samples of coin tosses. 

Before continuing, I made sure students understood what those counts 

represented: “It’s 5 times…each time out of 50” (Lucas).  

Figure 5.14 – A Measures Collection of 5 Sample Statistics and the 
Corresponding Histogram 
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Table 5.2 –Sample Collection vs. Measures Collection in Fathom 

Coin Toss Sample Collection  Measures collection 
Each case is a single coin toss Each case represents a collection of 50 coin 

tosses 
Whole collection is a collection of 50 single coin 
tosses 

The collection summarizes many samples of 
50 coin tosses (5 by default) 

The measure is a single number (a statistic) that 
describes the number of heads in the collection. 

Each case contains the count of heads of one 
collection of 50 coin tosses, so the collection 
has many counts of heads. 

You can’t estimate the mean count of heads here 
because this collection is only one sample 

Can calculate the mean count of heads in this 
collection- by averaging the set of counts. 

Students then collected the count of heads for a large number of samples 

and drew the resulting distribution. 

Figure 5.15 – The Distribution of a Measures Collection of Counts of Heads for a 
Large Number of Samples 

Looking at the graph, students would make observations such as, for 

example, that 30 heads in 50 tosses was pretty likely, but that a number as high as 

40 or higher would almost never appear.  They also saw that the distribution of 

the numbers they collected looked “like bell shaped.” 

In the beginning, when students started working with Fathom, they did 

confuse single samples with the samples of statistics obtained with the Measures 

collection.  Differentiating between the two was a key breakthrough for students, 
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that helped build connections to inferential statistics.  At first, students created 

informal confidence intervals from distributions and decided what range of values 

of that parameter they would consider reasonable, and which values seemed 

implausible and begging for another explanation (Erickson, 2000) or, in students’ 

terminology, which were “rare events”.  Eventually, processes became more 

formal, and students began comparing empirical probabilities with the theoretical 

ones. 

Sample of Other Fathom Activities 

1.  Roll of a die: Students did simulations and verified the conjecture they 

had made during the pre-interview that it is quite likely to only get 3 out of the 6 

possible outcomes in 7 rolls of a die.  They then made predictions as to what 

would happen if, instead of 7 times, they rolled the die a bigger number of times.  

They would repeat the rolling of an increasingly bigger number of dice and see 

how the distribution would become increasingly uniform.  

2. “Love is Not Blind” (from Scheaffer et al., 1996): This is another 

activity that I used to informally acquaint students to the idea of sampling 

distribution.  Students first read the article “Love is not blind, and study finds it 

touching” (Associated Press, 1992; in Scheaffer et al., 1996).  The article was 

describing an experiment where 72 blindfolded people tried to distinguish their 

partner from two other people of the same age, weight, and height.  Students used 

a Binomial Distribution with P(Success)=0.33 to model this situation.  They 

simulated the experiment many times, collected the proportion of correct 
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recognitions each time, drew a histogram of this set of proportions and checked to 

see how likely it is that 58% correct recognitions could have happened by chance.  

3. Aunt Belinda: This activity is also an inference problem based on a 

simple binomial situation.  Students were told that “Aunt Belinda” claims she has 

psychic powers that allow her to make heads come more often than tails when a 

coin is tossed.  They were asked to decide how likely her claims are, given that 

during an experiment in her presence a fair coin was tossed 20 times and heads 

came up 16 times.  Students did simulations similar to what they had done in the 

“Coin Toss” activity, and built the distribution of the Count of Heads.  Looking at 

the graph of the distribution, they concluded that obtaining 16 heads out of 20 just 

by chance is “rare”.   

4. Drug for Reducing Cholesterol level: This is the same hypothesis 

testing situation as the one that the whole class had engaged in.  Students used 

computer simulations to build the distribution of average cholesterol levels for a 

large number of samples coming from a population distribution they defined, 

which had a population mean of 285 and a standard deviation of 100.  They put 

the statistics they collected on a histogram and saw that the distribution of those 

statistics was approximately normal even when the original population 

distribution was not.  They looked at the histogram and saw that 250 seemed rare.  

In order to verify that one would reject the null hypothesis at the 95% confidence 

level, they drew a vertical line where the 5th percentile was located and saw that 

250 was below that line.  They also compared the computer results with the ones 

they got in class and saw that the two were very similar.  
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END-OF-COURSE ASSESSMENT 

In this section, I outline the findings from the end-of-course assessment, 

which can be found in Appendix D, and the follow up interview of the primary 

group.  The analysis includes a brief discussion comparing the understanding of 

inferential statistics by students who participated in the outside-of-class activities 

using Fathom with that of the rest of the students. 

Exploratory Data Analysis 

All the students interviewed at the end of the course had a notion of 

distribution adequately close to the statistical one: “Frequency is like the amount 

of people in each category.  The distribution is like how the graph looks 

like…how many people are here and how many people are there.”  They all noted 

that graphs help us figure out what the distribution looks like and stressed that, in 

addition to graphs, numerical measures are also necessary to adequately describe 

a distribution.  Most of them had good understanding of mean and median and of 

how the relationship between the two affects the shape of the distribution.  They 

also understood that, in addition to knowing about the center of a distribution, one 

also needs information about “the overall spread.”  They recognized that, when 

comparing measures of center, one should always take spread into account: “You 

can’t say, since the mean is 30 and the median is 40, the mean is less than 

median.  If the range was from 0 to 50, yeah that’s a big difference, but if you’re 

going from like 0 to 1,000,000 that’s different.”  

When in the follow-up interview I asked students to give examples of 

measures of variation, standard deviation was not the only measure they 
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mentioned.  They all noted that measures such as the “range of the box” also give 

us information about the spread of a dataset.  When asked to describe the meaning 

and purpose of standard deviation, Tim was the only one whose response 

indicated poor conceptual understanding: “Like the…I don’t know…I need my 

notes.”  Showing the formula did not help this student: “Symbols confuse me…I 

don’t know…I don’t know the definition of standard deviation.”  All the other 

students had a pretty good grasp of what standard deviation is and how it is used.  

Peter, for example, said that standard deviation “gives information about the 

distribution between the scores, the distance…outside of the center.”  George 

explained that one calculates standard deviation “to figure out the deviation, the 

average deviation of the scores from the mean”, and this “makes it easier to 

compare.”  Anna understood how standard deviation is connected to normal 

distribution and how “if it’s not normal then the [Empirical] rule is just not 

right.”  To make her point, she drew a skewed distribution and noted: “It would 

not be good because here’s the mean and you will have two standard deviations 

here but you will have to keep going over here.” 

Students’ performance on Question 10 of the end-of-course assessment 

asking whether two distributions with the same mean and standard deviation 

ought to look exactly alike, compared to that of students in the pilot investigation, 

is another indication of the positive effects of the emphasis of the course on 

variation.  
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Table 5.3 – Results of Current Study vs. Results of Pilot Investigation on “Same 
Mean and Median” Question 
Response Non-PACE 

% 
PACE-Previous 

% 
PACE-Current 

% 
Yes 29.8 29.5 9 
No 68.9 70.5 91 

No  response 1.2 0.0 0.0 

Only three students (9%) in the current study claimed that having the same 

mean and standard deviation implies identical distributions.  This is in contrast to 

the pilot study, where 29.5% of the PACE students and 29.8% of the other 

statistics students, argued that knowing the two parameters “decides the shape of 

the distribution.”  A linear model was fitted using CATMOD (SAS Institute 

1988), in order to investigate the relationship between course type and probability 

of giving the right response to this question.  Course type was the independent 

variable and it had two categories.  The first category was Allprev, where all 

statistics students in the previous study (i.e. both non-PACE and PACE-Previous) 

belonged, and the second category was PaceCurr, which encompassed students in 

the current study (PACE-Current).  The analysis of variance indicated that course 

type was a significant factor in determining success (p-value = 0.0004). 

In the pilot investigation, although the question mentions nothing about 

normal distributions, several students gave responses such as: “Of course, 

because they have the same mean and standard deviation.  If one has a normal 

distribution, the other one should look the same”, or “Yes, because mean and 

standard deviation are what makes the curve.”  Those students seemed to be 

thinking only in terms of “perfect” normal curves where the mean is the middle 
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point and the standard deviation does determine how the data is spread around 

that middle point: “Yes, because the mean is the middle point of the distribution 

and the standard deviation is the spread of each and if they are the same they 

have the same distribution.”  In this study however, almost everyone recognized 

that “many different shapes can occur from samples that have some similar 

attributes.”  Several students also did drawings to make their point.  One student, 

for example, drew two distributions, one uniform and one with just two bars at a 

distance from each other, that had the same mean and standard deviation, and 

wrote: “Standard deviation is similar to an average distance from the mean and 

may not explain shape.”  There were also several students who argued that two 

distributions with the same mean and standard deviation could look quite different 

“because the variability might differ.”  It is encouraging that those students 

perceived variability as something more than standard deviation. 

Despite all the emphasis of the course on helping students improve their 

ability to construct and interpret graphs, they still had some difficulties.  Even at 

the end-of-the course, when given again the seemingly easy question (Question 1) 

of having to decide, by looking at the histogram of two distributions of scores 

which one had more variability, five students (15%) gave the wrong response 

(distribution A).  Even among those who chose distribution B, some might have 

had misunderstandings, as I found in the follow-up interview of Tim.  This is how 

he explained why distribution B has more variability: 

Tim: I mean, it has more variability cause like the people here…the 
highest frequency is here…and the highest frequency on this one is 2…12 
different variables here.  This has more people… Because this is 14 and 
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this 2…a difference of 12.  And this is 3 and this is 13, and so…B should 
have more variability. 

Instead of looking at the horizontal axes of the histograms to compare 

their spread, Tim was looking at their vertical axes and was comparing 

differences in the heights of the bars (i.e. differences in frequencies among the 

different categories).  The explanation Lucas gave for having chosen histogram A 

in the previous assignments of the task, showed that he had also been looking at 

the wrong axis: “I had chosen it because…the height is very… there is a lot of 

different heights.  I was looking at the height of the graph…but now I understand 

it that it’s here that we should be looking at…I was looking at the wrong side.”  

He, however, now realized that “variability means spread…and also [he] would 

include the range of the scores”, and for this reason gave the right response at the 

final assessment.  Tiffany also said that she had, in the pre-assessment, claimed 

that histogram A has more variability because she “didn’t know then the 

definition of variability.”  She explained: “I was confused between this…like the 

height and the width.  I just got totally confused because…in some ways I was 

thinking that this has more variability and it doesn’t make any sense right now…I 

just got confused from the height of it…” 

At the completion of the course, we also gave students the same question 

the instructor had given at the end of the previous semester, where they had to 

describe how a histogram of the distribution of salaries for individuals 40 years or 

older but not retired would look like (Question 6).  As already discussed, with the 

exception of 3-4 people, all students had argued that the distribution would be 

skewed-to-the right, not because they understood how the histogram would look 
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like, but because they confused it with scatterplots.  In this study, 42% of the 

students realized that, on a histogram describing distribution of salaries, salary 

goes on the x-axis and (relative) frequency of people on the y-axis, and that the 

distribution should be right-skewed, since “most would make around the same but 

a few would make lots more.”  Nonetheless, the rest of the students, similarly to 

the students of the previous semester, saw the graph as a scatterplot of salary vs. 

age.  One of those students was Peter.  In the follow-up interview, he confessed 

that he still “struggle[d] with histograms”.  Although with my help he did realize 

that his reasoning was wrong, he was still not very optimistic about his ability to 

construct or interpret histograms: “May be you give me another histogram today, 

I’d probably still mess it up.”  

The “Test Results” Question from Pfannkuch and Brown (1996), which 

was given to students right after they had engaged in the “SATs and GPAs” 

activity was also included at the end-of-course assessment (Question 11).  This 

was the question asking students to compare the boxplots of two sets of results on 

a test, given to the same small class twice, and decide whether the results changed 

significantly or not.  The first time students answered this question, the proportion 

of them judging that test results changed significantly was only 25%.  This 

proportion dropped further to 9% at the end-of-course assessment.  All but three 

students recognized that the almost identical interquartile range of the two 

boxplots meant the change in test results was probably not very significant.  At 

the same time, we again found several students who thought that the middle line 

of the boxplot shows the mean.  In the follow-up interview of the primary group, 
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two of the eight students interviewed had serious misunderstandings about 

boxplots.  They made claims such as “25th percentile means that 25% in the class 

scored 43”, “most of the scores are in the middle box”, or “Q1 is the average of 

the lower part.”  The other students gave a good description of the features of a 

boxplot and explained that the difference in the median scores would have been 

more important if the interquartile range had been narrower, because then “the 

percentiles, whatever, would be a lot closer together.  So if you just move it a little 

bit, you know, a quarter of an inch, that would be like a difference of 20%.”  

Data Production  

Question 2 at the end-of course assessment, adapted from Jacobs (1997), 

asked students to compare the quality of two surveys, both conducted to 

determine how many higher institutions in Texas are recycling.  In the first 

survey, postcards were sent to all the deans of higher level institutions in Texas 

and about half of them responded, 91% of those responding stating that their 

school was recycling.  The second survey used a medium sample size and a 

random sampling method, and found the proportion of schools recycling to be 

37%.  This question had also been included in the pilot study.  The same coding 

used for categorizing students’ responses in that study was also employed here. 
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Table 5.4 – Results of Current Study vs. Results of Pilot Investigation on 
“Recycling” Question 

Response Non- 
Statistics 

% 

Non-
PACE 

% 

PACE-
Previous 

% 

PACE-
Current 

% 
A: Second method better; other method biased  67 72 68 79 
B: First method representative of more schools 
and thus a better indicator 

20 14 27 6 

C: First method good because of  larger 
sample; second because more random 

3 7 0 6 

D: First better even though biased because of  
bigger sample size 

0 1 2 3 

E: Other responses 9 5 2 3 
F: No responses 1 1 0 3 

Almost four-fifths of the students in the current study (79%) expressed 

preference for the random sampling method and only two students (6%) chose the 

first method without mentioning the selection bias characterizing it.  This is 

unlike the pre-assessment, where several students did not recognize the dangers of 

self-selection.  Analysis of variance was performed using the CATMOD 

procedure, with the binary variable ResponseType (1 = giving an “A” type 

response, 2 = not giving an “A” type response) being the response variable, and 

the categorical variable CourseType (1= Non-Statistics, 2=Non-PACE, 3=PACE-

Previous, 4=PACE-Current), being the explanatory variable.  It did not reveal any 

significant effect of course type on probability of a correct response (p-value = 

0.5729).  

The response of one student who, although acknowledging the potential 

for selection bias of the first method, still preferred it, is interesting: “Large 

sample with 50% response – If we assume those not responding do not recycle, 

you really have a population statistic at 45.5% recycling.  The smaller random 
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sample only yielded 37% - I would go with the larger method.”  This student 

assumed that everybody who did not respond was not recycling and adjusted the 

results of the study accordingly.  With this adjustment, he concluded, it is better to 

use the results of the first method, since it utilizes a larger sample size. 

Concept of Independence 

By the end of the course, students’ notions of independence were much 

closer to the statistical one than when the concept was first introduced.  In the 

end-of-course assessment, Question 5 asked students what “independent events” 

means, and all but two students (who confused independent with mutually 

exclusive) gave a fairly good explanation.  Also, students’ performance on the 

“Roulette Wheel” question at the end of the course (Question 15), compared to 

their performance on the same question at the beginning of the course, shows that 

the course did contribute a lot towards improving their notion of independence: 

Table 5.5 – End-of-Course vs. Pre-assessment Results on “Roulette Wheel” 
Question 

Response Pre-assessment 
No. of students 

Pre-assessment 
% 

End-of-course 
No. of students 

End-of-course 
%   

Black 20 67% 3 9% 
Red 1 3% 0 0% 
Either 6 20% 30 91% 
Other 3 10% 0 0% 

Students’ improvement was impressive.  The proportion stating that black 

and red are equally likely to come up on the next landing rose from 20% to 91%.  

Also, students’ comments show they did grasp the idea that previous outcomes do 

not affect the probability of the next outcome of random events: “Because it is 
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balanced.  Each time is a fresh start”; “There is an equal chance for each color.  

It could land on red 30 times in a row, the probability remains the same.”  

Despite the improvement, several students confused independence of a 

single event with long-term frequency of random events, as the class performance 

on Question 3 of the end-of-course assessment, adapted from delMas and Garfield 

(1990) indicates.  In this question, students had to decide who, among two friends, 

is more likely to get 80% or more heads, Shelly who is going to flip a coin 50 

times, or Diane who is going to flip the coin 10 times.  They had four responses to 

choose from. 

Table 5.6 – Results of Current Study vs. Results of Pilot Investigation on “Shelly 
vs. Diane” Question 

Response Non-
Statistics 

% 

Non-
PACE 

% 

PACE-
Previous 

% 

PACE-
Current 

% 
A: Diane because the more you flip the closer 
you get to 50%. 

21.7 24.5 36.4 39 

B: Shelly because the greater the sample size, 
the greater the variability in results. 

17.4 21.6 6.8 9 

C: Neither, because each coin flip is a 
separate event and the probability of heads is 
not affected by the number of times flipped. 

53.6 47.5 56.8 52 

D: Other. 7.2 6.5 0.0 0 

Comparing the performance of PACE students that participated in the 

current study on this item to that of PACE students in the pilot study, we see that 

they are quite similar.  In both studies, there was a higher proportion of PACE 

students giving the right response A.  Analysis of variance using CATMOD was 

carried out to examine the effect of course type on the probability of choosing the 

correct response C.  The independent variable CourseType was modeled to have 
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two categories.  The first category Allother was made up of all the students in the 

previous study who did not come from the PACE course (i.e. non-Statistics, non-

PACE), and the second category PaceAll was composed of PACE students 

(PACE-Previous and PACE-Current).  The analysis of variance suggests that 

CourseType had a significant effect on the probability of choosing the right 

response (p-value = 0.0242).  

There was also in this study a very low proportion of students choosing 

response B, which claimed that the bigger the sample size the greater the 

variability in results.  Nonetheless, in both studies, there was a high proportion of 

PACE students choosing C, which stated that since each coin flip is a separate 

event, the probability of heads is not affected by the number of times flipped.  

In the follow-up interview, I asked students who had chosen response C to 

look at the question again.  They all recognized that Diane actually has a higher 

chance of getting 40% heads because of the smaller number of tosses.  Lucas 

recalled a related activity we had done together using Fathom: “Oh, just like we 

did it on the computer with Fathom, we did it with 10 tosses, but when we did it 

many times and we kept on pressing Control-Y, Control-Y, it showed us that it 

would become more symmetric I guess, 50-50 chance.”  Peter remarked that he 

should have chosen A, “because the larger the n the better, and 50 is pretty large, 

so the proportion should come close to 50%”, but he chose C “because [he] saw 

independent and it sounded good.”  Similarly, Zoe said she chose C because 

“[she] was thinking that it’s independent and all that staff.”  
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Sampling Variation vs. Sampling Representativeness 

Several tasks were given to students at the end of the course in order to 

investigate their understanding of the relationship between sampling variation and 

sampling representativeness.  I will discuss only a few representative ones here.  

One such question (Question 12), was also given to students prior to introduction 

to probability, and was taken from Shaughnessy et al. (1999).  It was one of three 

versions of a task used in a series of exploratory studies on student understanding 

of variation with groups of primary and secondary students from the US and 

Australia.  A total of 235 primary students (grades 4 to 6) and 89 secondary 

students (grades 9 and 12) had participated in that study.  This version, which the 

authors called the CHOICE version, was given to a total of 105 students.  

Students had to choose, among five possible lists, the one that is most likely to 

present the number of reds drawn by four students who each drew 10 candies out 

of a bowl of 100 wrapped candies that had 50 reds. 

In analyzing student responses, the same procedure as that of Shaughnessy 

et al. (1999) was followed.  Responses were scaled both on the basis of their use 

of centers and of their use of spreads.  For the “centering” scale, student responses 

were categorized as LOW, FIVE or HIGH.  Responses for which the mean 

number x of reds was 4 < x < 6, were classified as FIVE, otherwise they were 

classified as either LOW or HIGH.  For the spread scale, the following categories 

were used: NARROW, REASONABLE, and WIDE.  Responses in which the 

range was 7 or more are pretty unlikely to occur and were classified as WIDE, 

and so are those with ranges less than or equal to 1, which were classified as 
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NARROW.  Ranges between 2 and 7 were considered REASONABLE.  

According to the scale, responses can be classified as follows: 

Table 5.7 – Classification of Responses in Shaughnessy’s “Candies from Bowl” 
Question 

Response Center Classification Spread Classification 
A: {8,9,7,10,9} HIGH REASONABLE 
B: {3,7,5,8,5} FIVE REASONABLE 
C: {5,5,5,5,5} FIVE NARROW 
D:{2,4,3,4,3} LOW REASONABLE 
E: {3,0,9,2,8} FIVE WIDE 

The best response is therefore B, which is centered on 5 and is also a 

reasonable response in terms of spread.  

