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 This study examined the role instruction played in changing students’ individual 

and collective reasoning and beliefs about probability simulation and what impact 

technology had in these changes. 

 Twenty-three students from a high school Advanced Placement Statistics class 

participated in a 12-day whole-class teaching experiment. Students were administered a 

pre-, post-, and retention assessment to provide quantitative data to examine changes in 

student reasoning. Audio and videotapes of instructional sessions and interviews of 4 

target students provided qualitative data related to their reasoning and beliefs. 

 Quantitative analysis revealed that the post- and retention assessment scores were 

significantly higher than the preassessment, but there was not a significant difference 

between the post- and retention assessment scores. Qualitative analysis discerned that 

following instruction, the frequency of valid responses increased in 5 of the 6 simulation 

components. More specifically, students made significant progress in their ability to use 

simulated outcomes to determine the probability of an event and to recognize the effect of 

repeated trials on the empirical probability. Students’ use of the graphing calculator was 



 

found to have a considerable impact on students’ reasoning about probability simulation. 

Specifically, the syntax needed to operate the calculator focused students on the 

components of simulation, and the calculator provided a transparent medium for handling 

more complex problems that involved dependent events. 

This study identified a number of helpful and problematic beliefs. Some of the 

helpful beliefs included the belief that assumptions are part of simulation and as the 

number of trials increased, the empirical probability approached the theoretical 

probability. Problematic beliefs were related to misconceptions, such as 

representativeness. 

As students reasoned collectively, a number of sociomathematical norms emerged 

about how students justified valid simulation components. From these norms emerged one 

or more classroom mathematical practices, many of which became taken as shared by the 

students. 
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CHAPTER I 

THE PROBLEM AND ITS BACKGROUND 

As omnipresent as statistics is in everyday life, it is disturbing that much of the 

general public does not rely on statistical thinking. The public seems to rely heavily on 

anecdotal evidence, and when statistics are presented they are frequently misrepresented 

or misinterpreted (Kolata, 1997). Hence it is not surprising that statistical education has 

received enhanced emphasis in recent mathematical reforms (National Council of 

Teachers of Mathematics [NCTM], 2000). These reforms recognize that students need 

statistical skills that enable them to make informed decisions. Another sign of intensified 

attention to statistical reasoning has been the introduction of Advanced Placement 

Statistics in 1997 (College Board, 2000). The increased emphasis on statistical reasoning 

by such national organizations as NCTM and the College Board has not gone unheeded 

by teachers or students. In the first three years of implementing APS across U.S. high 

schools, students choosing to take the content specific test in statistics have increased 

from about 7600 students in 1997 to over 41,000 in the year 2001 (Straf, 2002), an 

increase of over 200 percent. 

Probability and probability simulation are inherent parts of the content of a high 

school statistics course. Both the NCTM’s Principles and Standards of School 

Mathematics (2000) and the College Board’s APS curriculum (2000) recommend the 

inclusion of probability simulations as a tool to look at long run behavior patterns. Not 

only do simulations provide students the opportunity to make sense of probability 
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concepts, they are also a natural vehicle by which to model contextual problems. 

Furthermore, a review of the literature reveals an increased interest in both curriculum 

and research in mathematical modeling (Biehler, 1991; Borovcnik & Peard, 1996; Doerr, 

1998; Doerr & Tripp, 1999; Lesh, Amit, & Schorr, 1997; Wares, 2001). Modeling is 

relevant to this study because probability simulations enable students to develop the 

ability to formulate and analyze mathematical models. In fact, an understanding of 

probability and probability simulations will not only aid students in APS, it will help 

them to become more mathematically and statistically informed citizens (College Board, 

2000). 

As the call for statistically sophisticated students increases and the number of 

students enrolled in APS continues to grow, more research is needed on how students 

reason about probability simulations. Moreover, for teachers of statistics there is a need 

to know more about how instruction affects students’ learning of probability simulations. 

This study was designed to address both of these needs. 

Statement of the Problem 

Having identified an increased emphasis on statistical education in general and 

probability simulation in particular, it is appropriate to examine what research tells us 

about high school students’ reasoning in, and beliefs about, probability simulation. 

Although a substantial number of studies have investigated the probabilistic reasoning of 

students in the elementary and middle grades (e.g., Falk, 1983; Fischbein & Gazit, 1984; 

Jones, Langrall, Thornton, & Mogill, 1997; Jones, Thornton, Langrall, & Tarr, 1999; 

Piaget & Inhelder, 1975), fewer studies have examined the probabilistic reasoning of high 

school students (Batanero & Serrano, 1999; Fischbein, Nello, & Marino, 1991; Fischbein 
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& Schnarch, 1997; Green, 1983; Shaughnessy, 1977). Moreover, there appears to be 

limited research that has examined high school students’ reasoning in relation to 

probability simulations (Benson & Jones, 1999; Zimmermann & Jones, 2002) and 

students’ reasoning related to modeling (Biehler, 1991; Borovcnik & Peard, 1996; Doerr, 

1998; Doerr & Tripp, 1999; Lesh et al., 1997). Finally, no studies have been located that 

have analyzed or evaluated instructional programs involving modeling and simulation. 

Given this gap in the research literature and the importance of cognitive research in 

informing instruction (Fennema, Franke, Carpenter, & Carey, 1993), there is a need for a 

study that examines the effect of instruction on students’ individual and collective 

probabilistic reasoning and beliefs as they relate to simulation. This study addressed this 

void in the research literature by generating theoretical and practical knowledge to inform 

instruction on probability simulation.  

Research Questions 

The purpose of this study was to develop an understanding of how instruction 

affects high school students’ reasoning and beliefs related to probability simulation. 

Further, this research sought to supplement what is known about students’ individual 

reasoning and beliefs concerning probability simulation (Benson & Jones, 1999; 

Zimmermann & Jones, 2002) with what could be learned about the collective knowledge 

of students as they worked together in a classroom environment. In particular, this study 

addressed the following research questions: 

1. How does high school students’ individual and collective reasoning about 

probability simulation change during a whole-class teaching experiment? 

What role does technology play in this change? 
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2. How do high school students’ beliefs about probability simulation change 

during a whole-class teaching experiment? 

3. What kind of sociomathematical norms and classroom mathematical practices 

evolve during a whole-class teaching experiment that focuses on probability 

simulation? 

Definition of Terms 

 Yates, Moore, and McCabe (1999) defined a probability simulation as an 

experimental process that models the probability elements of a real world context. For 

example, the distribution of pizza phone orders for a restaurant is about 60 percent for 

pizzas with meat and 40 percent for pizzas that are without meat. A probability 

simulation could be used to determine the probability that the next two phone orders in 

the restaurant are for pizzas with meat. In elaborating this procedure, Yates et al. 

identified a number of steps in the simulation process that are summarized in Figure 1.  

 
 

Simulation Process 
 

1. State the problem and list any assumptions. 
2. Assign random digits to model problem outcomes. 
3. Define a trial. 
4. Repeat trial many times. 
5. Determine empirical probability. 

 
 
 

 

 

 

Figure 1. Simulation Process (adapted from Yates et al., 1999). 
 
 
 
First, the problem should be stated and any assumptions noted. Second, random digits (or 

the outcomes of a probability generator) should be assigned to represent or model the 
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outcomes of the problem context. Third, a trial should be defined to meet the conditions 

of the problem. Fourth, this trial should be repeated many times. Finally, the simulation 

data that has been collected should be used to determine the required empirical 

probability. In essence, the process outlined by Yates et al. provides a mathematical norm 

or framework for assessing the reasoning of high school students when they undertake a 

simulation. 

 In this study, theoretical probability is defined as the probability computed by 

dividing the number of outcomes in an event by the number of outcomes in the sample 

space. This is based upon the assumptions that each possible sample outcome is equally 

likely. Empirical (also known as experimental) probability is the “proportion of times the 

outcome would occur in a very long series of repetitions” (Yates et al., 1999, p. 314). 

The term two-dimensional refers to probability activities or simulations that 

involve the performing of two random experiments or the performing of one random 

experiment twice. Zimmermann and Jones (2002) used the following definition of two-

dimensional: 

In a two-dimensional probability activity or simulation one outcome is obtained 
from each random experiment; hence we are dealing with pairs of outcomes, in 
this case ordered pairs. Although less complex, the two-dimensional problems in 
this study essentially belong to a class of problems that mathematicians refer to as 
the joint probability density function of two random variables (Hogg & Tanis, 
1997). By way of contrast a one-dimensional probability situation would involve 
just one random experiment and a sample space that consisted of single outcomes. 
English (1993) also uses the term two-dimensional when referring to the 
combinatorial problems that exhibit similar structure to the problems in this study. 
 

Theoretical Framework 

This research used a whole-class teaching experiment to study high school 

students’ reasoning and beliefs as they experienced an instructional unit on probability 
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simulation as part of the APS curriculum. Grounded in the work of Cobb (1999), a 

whole-class teaching experiment consists of a sequence of instructional lessons that are 

based on student knowledge and understandings as they emerge during the course of 

instruction (English, Jones, Lesh, Bussi, & Tirosh, 2002). The purpose of a whole-class 

teaching experiment is to provide a means by which to analyze and record student 

understanding as it develops.  

As illustrated in Figure 2, a whole-class teaching experiment is comprised of two 

phases, the instructional development phase and the classroom-based analysis. During the 

process of a teaching experiment these phases cycle back on each other. Cobb (1999) 

terms the entire cyclic process the Developmental Research Cycle. The instructional 

development phase concerns the design of hypothetical learning trajectories that are 

informed by instructional theory and content-specific research. A hypothetical learning 

trajectory is made up of three components: learning goals for students, planned learning 

or instructional activities, and a conjectured learning process in which the teacher 

anticipates how students’ learning and understanding might evolve. In some sense, the 

hypothetical learning trajectory is a set of lesson plans for the instructional program yet 

has special characteristics that differentiate it from a traditional lesson plan. During the 

second phase, classroom-based analysis, instruction is reformed and refined based on 

classroom events and activities. It is also during this phase that individual and collective 

student reasoning is traced. The classroom-based analysis utilizes Cobb’s (2000) 

emergent perspective that views both an individual’s cognitive characteristics and the 

social dynamics of the classroom as equally important in contributing to mathematical 

development. In other words, not only is it necessary to examine individual cognitive and 
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psychological aspects of learning, it is also crucial to examine the established classroom 

norms and practices that are essential to understanding students’ development. Therefore, 

this study examined both individual and collective cognitions of students as they 

reasoned through contextual problems involving probability simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

Classroom-Based Analysis 
Phase 

Classroom Instruction 

Outcomes of 
Instruction 

Instructional Development 
Phase 

Research Base 

Hypothetical Learning 
Trajectory 

 

Figure 2. Developmental Research Cycle (adapted from Cobb, 1999). 
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Instructional Development Phase 

 The theoretical framework of this whole-class teaching experiment began with the 

instructional development phase (Figure 3). In this phase, instructional theory and 

content-specific research inform the development of the hypothetical learning trajectory 

and in turn design of the instructional sessions. Following is a more detailed description 

of each component of the instructional development phase. 

 

 

Cognitively Guided Instructional Theory 

Hypothetical Learning Trajectory 
 
• Learning Goal 
• Activities With and Without Technology 
• Learning Process Hypothesis 

Perspective of Learning 
 

• Individual Cognition 
• Collective Cognition 

Research on 
Probability to 

Inform 
Instruction 

INSTRUCTIONAL DEVELOPMENT  

 

 

 

 

 

 

 

 

 

 

Figure 3. Instructional Development Phase. 
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Perspective of Learning  

This component of the instructional development phase assumes that both 

individual and collective cognition is critical in guiding the development of instruction. 

In Cobb’s (2000) view, the individual student interacts within the social structures of the 

class. During the process of instruction, the individual student develops her own 

reasoning and beliefs, but the social perspective of the classroom, mainly social norms, 

sociomathematical norms, and mathematical practices, influence this development. 

Cobb’s perspective of learning can be viewed through the lens of symbolic interactionism 

(Blumer, 1969). According to the basic caveats of symbolic interactionism, people 

interact with each other and engage in various activities, and these interactions are part of 

a reciprocating process. In the classroom, students and teacher will interact, as will 

students with other students. Cobb holds that learning does not occur in isolation from the 

social perspective of the classroom environment and, therefore, both the individual and 

social cognitions must be examined to develop an understanding of how learning occurs. 

As with all teaching experiments, the students’ ongoing cognitions during the 

Developmental Research Cycle informed the instructional development phase. However, 

what distinguished the developmental research cycle of this whole-class teaching 

experiment from much of the earlier research (Steffe & Thompson, 2000; Tzur, 1999) 

using teaching experiments was the teacher-researcher’s personal insight. Since the 

teacher-researcher was the daily classroom teacher of the students, she had first-hand 

knowledge of the classroom sociomathematical norms as well as the individual and 

collective cognitions of the class. 