The following table compares the performance of students in the 

Shaughnessy et al. (1999) study, with that of students in this study: 

Table 5.8 – Results of Current Study vs. Results of Pilot Investigation on 
“Candies from Bowl” Question 

Classification Shaughnessy et al. Study 
% 

Pre-assessment  
% 

End-of-Course 
% 

Center 
Low 
Five 
High 

Unclear 

 
13 
56 
27 
4 

 
10 
87 
3 
0 

 
0 

100 
0 
0 

Spread 
Narrow 

Reasonable 
Wide 

Unclear 

 
16 
76 
4 
4 

 
19 
81 
0 
0 

 
12 
88 
0 
0 

Correct 
Five, Reasonable 

 
35 

 
68 

 
88 

Students in the current study did better in estimating both center and 

spread.  Instruction seems to have been particularly effective in helping them take 
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both spread and center into account.  Whereas in the Shaughnessy et al. (1999) 

study, only 35% of the students belonged to the FIVE, REASONABLE category 

(i.e. chose response B), in this study the percentage was 68% in the pre-

assessment and 88% at the end-of-course assessment.  Linear model analysis 

using the CATMOD procedure was performed to investigate the relationship 

between probability of choosing the FIVE, REASONABLE category and course 

type (1= from Shaughnessy et al. study, 2= PACE-Current).  The analysis of 

variance indicates a significant effect (p<0.0001) of course type on the probability 

of success.   

Since helping students move away from “uni-dimensional” thinking and 

be able to integrate center and variability into their analyses and predictions, 

should be one of the main goals of statistics instruction, the results of this 

question are encouraging.  It is an important accomplishment of instruction given 

that in the Shaughnessy et al. (1999) study, although most students’ measures of 

spread were reasonable, they predicted values that were either too high or too low 

on the centering scale.  Also, in that study, the use of words explicitly referring to 

variation was quite rare.  In contrast, students in this study gave explanations that 

indicated they were integrating ideas of spread and center: 

Because 50% of the candies are red, the handfuls should be close to 5 reds 
each time so B.  Not C because it's random, there is a margin of error.  

Because they all range around 5 per pick, as would a sample with 50% 
reds.  The others seem too far away or impossible, like C.  

Because the average that would be expected should be 5 with some 
variation above and below the expected value.  
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It’s unlikely with .50 probability of reds that anyone got 0 or 10 or straight 
5's.  There are .50 reds and so we would expect to see more of those but 
this is a random sample and thus there should be some variability.  We 
expect to have some below 5 and some above.  B shows that.  

It's all about variance, but "central-tendency" must always be counted.  

Of course, students in Shaughnessy’s study are primary and high school 

students, whereas the present study deals with college students taking a statistics 

course.  However, in that study, while a steady growth across grade levels on the 

“centering” criterion from 34% at Grade 4 to 83% at Grade 12 was observed, 

there was “an apparent oscillation on the variability criterion across grade levels.”  

The researchers noted “a high spike occurring in our Grade 9 students, and then a 

drop off at Grade 12, for both the REASONABLE and the FIVE, REASONABLE 

categories.”  They speculated that the steady growth in the FIVE category, is an 

indication of the considerable focus of school curricula on “center”.  A possible 

explanation they saw for the oscillation at Grades 9 and 12 is that Grade 9 

students participating in their study were spending more time on data analysis 

than the higher level mathematics students, whose school work on probabilities 

might have interfered with their reasoning about this problem.  The exposure to 

probability did not seem to interfere with the reasoning of the students in the 

current study.  There were, of course, four students (12%) who at the end of the 

course chose response C [“5,5,5,5,5”], but all of them (as well as two additional 

students) had given the same answer in the pre-assessment, which was taken by 

students before formal introduction to probability.  The reasons that these four 

students gave to justify their choice of response C involve, similarly to 

Shaughnessy’s study, misapplication of probability arguments.  Students seemed 
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to be calculating the probability for a particular outcome rather than predicting the 

likely range for the number of reds. 

Students’ performance on Question 8 at the end-of course assessment, 

compared to their performance on the same question prior to instruction, is 

another example of the positive effect of instruction in helping improve students’ 

probabilistic reasoning.  Sixty-four percent of the students at the end of the 

course, compared to 35% of them in the pre-assessment, realized that due to the 

independence of random samples, one should still expect that, out of the next 20 

students interviewed, about half should be men and half women (choice C).  Of 

course, there was still a considerable proportion of students (24%) employing the 

balancing strategy and arguing that they expected the opposite trend to start 

happening (Response B), but in general, students’ performance was much 

improved.  Also, comparing results with the pilot investigation in which this task 

was also included, we see that students in the current study did better. 

Table 5.9 – Results of Current Study vs. Results of Pilot Investigation on 
“College Interviewer” Question 

Response Non- Statistics  
% 

Non-PACE  
% 

PACE – Previous 
% 

PACE-Current  
%  

A 35 30 30 6 
B 26 22 9 24 
C 33 40 52 64 
D 6 9 9 6 
E 0 0 0 0 

A significantly higher proportion of students in the current study gave the 

correct response C.  Analysis of variance using CATMOD was carried out to 

examine the effect on course type on the probability of choosing the correct 
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response C.  Course type was modeled to have two categories.  The first one was 

Allprev, which included all the students in the previous study (i.e. non-Statistics, 

non-PACE, and PACE-Previous), and the second one was PaceCurr, and 

included students in the current study (PACE-Current).  The analysis of variance 

indicated that course type had a significant effect on the probability of a correct 

answer (p-value = 0.0095). 

Students’ increased awareness of sampling variability is also seen if we 

compare their performance on the M&M problem (Shaughnessy, 1999) given to 

them at the end of the course  (Question 9), with the performance of students in 

the pilot study: 

Table 5.10 – Results of Current Study vs. Results of Pilot Investigation on 
“M&M” Question 

Response 
 

Non-Statistics 
% 

Non-PACE 
% 

PACE-Previous 
% 

PACE-Current 
% 

A: Exactly 8 11.6 15.1 4.5 3 
B: 0-8 10.1 15.1 15.9 9 
C: 8-20 2.9 2.9 4.5 0 
D: 6-10 52.2 52.5 63.6 58 
E: 0-20 20.3 14.4 11.4 27 
F: Other 2.9 0 0 3 

Only one student (3%) in the current study, compared to several Non-

PACE and Non-Statistics students in the previous study, stated that they expect 

exactly 8 browns.  Similarly to all groups of students in the pilot study, the 

majority (58%) of students in the current study chose 6-10 (response D) as the 

most likely range.  Students choosing D explained that, since 40% is the 

population proportion of browns, what is most likely to happen is to get 

approximately 40% brown: “Sometimes there will be a couple more, other times a 
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couple less”; “There will be variation but probably not too severe.”  Some 

students even noted that 6-10 “would be the likely range”, but this does not mean 

all sample outcomes would fall in that range.  On the other hand, that a proportion 

of students as high as 27% chose E [“0-20”], might be the adverse effect of a 

course putting so much emphasis on sampling variability.  Some of the students’ 

comments hint that this might be the case: “Although 40% of 20 is 8, you wouldn't 

expect to get 8 every time and the possibility is between 0-20 with a size so 

small.”  The student who chose F wrote something along the same lines of the 

students who chose E, emphasizing the small number of M&Ms sampled: “Take 

and do many more.  This is too small.”  

In the follow-up interview, I reminded students of the “New Zealand 

Question” in the pre-interview (Appendix A) and asked whether their reasoning 

had changed in any way.  Most of the students did change their mindset about this 

situation and pointed out that the number of children is so small that one cannot 

draw any conclusions.  Tim, for example, who had argued in the pre-interview 

that the probability of giving birth to a child with a missing limb correlates with 

where one lives, now said: “There is not enough information to…it’s not a big 

enough…it’s only 7 people.  It’s not enough number of subjects to understand 

what’s going on.”  Lucas remembered that in the pre-interview he was thinking 

“there might be something wrong with the sanitation or the water, something like 

that.”   Now though, he realized that “this is only one year so, last year or the 

year before, they could have had 3 down here and 2 up there and 2 over here.  
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You have to look at many years to see what’s happening.”  He added: “That’s 

why I liked this class.  I learned to look at the big picture of things.” 

Despite the students’ overall increased awareness of sampling variation, 

not everybody was as apt to let go of the deterministic reasoning with which they 

had approached this question during the pre-interview.  Zoe’s first reaction was: 

“I don’t know, most of the population lives on this side, so…I don’t know.”  

However, when I noted the very small number of children, she realized that the 

differences might have just occurred by chance.  When next I reminded her of the 

“Roll of the Die” Question (Appendix A) and explained its analogy to the “New 

Zealand” problem, she remarked that it is much easier for her to think in terms of 

chance about dice than about real life problems.  Similarly, Andrew at first 

argued: “There is a higher probability to get a limb missing here cause it’s not a 

regular type of civilization where there is doctors’ offices”, but then recognized 

that the number of births is very small to draw conclusions based on a single year. 

Inferential Statistics 

Several tasks given at the end of the course assessed student understanding 

of sampling distributions.  Most students’ performance on those tasks indicated 

poor understanding of this so important, but yet so difficult concept.  I just give 

the following task (Question 7 of end-of-course assessment) as an illustration of 

this.   
The amount of time it takes to take an exam has a skewed-to-left distribution with 

a mean of 65 and a standard deviation of 8 minutes.  A sample of 64 students will 

be selected at random. 
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PART I: Which of the following describes the distribution of the amount of time it 

takes to take an exam?  (a) N (65, 8); (b) N (65, 1); (c) a skewed distribution with a 

mean of 65 minutes, but unknown variance; (d) a skewed distribution with a mean 

of 65 minutes and a standard deviation of 8 minutes.  Explain your reason. 

PART B: Which of the following describes the sampling distribution of the sample 

mean based on n=64? (a) Approximately N (65, 8); (b) approximately N(65, 1);  

(c) approximately N(1, 65); (d) a skewed distribution with a mean of 65 minutes 

and a standard deviation of 1 minute.  Explain your reason. 

Only 64% of the students answered the first part correctly, although the 

answer was explicitly given in the definition of the problem.  The rest confused 

population distribution with sampling distribution.  Thirty-percent chose A (a 

N(65,8) distribution) and most of them gave a justification along the same lines as 

Matthew who wrote: “Sample size is large enough to force Normal distributions 

by Central Limit Theorem.”  These students were confusing population 

distribution with sampling distribution.  Also, they were confusing standard error 

with standard deviation since, given that they had thought the question was asking 

for the sampling distribution of the mean for samples of size 64, they should have 

chosen the N(65,1) distribution.  Barely more than half the students (54%) 

answered the second part correctly by choosing B.  Some of these students, did so 

as a result of applying the Central Limit Theorem: “Since n=64, the sample 

variance is 1 because: N (65, 1) by CLT.  We know our sample is large enough 

for normal distribution.”  However, not everyone choosing B did so for the right 

reasons as I found out in the follow-up interview: 

Int.: Over there it was the distribution of the amount of time it takes.  
What about this one?   
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Andrew: This is the distribution of the sample means?  

Int.: Yeah.  What does that mean?  

Andrew: Well, just how the…I don’t…I don’t …I don’t really know what 
that means…I understand why I picked that answer, but… 

Int.: Why did you pick that? 

Andrew: I just kind of guessed...  Whatever it was I got lucky in the sense 
that, I just thought it is like 65 and 1 and you get 64, I don’t know…I’m 
sure it probably has more to do with the numbers back here.  I don’t really 
know.   

Similarly to Andrew, George’s choice of the correct response was the 

result of meaningless manipulation of the information provided: “I was just 

guessing on that one, because the mean is 65 and so I said (n-1) is 64.  I knew it 

wasn’t that one, because of the question before.”  Tim’s response to the second 

part of the question, also seems to be correct as a result of guessing and not of true 

understanding: “I don’t remember how I did this staff, but I…I guessed it actually.  

I guessed, that’s pretty much what I did.”  

The students I interviewed, also seemed not to realize that the reason so 

much emphasis is put on normal distribution (and consequently on standard 

deviation) is its connection to the sampling distribution of the mean.  Although 

with some prompting most of them did point out that with increase in sample size, 

the sampling distribution “will be closer together” and, when the sample size is 

large, it will be “symmetric...normal”, they had to be pointed out that this is what 

makes normal distribution so important.  They did realize that the property of a 

distribution to be approximately normal is a very useful one, because then “if you 

know the standard deviation you can find out if you scored this much where it will 
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be on the graph.” They also knew how to apply the empirical rule and understood 

the usefulness of the Z-scores: “You can standardize and then you can compare 

ranges that are different, distributions with different means and standard 

deviations you can compare.”  Nonetheless, the connection of the properties of 

normal distributions to the implications of the Central Limit Theorem was 

missing. 

The following question (“Nicotine Level”) was given to students just 

before formal instruction on inferential statistics began:  

FDA has a maximum upper limit for nicotine contents to be 12 mg.  A company 

is manufacturing a new brand of cigarettes.  FDA sent an evaluator to test the 

nicotine content: 

(a) The evaluator took a random sample of 10 cigarettes and found the mean 

nicotine content to be 13 mg with a standard deviation of 2 mg.  Based on 

this sample of 10, do you think the FDA should conclude that the average 

nicotine level is not acceptable (is significantly higher than the acceptable 

brand)?  Why or why not? 

(b) What about if the evaluator takes a sample of 100 and again finds the mean 

to be 13 mg?  Why or why not? 

(c) The company filed a complaint that, based on their test, the mean nicotine 

level is 11.8.  Is it possible that the FDA has made a mistake: (i) When 

basing their decision on a sample of size 10? (ii) When basing their decision 

on a sample of size 100?  Explain why or why not. 

In the pre-assessment, only six people (19%) thought FDA could conclude 

that the average nicotine level is unacceptable based on a sample of size 10, but 

66% of them argued that based on a sample of size 100 the evidence is strong 

enough to draw this conclusion.  Seven students (22%) did not think FDA should 
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conclude that the nicotine level is above acceptable limits even with a sample of 

size 100, because this is still too small of a sample.  In the third part, all but one 

student thought it is possible that FDA had made a mistake when basing their 

decision on a sample of size 10, since it is such “an extremely small sample” that 

“even one cigarette with higher levels will throw results off.”  In the last part, 

however, there were nine students (28%) who argued that, when basing the 

decision on the sample of size 100, the sample is large enough to eliminate the 

possibility of reaching a wrong conclusion.  

Out of the eight students interviewed at the end of the course, four of them 

belonged to the group of students who had worked with me in the outside-of-class 

activities using Fathom.  Three of these four students agreed to meet in the 

computer lab and work together on the “Nicotine Level” task.  This meeting, 

which took place the day before I interviewed students, was video-taped, and will 

be described later on.  The four “Non-Fathom” students, as well Lucas who was a 

“Fathom Student” but did not make it to the lab meeting, were asked to work on 

this task during their interview. 

Non-Fathom Students 

Despite all the work done on sampling distributions and hypothesis 

testing, these students’ responses were almost identical to the ones they had given 

before their formal introduction to inferential statistics.  When, for example, I 

asked Andrew how he could justify quantitatively his claim that based on a 

sample size of 100 cigarettes FDA would have enough evidence to conclude that 

the nicotine level is above acceptable limits, but not based on a sample of 10 
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cigarettes, he had no answer.  I had to point to him that this is a situation where 

we could use a hypothesis test.  Although he did agree that it is “because it could 

be either yes or no”, he had a hard time formulating the test, and had to be 

reminded to use the standard error instead of the population standard deviation.  

He did note that “they want to see if the level is 12, so they’re going to take a 

sample of cigarettes to see if they fall within the legal limits of 12”, but claimed 

that if they reject the null hypothesis they will conclude “that the mean is 13.”  

Similarly to Andrew, George also claimed that “what we are trying to see here is 

whether the mean nicotine level is 13.”  He also had no answer when I asked him 

whether there is a way, with the things that they had learned in the class, to check 

how likely it is to get a sample mean of 13 by chance.  Once, however, I reminded 

him about using Z-scores, he went ahead and did the calculations which show that 

we would reject the null hypothesis for a sample of size 100 but not for a sample 

of size 10, because “13 is not rare enough to…put the two standard deviations.”  

Fathom Students 

Lab meeting 

Four students participated in the activity (In addition to Anna, Tiffany, and 

Zoe who belonged to the primary group, Lucia, who had also been working with 

Fathom, participated).  The four students worked as a single group.  I told them 

that they could answer this whichever way they wanted, but that I would not offer 

them any help other than technical assistance.  Students started discussing the 

problem: 

Lucia: So guys, would you like to name it nicotine drug or what…? 
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Anna: We’re gonna make like a bunch of cases for the 10 cigarettes.  
Because we have a sample size of 10 cigarettes. 

Zoe: But you have to do it more than once to… 

Lucia: Right. 

Lucia: Go to New Cases/Data and make 10 cases. 

Zoe: Now you have to give it a mean of 13 and do it you know, 1000 
times. 

Anna: The mean for this is 13. 

Zoe: I think you just click on the formula box. 

Lucia: Mean of 13 and a standard deviation of 2. 

It was very obvious they were not giving much thought yet into what they 

were doing.  Then, however, they decided to read the problem again.  Zoe 

exclaimed: 

Zoe: Oh, yeah, we don’t want 13, we want 12. 

Lucia: The maximum acceptable limit is 12.  “Based on the sample of size 
10, can you conclude…” So, we have to see if… 

Zoe: If 13 is out of range. 

Anna: Oh, yeah, yeah, we want to see if 13… 

Lucia: If it’s rare.  So…we want to see if…if 13 is over the upper limit. 

They started working on the simulation.  The following discussion is an 

interesting one as it relates to students’ understanding of the role of variation in 

hypothesis testing: 

Lucia: So we put Normal Random here, and put 12. 

Zoe: There is no standard deviation. 
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Lucia: Oh, you’re right.  Just 12.  We don’t put the standard deviation?  

Tiffany: Should we use the sample standard deviation of 2 if we don’t 
have the actual? 

Lucia: If you don’t have the population, then you use the sample. 

Anna: OK, let’s do it. 

Lucia: How are you going to know upper and lower limits if you don’t 
have the standard deviation?  We’ve got to have standard deviation.  How 
can you know?  What do you guys think? 

Anna: I’m mad Maria is not telling us what to do (laughs). 

The following conversation, where students explain that what they are 

doing here is simulating a sample from the population they have defined and that 

this sample will change each time they repeat the simulation process, shows how 

the activity facilitated their understanding of sampling: 

Lucia: OK.  We are going to make a histogram of this, so that we see the 
distribution, so…You drop nicotine here and then you go to the dotplot 
and you choose Histogram.  It shows you the distribution of the 
population. 

Zoe: Of the sample. 

Lucia: Of the sample. 

Anna: Now we are going to show why… 

Lucia: Not of the sample distribution, of the sample population. 

Anna: Do Control-Y. 

Lucia: Control-Y changes values. 

Zoe: Because it’s random chance.  It gets a different sample each time. 
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They then went to the Measures Collection in order to build the 

distribution of sample means from samples of size 10, and test whether a sample 

mean of 13 indicates that the nicotine level is above acceptable limits: 

Zoe: Let’s do a collection of measures. 

Lucia: Is that how you save them? 

Zoe: Yeah, go to collect measures. 

Lucia: No, you’ve got to do this first (goes to Measures Collection), 
because you’ve got to tell it what measures to collect.  We are doing the 
mean drug of… 

They gave a command to the computer to collect “500 measures of size 

10”, made “a table of measures”, and drew a histogram of the collected statistics.  

They then collected 500 sample means of size 100.  While the computer was 

collecting the measures, Lucia remarked: 

Lucia: So, we know that for sure, the standard deviation for 100 is going 
to be smaller because we have a 100 instead of 10 – divided by a bigger 
number. 

Tiffany: Yeah, by 100 . 

Anna: I think we are done. 

Lucia: We’ll close this and then we’ll do a histogram of this. 

Zoe: See how it is more like the normal thing? 

Lucia: So, this is Collection 1 from the population, and that’s the sampling 
distribution from the population. 

Tiffany: OK. 
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They then turned to the handout and tried to answer by hand the first part 

of the question that asked whether a sample mean of 13 for a sample of 10 

cigarettes indicates that the nicotine level is above the acceptable limits: 

Zoe: “Do you think the nicotine level…?” 

Lucia: We don’t know yet, until we… 

Anna: Oh yeah. 

Lucia: Too small of a sample. 

Zoe: Too small. 

Lucia: We have to justify our answer.  Is it acceptable? 

Lucia: (She writes on paper) So, it’s a random sample of 10 from a 
population of mean 10 and standard deviation of 2.  So, do we guys want 
to standardize this one (shows histogram) to see…do we have to 
standardize?  If I’m crazy just let me know. 

Anna: After yesterday I’m just drained. 

Zoe: Yeah, I wish we had this before.  The final just drained my brain. 

Lucia: You know, 13-12 over the standard deviation…I always screw that 
up…because it’s µ−x … 

Tiffany: Divided by nσ . 

Lucia: So, I always forget, x , if it is the 12 or the 13.  Which one is it? 

Tiffany: x is the 13. 

Lucia: You’re right.  So we standardized it.  So, we’ll use the table. 

Zoe: So what is it, 1.58? 

Lucia: But do we use Z- or t- because it’s a small sample size? 
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Zoe: We would use t. 

Anna: Z. 

Lucia: Z.  She’s right.  You go to 1.58 and look in there.  

They found P (Z>1.58) and decided it was too high, so they did not reject 

the null hypothesis.  They compared results they got when they did the 

calculations to the ones they got by doing the computer simulation and concluded 

that they were very similar.  They did the same for samples of size 100, and 

concluded that this time the evidence was enough to reject the null hypothesis. 

Interviews of individuals 

In addition to the lab activity, my conversation during the follow-up 

interviews with those students who had been using Fathom to explore sampling 

distributions made it clear that, unlike students like George and Andrew, these 

students had a much better grasp of the ideas of sampling distribution and 

hypothesis testing.  Anna, for instance, gave a very good explanation of sampling 

distribution, although she admitted that when the concept was first introduced she 

was completely lost: 

Anna: I don’t think I got it at first.  I was confused.  I understood that the 
larger the sample the closer you get to µ.  But I didn’t understand how 
from the population graph you get to the sample mean graph…When we 
started talking about sampling distribution, I would just be “I have no 
clue.”   