 10

Cognitively Guided Instructional Theory 

In accord with Cobb’s (2000) recommendation that a whole-class teaching 

experiment requires an instructional theory, this whole-class teaching experiment was 

built on the theory of cognitively guided instruction (Figure 3). Cognitively guided 

instructional theory is based on the assumption that research-based knowledge of 

students’ thinking can inform instruction (Fennema et al., 1993). Fennema et al. maintain 

that a teacher with knowledge of research on student mathematical thinking can use this 

information combined with individual student problem-solving strategies to select 

problems that will help develop student reasoning. Teachers who use cognitively guided 

instructional theory monitor student thinking so as to make sense of student learning in 

the context of their own knowledge. For the whole-class teaching experiment in this 

study, research related to probability, simulation and modeling, as well as technology was 

used to build the research knowledge base that the teacher-researcher used to inform 

instruction. 

Hypothetical Learning Trajectory

Although the whole-class teaching experiment was founded on cognitively guided 

instructional theory, it was driven by a continuous revision of the hypothetical learning 

trajectory (Figure 3). As described earlier, a hypothetical learning trajectory (Simon, 

1995) consists of a learning goal, a plan of instructional lessons and activities, and a 

hypothesis of the learning process for the class. The overall learning goal for this whole-

class teaching experiment was the development of an understanding of probability 

simulations including the ability to use simulations to determine empirical probabilities. 

The plans of instructional lessons and activities were designed to provide problems that 
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could be simulated and at the same time create a learning environment where students 

built mathematical ideas through interaction and reconceptualization of their prior 

knowledge (Yackel , Cobb, & Wood, 1990). Graphing calculator technology was utilized 

for most of the problems and activities, while manipulatives (e.g., candy, random number 

table, coins, etc.) were used for others. The hypothesized learning process, as formulated 

by the teacher-researcher, determined the exact nature of the activities and problems as 

well as any modifications to the learning process or activities. During the whole-class 

teaching experiment the hypothetical learning trajectory was continuously revised and 

reformulated as determined by the other phase of the Research Development Cycle, the 

classroom-based analysis. The hypothetical learning trajectory was informed by both the 

research literature as well as the classroom-based analysis. Before discussing the second 

phase of the whole-class teaching experiment, a review of the key content-specific 

research relevant to this teaching experiment is presented. Further content specific 

research will be discussed in Chapter 2. 

Research on Probability to Inform Instructional Development 

 The instructional development phase was informed by research (Figure 3) 

associated with the specific mathematical content of the whole-class teaching experiment. 

In this case, a review of current literature included students’ probability reasoning and 

beliefs, simulations and modeling, and technology. An analysis of teaching experiments 

involving probability and statistics has also been included in order to illustrate the 

usefulness of such a methodology in addition to providing helpful insights into the 

procedures that were used during the teaching experiments. 
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Students’ Probability Reasoning  

There is substantial literature on students’ reasoning and beliefs about theoretical 

probability. In an overall sense, research indicates that children and adults have difficulty 

reasoning probabilistically (Fischbein et al., 1991; Garfield & Ahlgren, 1988; and 

Hawkins & Kapadia, 1984), and the factors affecting their probabilistic reasoning are 

varied. Some of these factors include students’ tendency to rely on memorized 

procedures and lack of ability to reason proportionally (Garfield & Ahlgren, 1988; Green, 

1983). Similarly, the concept of randomness seems to elude many students (Batanero & 

Serrano, 1999), and in spite of instructional intervention, some students are unable to 

construct valid arguments about concepts of randomness related to the regularity of 

patterns, frequencies of possible results, and the existence or absence of runs. 

Students’ Beliefs About Probability

The literature revealed that beliefs play a major role in students’ reasoning about 

probability (Fischbein & Gazit, 1984; Fischbein et al., 1991; Fischbein & Schnarch, 

1997; Garfield & Ahlgren, 1988; Piaget & Inhelder, 1975; Shaughnessy, 1992). That is, 

students’ conceptions of probability often involve the use of judgment heuristics, such as 

representativeness, availability, and outcome approach, that are grounded in beliefs 

(Konold, 1991a; Konold, Pollatsek, Well, Lohmeier, & Lipson, 1993; Tversky & 

Kahneman, 1973, 1974). These heuristics are described in more detail in Chapter 2. 

According to Shaughnessy (1992), students’ beliefs in such judgment heuristics indicate 

that they may not have developed a cognitive framework in which to understand the 

mathematical relevance of probability experiments. If this were the case, it would 

certainly have implications for students’ understanding of probability simulations. 
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Much of the research points to the complex nature of students’ beliefs, and the 

research seems to imply that neither instruction nor maturation necessarily help eliminate 

student misconceptions (Fischbein & Schnarch, 1987; delMas & Bart, 1989). In fact, 

delMas and Bart (1989) concluded that instruction could actually reinforce some 

misconceptions. Fischbein and Gazit (1984) hypothesized that instruction could be used 

to alter and develop new intuitive attitudes through participatory activities involving 

probability concepts. They concluded that student understanding did appear to increase 

with age, however, many of the concepts proved to be too difficult for the fifth-grade 

students in their study. It was also found that instruction had the “indirect” effect of 

overcoming some of the students’ intuitive misconceptions.  

In summary, many factors affect how students reason probabilistically. Research 

indicates that students with a weak understanding of proportions are unlikely to reason 

appropriately. Further, numerous studies reveal that individual beliefs have a substantial 

impact on how students reason probabilistically. And, although instruction appears to 

have limited effect on students’ reasoning and beliefs, maturation seems to improve some 

concepts but has limited influence on the concept of randomness. 

Simulations and Modeling

Given the importance of the role of simulation in the study of statistics, it is 

surprising that so little research has focused on this topic. Biehler (1991) recognized that 

computer generated simulations could serve as both a problem-solving tool and a process 

to explore the concept of empirical probability. Borovcnik and Peard (1996) questioned 

the use of simulations that employed computers prior to using actual manipulatives. Their 

concern was related to how students might perceive the “pseudo-randomness” of 
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computers. They suggested that teachers commence instruction by using manipulatives 

and then compare simulation with manipulatives to simulations using technology.  

 There are more recent studies on students’ reasoning with respect to probability 

modeling (Benson, 2000; Benson & Jones, 1999), a key aspect of simulation. Benson and 

Jones found that only 3 of the 7 students in their study (ranging from Grade 2 through 

college) were able to construct a valid model for a contextual problem involving two-

dimensional probability. The researchers concluded that students’ ability to construct 

two-dimensional models seemed to be closely related to their knowledge of two-

dimensional theoretical probability. While the Benson and Jones study provided a 

glimpse of students’ reasoning in relation to probability simulation, it should be noted 

that they did not look at the complete simulation process but only the first step; that is 

modeling the contextual situation. 

 Zimmermann and Jones (2002) focused on two-dimensional simulation problems 

like the following: given the probabilities that a radio station plays three kinds of music, 

what is the probability that hip-hop music is playing when the radio is turned on at two 

different times. In their study involving 9 high school students, Zimmermann and Jones 

found that the concept of two-dimensional simulations was difficult for most students. 