Anna then commented that although with ideas like “the probability stuff 

he (the instructor) did a really good job”, it was her experience with Fathom that 

helped her grasp the concepts introduced during the last part of the course.  Zoe 

too said that she would not have understood what sampling distribution means if 
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it had not been for the Fathom activities, “if [she] didn’t really see it.”  For the 

“Nicotine level” question, she set up the hypotheses, did the calculations, and then 

gave a good explanation of the purpose of doing the hypothesis test. 

The following excerpt from my interview with Lucas (the only “Fathom 

Student” who did not participate in the lab activity) is, in my opinion, evidence of 

how powerful Fathom can be as an instructional tool.  Although Lucas had one of 

the lowest grades in the course, and had a very hard time understanding abstract 

notation, his conceptual understanding of the notion of sampling distribution was 

better than that of most of the students in the class: 

Int.: Can you tell me how we would do it on the computer?  

Lucas: You want samples of size 10.   

Int.: That’s right.  What would the mean of the distribution be? 

Lucas: That should be 12, right? 

Int.: OK.  And what do you want to see? 

Lucas: What are the chances of getting 13, if 13 is extremely high. 

Int.: So, you do that.  Then what do you do? 

Lucas: You keep on going.  You look at like 100 or 1000 sample means, 
how many you want to look at.   

Int.: Thousands of what? 

Lucas: Thousands of samples of 10. 

Int.: And what do you do for each of those samples? 

Lucas: You find the mean of each of those and then you put those on the 
histogram.  
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Int.: When you look at histogram what do you try to see? 

Lucas: If 13 was an extreme high. 

DISCUSSION 

Findings from the study suggest that the course has been quite successful 

in helping improve students’ statistical reasoning.  Students in this study 

recognized that in addition to knowing about the center of a distribution, one also 

needs information about its spread.  They acknowledged that, when comparing 

measures of center, one should always take spread into account.  Most of them 

had good understanding of the meaning and purpose of the different numerical 

summaries they had learned in class.  It was for example very impressive that, in 

contrast to our previous research findings where almost no student really 

understood what standard deviation means, most of the students in this study had 

a pretty good grasp of the meaning and use of standard deviation.  Also, they all 

knew that, in addition to standard deviation, measures such as the interquartile 

range also give us information too about the spread of a dataset. They understood 

that mean and standard deviation are not the only two measures that define the 

shape of the distribution.  And although they still did have some difficulties with 

constructing and interpreting graphs, their understanding was much more 

sophisticated than that of students in the previous studies we had conducted. 

Instruction proved quite effective in achieving one of its main goals – 

helping students move away from “uni-dimensional” thinking and integrate center 

and variation into their analyses and predictions.  Although not totally letting go 

of their deterministic mindset, students were much more willing to interpret 
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situations using a combination of stochastic and deterministic reasoning.  The 

course increased significantly their awareness of sampling variation and its effects 

(in some cases, such as the M&M problem to a degree higher than the desirable 

one). 

Despite the positive effects of instruction on students’ skills and 

dispositions, instruction did not succeed in helping most students adequately 

develop the important ideas related to inferential statistics.  Inference is a very 

important part of statistical reasoning and for this reason the next section deals 

exclusively with this topic. 

Student Understanding of Inferential Statistics 

The experience I gained from the course has led me to agree with the 

instructor who thinks that the idea of rare event linked to everything, from the 

beginning to the end of the course is very promising in helping improve student 

understanding of inferential statistics.  I think that the idea of a rare event was 

quite intuitive for students.  It helped them see the purpose and usefulness of 

standard deviation and of the z-scores.  It was also quite effective in helping 

students make connections between exploratory and inferential statistics.  For 

example, when confidence intervals were first introduced, and the instructor asked 

students to give a likely interval for the number of raisins in the box, students 

used the empirical rule in order to include in the likely interval those values that 

are not “rare events”.  Of course, they used the standard deviation of the 

population and not the standard error, but still they understood the logic behind 

confidence intervals.  Also, when doing hypothesis testing, the idea of rare event 
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was much easier for students to grasp than the idea of a p-value.  As the instructor 

pointed out, that students in this type of course always need some reference to 

experience, they “have to have a concrete message to tell them about what’s 

going on.”  It is much easier for students to relate to their everyday experience an 

event that occurs rarely than it would have been if instruction had on hypothesis 

testing would have begun by giving students the definition of a p-value. 

Despite the benefits of having approached inferential statistics using the 

intuitive idea of “rare event”, difficulties of students persisted.   Next, I make 

some conjectures for the reasons behind these difficulties. 

Conjectures for Students’ Difficulties 

A. Meaning Attached to Variation 

What I have found as being one of the problems is how students perceive 

variation.  What meaning do they attach to population variation, to variation of a 

single sample, and to variation of the sample mean?  Do they realize the 

relationships/differences between them?   

Just before formal instruction of sampling distribution began, students 

were given the following task (from Garfield et. al, 1999): 

 
The distribution for a population of measurements is presented below.  Suppose 
that 10 values are going to be sampled from this population and the sample 
mean calculated.  Some possible means for this sample are 1, 6, 8, and 10. 
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PART A: Which of the four possible means is MOST likely to be calculated?   
(i) 1    (ii) 6  (iii) 8  (iv) 10. 
PART B: Which of the four sample means is LEAST likely to be calculated?   
(i) 1    (ii) 6  (iii) 8  (iv) 10. 
PART C: Looking at the graph above, what would you guess to be the value of 
µ, the population mean? 
PART D: Suppose now that in addition to the sample of 10 values, you take 
another sample of 100 values and you calculate its mean.   
(i)  In Part B, you stated the sample mean out of 1, 6, 8, and 10 that you believe 
is LEAST likely to be calculated when you sample 10 values.  Will it still be the 
same when you sample 100 values and you calculate their mean?  Why or why 
not? 
(ii) When is there more chance to get this LEAST likely mean value, when you 
sample 10 or when you sample 100 values?  Explain why. 

Figure 5.16 – Pre-assessment Task on Sampling Distributions 

All students did well on the first three parts of the question.  They all gave 

1 as the mean least likely to be calculated when drawing a sample of 10 values 

from this population.  All their guesses for the value of the population mean were 

also reasonable, ranging between 7-8, with most of them being around 8.  Their 

responses however to Part D of the question were quite varied, indicating 

different notions of sampling variation for different students. 

Although 78% of the students did agree that when taking a sample of 100, 

the least likely mean value they chose in Part B would still hold, there were seven 

students (22%) who disagreed, arguing that variation goes up with increase in 

sample size: “With a larger sample there is more chance for extreme scores.”  

Using the same reasoning, these students also argued that it is more likely to get 

the least likely mean of 1 with a sample of size 100: “there is more 

variation…more values and therefore more chance of people doing badly.”  
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These students’ notion of variation in this context seems to be that of range, 

which indeed usually goes up with increase in sample size.  It is a different notion 

from that of several students who claimed that a sample of size 100 is less likely 

to give you an extreme estimate “because when you have 100, [there is] more 

chance for variation and more spread out distribution.”  For these students, 

variation had the connotation of sample representativeness, which increases with 

increase in sample size because “there is more to choose from.” 

The different meanings students attach to variation indeed proved to be 

one source of the difficulties students had with comprehending sampling 

distributions, as the analysis of their written responses to the group activity on 

sampling distributions they did in class in order to estimate the average SOS score 

for CMU faculty indicates.  Another source of difficulty that the analysis revealed 

was confusion between variation of individual observations and variation of 

sample means.  

In the first set of questions students had to choose among three sampling 

schemes the one that has a higher chance to give a sample mean closer to the true 

average SOS score: (1) the mean of a sample of 2 faculty scores; (2) the mean of a 

sample of 5 faculty SOS scores; or (3) the mean of sample of 20 faculty SOS 

scores.  All of the students recognized that the sampling scheme with the largest 

sample size is more likely to give a sample mean closer to the population mean.  

Several students justified this by arguing that a larger sample size means there is 

“smaller variation and so it’s closer to the truth”, while others argued that a 

larger sample size implies higher variation.  The responses of several of the 
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students who argued that increase in sample size leads to decrease in variation, 

suggest they referred to the distribution of an individual sample and not to the 

distribution of sample means: “As sample size gets larger sample variation gets 

smaller.”  Among those who believed that increase in sample size leads to 

increase in variation, there were two groups of students.  The first group were 

students who perceived variation as sample representativeness.  The second group 

were students who perceived it as the range of values in the sample: “More 

possibility of wider range but x should be more accurate.”  According to the 

meaning that both of these groups attached to variation, an increase in sample size 

would usually indeed lead to increase in variation. 

These beliefs regarding variation of individual samples, affects how 

students perceive the relation between sample size and variation of sampling 

distribution.  When asked to describe this relation, ten students (36%) argued that 

“the larger the sample usually the larger the variation.”  They were the same 

students who had previously claimed that increase in sample size leads to increase 

in the variation of a sample.  The arguments they made were almost identical to 

the ones they had made before, this suggesting that they did not understand the 

changes involved when moving from the distribution of individual values to the 

distribution of sample means.  This confusion between individual observations 

and sample means was also hinted in the responses of some of the eighteen (64%) 

students who argued that variation of sampling distribution decreases with 

increase in sample size: “5 points are more likely to cluster in than only two 

points whose variation is the distance between the two points.” 
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As part of the activity, students had to look at the graph of the standard 

deviation of the distribution of sample means as a function of sample size and 

predict the trend if we continued to increase sample size.   

 

Figure 5.17 – Graph of Standard Deviation away from Sample Mean against 
Sample Size  

The group of students I video-taped made the important observation that 

eventually, “sample mean will form a straight line”, and standard deviation will 

be zero.  All the other students in the class also wrote that standard deviation 

would decrease with increase in sample size and that “standard deviation of 

sample mean would be 0 when the sample size equals the population size.”  

Nonetheless, in a subsequent question, which was asking students to explain the 

relation between the standard deviation of sample means and that of the original 

population, we witness their confusion between population standard deviation, 

sample standard deviation, and standard error.   

Standard deviations from sample 
mean for each sample size

0
0.1
0.2

0.3
0.4
0.5

0 10 20 30
Sample Size

St
. D

ev
.



 264 

Only few students pointed out that “S.D. of sample mean will become 

smaller as the average of averages size increases – S.D. of population is constant 

and set by population distribution.”  Many students argued that, as the sample 

size increases, the standard deviation of the sampling distribution gets closer to 

the standard deviation of the original population.  What several of these students 

seemed to have in mind was actually the standard deviation of a single sample, 

which they thought decreases with increase in sample size.  Some of them even 

claimed that, as the sample size increases, the standard deviation of the sample 

will eventually reach the population standard deviation which is 0: “As your 

standard deviation gets closer to zero, you know you are getting closer to the 

standard deviation of population which is 0.”  On the other hand, there were a 

few students claiming that “standard deviation of sample mean tends to be larger 

than that of original population because original population is the truth, and 

sample is an estimate, subject to error.”  These students also seem to be  referring 

not the distribution of sample means but the distribution of a single sample. 

Students’ confusion between population distribution, distribution of a 

single sample, and sampling distribution makes understanding of hypothesis 

testing more difficult.  In the first question of the handout students worked on in 

class (Appendix C), which was asking them to use their knowledge and common 

sense to decide, given the information provided by the company, whether the drug 

is effective or not, everybody considered the population standard deviation 

instead of the standard error.  The discussion of the group I video-taped, is 

indicative of this confusion between standard deviation and standard error: 
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Um: 3 deviations away is lower than 0. 

Kristin: But isn’t everything that is beyond 2 standard deviations rare? 

Kristel: Right.  So, no way it’s rare… 

Kristin: Don’t we have like the 95%? 

Kristel: The 95% confidence interval would be between 50 mg and 450 
mg.  This is not conceivable.  A few might benefit, but not the population 
as a whole. 

It was the hint provided in the second question that alerted this group as 

well as the rest of the students to the fact that “this is not talking individually, but 

about the average.”  They did the calculations using now the standard error and 

concluded that a reduction in the mean cholesterol level to 250 by chance when 

285 is the true average is rare “cause 250 to 285 is about 2.8 standard deviations.  

So we are 49.77% away from the mean.  2 standard deviations is already 47.5% 

away.”  However, they concluded that the drug is not effective because “despite 

the significant reduction of the few, many do not benefit… It is rare to have such 

good benefits.”  Their conclusion suggests they go back into viewing the sampling 

distribution as representing cholesterol levels of individuals and not average 

cholesterol levels.  Of course, it also suggests failure to realize that if the drug is 

effective in reducing cholesterol level, the sampling distribution of average 

cholesterol levels will no longer be centered at 285.   

That different students attach different meanings to variability was also 

observed at the end-of-course interviews.  Out of the eight students interviewed, 

four said that for them now, at the end of the course, variability means distance 

from the center: “Variability is like the variance on the left and right from the 
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center”; “I think of it as like a set mean, or median standard, and variability 

would be the amount, the distance away, higher or lower than the median or the 

mean, that would be variability, like the ranges and staff.”  Two other students 

thought of variability as the way in which the data is distributed: “Variability is 

the way in which the data is distributed and if we say small variability then the 

data is close together, if we have large variability it’s far apart.”  Two others 

defined variability as the range of values of a distribution: “High variability 

means there is a high range of values…like if the lowest score is 5 and the highest 

is 95, there is high variability…it’s spread out.” 

All of the students’ definitions are reasonable and describe different 

aspects of variability; they are not however all appropriate in the context of 

sampling distributions.  Instruction needs to put more emphasis on helping 

students realize that when dealing with sampling distributions, the notion of 

variation one should use is that of variation as distance from the center of the 

distribution.  In the same way that being literate means being able to differentiate 

between different connotations of the same word depending on context, statistical 

literacy means the person is able to use the right meaning of the word variability 

depending on the situation. 

B. Abstract Notation 

Just before instruction on sampling distributions began, students were 

given Question 14 (Appendix D), taken from Garfield et al. (1999), which aimed 

at investigating whether they understood what the basic statistical symbols (σ, s, 

µ, x ) stand for.  The same question was given to them at the end of the course.  
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Only 48% of the students in the pre-assessment and 64% of the students in the 

end-of-course assessment circled s and x as symbols they would be able to 

calculate if they took a sample of data from a certain population.  Only 59% of the 

students in the pre-assessment and 70% of the students at the end-of course 

assessment were able to distinguish symbols representing parameters from those 

representing statistics.  The proportion of students correctly circling the symbols 

that vary from sample to sample increased significantly from 39% to 73%.  

Despite the improvement, the fact that at the end of the course so many students 

were still confused about basic notation helps explain why understanding seemed 

to fall apart each time the instructor would use some mathematics symbols. 

C. Statistics Language 

The instructor considers statistics language to be “a big headache” and a 

main reason for students’ difficulties in comprehending the logic of hypothesis 

testing: 

Inst.: Hypothesis testing you have to test if it’s Ho or not…and you set up 
these…and you set up these…and then you need a rule…and then the rule 
and then… OK, the rule depends on this, depends on that, under this 
condition we do this, under that condition we do that, that’s a very 
difficult approach. 

Looking at the how students responded to Question 10 of the hypothesis 

testing activity (Appendix C), where they had to define effective and not effective 

in the context of the “New Drug” problem, suggests that the statistical notion of 

effective might be quite different from what students have in mind.  Whereas in 

this context, effective would mean that the drug reduces the mean cholesterol of 

patients to a level less than 285 mg, most students defined effective quite 
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differently.  For example, students in the group I video-taped had a small debate 

as to what they should consider effective.  One student argued that the drug 

should drop the cholesterol level to normal levels (≤200 mg), but another one 

argued that if somebody’s level is reduced from 400 to 250, this should be 

considered effective, although not being down to 200.  They ended up deciding to 

define effective as “dropping the cholesterol level of at least 90-98% of the 

population of patients by at least 10-20%, without side effects.”  Looking at the 

responses of the rest of the students, I found that several of them specified levels 

to which the mean cholesterol level should drop for them to consider the drug 

effective (e.g. lowering the mean cholesterol level by at least 50 mg).  Several 

others argued that the drug has to go through much more extensive testing before 

deemed effective, while others wrote that they wanted side-effects to be at a 

minimum.  These students had a different notion of effective than a test of 

hypothesis would; they nonetheless brought up considerations which, though not 

addressed by a statistical test, play an important role in making the final decision 

of whether to allow a new drug to enter the market or not. 

When the video-taped group read a subsequent question, they realized that 

the definition of effective given by their handout is different from theirs: 

“According to what they are saying there, it’s effective if it lowers it at all and we 

are saying that it’s not effective unless it lowers it by 20%.”  They decided that 

“according to their definition of effective, then yeah it is effective” and, although 

they “still don’t know the side effects”, they should re-evaluate their answers to 

the previous questions.  Consequently, they decided to reject the null hypothesis, 
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since “250 is rare compared to 285”, and conclude that the drug is indeed 

effective in reducing the cholesterol level.  Unlike this group, many other students 

in the class were not convinced by the hints provided in the handout, and still 

argued that the drug is not effective.  Forty-eight percent concluded that the 

evidence is “not strong enough to claim that the drug has significant effects”, 

although almost all of them had, in the early part of the activity, found the 

reduction in the mean cholesterol level to be “very significant and rare”.  

Students’ responses to Question 14 of the handout on hypothesis testing, 

also point to the difficult time students have in comprehending the language of 

hypothesis testing.  Only half of them identified correctly the two possible types 

of errors that can occur in decision-making for this study: “(1) Legalizing a drug 

that is not effective (Type I);  (2) Not legalizing an effective drug (Type II).”  The 

rest gave two cases that were actually the same type of error: “(1) Approving a 

bad drug, (2) Probable use of a bad drug”;  “(1) Could have side effects, (2) 

Could kill someone.” Analysis of students’ responses also suggests that the court 

case scenario some statistics textbooks and instructors use as an example in order 

to point to students the seriousness of committing a Type I error, might not be 

convincing to everybody.  Although the majority of the students (73%) did think 

that falsely convicting an innocent person is worse than letting free a guilty one, 

there were five students who argued that letting a guilty man go free is more 

serious, and one student who thought that “both errors are critical”. 

Question 13 of the end-of-course assessment (Appendix D), asking 

whether it is true that “A statistical test of hypotheses correctly carried out 
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establishes the truth of one of the two hypotheses, either the null or the alternative 

one”, is another example of poor performance because of difficulties in 

comprehending statistical language.  Seventy-nine percent of the students agreed 

regarding the veracity of the statement.  Out of the 7 students (21%) that 

responded with a “No” to the question, only two gave a satisfying response.  The 

results were very similar to those obtained when this question was given to 

students in the pilot study.  In that study, there was again an extremely high 

proportion of students (80% PACE, 66% non-PACE) who had agreed that 

hypothesis testing establishes the truth of one of the two hypotheses: 

Table 5.11 – Results of Current Study vs. Results of Pilot Investigation on 
“Hypothesis Testing” Question 

Response Non-PACE 
% 

PACE-Previous 
% 

PACE-Current 
% 

True 66 80 79 
False 31 18 21 

Unsure 3 2 0 

Analysis of student responses to this question in the previous study had led 

me to conclude that many students did not understand the difference between 

mathematical proof and a statistical test.  Responses such as “hypothesis testing 

tests the validity of what you are testing and the results are evidence enough to 

support either the null or alternative” were typical.  Jimenes and Holmes (1994), 

drew similar conclusions when they gave this question to 436 students in seven 

different departments of a university in Spain.  They divided student responses 

into six categories.  Their modal category was also that of students whose 
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response they interpreted as a claim that the test procedure is a logical proof of 

one of the two hypotheses.  

When analyzing the results of the current study, I found it hard to believe 

that such a high proportion of students did not recognize that, because of 

variation, a sample is almost never completely representative of its population and 

there is always the risk of drawing the wrong conclusions.  Having followed these 

students’ thinking so closely, I knew that they were all well aware of the effects of 

sampling variability.  Looking more closely at students’ responses, I realized that 

they might have not understood what the question was asking.  This became 

evident in the follow-up interviews.  When, for example, Tiffany re-read the 

problem she said: “So, here we could have a Type I or a Type II error.  I got it 

now.  I was just thinking in the sense of, if you don’t conclude the one you 

conclude the other.”  Zoe said she had interpreted the question as “asking if the 

hypothesis is either wrong or right” and, though she knew that wrong conclusions 

are always possible “because of the two Types of errors”, she responded with 

“Yes.”  Peter said he “did not like the way this problem was worded.”  After I re-

phrased the question, he responded: “No, no. Always no…because there is always 

the chance of error.”  He used an example the instructor had given in class (Ho: 

Carl Lee does not give you A, Ha: Carl Lee gives you A) to explain Type I error: 

“Carl Lee gave you an A when you deserved it…that one there would not be an 

error.  You got an A when you did not deserve it, that would be like a Type I 

error.” 
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Students’ performance on this question is one of many cases in the study 

that made me realize that if we base assessment merely on written examinations 

and do not listen closely to students, we might end up concluding something 

entirely different from what they actually mean.  Although I only report this 

example, I have observed in several tasks I gave students which I had taken from 

the research literature, a discrepancy between researchers’ interpretations of 

student responses and the actual reason behind those responses.  The fact that I 

used multiple-sources of assessment, allowed me to actually find out why a 

student made a certain choice, rather than simply speculate as to what might have 

led the student to this choice. 