Students’ inability to understand the concept of dimensionality also prevented most of 

them from recognizing that the trial in another simulation was one-dimensional when it 

should have been two-dimensional. However, most students were able to construct a 

valid probability generator, that is, a random device that produced the specified 

probability distribution in the given problem. Zimmermann and Jones also determined 
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that students bring with them beliefs about simulations that can be both helpful and 

problematic to instruction. 

 Students’ ability to construct models of problems is likely to factor into their 

ability to construct appropriate simulations. Despite this, only recently have research 

studies examined students’ thinking in relation to mathematical modeling. According to 

Lesh et al. (1997), model-eliciting activities require that students mathematically interpret 

situations and problems. In the process of constructing models, students develop a 

multitude of unanticipated and effective mathematical models to solve problem (Lesh et 

al., 1997; Lesh & Clarke, 2000; Lesh & Lehrer, 2000). Construction of models tends to 

begin from an intuitive level and graduates to a more formal type reasoning that allows 

students to produce a more generalizable model.  

Technology Use in Probability and Statistics  

NCTM advocates the appropriate use of technology in the mathematics classroom 

(2000). Furthermore, the College Board expects that students will have regular access to 

both computers and calculators with statistical computation and graphics capabilities 

(Watkins, Roberts, Olsen, & Scheaffer, 1997). Therefore, a review of research related to 

simulation is germane to this study. 

The College Board (Watkins et al., 1997) recognizes the role of technology in 

today’s mathematics curriculum. Some of the advantages of technology include the 

ability to “store large data sets for interactive data analysis, provide variety, speed, and 

visualization of simulations, and thereby offer better understanding of ‘in the long run’ of 

sampling distributions” (Watkins et al., 1997, p. 11). It is precisely these advantages that 

make technology a useful cognitive tool in helping students to construct models in order 
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to simulate random experiments (Biehler, 1991; Konold, 1991b). The ability of 

technology to store and quickly process large amounts of data coupled with the built-in 

capability of graphically representing data supports the use of technology in a teaching 

experiment that focuses on probability simulation. 

The use of technology in the statistics classroom provides the teacher with 

additional resources to help students develop statistical reasoning in a more conceptual 

manner. Technology by itself will not give students immediate access to the solution of a 

problem. Instead, the power of technology, such as its speed, efficiency, and ability to do 

tedious manipulations, is what allows students the freedom to concentrate on the 

components of a simulation. It is the reasoning students do about the structure of a 

simulation that enables them to make generalizations and abstractions about simulations 

and probability. 

Teaching Experiments Involving Statistical and Probabilistic Reasoning

Teaching experiments have become an important investigative tool into students’ 

individual and collective reasoning. In particular, teaching experiments have been used to 

illustrate how students reason statistically and probabilistically in an instructional 

environment. Wares (2001) used a teaching experiment to examine how middle school 

students construct mathematical models that involved data. Because of the structure of 

the teaching experiment, Wares was able to design and modify activities to help students 

extend their reasoning to construct mathematical models. The teaching experiment also 

provided the opportunity for teacher-researcher questioning of student reasoning in order 

to plan the hypothetical learning trajectory. Classroom mathematical practices identified 

during the course of the teaching experiment included students’ use of proportional 
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reasoning to defend their mathematical model, their use of graphs for comparison, and 

the comparison of mathematical quantities using the concept of rate. Two 

sociomathematical norms were reported: one was that students should be able to defend 

and justify valid mathematical models, and the other related to the idea of a valid 

comparison of mathematical quantities. 

 Polaki (2000) used two versions of a teaching experiment to compare elementary 

students’ growth in probabilistic reasoning. He found that both versions of the teaching 

experiment had a profound impact on students’ reasoning. Further, mathematical 

practices and norms were generated during the study. The mathematical practices that 

emerged from the teaching experiment include the use of invented formal mathematical 

language, a systematic method for generating two-dimensional outcomes, and the use of 

the composition of the sample space to reason about probability problems. These 

mathematical practices were considered instrumental in building students’ conceptual 

understanding of probability. 

 A review of Wares and Polaki’s teaching experiments was beneficial because the 

studies provided a look at the procedures and processes that were utilized in order to 

examine individual and collective reasoning. In particular, both of these studies provided 

a picture of how sociomathematical norms and mathematical processes emerged during 

the course of a teaching experiment. In the light of this background research on the 

usefulness of teaching experiments, I will now examine the theoretical aspects of the next 

phase of a teaching experiment. 
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Classroom-Based Analysis Phase 

 The second phase of a whole-class teaching experiment is the classroom-based 

analysis (Figure 2). Whereas the instructional development phase is guided by discipline-

specific instructional theory and the focus is on the broader picture of the entire 

instructional unit, the classroom-based analysis is guided by what is happening in the 

classroom on a daily basis (Cobb, 2000). It is during this phase that instruction takes 

place, and the outcomes of the teaching experiment are studied and used to inform the 

instructional development phase. More specifically, it is this phase of the whole-class 

teaching experiment that provides the data for constructing and modifying the 

hypothetical learning trajectory as well as data that is used to analyze individual and 

collective reasoning and beliefs. Finally, during the classroom-based analysis phase the 

sociomathematical norms and mathematical practices evolve and are identified by the 

researcher. 
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Figure 4. Classroom-Based Analysis Phase. 
 

 

View of Learning

At the heart of the classroom-based analysis is an examination of individual and 

collective cognitions (Figure 4), and in order to study these views of learning Cobb’s 

(2000) interpretive framework was used. The interpretive framework Cobb puts forth 

recognizes both the social and psychological perspectives. The social perspective consists 

of classroom social norms, sociomathematical norms, and classroom mathematical 



 20

norms. Classroom social norms refer to the participation structure within the classroom 

and include the discourse related to student explanations and questioning of alternative 

perspectives. Examples of social norms may include the expectations of explaining and 

justifying solutions, making sense of other student explanations, and questioning 

alternative solutions that may not make sense to other students. Classroom social norms 

are not specific to mathematics; they are applicable across various disciplines. 

Sociomathematical norms, on the other hand, are specific to mathematics and refer to the 

validity of a mathematical solution or answer to a problem. An established 

sociomathematical norm may relate to what constitutes an efficient or insightful 

mathematical solution. Classroom mathematical practices consist of “taken-as-shared” 

ways of reasoning, discussing, and representing mathematical ideas. For instance, in the 

course of solving the problem 26 + 13, a student may write 20 + 10 = 30 and then 6 + 3 = 

9, and finally 30 + 9 = 39. Initially, the student would be expected to justify her solution. 

However, as classroom discussion progresses this strategy may become “taken-as-

shared” without the need for explanation. As such, it becomes a mathematical practice. 