D. Use of Technology 

Comparing the understanding of sampling distributions and the logic of 

inferential statistics by the group of students who explored these ideas using 

Fathom to that of the other students in the class, has led me to conclude that the 

choice of computer-based tools is a crucial decision.  I see several advantages to 

using an object-oriented learning environment such as Fathom. 

Fathom is a dynamic learning environment.  All of its objects are 

continuously connected and thus selection of data in one representation means the 

same data is selected in all representations.  Students can interact with the data 

and see the immediate impact that their actions will have on the different 

representations of the data on the screen.  The heavy reliance on the “drag and 

drop” interface, the fact that students have to drag rather than choose things, is 

another advantage of Fathom that helps increase immediacy of data analysis 
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(Pratt, 1998).  Using the Formula Editor also has many advantages and comprises 

a core Fathom activity.  Telling the computer what to do gives the user the 

opportunity to “express fuzzy ideas in a formal, conventional and rigorous 

language”(Pratt, 1998, p. 108), and this makes the ideas become more concrete.  

The Formula Editor is a control mechanism that gives students a sense of 

ownership and brings them into direct contact with the fundamental notions of the 

stochastic (Pratt, 1998).  At the same time, formulas resemble everyday language 

enough to be easy to learn, making Fathom a user-friendly environment.  But 

what makes Fathom really unique is the idea of Measures Collection.  Unlike 

black-box simulations, students get to appreciate “the different layers of 

simulations” involved when building the distribution of a statistic (Erickson, 

2000).  

When using Fathom, students first simulate a single sample from some 

population that they specify.  Then, in the Measures Collection, they specify what 

statistic is relevant for the problem.  They get to see how the Measures Collection 

calculates this statistic and turns it into a case attribute, which they can graph to 

see how it behaves.  They can then build the distribution of the statistic by 

repeating this process many times, collecting the statistic for each sample.  Since 

Fathom is a dynamic system, students get to see how the graph of the distribution 

of the statistic changes as the number of samples increases.  If they collect a large 

number of samples, the distribution they get will be very close to the sampling 

distribution of the statistic. 
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Fathom’s structure is such that it helps understand the relationship 

between population, sample, and sampling distribution.  This is something that 

most of the students in the class who did not experiment with Fathom, as well as 

too many university students who take introductory statistics courses do not 

understand.  Although they may be able to calculate a standard deviation and a 

standard error, they “do not understand how these concepts are related (and 

distinguished) and so make application mistakes such as using one concept when 

they should use the other.” (Schau and Mattern, 1997, p. 91)  

Cohen and Chechile (1997) warn us that if students do not have intuitions 

about the variables that a distribution represents, they might get lost.  This is more 

likely to happen, of course, when dealing with sampling distributions, for which 

students are much less likely to have intuitions, than with population distributions, 

where world knowledge about the variable it represents often helps deduce the 

likely shape and spread of the distribution.  Use of technology in the classroom 

did not allow students to interact with the concept of sampling distribution; it was 

weak in helping build their intuitions about sampling distributions.  In contrast, 

the group of students I worked with who made use of Fathom developed a 

stronger conceptual understanding of both sampling distributions and the logic of 

inferential statistics and became “able to interpret the results of abstract 

manipulations in terms of concrete reality.” (Wild, 1994, p. 209)  

Pratt (1998) differentiates between constructive and instructive formal 

representations, “the former offered as a means for the learner to build new 

representations whilst the latter offered as a finished article, an expression of 
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culturally sanctioned mathematics” (p. 108).  Fathom, in contrast to more 

conventional computer learning environments, puts more emphasis on 

constructive representations.  Pre-packaged simulations, no matter how well 

designed, “can not take into account all of the possible ‘what-if’ questions that 

users will want to ask”, and thus limit students “in how far they can improvise and 

explore” (Resnick, 1994).  Fathom, on the other hand, is not a tutorial program, 

but a general-purpose learning tool that students can use to build and modify their 

own simulations.  

Black-box simulations, where students simply observe the computer build 

the sampling distribution, do not allow them to make direct connections between 

the formal and the informal.  Fathom, on the other hand, allows this connection by 

providing a medium for the design of activities that integrate experiential and 

formal pieces of knowledge.  Formal mathematics can be expressed in both 

symbolic and iconic forms, providing the chance for connecting the symbolic and 

the iconic.  Abstract mathematical ideas can be presented on the screen in forms 

that are concrete and visible and allow the user to directly manipulate and use 

them (Pratt, 1998).  Students can articulate their informal theories, use them to 

make conjectures, and then use the results to test and modify these conjectures.  

The interaction between the data and the theoretical model seems to be much 

more convincing than black-box simulations, and helps students construct more 

powerful meanings for the stochastic (Wilensky, 1993). 
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In the next chapter, I will summarize the findings of the study and discuss 

how the insights gained led to a much better understanding and further refining of 

the conjecture.  I will then present my thoughts about the implications of this 

research for statistics learning and pedagogy and for future research directions. 
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Chapter VI: Conclusions 

SUMMARY 

The results of a previous study of PACE and other statistics students, 

which agreed with the main findings of research in the area of stochastics 

education, gave the motivation for the study described in this thesis.  Similarly to 

the research literature, we found in that previous study that the students we 

interviewed, regardless of whether they came from a lecture-based classroom or 

from the PACE course which made wide incorporation of technology and 

engaging activities, had poor intuitions about the stochastic and tended to think 

deterministically.  This led me to conclude that the reason behind students’ 

difficulties might be the instructional neglect of variation.  I conjectured that the 

reform movement would be more successful in achieving its objectives if it were 

to put more emphasis on helping students build sound intuitions about variation 

and its relevance to statistics. 

The thesis described how the conjecture driving the study was developed 

and how it was linked to classroom practice.  It reported the experiences and 

insights gained from adopting an alternative path to statistics instruction that had 

variation as its central tenet in a college-level, introductory statistics classroom.  

Chapter III described the “variation as the central tenet of statistics instruction” 

conjecture, which was based on the literature review summarized in Chapter II 

and on previously conducted research.  Chapter IV described how insights gained 

from student assessment prior to instruction led to further elaboration of the 
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conjecture and, consequently, the instructional program that was described in 

Chapter V. 

The findings from student assessment at the beginning of the course 

further supported the conjecture that variation is neglected, and its critical role in 

statistical reasoning is under-recognized.  At the outset of instruction, we 

witnessed the tendency of the students participating in this study to think 

deterministically and have a hard time differentiating between chance variation in 

the data and variation due to some form of underlying causality.  Although 

students did recognize the existence of variation among samples, they tended to 

underestimate its effect.  This tendency was more pronounced in real world-

contexts.  Although students did seem aware of the dangers involved when 

drawing conclusions from small samples, when asked to make their own 

judgments based on data, they often ignored these dangers and, exaggerating the 

reliability of the information provided, did not hesitate to use small samples as a 

basis for inferences.   

We decided that the problem of people focusing on center and of erring 

toward the side of attributing too much to deterministic causality when 

investigating real-life situations needs to be addressed throughout the statistics 

course, through conceptual evolution of the role of variation.  We re-defined 

statistics instruction in ways that we thought would help increase students’ 

awareness of variation.  The main aim of instruction became to communicate to 

students three “variation” messages: (1) variation is omnipresent; (2) variation can 

have serious practical consequences; and (3) statistics provides with tools that 
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help us make sense of the omnipresent variation, allow for it, or even control it 

(Wild and Pfannkuch, 1999).  

Both the research literature and the assessment of student knowledge prior 

to instruction, led us to conclude that in order to build connections between 

formal mathematical expressions of the stochastic and everyday informal 

intuitions, we had to base instruction on the following principles: 

1.  Complementary of theory and experience: Statistical thinking always 

necessitates a complementarity of theory and experience.  It should not be viewed 

a separable entity but a synthesis of statistical knowledge, context knowledge, and 

the information in the data in order to produce implications, insights and 

conjectures.  If the statistics classroom is to be an authentic model of the 

statistical culture, it should model realistic statistical investigations, rather than 

teaching methods and procedures in a sequential manner and in isolation.  The 

emphasis should be on the statistical process.  The teaching of the different 

statistical tools should be achieved through putting students in authentic contexts 

where they need those tools to make sense of the situation.  Statistical techniques 

should come to be viewed as a means to describe trends and patterns and 

deviations from those patterns existing in the data because of the variation 

inherent in every process.  Probability should not be presented as a body of clear 

and unambiguous generalizations free of any concrete interpretations.  Probability 

distributions should be presented as models based on some assumptions which, 

when changed, might lead to changes in the distribution. 
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2.  Balance between stochastic and deterministic reasoning: Instruction 

should view as an important precursor of statistical reasoning, students’ intuitive 

tendency to come up with causal explanations for any situation they have 

contextual knowledge about. It should present statistical thinking as a balance 

between stochastic and deterministic reasoning.  It should stress that statistical 

strategies, based on probabilistic modeling, are the best way to counteract our 

natural tendency to view patterns even when none exists, to distinguish between 

real, non-ephemeral causes and ephemeral patterns that are part of our 

imagination.  

The study did not follow the common research practice of taking 

snapshots of students’ thought processes, and almost never doing any follow up of 

their initial thinking to watch for future transitions.  The aim was not to identify 

errors in student thinking to catalogue as misconceptions that ought to be 

replaced, but to work with students’ intuitive notions and help them develop ways 

to map new and richer concepts onto the ones that they already possessed.  The 

conjecture-driven research model, which sees research and practice as interwoven 

and advocates curriculum construction based on an ongoing process of 

development and feedback, provided a way to systematically research conceptual 

change.  It allowed thorough investigation of introductory statistics students’ 

intuitive understanding of variation and use of the knowledge acquired to design, 

implement, evaluate, and refine meaningful interventions that helped students 

develop and expand upon their understanding of variation.   
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By examining how students’ intuitions evolved during the course, I was 

able to identify structures that facilitated the articulation of intuitions about the 

stochastic.  Findings from the study suggest that the instructional approach 

employed, with its emphasis on the omnipresence of variation, did help students 

develop statistical thinking that goes beyond the superficial knowledge of 

terminology, rules and procedures.  Students’ understanding of graphical tools 

and numerical measures of center and spread was much more sophisticated than 

that of students in the previous study we had conducted.  Instruction proved quite 

effective in achieving one of its main goals – helping students move away from 

“uni-dimensional” thinking and integrate center and variation into their analyses 

and predictions.  Although not totally letting go of their deterministic mindset, 

students were much more willing to interpret situations using a combination of 

stochastic and deterministic reasoning.  The course increased significantly their 

awareness of sampling variation and its effects.   

The experience I gained from the course has also led me to agree with the 

instructor who thinks that the idea of “rare event” linked to everything, from the 

beginning to the end of the course, is very promising in helping improve student 

understanding of inferential statistics.  It helped students see the purpose and 

usefulness of standard deviation and of the z-scores.  It was also quite effective in 

helping them make connections between exploratory and inferential statistics.  

For example, when confidence intervals were first introduced, and the instructor 

asked students to give a likely interval for the number of raisins in a box, students 

used the empirical rule in order to include in the likely interval those values that 
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are not “rare events”.  Of course, they used the standard deviation of the 

population and not the standard error, but still they understood the logic behind 

confidence intervals.  Also, when doing hypothesis testing, the idea of rejecting 

the null hypothesis when the statistic seems unlikely, was quite understandable to 

students since it was directly analogous to their familiar idea of a “rare event” 

falling at the tails of a normal distribution. 

The investigation of students’ conceptions and beliefs in a real school 

setting has also allowed me to gain wealth of information about the source of 

student difficulties.  I found, for example, the different meanings that students 

attached to sampling variation as being one of the main sources of difficulties 

they had with comprehending sampling distributions.  Several students viewed 

variation as sample representativeness and thus argued that the variation of a 

sample increases with increase in sample size.  Similarly, others who viewed 

variation as range also argued that variation goes up with increase in sample size.  

These beliefs regarding variation of individual samples affected how students 

perceived the relation between sample size and variation of sampling distribution.  

Both of these groups of students shared the belief that the bigger the sample size, 

the higher the variation of a sampling distribution. 

Students’ difficulty with abstract notation was another source of difficulty 

I identified.  The fact that at the end of the course so many students were still 

confused about basic notation helps explain why understanding seemed to fall 

apart each time the instructor would use some mathematics symbols.  Statistics 

language was also a hurdle to effective learning.  Much of the terminology of 
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statistics borrows words widely used in everyday speech that have different 

connotations than their statistical meaning.  The everyday connotations of words 

such as independent, effective, bias, and error, was a main source of students’ 

difficulties. 

The outside-of-class investigation that assessed that effectiveness of the 

technological tool Fathom as an aid to conceptual understanding, has enabled me 

to explore the different ways in which student intuitions are shaped by the 

computer learning environment.  Comparing the understandings of the “PACE 

group” to those of the rest of the students has led me to the conclusion that the 

choice of computer-based tools is a crucial decision.  Use of technology in the 

classroom did not allow students to interact with the concept of sampling 

distribution, it was weak in helping build student intuitions about sampling 

distributions.  Use of black-box simulations did not prove very successful in 

helping students understand the relationship between population distribution, 

sample distribution, and sampling distribution and, consequently, between 

population standard deviation, sample standard deviation, and standard error.  

Many of the students in the class did not seem aware of the transformation 

involved when moving from the distribution of individual values to the 

distribution of sample means.  In contrast, the students who made use of Fathom, 

developed a stronger conceptual understanding of sampling distributions and the 

logic of inferential statistics in general. 

Fathom’s structure facilitated learning.  Features such as the “drag and 

drop” interface increased immediacy of data analysis (Pratt, 1998).  Use of the 
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Formula Editor helped formal ideas become more concrete by providing students 

with a control mechanism that gave them a sense of ownership and brought them 

into direct contact with the fundamental notions of the stochastic.  Students built 

and modified their own simulations, and this allowed them, by working at their 

own pace, to make direct connections between the formal and the informal.  

Unlike “black-box” simulations, where students simply observe the computer 

build the sampling distribution, the structure of Fathom and, especially the 

Measures Collection, helped students understand the relationship between 

population, sample, and sampling distribution.  The dynamic nature of this 

learning environment allowed students to interact with the data and see the 

immediate impact that their actions had on the different representations of the 

data.  Abstract mathematical ideas were presented on the screen in symbolic and 

iconic forms that were concrete and visible and allowed students to directly 

manipulate and use them.  Students articulated their informal theories, used them 

to make conjectures, and then used the results to test and modify these 

conjectures.   

IMPLICATIONS FOR INSTRUCTION 

Since instruction that aims to build direct links with students’ intuitive 

reasoning has to take into account the unique characteristics and background of 

learners, a model of student understanding is not possible.  I acknowledge that 

this study focuses on a single classroom with characteristics that could not be 

replicated.  Nonetheless, I still believe that the experiences and insights gained 

can be powerful and relevant for other statistics educators and curriculum 
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developers also.  The fact that the conjecture guiding the study was tested and 

refined in a real classroom is a big advantage compared to studies that draw their 

conclusions by taking snapshots of students’ thinking. 

This study emerged due to dissatisfaction about the neglect of variation by 

both statistics curricula and the research literature.  In light of the results of this 

study, it seems that instruction built around the central tenet of variation does 

indeed lead to improved learning.  According to Landwher’s summary of the 

main findings of the research literature, people tend to believe that any difference 

in means is significant, to have unwarranted confidence in small samples and 

insufficient respect for small differences in large samples, and to underestimate 

the effect of variation in the real world.  In contrast, students in the current study, 

who came in direct contact with the omnipresence and serious practical 

consequences of variation, were found to be much less likely to compare 

differences in measures of center without taking spread into account, or to be 

confident in conclusions drawn from small samples.  They recognized that in 

addition to knowledge of the center of a distribution, one always needs 

information about its spread also.  Instruction managed to get across to students 

the idea that “thinking about variability is the main message of statistics” (Smith, 

1999, p. 249). 

The structure of the course, with its simultaneous focus on variation and 

on the process of statistical investigation, proved a promising alternative to more 

conventional instruction, where the linear and consecutive structure of the course 

comes in sharp contrast with the complex nature of stochastical knowledge.  In 
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our previous study of PACE and other statistics students, we had witnessed 

superficial and not well-interconnected knowledge of statistical concepts.  In this 

study, most of the students had good understanding of the meaning of the 

different measures of center and spread introduced in the course and of the 

relationship between them.  In addition, although still having difficulties, students 

acquired a much better understanding of graphical tools.  More importantly, 

students recognized the connection between numerical summaries and graphical 

representations of the data and appreciated the usefulness of graphical 

representations in helping us make inferences and predictions.  They came to 

view graphical and numerical tools as parts of the process of statistical 

investigation and not as ends in themselves (Friel et al., 1997). 

The findings of this study also point to the benefits of an instructional 

approach that takes students’ intuitions more seriously into account.  The 

emphasis of the course on the complementarity of theory and experience, and its 

efforts to situate instruction within contexts familiar to the learner, proved helpful 

in building bridges between students’ intuitions and statistical reasoning.  For 

example, although in the pre-assessment 67% of the students argued that a 

gambler who has observed a ball landing on red six consecutive times in a roulette 

wheel having 18 black and 18 red numbers, should bet on black for the next 

outcome, only 9% of the students shared the same belief at the end of the course.  

The proportion of students stating that black and red are equally likely to come up 

on the next landing rose from 20% to 91%.  The so much documented in the 

literature gambler’s fallacy, which denotes the expectation of local correction to 
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random fluctuation in a sequence, was hardly at all observable by the end of the 

course. 

The efforts of instruction to present statistical thinking as a balance 

between deterministic and stochastical reasoning, did prove useful in helping 

students better understand the relationship between chance and regularity.  

Students were, at the end of the course, much less prompt to assume that short-

term fluctuations in the data must be causal and to develop causal explanations 

compared to the beginning of the course (e.g. “Map of New Zealand” question).  

The structure of the course led to the emergence of a functional view where short-

term and long-term behavior are not discrete entities, but the one merges into the 

other (Pratt, 1998).  Nonetheless, similarly, to Pratt (1998), we also saw that in 

what he calls “the region of large small numbers” problems remained, since it was 

unclear for students whether such situations should cue local or global meanings.  

In this study, students’ acute awareness of uncertainty resulted, at some instances, 

in failure to realize that as long as the sample was randomly selected, it does not 

take an extremely large sample for patterns to begin to emerge.  Future instruction 

should take additional steps to help avoid the danger of some students seeing 

everything as being the result of “random variation” (Pfannkuch and Brown, 

1996).  

Although instruction did undoubtedly help improve students’ statistical 

reasoning, we saw that their understanding of methods of inference was still not 

well developed.  The short duration of the course might have contributed to this.  
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Nonetheless, in our previous study of PACE students who had completed a 

semester-long course, we observed similar confusions about the nature and 

purpose of inferential statistics.  The format of the course allowed students to use 

their intuitions to make sense of population distributions and of distributions of 

single samples.  However, students found themselves lost when looking at 

sampling distributions since they did not have intuitions about them (Cohen and 

Chechile, 1997).  The use of technology in the classroom was not successful in 

helping build students’ intuitions about the distribution of statistics.  The 

implications from this, as well as many other studies, are that the inferential 

paradigms typically employed in the statistics classroom are subtle and difficult 

for students to grasp (Wild and Pfannkuch, 1999) and that more intuitively sound 

paradigms, that make more constructive use of technology, are required. 

The experiences I gained from this work have led me to conclude that a 

major limitation of the instructional approach was its use of technology.  I am 

convinced that instruction would have been much more effective if it had adapted 

a technological tool such as Fathom rather than the more conventional use it made 

of technology.  Use of a software such as Fathom, which is specifically designed 

to encourage students to build, refine, and reorganize their prior understandings 

and intuitions about the stochastic, would have been much more suited with the 

overall structure of the course.  It would have been more successful in achieving 

the desired synergy among content, pedagogy, and technology than “black-box” 

simulations.   
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I advocate use of a more informal approach using a technological tool 

such as Fathom, because it can help “make the abstractions more concrete” by 

using experimental rather than theoretical probabilities (Erickson, 2000).  At the 

beginning of the course, students can create informal confidence intervals from 

distributions and decide, by looking at graphical displays, what range of values of 

that parameter they would consider reasonable, and which values seem 

implausible and beg for another explanation (Erickson, 2000).  The instructor 

could eventually ask students to find ways to quantify their thinking.  It would be 

preferable if students are first asked to create their own test statistics instead of 

using the standard ones.  As we have seen, students might have quite different 

notions of what, for example, “statistically significant” means, than an official test 

of hypothesis would.  It is likely that students will use their intuitively convincing 

idea of a “rare event” as a basis of whether to reject the null hypothesis or not.  

The instructor should encourage students to also come up, depending on the 

context of the situation, with alternative ways to the “two standard deviations 

from the center” rule of defining whether an outcome is rare or not. 

The conceptual difficulties students have to overcome when working with 

experimental probabilities are similar to those they encounter when dealing with 

theoretical probabilities.  Students still have to understand the real problem in 

order to model it properly.  They have, for example, to decide whether the events 

are independent, or whether they should sample with or without replacement 

(Erickson, 2000).  Or, as we saw with the students working with Fathom, when 

first building distributions of statistics students are likely to confuse single 
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samples with the samples of statistics obtained with the Measures collection.  

Still, the experimental approach “gives students a more concrete take on the 

problems”, and should “work hand-in-hand” with the more formal approach 

(Erickson, 2000). 

Of course, since simulations take longer and empirical probabilities do not 

exactly match their theoretical counterparts, it is still useful for students to learn 

“the streamlined statistics of t tables and professional packages” (Erickson, 2000, 

p. 227).  Nonetheless, because the logic of inference is so much more 

understandable through the simulation approach used by Fathom, students will get 

insights that will also help them better understand what is really going on when 

using traditional inferential tools.  By moving more slowly and less abstractly, 

students can come to appreciate in ways they never did before the meaning and 

power of tools such as z, t, and chi-square (Erickson, 2000). 

Employing such an approach that encourages students to explore the entire 

distribution of a statistic to see what is likely and not likely to occur, is more 

effective than standard simulation approaches to statistical inference, where there 

is a tendency to focus on relative frequencies or on means and to ignore variation.  

This focus on the entire distribution of outcomes should apply not only to 

activities involving technology, but also to other kinds of tasks posed in the class 

or used to assess student learning. 

This study something has confirmed that students’ performance is 

dependent on the type of question posed.  For example, in both this study and the 

pilot investigation, students did quite well in the M&M question, taken from 
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Shaughnessy (1997a).  The majority of even students with no statistics 

background chose the interval more likely to be drawn when taking samples of 20 

M&M’s from a bag where 40% of the M&M’s are brown.  In contrast, students in 

both studies did poorly in the question asking them to decide who, among two 

friends, is more likely to get 80% or more heads, Shelly who is going to flip a 

coin 50 times, or Diane who is going to flip the coin 10 times.  A very high 

proportion of students in both studies chose the response stating that since each 

coin flip is a separate event the probability of heads is not affected by the number 

of times flipped.  As already discussed in the literature review, Shaughnessy 

(1997a) argues that a reason students do poorly in problems of this type is that the 

question is posed in the wrong way, which exposes what students cannot do rather 

than what they can do.  The difficulty he sees with problems such as this is that 

they cause confusion because, although presumably dealing with the concept of 

spread, they focus attention on center.  Implicitly, this question is asking for the 

likelihood of a particular outcome (80% heads).   

The results of this study, concur with Shaughnessy (1997a), who believes 

that to find what students can do with variability, instructors and researchers 

should start posing questions that can be answered in a sampling context, and not 

in a context forcing students to compare point values of particular outcomes.  

Questions such as the M&M one can become a point of departure for the kind of 

instruction that likes to build on students' intuitions in order to help increase their 

understanding of what the likely spread of outcomes is for a sample from a certain 

population.  By focusing on tasks that elicit conceptions of variability and 
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difference rather than center and sameness, and encourage consideration of the 

entire distribution of outcomes, students can gradually begin to get some idea of 

what is likely and what is unlikely to occur. 

IMPLICATIONS FOR FUTURE RESEARCH 

Although this study has provided some valuable insights into students 

thinking of variation as part of the overall statistical investigation, we still need to 

learn a lot more about this neglected area of statistical reasoning.  A limitation of 

the study is that it focused on a single group of students, for a short duration of 

time.  The students in this study were undergraduate statistics students with weak 

mathematical background.  Understandings of students of different age groups 

and of a different background can be varied in future work. 

This study is only part of an ongoing research effort to understand the 

obstacles to the learning of statistics and use this understanding to find ways to 

create learning environments that facilitate deeper understandings.  The findings 

from the study have provided answers to some questions, but they have at the 

same time raised other questions.  For example, we have seen that a main source 

of difficulties for students in comprehending sampling distributions were the 

different meanings they attached to sampling variation.  Research should be 

carried out to investigate ways that could help students differentiate between the 

different notions of variation, and use the appropriate ones depending on the 

context of the situation.  We have also seen that despite the emphasis of the 

course on graphical tools, students still had some difficulties constructing and 

interpreting them and confused different graphical representations, for example 
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scatterplots with histograms, or histograms with bar graphs.  The current literature 

tells us very little about how understanding of graphical representations develops 

(Friel et al., 1997), although research has shown that even medical researchers 

often confuse histograms and bar graphs (in Kelly et al., 1997).  A possible 

direction of future research is thus to find ways to help students recognize the 

different functions of the horizontal and vertical axes across different graphical 

representations (Friel et al., 1997) 

In the review of the research literature (Chapter II), the need for more 

systematic research to guide developments in statistical education was pointed 

out.  The prevailing methodology employed by researchers examining 

conceptions of data and chance of posing cognitive tasks to students in order to 

catalogue their misconceptions, provides little guidance as to how one might 

systematically research conceptual change.  There is hardly any information about 

the source of students’ difficulties.  My experiences from this study have led me 

to conclude that a research model such as the transformative and conjecture-

driven research design, which views learning as dynamic rather than static and 

the researcher’s goal as doing research on the process of learning, is a preferable 

alternative to the prevailing methodology.  Such a research model can be very 

useful for expanding our understanding of the components that promote 

development and growth of students’ understanding. 

The wealth of information that emerged out of this study shows the 

advantages of using a variety of assessment tasks in order to triangulate student 

thinking.  Students come to a situation with a wide range of skills and knowledge 
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and offer responses that are difficult to anticipate (Cohen and Checile, 1997).  

Future research, as well as instruction, should also use assessment items that 

complement each other in order to provide a more complete profile of what 

students are and are not learning and why (Cohen and Checile, 1997).  A students’ 

response might, for instance, be erroneous due to misunderstanding about the 

question is asking (e.g. the question at the end-of-course assessment asking 

whether a test of hypothesis establishes the truth of one of the two hypotheses).  

Conversely, it might be the result of poor context knowledge of the situation 

under study and not of statistical content.  Open-ended tasks and multiple form of 

assessments are required to get a reliable picture of students’ thought processes. 

CONCLUDING REMARKS 

My firm belief is that students are capable of statistical and probabilistic 

reasoning and that their difficulties are primarily due to limitations in the learning 

methods, tools and cognitive technologies employed (Wilensky, 1997).  Tracing 

people’s understanding of abstract concepts such as variation is a very difficult 

task and empirical research might have failed to discover the real obstacles to 

students’ fuller comprehension and to find ways to effectively link their intuitions 

(Wilensky, 1993).  More research is needed to gain better understanding of the 

sources of learners' difficulties with the stochastic and use this understanding to 

develop improved learning environments that will help learners establish adequate 

and stable intuitions that would allow access to the theoretical level (Borovcnik, 

1990).  The study described here is a step towards this direction. 
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Appendix A: Assessment Prior to Instruction 

QUESTIONNAIRE 

Question 1 

Based on your experience, what does variability mean to you?  Give a verbal 

explanation and/or an example. 

 

 

 

Question 2 

Would it be more desirable for variability to be high or low for each of the 

following cases?  Explain your decision. 

(a) Age of trees in a national forest. 

 

(b) Diameter of new tires coming off one production line. 

 

(c) Scores on an aptitude test given to a large number of job applicants. 

 

(d) Daily rainfall 

 

(e) Weight of a box of cereal. 
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Question 3 

Two students who took a statistics class received the following scores (out of 

100): 

Student A - 60, 90, 80, 60, 80 
Student B - 40, 100, 100, 40, 90 

If you had an upcoming statistics test, who would you rather had as a study 

partner, A or B?  Support your answer. 

 

 

 

Question 4 

Suppose you took your little nephew on an Easter parade.  At the parade, the 

“Easter Bunny” handed out packets of Gummy Bears to all of the students.  Each 

packet had 6 Gummy Bears in it.  To make up the packets, the Easter Bunny took 

2 million green Gummy Bears and 1 million red Gummy Bears, put them in a 

very big barrel and mixed them up from night until morning.  Then he spent the 

next few hours making up the packets of six Gummy Bears.  He did this by 

grabbing a handful of Gummy Bears and filling as many packets as he could.  

Then he reached into the barrel and took another handful, and so on, until all the 

packets were filled with 6 Gummy Bears. 

(a) When you get home from the parade, you open up your packet.  How many 

green Gummy Bears do you think might be in your packet?  Can you tell me 

how you got that? 
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(b) Do you think all the students got n greens, where n is the number of Gummy 

Bears you gave in part (a)?  Can you explain that to me? 

 

(c) If you could look at the packets of 100 students, how many students do you 

think got n greens? 

 

(d) Remember that the Easter Bunny was starting with 2 million greens and one 

million reds.  Did he run out of one color long before the other when he was 

filling the bags or did they both last until near the end?  Why? 

 

Question 5 

On average, there are 600 deaths due to traffic accidents each year in a city.  A 

person in the city observed the following: 

February Number of deaths 
Week 1:                      3 
Week 2:                      12 
Week 3:                      21 
Week 4:                      14 
March 
Week 5:                       2 

Assume that none of these weeks contain a holiday weekend.  Suppose the 

headlines in the newspaper claimed that week three was a "disastrous" week and 

police reported that speed was a factor.  The next week was described in the 

papers as more evidence that the city driving was deteriorating.  At the end of 
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week five the police congratulated themselves for the low death rate - their extra 

patrols had succeeded.  What would you say to this person? 

Question 6 

Students in a middle school are trying to raise money to go on field trip to Great 

America (an amusement park).  They are considering several options to raise 

money and decide to do a survey to help them determine the best way to raise the 

most money.  One option is to sell raffle tickets for a SEGA video-game system.  

Consequently, nine different students each conducted a survey to estimate how 

many students in the school would buy a raffle ticket to win a SEGA.  Each 

survey asked 60 students but each sampling method and results were different.  

The six surveys and their results were as follows: 

(1) Tom asked 60 friends. (75% yes, 25% no) 
(2) Shannon got the names of all 600 students in the school, put them in a 

hat, and pulled out 60 of them. (35% yes, 65% no) 
(3) John asked 60 students at an after school meeting at the Games Club.  

The Games Club met once a week and played different games - 
especially computerized ones.  Anyone who was interested in games 
could join (90%, 10% no) 

(4) Ann sent out a questionnaire to every kid in the school and then used 
the first 60 that were returned to her. (50% yes, 50% no) 

(5) Claire set up a booth outside the lunchroom and anyone who wanted to 
could stop by and fill out her survey.  To advertise her survey she had 
a sigh that said “WIN A SEGA”.  She stopped collecting surveys when 
she got 60 completed. (100% yes) 

(6) Kyle wanted the same number of boys and girls and some students 
from each grade.  So, he asked 5 boys and 5 girls from each grade to 
get his total of 60 students. (30% yes, 70% no) 

(a) What do you think about the way that each survey was conducted?  Do you 

think it was done in a proper way?  Do its results give a good picture of how 
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many students in the school would want to buy a raffle ticket to win a SEGA?  

Explain why or why not. 

 

Survey 1: 

 

Survey 2: 

 

Survey 3: 

 

Survey 4: 

 

Survey 5: 

 

Survey 6: 

 

 

(b) If you were to pick one of the six ways to do the survey, which one would you 

choose?  Explain why. 

 

 

(c) What do you think is the best estimate of what percentage of kids will buy a 

raffle ticket? 
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Question 7 

Which of the following distributions shows MORE variability?  Check one of the 

choices: 

 

A has more variability___________ B has more variability____________ 

 

 

Question 8 

A roulette wheel has 18 black (B) and 18 red  (R) numbers.  The probability of a 

ball landing on a red is the same as landing on a black.  A gambler observes the 

ball to land on red six times in a row, that is RRRRRR.  What do you expect the 

next color to be?  Why? 
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Question 9 

Circle the best answer to the following problem: 

At a nearby college, half the students are women and half are men.  A worker for 

a student organization wants to interview students on their views about recent 

changes in the federal government’s funding of financial aid.  The worker wants 

to get a good representation of the students, and goes to as many different areas 

on campus as possible.   Three or four students are interviewed at each place the 

worker visits.  Out of the last 20 students interviewed, 13 were women and 7 were 

men.  Now, you do not know what time of day it is, to which part of campus the 

worker has already gone, or where the worker is going next.  Out of the next 20 

students the worker interviews, do you think more will be women or men? 

(a) The worker seems to interview more women than men.  There could 
be several reasons for this.  Perhaps women are more willing to talk 
about their opinions.  Or, maybe the worker goes to areas of campus 
where there are more women than men.  Either way, the worker is 
likely to interview more women than men out of the next 20 students. 

(b) Since half of the students on this campus are men and half are women, 
you would expect a 50/50 split between the number of men and 
women the worker interviewed.  Since there tended to be more women 
than men so far, I expect the opposite trend to start happening.  Out of 
the next 20 students the worker interviews, there will probably be 
more men than women so that things start to balance out. 

(c) Half the students on this campus are men and half are women.  That 
means that the worker has a 50/50 chance of interviewing a man or a 
women.  It should not matter how many men or women the worker has 
interviewed so far.  Out of the next 20 students interviewed, about half 
should be men and half women. 

(d) So far, the trend seems to be more women to be interviewed than men.  
Out of the next 20 students the worker interviews, I would expect the 
same thing to happen.  The worker will probably interview more 
women than men out of the next 20 students. 
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Question 10 

Consider the following list of variables: 

(a) age at death of a sample of 34 persons 
(b) the last digit in the social security number of each of the 40 students 
(c) scores on a fairly easy test in statistics 
(d) height of a group of adults 
(e) number of medals won by medal-winning countries in the 1992 Winter 

Olympics 

Use your knowledge of the variable (i.e. ask yourself if the distribution is likely to 

be symmetric or not) to match the variables with the following histograms.  

Justify your choice. 
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INTERVIEW PROTOCOL  

Map Question 

Every year in New Zealand approximately seven children are born with a 

limb missing.  Last year the children born with this abnormality were located in 

New Zealand as shown on the map.  What do you think? (In New Zealand, it is 

common knowledge that one-third of the population lives in the top region and 

one-sixth of the population in each of the other regions.) 
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Die Toss Question 

 A fair die is tossed 7 times resulting in the outcome 3,3,3,4,4,5,5 (order is 

unimportant). What do you think of these results? 

 

 

 

 

 

Coin Toss Question 

A fair coin is tossed 50 times resulting in 27 heads. Two days later it is 

tossed again 50 times resulting in 30 heads. What do you think of these results? 

 

 

 

 

 

Child Psychologist Question 

A child psychologist is engaged in studying which of two toys infants will 

prefer to play with.  Of the first five infants studied, four have shown a preference 

for this toy.  The psychologist concludes that most infants will show a preference 

for this toy.  Do you think the psychologist has drawn a valid conclusion?  
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Appendix B: SATs and GPAs 

This activity is about sex differences in SAT scores and grade-point averages (GPAs) 
among first-year students from an un-named college a few years ago.  Here are some 
important statistics from the data, as displayed in a Fathom summary table: 

 

 

 

 

 

 

1. What do you notice based on these statistics alone? 

 

 

 

 

2. Now let’s look at the raw data and examine further.  Open the file C/Program 
Files/Fathom/Sample Documents/Exploring Mathematics with Fathom/SATGPA 

3. Verify the table above by constructing it.  To get the empty table, choose Summary 
Table from the Insert menu.  Drag the attribute (variable) math dropping it on the 
right-pointing arrow.  Do the same for FYGPA.   Drop sex on the down-pointing 
arrow. 

4. Means are never the whole story.  Look at a distribution.  Make a new graph by 
dragging the graph tool (fourth icon from left) and then putting math on the 
horizontal axis, over the spot labeled Drop an attribute here.  You get a dot plot.  
Change it to a histogram by choosing Histogram from the popup menu in the corner 
of the graph. 

5. Drag sex onto the vertical axis to get separate graphs for males and females.  Write 
down what you notice.

Summary TableSATGPA
math verbal

sex
F

M

521.9
484

486.0
484

564.6
516

492.5
516

543.9
1000

489.3
1000

Column Summary
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Make a second graph and do the same for FYGPA.  The bin widths may be too big to 
compare the two graphs easily.  Drag on the edge of a bin to adjust it.  You’ll have to 
adjust the vertical scale as well.  What do you notice? 

 

 

 

 

How can we decide who is better overall?  Let’s look at verbal for more insight. 

 

6. Replace FYGPA with verbal on the second graph.  Now the males and females are 
nearly identical (though the men’s is slightly higher).  But both the math and FYGPA 
sex differences are much bigger than the verbal one. 

7. Change this graph to a box plot by choosing Box Plot from the popup menu in the 
graph.  Do the same for the math graph.  Sketch the two graphs below.  Label and 
scale the axes. 

 

 

 

 

 

 

 

 

8. Describe in words how you know from the graph that the difference in math scores is 
more meaningful (not just bigger) than the difference in verbal scores. 
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Making it Quantitative 
(i)  Difference in medians 
Standard deviation is a measure of spread of the distribution that usually goes with the 
mean (a measure of center).  One way to describe the difference between males and 
females is to compare the difference in their mean math and FYGPA scores to the 
standard deviation of each of these distributions. Armed with that functions mean ( ) and 
stdDev( ), we can make this difference quantitative. 
 

1. Make a new summary table by Selecting Summary Table from the Insert menu.  Drag 
math, verbal, and FYGPA on top of the right-pointing arrow of the table, but do not 
drag sex.  The overall means of the attributes appear. 

2. We will now find the ratio of the mean differences over the standard deviation.  Click 
on the summary table and then go to Summary menu and choose Add formula.  Click 
the divide sign on the calculator.  Enter the following formula in the formula editor 
(do not type the question marks;  they appear automatically):  

 

3. Close the formula editor. 

4. What do you conclude about sex differences in SAT scores and first-year college 
GPA? 

 

 

 

(ii)  Difference in medians 
5. Another way to make the comparison numerically, is to compare the difference in 

median (SAT, FYGPA etc.) scores to the interquartile range (the size of the boxes), 
which is the inq() function in Fathom.   The interquartile range is a measure of spread 
that usually goes with median. 

 
6. We need to find ratio of the difference in medians between males and females over 

IQR.  Make a new row in the summary table that will calculate that ratio by click on 
the summary table and then going to Summary menu, choosing Add formula and 
entering the following formula: 

stdDev()
)F"" sex mean(?,  )M"" sex mean(?, ==
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7. Close the formula editor. 

 

8. What do you conclude about sex differences in SAT scores and first-year college 
GPA? 

 

 

 

 

9. Make a new attribute, totalSAT, which is the sum of math and verbal.  To do this, 
first go to the case table (the table containing all the scores), and replace <new> with 
totalSAT.  Then choose Show Formulas from the Display menu.  Double-click the 
shaded rectangle below totalSAT and enter the formula math+verbal in the formula 
editor.  Perform this activity’s analysis on that new attribute-that is drop totalSAT 
onto the right-pointing arrow of the summary table. What does this add to our 
analysis of sex differences? 

 

 

 

 

10. Someone could argue that the difference in SAT scores is over 40, but the difference 
in GPAs is only about 0.15.  Therefore, the difference in SATs is more significant.  
Explain why that isn’t important without using the words, “interquartile range,” 
“standard deviation,” or “variance”. 

iqr()
)F"" sex median(?,  )M"" sex median(?, ==
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Appendix C: Drug for Reducing Cholesterol Level 

FDA is the gatekeeper to make sure any new drug is thoroughly tested and proven effective before 
it can be made available to patients.  Companies have to submit their data to demonstrate their new 
drug indeed significantly improves patients’ condition.  This usually involves many years of 
experiments on animals as well as on patients.  Here, I am presenting a very simplified example of 
a new drug developed to reduce cholesterol level. 

Company A submitted the following data and claimed that the new drug is very effective in 
reducing cholesterol level: 

A new drug by company A was given to a random selected sample of 64 patients whose 
cholesterol levels were at the high risk level of more than 250 mg before receiving any drug.  
Before receiving the new drug, the average cholesterol level of these 64 patients was 285 mg.  The 
new drug was given to patients for a month.  Their cholesterol levels were measured again.  64 
cholesterol levels were obtained and summarized into Sample Mean = 250 mg, and Sample S.D. = 
100 mg.  

Now, you work for the FDA and your job is to find out whether the claim made by company A is 
appropriate or not. 

(Q1) Based on your knowledge and common sense, when you see the information provided by the 
company, do you think this new drug is effective or not?  Why? 

 

 

(Q2) Based on the average cholesterol level before taking any drug, and assuming that the s.d. of 
cholesterol levels before taking any drug is also 100 mg, how likely is it that the average 
cholesterol level of a sample of 64 high risk patients will be lower than 250 mg?  (Hint: this is a 
probability problem based on the distribution of sample mean: )64/100,285(N~X  

 

 

(Q3) Based on the results in (Q2), is the average cholesterol level of 250 mg a significant 
reduction from 285 mg? (Hint: Consider this to be the case if the 64 patients’ average cholesterol 
level of 250 mg is a rare case when 285 mg is the true average, i.e. if 250 mg is in the lower 5% of 
the population of patients whose average cholesterol level is 285 mg.) 
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(Q4) Let us consider this situation in terms of standardized z-scores for 250 mg based on the 
sampling distribution of the sample mean from 64 patients: ).64/100,285(N~X   What is the 
corresponding standardized z-score for 250 mg?  Does this z-score fall outside the two s.d. of 285 
range? 

 

 

The approach we used above to deciding whether the decrease in the average cholesterol level of 
the patients is significant, is based on the idea of checking whether a sample mean occurs rarely or 
not.  We have learned how to solve this type of problem before, when we were discussing the 
Empirical Rule and Normal Distributions in general.  This result helps us decide if the drug 
reduced the average cholesterol level to a significant level. 

(Q5) Based on your answers to Q2-Q4, what is your conclusion about the effect of this new drug? 

 

 

More formally, this is a hypothesis testing problem.  Hypothesis testing is similar to a court case.  
It involves a process of decision making based on data information.  The rules that are applied to 
make the decision are based on some probability rules.  Before we look into how to conduct a 
hypothesis test, let us go to the court house to observe how a judge decides if someone is innocent 
or not. 