The psychological perspective refers to individual student conceptions and beliefs 

about the mathematical and social activity that occurs in the classroom. The interaction 

between the social perspective and the psychological perspective represents what Cobb 

(1999) calls the “emergent viewpoint”. According to this perspective, students do not 

construct knowledge in isolation of the social processes of the classroom. Rather, 

individual conceptions and beliefs interact in a reflexive manner with social processes. 

According to the emergent viewpoint, both are considered to be equally important in the 

construction of knowledge. 
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Outcomes for Probability Simulation Instruction

The expected outcomes of the whole-class teaching experiment (Figure 3) were 

guided by the research questions. This study was designed to illustrate how both 

individual and collective reasoning about probability simulation develops. Moreover, as 

students reasoned through contextual problems the change in their beliefs related to 

probability simulations was examined. Finally, the whole-class teaching experiment 

revealed sociomathematical norms and classroom practices that evolved during 

instruction. 

Significance of the Study 

 The findings of this study assist in bridging the gap between research and 

teaching practice and at the same time help to fill a void in the research related to 

probability simulation. Through the use of a whole-class teaching experiment on 

probability simulation, this research contributed to the knowledge base on how students 

develop reasoning and beliefs during instruction, both individually and collectively. 

Although whole-class teaching experiments have been used to examine other aspects of 

students’ probabilistic and statistical thinking (Benson, 2000; Polaki, 2000; Wares, 2001), 

there is no evidence of any previous study that has focused on probability simulation. By 

using a whole-class teaching experiment, this study not only traced and documented how 

individual students develop conceptions and beliefs about probability simulation, it also 

examined how the social influences of the class impact collective learning. 

Additionally, this study adds to the literature by providing more detail about 

students’ probabilistic thinking at the high school level. There has been limited research 

that has examined high school students’ probabilistic reasoning (Batanero & Serrano, 



 22

1999; Fischbein et al., 1991; Fischbein & Schnarch, 1997; Green, 1983) and even less 

research has focused on probability simulation (Zimmermann & Jones, 2002). This study 

adds to what little is known about high school students’ probabilistic reasoning and at the 

same time adds to the literature on how students reason about probability simulations. 

Finally, this study contributes to research by providing insight into the impact of 

instruction and technology on students’ learning of probability simulations. To study the 

mathematical concept of probability simulation, it is helpful to conduct many trials and 

record the results. Today’s technology provides the means to accomplish both these tasks, 

and thus can be used by students as a cognitive tool (Biehler, 1991; Konold, 1991b). In 

spite of the cited advantages of using technology to study probability simulation, few 

resources are available for teachers that have examined the role technology plays in the 

teaching and learning of probability simulation. This research study provides teachers 

with data about the effect of both instruction and the use of technology while teaching 

probability simulation, and at the same time provides insights into how the social 

structure of the classroom affects student learning of probability simulation. 
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CHAPTER II 

REVIEW OF RELATED LITERATURE 

 The purpose of this chapter is to provide a review of literature that is relevant to 

this study. The first section provides an overview of research as it relates to students’ 

conceptions and beliefs of probability, simulations, and technology. Research in this area 

spans all age levels; however, because this study examined the thinking and beliefs of 

high school students, the review will focus primarily on high school and college-aged 

subjects. Because of the integration of technology in today’s mathematics classroom, the 

role and use of technology in probability simulation can be found in this section as well. 

The second and third sections relate the theoretical framework of this study. More 

specifically, the whole-class teaching experiment is examined as a research methodology 

in the second section. Thus, a description of a whole-class teaching experiment is 

provided, including details of the related components. The third section provides an 

overview of the theoretical framework used specifically for this study. The fifth and final 

section is a summary of Chapter 2. 

Research on Students’ Conceptions of Probability and Simulations 

The following is a review of research literature that summarizes what is known 

about probabilistic thinking and simulation. It will focus primarily on high school and 

college level students with some reference to middle school students. In general, research 

indicates that regardless of age, probability is difficult to learn and understand. The 
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reviews also reveal that in spite of the conceptual connections between simulation and 

probability, little research was found investigating how students reason about simulation. 

Students’ Probability Reasoning 

In the past 20 years, many researchers have investigated how students reason 

when given a probabilistic situation or problem. Many of the researchers have concluded 

that both children and adults exhibit difficulty reasoning probabilistically (Fischbein et 

al., 1991; Garfield & Ahlgren, 1988; Hawkins & Kapadia, 1984), and that the factors that 

affect probabilistic reasoning are varied. In a paper that focused on difficulties both 

college and secondary students had in understanding probability, Garfield and Ahlgren 

(1988) reported that college students tend to rely on memorized procedural skills rather 

than on making sense of the problems. At the secondary level, it was students’ lack of 

reasoning of both proportions and rational numbers that contributed to difficulties in 

probability reasoning. Part of the struggle students had with probability was attributed to 

the conflict that they may have encountered when asked to make sense of problems that 

run counter to their own personal experiences. In other words, Garfield and Ahlren’s 

findings suggest that if students are unable to translate the problem, they will likely have 

problems applying probabilistic concepts. 

In his survey of 3,000 students, Green’s (1983) findings were consistent with 

Garfield and Ahlgren in that he reported that an understanding of ratios and proportional 

reasoning were key factors influencing students’ ability to understand probability 

concepts. At the same time, Green concluded that students had problems related to 

linguistics. In particular, students had difficulty in distinguishing between events being 

“certain” versus “probable” as well as events of “low probability” versus those that are 
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“impossible.” What Green determined as a linguistic hurdle seems to support Garfield 

and Ahlgren’s (1988) conclusion that students have trouble translating problems. 

However, what appears to be an issue related to vocabulary may actually have more to do 

with heuristics students use to reason probabilistically. More about heuristics will be 

discussed in the next section. Finally, Green determined that student maturation and 

intellectual ability had a positive effect on probabilistic reasoning, with the exception of 

randomness where no improvement related to age was evident. Green’s study is 

noteworthy because of the vast number of students he was able to survey; however, the 

data lacks any insight into how students reason nor does he verify that correct answers in 

fact imply appropriate reasoning. 

In a study of randomness, Batanero and Serrano (1999) examined high school 

students’ concept of randomness before and after instruction. Some students were able to 

construct valid arguments about randomness using concepts related to the regularity of 

patterns, frequencies of possible results, and the existence or absence of runs. However, 

other students used these same concepts inappropriately when attempting to determine 

randomness. For example, when examining the outcomes of tossing a coin, some students 

argued that the outcome was not random because it contained too many heads or that it 

contained a long run of heads. Some of these students also tended to rely heavily on 

unpredictability by focusing on such features as luck rather than using quantitative 

reasoning. This pattern was more prevalent in older students. Additionally, students did 

not seem to have an intuitive understanding of runs and clusters. Depending on the length 

of the sequence of outcomes, runs of no more than three or four were expected and longer 

runs were considered a counterexample of randomness. As noted by Batanero and 
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Serrano, students’ unwillingness to accept long runs or clusters may be related to the 

difficulty they have in understanding the concept of independence. Moreover, the 

inappropriate use of these ideas by students proved resistant to instruction. Confirming 

Green’s findings, Batanero and Serrano determined that age was likely to have little 

influence on students’ concepts of randomness. In other words, with respect to ability to 

consider randomness, the researchers found no significant difference between 14-year old 

students who had no probability instruction and 17-year old students who had received 

formal probability instruction. 

In summary, many students find probabilistic reasoning challenging for a variety 

of reasons. Research findings indicated that these reasons were related to maturation, 

proportional reasoning, concepts of randomness, as well as difficulty in making sense of 

the problems. These studies helped to provide content-specific background for this study 

that involved instruction in probability simulation.  

Students’ Beliefs About Probability 

A review of the probability literature on students’ beliefs revealed that researchers 

used varying terms when referring to the dispositions subjects brought to studies on 

probability. The most common terms used were intuition and beliefs. In order to cast as 

wide a net as possible in relation to students’ beliefs, Schoenfeld’s (1985) 

characterization of beliefs was used. He views beliefs as a lens through which an 

individual sees and approaches mathematics. When analyzed according to Schoenfeld’s 

characterization, the literature reveals that beliefs play a major role in students’ reasoning 

about probability (Fischbein & Gazit, 1984; Fischbein et al., 1991; Fischbein & 

Schnarch, 1997; Garfield & Ahlgren, 1988; Piaget & Inhelder, 1975; Shaughnessy, 
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1992). That is, students’ conceptions of probability often involve the use of intuitions, 

misconceptions, and judgmental biases that are grounded in beliefs (Konold, 1991a; 

Konold et al, 1993; Tversky & Kahneman, 1973, 1974). Judgmental heuristics provide a 

framework for interpreting students’ probability reasoning, and as researchers have 

continued to investigate this cognitive area, it has become evident that a dualism exists 

between misconceptions and heuristics. Below is a description of common heuristics 

along with what is currently known about how people reason in a probabilistic situation 

using each cognitive process. 

People who apply the representativeness heuristic are making judgments 

according to how well an outcome represents some characteristic of a parent population 

(Kahneman & Tversky, 1972). For example, given a fair coin, a person using 

representativeness would choose an outcome of HHTHTT to be more likely to occur than 

an outcome of HHHHTT since the first example illustrates a more even distribution of 

heads and tails. This response is compelling for students using representativeness even 

though the two outcomes both have probabilities of 1/64. Representativeness is also used 

to explain the negative recency effect (“gambler’s fallacy”) and the positive recency 

effect (Cohen as cited in Shaughnessy, 1992). Negative recency occurs when a person 

predicts the next playing card to be red because the last five cards have been black. Using 

the same example, a person who predicts the next card to be black would have reasoned 

using a positive recency effect. It appears that in a binomial experiment, subjects seem to 

expect the outcomes to represent a 50-50 distribution. Until more information is available 

about the distribution of outcomes, subjects seem to adopt a positive or negative recency 

heuristic. Even when limited information is available about the distribution of a sample, 
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subjects will frequently rely too heavily on this data to make predictions about the entire 

population. Representativeness is also related to sample size in another way, such as 

when the size of the sample is not considered in situations of chance (Shaughnessy, 

1992). Consider a population of balls that are 50% black and 50% white. Some people 

believe that the chance of getting at least 7 black balls in 10 draws is the same chance as 

getting at least 70 blacks in 100 draws (Schrage, 1983). They seem unaware that more 

extreme events are likely to occur in smaller sample sizes than in larger ones. 

The availability heuristic is the determination of the likelihood of an event based 

on an easily recalled event or process. For example, if asked if it is more likely to die in a 

plane crash or a car crash, some people may argue that one is more likely to die in a plane 

crash because of the media coverage given to plane crashes versus car wrecks. In another 

study (Kahneman & Tversky as cited in Shaughnessy, 1977), subjects were asked if the 

letter R was more likely to appear in the first position of a word or in the third position. 

Even though R is more likely to appear in the third position, most subjects responded that 

it was more likely to appear in the first position. It appears that subjects were able to 

recall words beginning with R more easily than words with R as the third letter. 

Availability is a heuristic that is often used when a person is unable to use a normative 

method (Shaughnessy, 1992), and therefore, personal biases or easily recalled examples 

are relied upon. To illustrate, when a person is asked if it is possible to make more 

committees of 2 from a group of 10 or more committees of 8 from a group of 10, most 

people will answer that more groups of 2 are possible (Shaughnessy, 1977). It appears 

easier for people to form groups of 2 than groups of 8. According to Shaughnessy, 
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“Availability is a heuristic which affects or reflects our own perception of relative 

frequency” (p. 472). 

The final heuristic is that of the conjunction fallacy. Many people, both 

statistically naïve and trained, will claim that some types of conjunctive events are more 

likely to happen than the parent event. For example, Tversky and Kahneman (1973) 

reported that college subjects considered the event that a person was 55 and had a heart 

attack to be more likely than the event that a person had a heart attack, regardless of age. 

One possible explanation for this phenomenon may be that the person was using a 

representativeness or availability heuristic (Tversky and Kahneman, 1973). In other 

words, people naturally connect the attributes of age with heart attacks and, therefore, 

consider the conjunctive event more likely. Shaughnessy (1992) suggested that subjects 

were in fact confusing conjunction and conditional probabilities. That is, in interpreting 

the problem, subjects were considering the event that a person has a heart attack given the 

person is 55. Tversky and Kahneman discount this notion since a more explicit version of 

the conditional problem yielded an even higher percentage of subjects demonstrating 

reasoning based on the conjunction fallacy. Shaughnessy retorts that there is not enough 

evidence to support Tversky and Kahneman’s conclusion. 

People who reason using the outcome approach (Konold et al., 1993) hold the 

belief that they are being asked to predict the outcome of a single event even when they 

are being asked to find the probability based on the distribution of occurrences. Konold et 

al. (1993) conducted a study to explore how participants reason in this non-normative 

way. Many participants correctly identified four sequences of coin tosses to be equally 

likely when asked which was most likely to occur. However, when asked which of the 
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four sequences was least likely, only 38% of the respondents answered that all four 

sequences were equally unlikely. When subjects were probed about their reasoning in 

both situations, Konold et al. characterized their thinking as indicative of the outcome 

approach. The researchers reported that when being asked about the most likely outcome, 

some subjects responded as if they were asked to predict what would happen rather than 

determining the probability of an outcome. According to Konold et al., participants used 

an outcome approach for the first problem and the representativeness heuristic for the 

second problem. The source of inconsistencies seemed to stem from the use of multiple 

frameworks. Depending on certain maxims, a person may reason within a normative 

framework, an informal judgment framework relying on heuristics, or an outcome 

approach. This contradicts Kahneman and Tversky’s (1972) findings that subjects used a 

representativeness heuristic.  