When a criminal case comes to court, the person is first assumed INNOCENT, and will be 
eventually judged either innocent or guilty based on the INFORMATION (or EVIDENCE) 
presented by the prosecutor and the defendant.  The rules that are used by the judge are the LAW. 

The two choices for the judge are (1) This person is INNOCENT, or (2) This person is GUILTY.  
At the beginning, the person is ASSUMED INNOCENT. 

Therefore, to simplify the discussion, we use Ho for the assumed situation (that is: The person is 
assumed INNOCENT) and we call it NULL HYPOTHESIS. 

The alternative that the prosecutor is trying to prove (The person is GUILTY) is called the 
ALTERNATIVE HYPOTHESIS, and the notation is Ha.  Complete the following blanks for the 
court case: 

(Q6) 

Ho: ____________________________  Ha:____________________________ 

Decision Rule: ___________________ 
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Sample Information: _______________________________ 

Final Decision: Made by Judge, who applies the Decision Rule to the Sample Information, and 
decides to conclude Ho or Ha. 

NOTE: It is important to understand that no matter what the final decision made by the judge is, 
there is ALWAYS some chance of making errors. 

(Q7) There are two possible errors in this decision making process.  What are they? 

 

 

(Q8) Based on the types of errors described in (Q7), which type of error is considered more 
critical, that is, if that type of error was made, it would have consequences that are more serious in 
general? 

 

 

(Q9) Based on (Q8), the judge would like to reduce the type of the more critical error, so that the 
judge will not have too high a probability to make this critical error.  In order to reduce this type of 
more critical error, what suggestion (s) do you have? 

 

 

Now back to the New Drug case.  This is indeed a hypothesis testing problem.  There are also two 
possible decisions to choose from: One is the NULL hypothesis: “The new drug is NOT 
effective”, the other is the ALTERNATIVE, which is what the company tries to prove: “The new 
drug is effective”.  We therefore set up the NULL and ALTERNATIVE hypotheses as: 

Ho: The new drug is NOT effective  Ha: The new drug is effective 

(NOTE: Ha is what the study tries to prove.  In this case, it is “The New drug is effective”) 

(Q10) The above statements are somewhat vague for making a decision.  We will need to be more 
specific as to what “Not effective” and “Effective” mean.  In this study, what do you think we 
should define as “Not effective”, and “Effective”? 
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Since, before taking the drug, the average cholesterol level was 285 mg, if a drug is to be effective, 
it must provide strong evidence that the average cholesterol level after taking the drug is much 
lower than 285 mg.  So, one way to lay out Ha is: 

Ha: The true average cholesterol level after taking the drug < 285 mg. 

Ho would be the opposite of Ha, that is, 

Ho: The true average cholesterol level after taking the drug >= 285 mg 

However, to prevent confusion, we usually set up Ho as: 

Ho: The true average cholesterol level after taking the drug = 285 mg. 

NOTE: It is a good idea to determine Ha first, then set the equal sign for Ho, so that we need to 
worry only about setting Ha. 

The statements above are written as: 

mg285:Hamg285:H o                        <= µµ  

Here we use the notation µ  to represent “The true average cholesterol level after taking the new 
drug”. 

 

NOTE: There are three kinds of hypothesis tests: Left-side test, Two-side test, and Right-side test. 

The general from of Ho and Ha are respectively: 

Left-side Test: ooo :Ha:H µµµµ <=                 

Two-side Test: ooo :Ha:H µµµµ ≠=                 

Right-side Test: ooo :Ha:H µµµµ >=                 

(Q11) What kind of test does the New Drug study involve? 

 

 

The idea of making this type of  decision is similar to the decision-making by a judge in a court. 

You have solved the problem by figuring out if the sample average 250 mg is rare when the true 
average is assumed to be 285 mg. 
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In fact, what you did there is an informal procedure of solving a hypothesis problem. 

If the new drug has no effect, it is similar to saying that it is as if these patients did not take any 
drug, and hence, the true average cholesterol level can be assumed the same as the average 
cholesterol level before taking any drug, that is our Ho.  So, (Q2) asks: 

If the true average cholesterol level after taking the new drug is 285 mg (meaning no effect), how 
likely is it observe a sample of 64 patients having an average cholesterol level of 250 or lower?  
Now, if this probability is really small (e.g. smaller than 5%), then, to have an average from 64 
patients lower than 250 mg is very rare, and we can therefor claim that there is a strong effect 
made by the new drug.  Otherwise, we will not make such a statement, and conclude that the 
sample evidence is not strong enough to claim that the drug has a significant effect. 

(Q12) Based on the results you got in (Q2) and (Q3), what would be your decision? 

 

 

In Q4, you also obtained a standardized z-score of the sample mean, 250 mg.  Does this z-score 
fall outside two s.d. of 285 mg among all possible sample means?  (Hint: Compare the observed z-
score with the z-value –1.645 (the z-value at which there is a 5% chance to be lower).  Since the z-
value –1.645 is the cut-off point for us to decide if the observed z-score is rare or not, we call this 
z-value at α =5% the critical value, and denote it by αz− .  (NOTE: This is for Left-side test.  
There will be different for Two-side test for right-side test). 

(Q13) Based on the comparison between obsz  and the critical z-value, do you draw the same 
conclusion as you did in Q12? 

 

 

(Q14) As we discussed in the Court Case, there are always possible errors coming with the 
decision.  For this New Drug study, what are the two possible types of mistakes involved with the 
decision? 

 

 

(Q15) What type of error is considered more serious in general? 
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The 5% that is used to define “a rare case” is called “the level of significance”. The notation is α .  
This is common is real world decision making.  Another commonly used “level of significance” is 
α = 1%. 

The probability value you obtained by computing )250X(P <  in (Q2) is the chance of obtaining 
such a rare event in a sample of 64 patients.  Since 250 mg is observed from the sample average, 
this rare event probability is called “the observed level of significance”, and the notation is used 
to describe it is p-value. 

Your final decision is made by comparing this p-value with the given α using the following rule. 

If p-value <α , then conclude that there is a significant event. 

If p-value >=α , then conclude that there is no significant event. 

When you compute the corresponding z-score for the observed sample mean, the z-score from the 
observed sample mean 250 mg is called the observed z-score, obsz .  The same decision as the one 
we made above, can also be made by using the observed z-score.  (NOTE: This is for the Left-side 
Test.  Two-side and Right-side tests will be different.) 

If obsz < zα− , then accept Ha, and decide that the new drug is significantly effective. 

If obsz >= zα− , then the sample data do not provide enough evidence that the new drug is 
effective. 
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Appendix D: End-of-Course Assessment 

Question 1 

Which of the following distributions shows MORE variability?  Check one of the choices: 

A has more variability___________ B has more variability____________ 

 
 
Question 2 
Two surveys were conducted to determine how many higher level institutions in Texas 
are recycling.  The first survey used a large sample size and a self-selected sampling 
method by sending out postcards to all the deans of higher level institutions in Texas.  
About half of the deans sent them back, and 91% of those that returned the postcards said 
that they recycled.  The second survey used a medium sample size and a random 
sampling method (the names of all the higher level institutions were put into the 
computer and a program which gave each institution an equal chance of been chosen, 
selected the specified sample size).   Thirty-seven percent of the schools said that they 
recycled.  Evaluate each survey and decide which of the two you think is better. 
 
 
Question  3 
Shelly is going to flip a coin 50 times and record the percentage of heads she gets.  Her friend 
Diane is going to flip a coin 10 times and record the percentage of heads she gets.   Which person 
is more likely to get 80% or more heads?   
 

a) Diane because the more you flip the closer you get to 50%. 
b) Shelly because the greater the sample size, the greater the variability in results. 
c) Neither because each coin flip is a separate event and the probability of heads is not 

affected by the number of times flipped. 
d) Other (please specify): ___________________________________________________ 
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Question 4 
FDA has a maximum upper limit for nicotine contents to be 12 mg.  A company is manufacturing 
a new brand of cigarettes.  FDA sent an evaluator to test the nicotine content. 

(a) The evaluator took a random sample of 10 cigarettes and found the mean nicotine 
content to be 13 mg with a standard deviation of 2 mg.  Based on this sample of 10, 
do you think the FDA should conclude that the average nicotine level is not 
acceptable (is significantly higher than the acceptable brand)?  Why or why not? 

 
 
 
(b) What about if the evaluator takes a sample of 100 and again finds the mean to be 13 

mg?  Why or why not? 
 
 
 
(c) The company filed a complaint that, based on their test, the mean nicotine level is 

11.8.  Is it possible that the FDA has made a mistake: 
(i)  When basing their decision on a sample of size 10?  

 
 
 

(ii) When basing their decision on a sample of size 100?  Explain why or why 
not. 

 
 
 

Question 5 
If events A and B are independent and P(A) = .6, P(B) = .4, which of the following is correct? 

a. P A B( )I = 0   b.  P A B( ) .U = 76       
c.    P A B( ) .I =100  d.  P A B( ) .U = 24  

Explain the statement 'A and B are independent'  
 

 
 
 
Question 6 
When constructing a histogram for describing the distribution of salary for individuals who are 40 
years or older, but are not yet retired. 
Explain: 

(a) what is on the Y-axis : 
 
(b) what is on the x-axis: 
 

What would the proper shape of the salary distribution? Explain why. 
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Question 7 
The amount of time it takes to take an exam has a skewed-to-left distribution with a mean of 65 
minutes and a standard deviation of 8 minutes. A sample of 64 students will be selected at random. 
 
PART A 
Which of the following describes the distribution of the amount of time it takes to take an exam? 
a. N(65,8)      
b. N(65,1) 
c.    A skewed distribution with a mean of 65 minutes, but unknown variance. 
d.    A skewed distribution with a mean of 65 minutes and a standard deviation of 8 minutes. 
Explain your reason: 
 
 
PART B 
Which of the following properly describes the sampling distribution of the sample mean based on 
n=64? 

a. Approximately N(65,8) 
b. Approximately N(65,1) 
c. Approximately N(1,65) 
d. Skewed distribution with a mean of 65 and standard deviation of 1. 

   Explain your reason: 
 
 
Question 8 
At a nearby college, half the students are women and half are men.  A worker for a student 
organization wants to interview students on their views about recent changes in the federal 
government’s funding of financial aid.  The worker wants to get a good representation of the 
students, and goes to as many different areas on campus as possible.   Three or four students are 
interviewed at each place the worker visits.  Out of the last 20 students interviewed, 13 were 
women and 7 were men.  Now, you do not know what time of day it is, to which part of campus 
the worker has already gone, or where the worker is going next.  Out of the next 20 students the 
worker interviews, do you think more will be women or men? 
 
a.  The worker seems to interview more women than men.  There could be several reasons for 

this.  Perhaps women are more willing to talk about their opinions.  Or, maybe the worker 
goes to areas of campus where there more women than men.  Either way, the worker is likely 
to interview more women than men out of the next 20 students. 

b.  Since half of the students on this campus are men and half are women, you would expect a 
50/50 split between the number of men and women the worker interviewed.  Since there 
tended to be more women than men so far, I expect the opposite trend to start happening.  Out 
of the next 20 students the worker interviews, there will probably be more men than women 
so that things start to balance out. 

c.  Half the students on this campus are men and half are women.  That means that the worker 
has a 50/50 chance of interviewing a man or a woman.  It should not matter how many men or 
women the worker has interviewed so far.  Out of the next 20 students interviewed, about half 
should be men and half women. 
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d.  So far, the trend seems to be more women to be interviewed than men.  Out of the next 20 
students the worker interviews, I would expect the same thing to happen.  The worker will 
probably interview more women than men out of the next 20 students. 

 
 
Question 9 
Imagine you have a huge jar of M&M’s with many different colors in it.  We know that the 
manufacturer of M&Ms puts in 40% browns.  If you reached in and pulled samples of 20 M&Ms 
at a time, what do you think would be the likely range for the numbers of browns you found in 
your samples?  
 

a)  8 because the proportion of browns in the bag is 40% and you would expect the sample to 
represent the population. 

b)  0-8 because 40% of 20 is 8. 
c)  8-20 because 40% of 20 is 8. 
d)  6-10 each time because 40% of 20 is 8 and it would vary a little bit each time because 

you are taking a sample. 
e)  The range would be 0-20 because there is no way to make predictions with such a small 

sample. 
f)  Other (please specify):____________________________________________________ 
Explain your reason: 
 
 

 
 
Question 10 
Suppose two distributions have exactly the same mean and standard deviation.  Then the two 
distributions have to look exactly alike. 
(a) True   
(b)  False 
Explain the reason: 
 
 
 

 
 
Question 11 
A small class was given a test on arithmetic and the scores were recorded. The same test was 

given a few weeks later.  The box plots for both sets of scores are shown.  
 
Have the scores changed significantly? :     (a)  Yes   (b)  No 
Explain the reason: 
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Question 12 
A bowl has 100 wrapped hard candies in it.  20 are yellow, 50 are red, and 30 are blue.  
They are well mixed up in the bowl.  Jenny pulls out a handful of 10 candies, counts the 
number of reds, and tells her teacher.  The teacher writes the number of red candies on a 
list.  Then, Jenny puts the candies back into the bowl, and mixes them all up again. 
Four of Jenny’s classmates, Jack, Julie, Jason, and Jerry do the same thing.  They each pick ten 
candies, count the reds, and the teacher writes down the number of reds.  Then they put the 
candies back and mix them up again each time. 
 
I think the teacher’s list for the number of reds is most likely to be (please circle one): 

a. 8,9,7,10,9 
b. 3,7,5,8,5 
c. 5,5,5,5,5 
d. 2,4,3,4,3 
e. 3,0,9,2,8 

Explain your reason:  
 
 
 
 
Question 13 
A statistical test of hypotheses correctly carried out establishes the truth of one of the two 
hypotheses, either the null or the alternative one: 

(a)  True  (b) False 
Explain the reason: 
 
 
 

Question 14 
If you take a sample of data from the population described above, what information will you be 
able to calculate from these data?  Check as many as apply: 

(i) µ (ii) s  (iii) σ  (iv) x 
 
Circle all of the symbols below which represent parameters:    

µ   s           σ           x 
For the symbols listed below, circle the ones, which vary for sample to sample: 

µ   s  σ  x 
 
 
Question 15 
A roulette wheel has 18 black (B) and 18 red  (R) numbers.  The probability of a ball 
landing on a red is the same as landing on a black.  A gambler observes the ball to land 
on red six times in a row, that is RRRRRR.  What do you expect the next color to be: 
     a. Red  b. Black  c. About equal chance 
   Explain your reason: 



 320 

References 

Azcarate, P., and Cardenoso, J. M. (1994).  Why Ask Why?  Research Papers 
from the Fourth International Conference on Teaching Statistics.  
Minneapolis: The International Study Group for Research on Learning 
Probability and Statistics. 

Ballman, K. (1997).  Greater Emphasis on Variation in an Introductory Statistics 
Course.  Journal of Statistics Education, 5(2). 

Bar-Hillel, M. (1982).  Studies of representativeness.  In Kahneman, Slovic and 
Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 
69-83).  Cambridge: Cambridge University Press. 

Batanero, C., and Godino, J. D. (1994).  The Use of Multivariate Methods to 
Analyze Students’ Stochastic Conceptions.  In J. B. Garfield (Ed.), 
Research Papers from the Fourth International Conference on Teaching 
Statistics.  Minneapolis: The International Study Group for Research on 
Learning Probability and Statistics. 

Batanero, C., Godino, J. D., Vallecillos, A., Green, D. R., and Holmes, P. (1994).  
Errors and difficulties in understanding elementary statistical concepts.  
International Journal of Mathematics Education in Science and 
Technology, 25, 527- 547. 

Batanero, C., Estepa, A., and Godino, J. D. (1997).  Evolution of Students’ 
Understanding of Statistical Association in a Computer-Based Teaching 
Environment.  In J. B. Garfield and G. Burrill (Eds.), Research on the Role 
of Technology in Teaching and Learning Statistics (pp. 198-212).  
Voorburg, The Netherlands: International Statistical Institute. 

Beard, H. V., Schmitz, C. L., and  Domahidy, M. R. (1997).  Interdisciplinary 
Evaluation of Collaborative, School Based Family Support Centers.  In L. 
D. Labbo and S. L. Field(Eds.), Proceedings of the 1996 Conference on 
Qualitative Research in Education [On-line].  Athens: Georgia.  
Available: http://www.coe.uga.edu/quig/Christie.html 

Behrens, J. T. (1997).  Toward a Theory and Practice of Using Interactive 
Graphics in Statistical Education.  In J. B. Garfield and G. Burrill (Eds.), 
Research on the Role of Technology in Teaching and Learning Statistics 

http://www.coe.uga.edu/quig/Christie.html


 321 

(pp. 111-121).  Voorburg, The Netherlands: International Statistical 
Institute. 

Bennet, A. (1997, October).  Research Design Tasks in Case Study Methods.  
Presented at the MacArthur Foundation Workshop on Case Study 
Methods [On-line].  Bleeder Center for Science and International Affairs: 
Harvard University.  Available: http://www.georgetown.edu/bennett 

Ben-Zvi, D., and Friedlander, A. (1997).  Statistical Thinking in a Technological 
Environment.  In J. Garfield and G. Burrill (Eds.), Research on the Role of 
Technology in Teaching and Learning Statistics (pp. 54-64).  Voorburg, 
The Netherlands: International Statistical Institute. 

Biehler, R. (1994).  Probabilistic thinking, statistical reasoning, and the search for 
causes: Do we need a probabilistic revolution after we have taught data 
analysis?  In J. B. Garfield (Ed.), Research Papers from the Fourth 
International Conference on Teaching Statistics.  Minneapolis: The 
International Study Group for Research on Learning Probability and 
Statistics. 

Biehler, R. (1997).  Students’ Difficulties in Practicing Computer-Supported Data 
Analysis: Some Hypothetical Generalizations From Results of Two 
Exploratory Studies.  In J. B. Garfield and G. Burrill (Eds.), Research on 
the Role of Technology in Teaching and Learning Statistics (pp. 176-197).  
Voorburg, The Netherlands: International Statistical Institute. 

Biehler, R. (1999).  Discussion: Learning to Think Statistically and to Cope with 
Variation.  International Statistical Review, 67(3), 259-262. 

Blumberg, C. J. (1997).  Discussion: How technology is changing the teaching of 
statistics at the college level.  In J. Garfield & G. Burrill (Eds.), Research 
on the Role of Technology in Teaching and Learning Statistics (pp. 279-
283).  Voorburg, The Netherlands: International Statistical Institute. 

Bogdan, R. C., and Biklen, S. K. (1982).  Qualitative Research for education: an 
introduction to theory and methods.  Boston: Allyn and Bacon. 

Borovnik, M. (1990).  A Complementarity Between Intuitions and Mathematics.  
In J. B. Garfield (Ed.), Research Papers from the Third International 
Conference on Teaching Statistics.  University of Otago, Dunedin, New 
Zealand. 

http://www.georgetown.edu/bennett


 322 

Borovnik, M., and Peard, R. (1996).  Probability.  In A.J. Bishop (Ed.), 
International Handbook of Mathematics Education (pp. 239-287).  
Netherlands: Kluwer Academic Publishers. 

Bowen, T. J. (1997, September).  Understanding qualitative research: A review of 
Judith Meloy's Writing the Qualitative Dissertation: Understanding by 
Doing [On-line].  The Qualitative Report, 3(3).  Available: 
http://www.nova.edu/ssss/QR/QR3-3/bowen.html 

Breslow, N. E. (1999).  Discussion: Statistical Thinking in Practice.  International 
Statistical Review, 67(3), 252-255. 

Brown, J. S., Collins, A., and Duguid, P. (1989).  Situated cognition and the 
culture of learning.  Educational Researcher, 18(1), 32-42. 

Burrill, G.  (1997a).  Graphing Calculators and Statistical Reasoning at the 
Secondary Level Through the Use of Technology.  In J. B. Garfield and G. 
Burrill (Eds.), Research on the Role of Technology in Teaching and 
Learning Statistics ( pp. 15-28).  Voorburg, The Netherlands: International 
Statistical Institute. 

Burrill, G.  (1997b).  Discussion: How Technology is Changing the Teaching and 
Learning of Statistics in Secondary School.  In J. B. Garfield and G. 
Burrill (Eds.), Research on the Role of Technology in Teaching and 
Learning Statistics (pp. 71-74).  Voorburg, The Netherlands: International 
Statistical Institute. 

Burrill, G.  (1997c).  Discussion: Technology, Reaching Teachers, and Content.  
In J. B. Garfield and G. Burrill (Eds.), Research on the Role of Technology 
in Teaching and Learning Statistics (pp. 71-74).  Voorburg, The 
Netherlands: International Statistical Institute. 

Cantrell, D. C. (1990, November).  Alternative Paradigms in Environmental 
Education: The Interpretive Perspective [On-line].  Presented as part of a 
symposium entitled Contesting Paradigms of Environmental Education 
Research at the Annual Conference of the North American Association for 
Environmental Education, San Antonio, Texas.  Available: 
http://www.edu.uleth.ca/ciccte/naceer.pgs/pubpro.pgs/alternate/pubfiles/0
8.Cantrell.fin.htm  

Carr, J., and Begg, A. (1994).  Introducing Box and Whisker Plots.  In J. B. 
Garfield (Ed.), Research Papers from the Fourth International Conference 

http://www.nova.edu/ssss/QR/QR3-3/bowen.html


 323 

on Teaching Statistics.  Minneapolis: The International Study Group for 
Research on Learning Probability and Statistics. 