The above heuristics provide valuable tools that help understand and explain 

common misconceptions or intuitions students have in developing and applying 

probabilistic reasoning. They can also prove to be beneficial when developing a 

framework to assess student understanding of probability. As an example of how 

heuristics have been used to study probabilistic reasoning, Fischbein and Schnarch (1997) 

discovered that contrary to their research hypothesis, intuitions of students ranging from 

10 years old through college age did not necessarily stabilize with instruction. The effect 

of the negative recency decreased with age, and yet the conjunction fallacy remained 

strong through grade 9 and then decreased in older students. By way of contrast, the 

misconception manifested in the availability heuristic proved to gain strength over time. 

Fischbein and Schnarch revealed that a mixture of problem content, cognitive 
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conceptions, and intuition influenced the complexity of the students’ reasoning. It should 

be noted that the representativeness and availability heuristics could also prove to be 

useful tools in probabilistic reasoning. Shaughnessy (1992) suggests that availability can 

prove to be a useful way to organize information used in making decisions. Further, 

Borovcnik (as cited in Shaughnessy, 1992) recognizes that the concept of 

representativeness is fundamental to statistics in that statisticians look to make 

generalizations about a population from a random sample. Shaughnessy recommends that 

is our obligation to help our students discriminate between situations when heuristics 

could be helpful versus situations when they could be detrimental to our reasoning. 

Like Fischbein and Schnarch (1987), other researchers found that the multifaceted 

nature of students’ beliefs seems to complicate the effect instruction has on students’ 

reasoning and beliefs. In a study of college students enrolled in an introductory 

probability course, delMas and Bart (1989) attempted to use instruction to change student 

misconceptions. The researchers’ findings indicated that students possess schemas that 

they bring into class with them, and these schemas may or may not be accurate. These 

schemas act as a filter when processing information. If the information fits the schema 

then it may work to reinforce the process model. Otherwise, if the information is counter 

to existing schemas, the student may very well ignore it. 

Some of the research that examined students’ beliefs about probability focused on 

the effect of instruction. Because instruction was germane to this study, following is a 

review of some of those studies. In an earlier study, Fischbein and Gazit (1984) explored 

the effects of instruction on the probability conceptions of students in Grades 5, 6, and 7. 

It was the hypothesis of these researchers that instruction could be used to alter and 
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develop new intuitive attitudes through participatory activities involving probability 

concepts. Student understanding did appear to increase with age, however, many of the 

concepts proved to be too difficult for the fifth-grade students. It was also found that 

instruction where students were involved in practical activities had the effect of 

improving some of the students’ intuitive misconceptions. However, no assessment was 

conducted prior to instruction and results were based on comparison of the control and 

experimental groups.  

Using a cognitive framework they developed, Tarr and Jones (1997) designed for 

middle school students an instructional probability program with particular focus on 

conditional probability and independence. Students made significant gains on 

preassessment scores indicating an improvement in probability reasoning. In particular, 

growth in conditional probability and independence was found. The researchers argue 

that the topics of conditional probability and independence are accessible to middle 

school students and as such should be part of the curriculum. What is surprising is that it 

was reported that many students who were assessed at the highest thinking levels in 

relation to probabilistic thinking used informal methods to correctly determine the 

probability of events in non-replacement situations. 

Fast (1999) suggested that the use of analogies to teach probability could 

influence conceptual change. In his study, students completed version A of a probability-

testing instrument and then immediately proceeded to version B. Version B was designed 

using analogies meant to elicit correct responses along with appropriate justifications. For 

example, in version A, students were asked which birth order, if either, was more likely 

to occur, that of BGGBG or BBBBB. In version B, students were provided the contextual 
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situation of a 4-digit lottery and asked to compare the chances that a ticket with number 

2222 would win with the chances that a ticket with number 2332 would win. In the 

interview stage, students who incorrectly answered a problem on version A but correctly 

answered the analogous situation in version B were provided the opportunity to correct 

their work in version A. Fast concluded that the analogy probe worked to build 

conceptual knowledge, and students were often able to realize and correct their original 

mistakes. However, most students did so only with probing questions and guidance by 

the researcher. The results tend to underscore the importance of the role of the teacher in 

helping students reflect on common misconceptions. Fast also reports that 

misconceptions demonstrated by the students were in fact true misconceptions and not 

errors in readability or understanding the problem as other researchers have implied 

(Fischbein et al., 1991; Green, 1983; Munisamy & Doraisamy, 1998). Certainly the idea 

of using analogies to aid students in correcting misconceptions seems to have merit, but 

with the caveat that further research seems desirable in order to examine the retention 

level that results from using this method. 

In summary, many factors affect how students reason probabilistically. Research 

indicates that students with a weak understanding of proportions are unlikely to reason 

appropriately. Numerous studies also reveal that individual beliefs and judgment 

heuristics have a substantial impact on how students reason probabilistically. Finally, 

although instruction appears to have limited affect on students’ reasoning and beliefs, 

maturation seems to improve some concepts but has limited influence on the concept of 

randomness. 
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Simulations and Modeling 

Simulation and mathematical modeling are inherently integrated. Simulation can 

be viewed as a specific type of mathematical model. Just as a mathematical model 

requires an understanding of the underlying mathematical principles and how these 

principles fit together to help explain some phenomenon, probability simulation also 

requires a similar understanding. As described in Chapter 1, a probability simulation 

process is composed of 5 steps that not only require an understanding of probability and 

randomness but also involve knowledge of how these steps are linked. Thus, in order to 

construct a probability simulation, a student must be able to construct the simulation 

model for the given problem. Because students must be able to build an appropriate 

mathematical model, their ability or inability to do so may help to explain how they 

reason about probability simulation. Therefore, the research literature on both simulation 

and modeling are relevant to this study. 