Catterall, M., and Maclaran, P. (1997).  Focus Group Data and Qualitative 
Analysis Programs: Coding the Moving Picture as Well as the Snapshots 
[On-line].  Sociological Research Online, 2(1).  Available: 
http://www.socresonline.org.uk/socresonline/2/1/6.html 

Celedon, S. (1998).  An Analysis of a Teacher’s and Students’ Language Use to 
Negotiate Meaning in an ESL/Mathematics Classroom.  Unpublished 
doctoral dissertation: The University of Texas at Austin. 

Chenail, R. (1990, Summer).  Introduction [On-line].  The Qualitative Report, 
1(1).  Available: http://www.nova.edu/ssss/QR/QR1-1/editorial.html 

Chenail, R. J. (1992, Spring).  Qualitative research: Central tendencies and 
ranges.  AFTA Newsletter, 43-44. 

Christie, A. A. (1997).  Using Telecommunications to Break Down Gender 
Stereotypes.  In L. D. Labbo and S. L. Field(Eds.), Proceedings of the 
1996 Conference on Qualitative Research in Education.  Athens: Georgia.  
Available: http://www.coe.uga.edu/quig/Christie.html 

Cobb, G. W., Witmer, J. A., and Cryer, J. D. (1997).  An Electronic Companion to 
Statistics.  New York: Cogito Learning Media Inc. 

Cohen, L.J. (1979).  On the Psychology of Prediction: Whose is the Fallacy?  
Cognition, 7, 385-407. 

Cohen, S., and Chechile, R. A. (1997).  Overview of ConStatS and the ConStatS 
Assessment.  In J. B. Garfield and G. Burrill (Eds.), Research on the Role 
of Technology in Teaching and Learning Statistics (pp. 110-119).  
Voorburg, The Netherlands: International Statistical Institute. 

Cole, P. M. (1994, Spring).  Finding A Path Through The Research Maze [On-
line].  The Qualitative Report, 2 (1).  Available: http://www.nova.edu/ 
ssss/QR/BackIssues/QR2-1/cole.html 

Confrey, J. (1980).  Conceptual change analysis: Implications for mathematics 
and curriculum inquiry.  East Lansing, MI: Institute for Research on 
Teaching, Science-Mathematics Teaching Center, Michigan State 
University. 

http://www.socresonline.org.uk/socresonline/2/1/6.html
http://www.nova.edu/ssss/QR/QR1-1/editorial.html
http://www.coe.uga.edu/quig/Christie.html
http://www.nova.edu/ssss/QR/BackIssues/QR2-1/cole.html
http://www.nova.edu/ssss/QR/BackIssues/QR2-1/cole.html


 324 

Confrey, J. (1988, February).  The concept of exponential functions: A student’s 
perspective.  Invited address to the conference Epistemological 
Foundations of Mathematics Experience, University of Georgia. 

Confrey, J. (1990).  A review of the research in students’ conceptions of 
mathematics, science and programming.  Review of Research in 
Education, 16, 3-32. 

Confrey, J. (1991).  Learning to listen: A student’s understanding of powers of 
ten.  In E. von Glaserfeld (Ed.), Radical Constructivism in Mathematics 
Education (pp. 111-136).  Netherlands: Kluwer Academic Publishers. 

Confrey, J. (1995, July).  Student voice in examining “splitting” as an approach to 
ratio, proportions and fractions.  Proceedings of the 19th Annual Meeting 
of the International Group for the Psychology of Mathematics Education.  
Recife, Brazil: Universidade Federal de Pernambuco. 

Confrey, J. (1996, April).  Strengthening Elementary Education through a 
Splitting Approach as Preparation for Reform Algebra.  Presented at the 
annual meeting of the American Educational Research Association, New 
York, NY. 

Confrey, J., and Lachance, A. (1999).  Transformative Teaching Experiments 
Through Conjecture-Driven Research Design.  In A. E. Kelly and R. Lesh 
(Eds.), Handbook of Research Design in Mathematics and Science 
Education.  Mahwah, N. J.: Lawrence Erlbaum Assoc. 

Confrey, J., and Scarano, H. Constructivism and the Practicing Teacher.  In 
Support of Excellence: Views From the Field (CD-ROM).  Columbus, 
OH: Eisenhower National Clearinghouse.  

Confrey, J. (1994).  Voice and Perspective: hearing epistemological innovation in 
students’ words.  Revue des Sciences de L’education, 20(1), 115-133. 

Confrey, J. and Smith, E. (1995).  Splitting, Covariation, and their role in the 
development of exponential functions.  Journal for Research in 
Mathematics Education.  26(1), 66-86. 

Conti, G. J. (1997, Summer).  Research in the Tribal Community.  Two Research 
Paradigms.  Native Research and Scholarship Symposium Papers [On-
line].  Available: http://www.fdl.cc.mn.us/tcj/summer97/GC.html 

http://www.fdl.cc.mn.us/tcj/summer97/GC.html


 325 

delMas, R., and Garfield, J. (1990).  The Use of Multiple Items to Identify 
Misconceptions in Probabilistic Reasoning.  In J. B. Garfield (Ed.), 
Research Papers from the Third International Conference on Teaching 
Statistics.  University of Otago, Dunedin, New Zealand. 

delMas, R. C. (1997).  A framework for the evaluation of software for teaching 
statistical concepts.  In J. B. Garfield and G. Burrill (Eds.), Research on 
the Role of Technology in Teaching and Learning Statistics (pp. 75-90).  
Voorburg, The Netherlands: International Statistical Institute. 

delMas, R., Garfield, J., and Chance, B. (1998).  A Model of Classroom Research 
in Action: Developing Simulation Activities to Improve Students’ 
Statistical Reasoning.  Submitted to the Journal of Statistics Education. 

Denzin, N. K., and Lincoln, Y. S. (1994).  Introduction: Entering the field of 
qualitative research.  In N. K. Denzin and Y. S. Lincoln (Eds.), Handbook 
of qualitative research (pp. 1-17).  Thousand Oaks, CA: Sage. 

Eisner, E. (1985).  The Educational Imagination.  New York: Macmillan, 216-
252. 

Emerson, R. M., Fretz, R. I., and Shaw, L. L. (1995).  Writing Ethnographic 
Fieldnotes.  Chicago: The University of Chicago Press. 

Erickson, T. (1999). Data in Depth.  Exploring Mathematics with Fathom.  Draft.  
Emeryville, CA: Key Curriculum Press. 

Erickson, T. (2000).  Data in Depth.  Exploring Mathematics with Fathom.  
Emeryville, CA: Key Curriculum Press. 

Erlandson, D. A., Harris, E. L., Skipper, B. L., and Allen, S. D. (1993).  Doing 
naturalistic inquiry: A guide to methods.  Newsbury Park, CA: Sage. 

Estepa, A. and Batanero, M. C. (1994).  Judgments of Association in Scatterplots: 
An Empirical Study of Students’ Strategies and Preconceptions.  In J. B. 
Garfield (Ed.), Research Papers from the Fourth International Conference 
on Teaching Statistics.  Minneapolis: The International Study Group for 
Research on Learning Probability and Statistics. 

Falk, R. and Konold, C. (1992).  The Psychology of Learning Probability.  In F. 
and S. Gordon (Eds.), Statistics for the Twenty-First Century.  MAA Notes, 
29 (pp. 151-164).  USA: The Mathematical Association of America. 



 326 

Fischbein, E. (1975).  The Intuitive Sources of Probabilistic Thinking in Children.  
Dordrecht, The Netherlands: Reidel. 

Fischbein, E. (1987).  Intuition in Science and Mathematics.  Dordrecht, The 
Netherlands: Reidel. 

Friel, S. N., Bright, G. W., Frierson, D., and Kader, G. D. (1997).  A Framework 
for Assessing Knowledge and Learning in Statistics (K-8).  In I. Gal and J. 
B. Garfield (Eds.), The Assessment Challenge in Statistics Education (pp. 
55-63).  Burke, VA: IOS Press. 

Gal, I., and Garfield, J. (1997).  Curricular Goals and Assessment Challenges in 
Statistics Education.  In I. Gal and J. B. Garfield (Eds.), The Assessment 
Challenge in Statistics Education.  Burke, VA: IOS Press. 

Garfield J. and delMas, R. (1990).  Exploring the Stability of Students’ 
Conceptions of Probability.  In J. B. Garfield (Ed.), Research Papers from 
the Third International Conference on Teaching Statistics.  University of 
Otago, Dunedin, New Zealand. 

Garfield, J. B. (1994).  Beyond Testing and Grading: Using Assessment To 
Improve Student Learning.  Journal of Statistics Education, 2(1). 

Garfield, J. B. and delMas, R. C. (1994).  Students’ Informal and Formal 
understanding of Variation.  In J. B. Garfield (Ed.), Research Papers from 
the Fourth International Conference on Teaching Statistics.  Minneapolis: 
The International Study Group for Research on Learning Probability and 
Statistics. 

Garfield, J. (1997).  Preface.  In J. Garfield and G. Burrill (Eds.), Research on the 
Role of Technology in Teaching and Learning Statistics (pp. ix-xi). 
Voorburg, The Netherlands: International Statistical Institute. 

Garfield, J., and Chance, B. L. (1998).  A model of classroom research in action: 
Developing simulation activities to improve students’ statistical reasoning.  
Submitted to the Journal of Statistics Education. 

Garfield, J., delMas, B., and Chance, B. L. (1999).  Tools for Teaching and 
Assessing Statistical Inference: Simulation Software [On-line].  Available: 
htpp://www.gen.umn.edu/faculty_staff/delmas/stat_tools/stat_tools_softw
are.htm 



 327 

Geertz, C. (1973).  The interpretation of cultures.  New York: Basic Books. 

Ghosh, J. K. (1997).  Discussion.  International Statistical Review, 65(2), 154-
155. 

Gigerenzer, G. (1996).  On narrow norms and vague heuristics: A rebuttal to 
Kahneman and Tversky.  Psychological Review, 103 (3).  

Glaser, R. (1962).  Psychology and instructional technology.  In R. Glaser (Ed.), 
Training research and education.  Pittsburgh, PA: University of 
Pittsburgh Press. 

Glaser, B. G. and Strauss, A. L. (1967).  The discovery of grounded theory.  
Chicago, Illinois: Aldine Publishing Company. 

Glencross, M. J., and Binyavanga, K. W. (1997).  The role of technology in 
statistics education: A view from a developing region.  In J. Garfield and 
G. Burrill (Eds.), Research on the Role of Technology in Teaching and 
Learning Statistics (pp. 301-308).  Voorburg, The Netherlands: 
International Statistical Institute. 

Goldstein, L.S.  1997.  More than gentle smiles and warm hugs: Applying the 
ethic of care to early childhood education.  Journal of Research in 
Childhood Education.  12 (2): 244-261.  

Gordon S. (1997).  Students’ Orientations to Learning Statistics – Profiles of 
Experience.  In J. Garfield and J. Truran (Eds.), Research Papers on 
Stochastics Education (pp. 171-178). 

Ghosh, J. K. (1997).  Discussion.  International Statistical Review, 65(2), 154-
155. 

Greene, J. (1994).  Qualitative program evaluation practice and promise. In N. 
Denzin and Y.  Lincoln (Eds.), Handbook of qualitative research (pp. 530-
544). Thousand Oaks, CA: Sage 

Guba, E. G., and Lincoln, Y. S. (1989).  Fourth Generation evaluation.  
Newsbury Park, CA: Sage. 

Hawkins, A. (1997a).  Myth-conceptions.  In J. B. Garfield and G. Burrill (Eds.), 
Research on the Role of Technology in Teaching and Learning Statistics 



 328 

(pp. vii-viii).  Voorburg, The Netherlands: International Statistical 
Institute. 

Hawkins, A. (1997b).  Children’s Understanding of Sampling in Surveys.  In J. B. 
Garfield and G. Burrill (Eds.), Research on the Role of Technology in 
Teaching and Learning Statistics (pp. 1-14).  Voorburg, The Netherlands: 
International Statistical Institute. 

Hawkins, A. (1997c).  Discussion.  International Statistical Review, 65(2), 141-
146. 

Hiebert, J., and Carpenter, T. (1992).  Learning and Teaching with Understanding.  
In D. Grows (Ed.), Handbook of Research on Mathematics Teaching and 
Learning (pp. 65-100).  New York: Macmillan 

Hoerl, R., Hahn, G. & Doganaksoy, N. (1997).  Discussion: Let’s Stop 
Squandering Our Most Strategic Weapon.  International Statistical 
Review, 65(2), 147-153. 

Jacobs, V. (1997).  Missed opportunities on the teaching and learning of data and 
chance.  In J. Garfield and J. Truran (Eds.), Research Papers on 
Stochastics Education (pp. 3-37). 

Jacobs, J.E., and Potenza, M. (1991).  The Use of Judgement Heuristics to Make 
Social and Object Decisions: A Developmental Perspective.  Child 
Development, 62, 166-178. 

Jimenes, V. A., and Holmes, P. (1994).  Students’ Understanding of the Logic of 
Hypothesis Testing.  In J. B. Garfield (Ed.), Research Papers from the 
Fourth International Conference on Teaching Statistics.  Minneapolis: 
The International Study Group for Research on Learning Probability and 
Statistics. 

Jones, G., Thornton, C., Langrall, C., and Mogill, A. T. (1997).  Using Students’ 
Probabilistic Thinking to Inform Instruction.  In J. Garfield and J. Truran 
(Eds.), Research Papers on Stochastics Education (pp. 171-178). 

Kahneman, D., Slovic, P., and Tversky, A. (1982).  Judgement Under 
Uncertainty: Heuristics and Biases.  Cambridge: Cambridge University 
Press. 



 329 

Kahneman, D., and Tversky, A. (1973).  On the Psychology of Prediction. 
Psychological Review, 80(4), 237-251. 

Kahneman, D., and Tversky, A. (1982).  On the Study of Statistical Intuitions.  
Cognition, 11, 123-141. 

Kelly, A. E., Sloane, F., and Whittaker, A. (1997).  Simple Approaches to 
Assessing Underlying Understanding of Statistical Concepts.  In I. Gal and 
J. B. Garfield (Eds.), The Assessment Challenge in Statistics Education.  
Burke, VA: IOS Press. 

Kettenring, J. (1997).  Discussion.  International Statistical Review, 65(2), 153. 

Konold, C. (1989).  Informal Conceptions of Probability.  Cognition and 
Instruction, 6, 59-98. 

Konold, C., Pollatsek, A., Well, A., and Hendrickson, J. (1990).  The Origin of 
Inconsistencies in Probabilistic Reasoning of Novices.  In J. B. Garfield 
(Ed.), Research Papers from the Fourth International Conference on 
Teaching Statistics.  Minneapolis: The International Study Group for 
Research on Learning Probability and Statistics. 

Konold, C. (1995a).  Issues in Assessing Conceptual Understanding in Probability 
and Statistics.  Journal of Statistics Education, 3(1). 

Konold, C. (1995b).  Confessions of a Coin Flipper and Would-Be Instructor.  
The American Statistician, 49(2), 203-209. 

Konold, C., Pollatsek, A., Well, A., and Gagnon, A. (1997).  Students Analyzing 
Data: Research of Critical Barriers.  In J. B. Garfield and G. Burrill (Eds.), 
Research on the Role of Technology in Teaching and Learning Statistics 
(pp. 159-175).  Voorburg, The Netherlands: International Statistical 
Institute. 

Kuhn, T. (1962).  The Structure of Scientific Revolution.  Chicago: University of 
Chicago Press. 

Lachance, A., and Confrey, J. (1996, April).  Mapping the Journey of Students’ 
Explorations of Decimal Notation via Ratio and Proportion.  Presented at 
the Annual Meeting of the American Educational Research Association, 
New York, NY. 



 330 

Lakatos, I. (1976).  Proofs and Refutations.  Cambridge: Cambridge University 
Press. 

Latour, B. (1987).  Science in Action.  Cambridge, MA: Harvard University Press. 

Lave, J. (1988).  Cognition in Practice.  Cambridge: Cambridge University Press. 

Lee, C. (1997a).  Promoting Active Learning in Introductory Statistics Using the 
PACE Model [On-line].  Available: http://www.cst.cmich.edu /users/ 
leec/PACE-1.html 

Lee, C. (1997b).  An Assessment of the PACE Strategy for an Introductory 
Statistics Course [On-line].  Available: http://www.cst.cmich.edu/users/ 
leec/PACE-2.html 

Lee, C. M., Fouladi, R T., & Meletiou, M. (1998, September).  Teaching and 
learning in introductory statistics: Impressions, attitude, learning style 
and motivation.  Presented at the Third Annual Conference on Research in 
Undergraduate Mathematics Education, Southbend, Indiana. 

Lincoln, Y. S., and Cuba, E. G. (1985).  Naturalistic inquiry.  Newbury Park, CA: 
Sage. 

Lipson, K. (1997).  What do students gain from simulation exercises?  An 
evaluation of activities designed to develop an understanding of the 
sampling distribution of a proportion.  In J. Garfield and G. Burrill (Eds.), 
Research on the Role of Technology in Teaching and Learning Statistics 
(pp. 137-150). Voorburg, The Netherlands: International Statistical 
Institute. 

Loosen, F., Lioen, M., and Lacante, M. (1985).  The standard deviation: some 
drawbacks of an intuitive approach.  Teaching Statistics, 7, 29-39. 

Lopes, L. (1991).  The Rhetoric of Irrationality.  Theory and Psychology, 1(1), 
65-82. 

Lord, C. G., Ross, L., and Lepper, M. R. (1979).  Biased assimilation and attitude 
polarization: The effects of prior theories on subsequently considered 
evidence.  Journal of Personality and Social Psychology, 37 (11), 2098-
2109. 

http://www.cst.cmich.edu/users/leec/PACE-1.html
http://www.cst.cmich.edu/users/leec/PACE-1.html
http://www.cst.cmich.edu/users/leec/PACE-2.html
http://www.cst.cmich.edu/users/leec/PACE-2.html


 331 

Marshall, C., and Rossman, G. B. (1995).  Designing Qualitative Research.  
Thousand Oaks, CA: Sage Publications. 

McCloskey, M. (1997).  QERCUS and STEPS: The Experience of Two CAL 
Projects From Scottish Universities.  In J. Garfield and G. Burrill (Eds.), 
Research on the Role of Technology in Teaching and Learning Statistics 
(pp. 99-109).  Voorburg, The Netherlands: International Statistical 
Institute. 

Meletiou, M., Confrey, J., & Lee, C. M., & Fouladi, R. T. (1999, April).  What do 
Introductory Statistics Students Gain from Technology?  In Confrey, J. 
(Chair), Making Teachers Smart About Reform: Developing Their 
Knowledge of Mathematics, Pedagogy, and Assessment.  Interactive 
Symposium conducted at the annual meeting of the American Educational 
Research Association. 

Meletiou, M., Lee, C. M., & Fouladi, R. T. (1998, September).  Interviews as a 
pedagogical and research tool.  Presented at the Third Annual Conference 
on Research in Undergraduate Mathematics Education, Southbend, 
Indiana. 

Meletiou, M., Lee, C. M., & Fouladi, R. T. (1999a, June).  Students’ intuitive 
understanding of variability.  Presented at the Second Biennial Midwest 
Conference on Teaching Statistics. Oshkosh, Wisconsin. 

Meletiou, M., Lee, C. M., & Fouladi, R. T. (1999b, September).  Statistics 
Instruction Informed by Student Thinking: The Case of Statistical 
Variation.  Presented at the Third Annual Conference on Research in 
Undergraduate Mathematics Education, Chicago, Illinois. 

Meletiou, M., Lee, C. M., & Myers, M. (1999).  The Role of Technology in the 
Introductory Statistics Classroom: Reality and Potential.  Proceedings of 
the International Conference on Mathematics/Science Education and 
Technology.  San Antonio, Texas. 

Metz, K. E. (1997).  Dimensions in the Assessment of Students’ Understanding 
and Application of Chance.  In I. Gal and J. B. Garfield (Eds.), The 
Assessment Challenge in Statistics Education.  Burke, VA: IOS Press. 

Mokros, J. R., Russell, S. J., Weinberg, A. S., and Goldsmith, L. T. (1990).  
What’s Typical?  Children’s Ideas about Average.  In J. B. Garfield (Ed.), 



 332 

Research Papers from the Third International Conference on Teaching 
Statistics.  University of Otago, Dunedin, New Zealand. 

Moore, D. (1990).  Uncertainty.  In L.Steen (Ed.), On the shoulders of giants: new 
approaches to numeracy (pp. 95-137).  USA: National Academy Press. 

Moore, D. S. (1991).  Statistics Concepts and Controversies.  New York: W. H. 
Freeman and Company. 

Moore, D. (1992).  Statistics for All: Why?  What and How?  In D. Vere-Jones 
(Ed.) Proceedings of the Third International Conference on Teaching 
Statistics: Volume 1 (pp. 423-428).  Voorburg: International Statistical 
Institute. 

Moore, D. S. (1993).  A generation of statistics education: An interview with 
Frederick Mosteller.  Journal of Statistics Education, 1(1). 

Moore, D. (1997).  New Pedagogy and New Content: The Case of Statistics.  
International Statistical Review, 65(2), 123-165. 

National Council of Teachers of Mathematics (1989).  Curriculum and evaluation 
standards for school mathematics.  Reston, VA: Author. 

National Council of Teachers of Mathematics (1998).  Principles and Standards 
for School Mathematics: Discussion Draft.  Reston, VA: Author. 

Nau, D. S. (1995, December).  Mixing Methodologies: Can Bimodal Research be 
a Viable Post-Positivist Tool?  The Qualitative Report, 2(3).  Available: 
http://www.nova.edu/ssss/QR/QR2-3/nau.html 

Nicholson, J. (1997).  Developing Probabilistic and Statistical Reasoning at the 
secondary level through the use of data and technology.  In J. B. Garfield 
and G. Burrill (Eds.), Research on the Role of Technology in Teaching and 
Learning Statistics (pp. 29-44).  Voorburg, The Netherlands: International 
Statistical Institute. 

Nickson, M. (1981).  Social foundations of the mathematics curriculum: A 
rationale for change.  Unpublished doctoral dissertation, Institute of 
Education, University of London. 

http://www.nova.edu/ssss/QR/QR2-3/nau.html


 333 

Nickson, M. (1992).  The culture of the mathematics classroom: An unknown 
quantity?  In D. A. Grows (Ed.), Handbook of Research on Mathematics 
Teaching and Learning (pp. 101-114).  New York: Macmillan. 

Nisbett, R. E., and Ross, L. (1980).  Human inference: Strategies and 
shortcomings of social judgment.  Englewood Cliffs, NJ: Prentice Hall. 

Nisbett, R., Krantz, D., Jepson, C., and Kunda, Z. (1983).  The Use of Statistical 
Heuristics in Everyday Inductive Reasoning.  Psychological Review, 
90(4), 339-363. 

Noss, R., and Hoyles, C. (1996).  Windows on Mathematical Meanings: Learning 
Cultures and Computers.  London: Kluwer Academic Publishers. 

Nunes, T., Schliemann, A.D., and Carraher, D.W. (1993).  Street Mathematics 
and School Mathematics.  Cambridge: Cambridge University Press. 

Pandit, N. R. (1996, December).  The Creation of Theory: A Recent Application 
of the Grounded Theory Method [On-line].  The Qualitative Report, 2(4).  
Available: http://www.nova.edu/ssss/QR/QR2-4/pandit.html 

Pfannkuch, M. and Brown, C. M. (1996).  Building on and Challenging Students' 
Intuitions About Probability: Can We Improve Undergraduate Learning?  
Journal of Statistics Education, 4(1).  

Pfannkuch, M. (1997).  Statistical Thinking: One Statistician’s Perspective.  In J. 
Garfield and J. Truran (Eds.), Research Papers on Stochastics Education 
(pp. 171-178). 

Philips, B. (1999, November).  Report from the IASE President.  IASE Review, 2-
3. 

Piaget, J. (1970).  Genetic Epistemology.  New York.  Columbia University Press. 

Polya, G. (1962).  Mathematical Discovery.  New York: John Wiley and Sons. 

Pratt, D. C. (1998).  The Construction of Meanings In and For a Stochastic 
Domain of Abstraction.  Ph.D. Thesis, University of London  

Resnick, M. (1994).  Learning About Life [On-line].  Artificial Life Journal, 1(1-
2). Available:http://el.www.media.mit.edu/groups/el/Papers/mres/ALife/ 
ALife.html 

http://www.nova.edu/ssss/QR/QR2-4/pandit.html
http://el.www.media.mit.edu/groups/el/Papers/mres/ALife/ALife.html
http://el.www.media.mit.edu/groups/el/Papers/mres/ALife/ALife.html


 334 

Rossman, A. J. (1996).  Workshop Statistics: Discovery with Data.  New York: 
Springer-Verlag. 

Rossman, A. J. (1997).  Using Technology to Promote Learning by Self-
Discovery.  In J. Garfield and G. Burrill (Eds.), Research on the Role of 
Technology in Teaching and Learning Statistics (pp. 226-237).  Voorburg, 
The Netherlands: International Statistical Institute. 

Rubin, A., Bruce, B., and Tenney, Y. (1990).  Learning about Sampling: Trouble 
at the Core of Statistics.  In J. B. Garfield (Ed.), Research Papers from the 
Third International Conference on Teaching Statistics.  University of 
Otago, Dunedin, New Zealand. 

Scarano, G. H., and Confrey, J. (1996, April).  Results from a Three-Year 
Longitudinal Teaching Experiment Designed to Investigate Splitting, Ratio 
and Proportion.  Presented at the Annual Meeting of the American 
Educational Research Association, New York, NY. 

Schau, C., and Mattern, N. (1997).  Assessing Students’ Understanding of 
Statistical Relationships.  In I. Gal and J. B. Garfield (Eds.), The 
Assessment Challenge in Statistics Education.  Burke, VA: IOS Press. 

Scheaffer, R. L. (1997).  Discussion.  International Statistical Review, 65(2), 156-
158. 

Scheaffer, R. L., Gnanadesikan, M., Watkins, A., Witmer, J. F. (1996).  Activity-
Based Statistics: Instructor Resources.  New York: Springer-Verlag, Inc. 

Schuyten, G., and Dekeyser, H. (1997).  Computer-Based and Computer-Aided 
Learning of Applied Statistics at the Department of Psychology and 
Educational Sciences.  In J. Garfield and G. Burrill (Eds.), Research on 
the Role of Technology in Teaching and Learning Statistics (pp. 213-222).  
Voorburg, The Netherlands: International Statistical Institute. 

Shaughnessy, J. M. (1992).  Research in Probability and Statistics: Reflections 
and Directions.  In D. Grows (Ed.), Handbook of Research on 
Mathematics Teaching and Learning (pp. 465-494).  New York: 
Macmillan. 

Shaughnessy, J. M. (1977).  Misconceptions of probability: An experiment with a 
small-group, activity-based, model building approach to introductory 



 335 

probability at the college level.  Educational Studies in Mathematics, 8, 
285-316. 

Shaughnessy, J. M. (1997a).  Missed opportunities on the teaching and learning of 
data and chance.  In J. Garfield and J. Truran (Eds.), Research Papers on 
Stochastics Education (pp. 129-145).   

Shaughnessy, J. M. (1997b).  Discussion: Empirical research on technology and 
teaching statistics.  In J. Garfield and J. Truran (Eds.), Research Papers on 
Stochastics Education (pp. 217-219).  

Shaughnessy, J. M., Watson, J., Moritz, J., and Reading, C. (1999, April).  School 
Mathematics Students’ Acknowledgment of Statistical Variation.  For the 
NCTM Research Presession Symposium: There’s More to Life than 
Centers.  Paper presented at the 77th Annual NCTM Conference, San 
Francisco, California. 

Smith, T. M. F. (1999).  Discussion.  International Statistical Review, 67(3), 248-
250. 

Smith, J. P., diSessa, A.A., and Rochelle, J. (1993).  Misconceptions Reconceived 
- A Constructivist Analysis of Knowledge in Transition.  Journal of 
Learning Sciences, 3(2), 115-163. 

Snee, R. (1990).  Statistical Thinking and its Contribution to Quality.  The 
American Statistician, 44(2), 149-154. 

Snee, R. D. (1999).  Discussion: Development and Use of Statistical Thinking: A 
New Era.  International Statistical Review, 67(3), 255-258. 

Starkings, S. (1997).  How technological introduction changes the teaching of 
statistics and probability at the college level.  In J. Garfield and G. Burrill 
(Eds.), Research on the Role of Technology in Teaching and Learning 
Statistics (pp. 233-254).  Voorburg, The Netherlands: International 
Statistical Institute. 

Steinbirg (1990).  The Use of Chance-Concept in Everyday Teaching - Aspects of 
a Socially Constituted Epistemology of Mathematical Knowledge.  In J. B. 
Garfield (Ed.), Research Papers from the Third International Conference 
on Teaching Statistics.  University of Otago, Dunedin, New Zealand. 



 336 

Tsourvakas, G. (1997, September).  Multi-Visual Qualitative Method: Observing 
Social Groups in Mass Media [On-line].  The Qualitative Report, 3(3).  
Available: http://www.nova.edu/ssss/QR/QR3-3/tsour.html 

Truran, J. (1994).  Children’s Intuitive Understanding of Variance.  Research 
Papers from the Fourth International Conference on Teaching Statistics.  
Minneapolis: The International Study Group for Research on Learning 
Probability and Statistics. 

Tversky, A., and Gilovich, T. (1989).  The cold facts about the “hot hand” in 
basketball.  Chance, 2(1), 16-21. 

Tversky, A., and Kahneman, D. (1973).  Availability: A Heuristic for Judging 
Frequency and Probability. Cognitive Psychology, 5, 207-232.   

Tversky, A., and Kahneman, D. (1974).  Judgment under uncertainty: Heuristics 
and biases.  Science, 185, 1124-1131. 

Tversky, A., and Kahneman, D. (1983).  Extensional Versus Intuitive Reasoning: 
The Conjunction Fallacy in Probability Judgement.  Psychological 
Review, 90(4), 293-313. 

Vygotsky, L. (1986).  Thought and Language.  MIT Press, Cambridge, MA. 

Watson, J., and Baxter, J. (1997).  Learning the Unlikely at Distance as an 
Information Technology Enterprise: Development and Research.  In J. 
Garfield and G. Burrill (Eds.), Research on the Role of Technology in 
Teaching and Learning Statistics (pp. 288, 302).  Voorburg, The 
Netherlands: International Statistical Institute. 

Well, A. D., Pollatsek, A., and Boyce, S. (1990).  Understanding the effects of 
sample size on the mean.  Organizational Behavior and Human Decision 
Processes, 47, 289-312. 

Wiesman, D. and Wotring, E. (1997).  The Scientific, Humanistic, and Critical 
Paradigms: A Second Look [On-line].  Available: http://mailer.fsu.edu/ 
~ewotring/com5312/notes.html 

Wild, C. (1994).  Embracing the “wider view” of statistics.  The American 
Statistician, 48, 163-171. 

http://www.nova.edu/ssss/QR/QR3-3/tsour.html
http://mailer.fsu.edu/~ewotring/com5312/notes.html
http://mailer.fsu.edu/~ewotring/com5312/notes.html


 337 

Wild, C. J., and Pfannkuch, M. (1999).  Statistical Thinking in Empirical Enquiry.  
International Statistical Review, 67, 3, 223-265. 

Wilder, P. (1994).  Students’ Understanding of Computer-Based Simulations of 
Random Behavior.  Research Papers from the Fourth International 
Conference on Teaching Statistics.  Minneapolis: The International Study 
Group for Research on Learning Probability and Statistics. 

Wilensky, U. (1993).  Connected Mathematics - Building Concrete Relationships 
with Mathematical Knowledge.  Ph.D. Thesis, Massachusetts Institute of 
Technology. 

Wilensky, U. (1997).  What is Normal Anyway? Therapy for Epistemological 
Anxiety.  In R. Noss (Ed.), Educational Studies in Mathematics.  Special 
Issue on Computational Environments in Mathematics, 33(2) (pp. 171-
202). 

Wilson, B., Teslow, J., and Osman-Jouchoux, R. (1995).  The Impact of 
Constructivism (and Postmodernism) on ID Fundamentals.  In B. B. Seels 
(Ed.), Instructional Design Fundamentals: A Review and Reconsideration  
(pp. 137-157).  Englewood Cliffs NJ: Educational Technology 
Publications. 

Wolcott, H. F. (1990).  On Seeking - and Rejecting - Validity in Qualitative 
Research.  In E. Eisner and A. Peshking (Eds.), Qualitative Inquiry in 
Education.  New York: Teachers College Press.  Pages 121-152. 

Wood, M. (1997).  Computer Packages as a Substitute for Statistical Training?  In 
J. Garfield and G. Burrill (Eds.), Research on the Role of Technology in 
Teaching and Learning Statistics (pp. 267-278).  Voorburg, The 
Netherlands: International Statistical Institute. 



 338 

Biehler, R. (1994).  Probabilistic thinking, statistical reasoning, and the search for 
causes: Do we need a probabilistic revolution after we have taught data 
analysis?  In J. B. Garfield (Ed.), Research Papers from the Fourth 
International Conference on Teaching Statistics.  Minneapolis: The 
International Study Group for Research on Learning Probability and 
Statistics. 

Biehler, R. (1999).  Discussion: Learning to Think Statistically and to Cope with 
Variation.  International Statistical Review, 67(3), 259-262. 

Borovnik, M., and Peard, R. (1996).  Probability.  In A.J. Bishop (Ed.), 
International Handbook of Mathematics Education (pp. 239-287).  
Netherlands: Kluwer Academic Publishers. 

Erickson, T. (2000).  Data in Depth.  Exploring Mathematics with Fathom.  
Emeryville, CA: Key Curriculum Press. 

Gal, I., and Garfield, J. (1997).  Curricular Goals and Assessment Challenges in 
Statistics Education.  In I. Gal and J. B. Garfield (Eds.), The Assessment 
Challenge in Statistics Education.  Burke, VA: IOS Press. 

Hoerl, R., Hahn, G. & Doganaksoy, N. (1997).  Discussion: Let’s Stop 
Squandering Our Most Strategic Weapon.  International Statistical 
Review, 65(2), 147-153. 

Lee, C. (1997).  Promoting Active Learning in Introductory Statistics Using the 
PACE Model [On-line].  Available: http://www.cst.cmich.edu /users/ 
leec/PACE-1.html 

Meletiou, M., Lee, C. M., & Myers, M. (1999).  The Role of Technology in the 
Introductory Statistics Classroom: Reality and Potential.  Proceedings of 
the International Conference on Mathematics/Science Education and 
Technology.  San Antonio, Texas. 

Steinbirg (1990).  The Use of Chance-Concept in Everyday Teaching - Aspects of 
a Socially Constituted Epistemology of Mathematical Knowledge.  In J. B. 
Garfield (Ed.), Research Papers from the Third International Conference 
on Teaching Statistics.  University of Otago, Dunedin, New Zealand. 

Wild, C. J., and Pfannkuch, M. (1999).  Statistical Thinking in Empirical Enquiry.  
International Statistical Review, 67, 3, 223-265. 

http://www.cst.cmich.edu/users/leec/PACE-1.html
http://www.cst.cmich.edu/users/leec/PACE-1.html


 339 

 

 



 340  

Vita 

 

Maria Menelaou Meletiou was born in Nicosia, Cyprus, on July 30, 1968, 

the daughter of Athanasia Pontou Meletiou and Menelaos Meletiou.  After 

completing her work at the American Academy of Larnaca, in 1987, she entered 

the Elementary Education program of the Pedagogical Academy of Cyprus.  She 

earned her Teaching Certificate in Elementary Education in June 1990, and taught 

at the 5th Aglantzia Elementary School, in Nicosia, Cyprus, for one academic 

year.  In August 1991, she came to the United States to pursue a Bachelor’s of Art 

degree in Mathematics, at the University of Texas at Austin, which she earned in 

May 1993.  She began graduate work at the University of Texas in August 1993, 

and earned the degree of Master’s of Science in Statistics in August 1994.  She 

entered the doctoral program in Mathematics Education, at the University of 

Texas, in the Fall of 1994 semester.  While pursuing her doctoral degree, she also 

joined the Department of Mechanical Engineering at the University of Texas, and 

received a Master’s of Science in Engineering degree in August 1998. 

 

 

Permanent address: 3 Ayios Georgios St., 5380 Dherynia, Cyprus 

This dissertation was typed by Maria Menelaou Meletiou. 

 
 


	List of Tables	xvii
	Table 4.1 – Pre-assessment Results on “Matching Histograms to Variables” Question	133
	Chapter I: Introduction
	Outline of Dissertation

	Chapter II: Literature Review
	Research on Statistical Reasoning
	Neglect of Variation
	Insights from Research on Sampling and Centers
	Insights from  Heuristics Literature
	Misconceptions involving Averages
	The Outcome Orientation
	Good Samples Have to Represent a High Percentage of the Population
	The Law of Small Numbers
	The Representativeness Heuristic
	The Equiprobability Bias

	Criticisms of the Heuristics Research
	Moving Away from Misconceptions: Intuitions as Dynamic
	Beliefs about the Nature of Mathematics: Impact on Statistics Instruction
	Formalist vs. Relativistic View of Mathematics
	Impact of Formalist View on Statistics Education


	Role of Technology
	Research Findings: Limitations of Technology
	Need for More Systematic Research

	Redefining Statistical Education
	Need for Synergy of Content-Pedagogy-Technology
	Changing of Emphasis in Teaching Objectives
	Changes in Pedagogy

	Variation at the Core of Statistics Education
	
	
	
	
	Figure 2.1:  Pfannkuch’s epistemological triangle





	Conclusions and Emerging Focus for this Study

	Chapter III: Theory and Methodology
	Introduction
	Developing The Conjecture
	Ideological Stance
	The Conjecture
	Definition of Conjecture
	Variation as the Central Tenet of Statistics Instruction Conjecture


	Developing The Teaching Experiment
	Context
	Participants
	Recruitment of Students
	Characteristics of Students
	Risk Protection for Students

	Four Design Components of Instruction
	Curriculum
	Classroom Interactions
	The Role of the Instructor
	Assessment


	Data Generation
	A.  Beginning of Course
	Questionnaire on Variability
	Follow-up Interviews of Primary Group

	B.  Duration of Course
	Class Observations
	Fieldnotes
	Documents
	Video-taping of Group Activities
	Pre- and Post-Activity Assessment
	Samples of Student Work
	Intermittent Interviews of Primary Group
	Instructor
	Outside-of-Class Data Generation

	C.  End of Course
	End-of-Course Questionnaire
	Follow-up Interview of Primary Group
	Interview of Instructor


	Data Analysis
	Preliminary Data Analysis and Curricular Revision
	Final Data Analysis
	Qualitative Data Analysis Techniques
	Quantitative Data Analysis Techniques


	Criteria for Quality of Research Findings
	Ensuring the Quality of the Internal Processes
	Credibility
	Dependability
	Confirmability
	Role of the Researcher

	Assessing the Potential Impact


	Chapter IV: Assessment Prior to Instruction
	Introduction
	Discussion of Results
	
	
	
	
	Figure 4.1 – Histograms of Distributions A and B
	Figure 4.2 – “Matching Histograms to Variables” Task

	Table 4.1 – Pre-assessment Results on “Matching Histograms to Variables” Question
	Figure 4.3 – New Zealand Task





	Conclusions
	Implications for Instruction: Further Elaboration of the Conjecture
	Statistical Thinking is Contextual
	Variation as the Central Tenet of Statistical Thinking
	Defining Statistics Instruction in Terms of Variation
	
	
	
	Figure 4.6 – Sources of Variation (from Wild and Pfannkuch, 1999)
	Figure 4.4 – Practical Responses to Variation (from Wild and Pfannkuch, 1999)




	Probability
	Variation, Causation, and Probability
	From Association to Causation
	The Behavior of Random Phenomena


	Chapter V: The Teaching Experiment
	Introduction
	Classroom Setting
	Sample of Class Activities
	Distance from Home Class Activity
	Matching Statistics to Graphs Activity
	
	
	
	Figure 5.1 – Part A of “Matching Statistics to Graphs” Activity
	Figure 5.2 – Part B of “Matching Statistics to Graphs” Activity




	SATs and GPAs: Classroom Activity
	
	
	
	Figure 5.3 – Summary Table of Mean Math and FYGPA scores for Males and Females
	Figure 5.4 – Math SAT scores
	Figure 5.5 – Math SAT Scores separated by Sex
	Figure 5.6 – FYGPA scores separated by Sex
	Figure 5.7 – Boxplots of FYGPAs, Math SAT Scores, and Verbal SAT Scores, for Males and Females
	Figure 5.8 – Differences in Mean Math SAT Scores and FYGPAs divided by Standard Deviation
	Figure 5.9 - Differences in Median Math SAT Scores and FYGPAs divided by Interquartile Range
	Figure 5.10 – “Test Results” Task

	Table 5.1 – Post-assessment vs. Pre-assessment Results on “Matching Histograms to Variables” Question



	What’s Common Here?  “Discovering” the Binomial Distribution.
	Is the Student’s A Score Rare?  What About Student’s B?
	Probability, Causation, and Variation
	Introduction to Probability
	Independence

	Sampling Distribution
	SOS Scores Activity

	Confidence Intervals
	No. of Raisins in a Box

	Hypothesis Testing
	Drug for Reducing Cholesterol Level

	Learning with Fathom: Outside-of-Class Investigation
	Structure of Fathom
	
	
	Figure 5.11 – A Fathom Collection



	Coin Toss Activity
	
	
	Figure 5.12 – A Sample Collection of 50 Coin Tosses
	Figure 5.13 – A Bar Graph of the Sample Collection of 50 Coin Tosses
	Figure 5.14 – A Measures Collection of 5 Sample Statistics and the Corresponding Histogram

	Table 5.2 –Sample Collection vs. Measures Collection in Fathom
	Figure 5.15 – The Distribution of a Measures Collection of Counts of Heads for a Large Number of Samples



	Sample of Other Fathom Activities


	End-of-Course Assessment
	Exploratory Data Analysis
	Data Production
	Concept of Independence
	Sampling Variation vs. Sampling Representativeness
	Inferential Statistics

	Discussion
	Student Understanding of Inferential Statistics
	Conjectures for Students’ Difficulties
	
	
	Figure 5.16 – Pre-assessment Task on Sampling Distributions
	Figure 5.17 – Graph of Standard Deviation away from Sample Mean against Sample Size

	Table 5.11 – Results of Current Study vs. Results of Pilot Investigation on “Hypothesis Testing” Question





	Chapter VI: Conclusions
	Summary
	Implications for Instruction
	Implications for Future Research
	Concluding Remarks

	Appendix A: Assessment Prior to Instruction
	Questionnaire
	Interview Protocol

	Appendix B: SATs and GPAs
	Appendix C: Drug for Reducing Cholesterol Level
	Appendix D: End-of-Course Assessment
	
	
	
	Question 2
	Question  3
	Question 5
	Question 6
	Question 8
	
	
	Question 9



	Question 10




	References
	Vita