Biehler (1991) recognized that computer generated simulations could serve as 

both problem-solving tools as well as the means to explore the concept of empirical 

probability. In a more general sense, Biehler (1993) viewed statistical software as an 

integral part of statistical practice. Statistical software as part of the curriculum can be a 

double-edged sword. On one hand, these technological tools may actually hamper the 

statistical knowledge a student learns and is able to apply. “Every statistical software tool 

introduces its own partly idiosyncratic language, concepts and objects which have to be 

learned before the tools can be reasonably used” (p. 79). In learning to use a software 

tool, students may get so caught up in using the software that they do not or cannot make 

sense of the underlying statistical concepts. On the other hand, Biehler views statistical 
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software tools as a way to provide students with the ability to extend their statistical 

knowledge. Statistical software provides students with opportunities to extend and 

explore because of inherent features of the software, such as graphical displays and 

iterative and interactive ways of analyzing data. Students do not have to be constrained 

by one solution process and thus can build a conceptual understanding of statistics. More 

specifically, statistical software can serve as a useful tool for studying probability 

simulations. Statistical tools have the ability to generate random numbers and thus lend 

themselves to the design and implementation of random experiments (Biehler, 1993). To 

understand the “lawlike behavior underlying chance variation” (p. 96) in probability 

simulations, students must be able to analyze long run behaviors of random experiments. 

Borovcnik and Peard (1996) admitted that simulation could be used to find a 

solution to a problem. However, they questioned the value of simulation in helping to 

explain why simulation produces an acceptable answer. Furthermore, Borovcnik and 

Peard raised concerns about the use of computer-generated simulations compared with 

simulations that use actual manipulatives. Their apprehension was related to the manner 

in which students might perceive the “pseudo-randomness” of computers. To circumvent 

any possible misconceptions on the part of the students, Borovcnik and Peard suggested 

that initially teachers should use manipulatives to present the concept of simulation and 

then compare simulated results with manipulatives to simulated results using technology. 

Thus, the manipulatives help the students to build cognitive models that, in turn, assist 

students in building more abstract representations. The use of manipulatives could help 

students make connections between the randomness inherent in such devices as dice, 

cards, colored balls, and the more abstract understanding of simulation and randomness 
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built into technology, for example the graphing calculator. Manipulatives may also be 

necessary to help students make sense of a probability simulation for a contextual 

problem. First they must think about the components of the problem. Specifically, they 

need to choose an appropriate probability generator, and then visualize the sample space 

of the contextual problem in order to determine what a valid trial looks like. In this 

process, students are going beyond applying mathematical skills to solve the problem. 

Rather, they are beginning to abstract the processes required to reach a solution. 

 In a study in which 13 and 17 year old students used a simulation program to 

study conditional probability, Wilder (1994) reported the complexity of using a computer 

model. At the same time, Wilder concluded that the students’ ability to make sense of the 

problems was the impetus to their understanding rather than the simulation itself. Early in 

the experiment, the students needed to model the simulation with actual cards before 

simulating the problem on the computer. After completing various simulations using both 

actual manipulatives and a computer-generated simulation, some students seemed to 

reach a point where they were so convinced of the accuracy of their computer model of 

the problem that they felt an actual simulation with manipulatives was unnecessary. In 

essence, they had built a more abstract understanding of the simulation problem. As a 

result, Wilder suggested that the process of modeling might prove beneficial to student 

understanding of probability. Moreover, he felt that the steps students needed to think 

through in order to actually collect data to determine the probability of a problem would 

help them make generalizations about probability concepts. Wilder’s findings support 

Borovcnik and Peard’s (1996) recommendations that simulations could be useful in 
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helping students develop more abstract models and that manipulatives should be used 

prior to computer simulations. 

 The use of probability simulations was reported to increase the level of 

understanding of experimental probability in a group of sixth-grade students. In 

particular, Aspinwall and Tarr (2001) examined the effect an instructional program had 

on students’ understanding of sample size in probabilistic situations. Researchers found 

that after an instructional program involving probability simulation using manipulatives, 

most students developed a higher level of conceptual understanding of the law of large 

numbers. More specifically, students were able to recognize the relationship between the 

number of trials and the probability of an event. However, Aspinwall and Tarr also 

reported that the results of individual simulations served to reinforce the misconceptions 

of some students. The researchers concluded that the use of instruction and probability 

simulation could be used to challenge students’ thinking of experimental probability in 

order to develop conceptual understanding of the role of sample size. 

In a research study investigating students’ reasoning with respect to probability 

modeling (Benson, 2000; Benson & Jones, 1999), the researchers found that 6 of the 7 

students interviewed (ranging from Grade 2 through college) were able to use an 

appropriate probability generator in a simulation activity. In fact, most of the students 

used a 1-1 correspondence to explain their choice of probability generators. That is, 

students were able to match the corresponding outcomes and their probabilities on the 

probability generator with those in the contextual problem. However, only 3 of the 7 

students in their study were able to construct a valid model for a contextual problem 

involving two-dimensional probability. Two of the students who could construct a valid 



 38

model were college-age and the third was in grade 12. Benson and Jones concluded that 

students’ ability to construct two-dimensional models seemed to be closely related to 

their knowledge of two-dimensional theoretical probability. Note that while modeling the 

contextual problem is an important process in simulation, it is only the first step. In other 

words, students must be able to model the problem before they are able to proceed 

through the simulation process.  

 Supporting the findings of Benson and Jones (1999), Zimmermann and Jones 

(2002) found that, in their study on probability simulation involving 9 high school 

students, the concept of dimensionality again proved difficult for most students. For 

example, when asked to design a simulation to determine the probability of hearing hip-

hip songs both times a radio was turned on, most students were unable to recognize that a 

trial consisted of an ordered pair (a two-dimensional trial). Specifically, the trial in this 

problem comprised the type of song heard at each of two times the radio was turned on. 

Students’ inability to understand the concept of dimensionality also prevented most of 

them from recognizing that the suggested trial in another simulation was one-dimensional 

when it should have been two-dimensional. However, like Benson and Jones (1999), 

Zimmermann and Jones found that most students were able to construct a valid 

probability generator, that is, a random device that produced the specified probability 

distribution in the given problem.  

Although little research was available that examined students’ reasoning about 

probability simulation, even less was found that addressed beliefs students held related to 

simulation. Zimmermann and Jones (2002) determined that students bring with them 

beliefs about simulations that can be both helpful and problematic to instruction. One 
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such helpful belief held by more than half the students in this study, was the belief that 

the problem contained unspecified assumptions. To some degree, all students held the 

belief that the probability generator should correspond to the probabilities stated in the 

problem context. More specifically, two-thirds of the students either explicitly or tacitly 

believed the stated probabilities in the problem should be matched to the probability 

generator. Six of the 9 students exhibited the helpful belief that the empirical probability 

will approach the theoretical probability as the number of trials increase. With respect to 

problematic beliefs, 5 of the 9 students, albeit with varying degrees, expressed the belief 

that a simulation could not or should not be used to model a real world problem. The 

researchers also found evidence of representativeness (Kahneman & Tversky, 1972) by 

students as they reasoned through the Pizza problem. Four of the students believed the 

outcomes of the simulation should always approximate the given probabilities; that is, 

that the outcomes of the sample should reflect the given probabilities of the population. 

Finally, 2 students held the problematic belief that the simulation was flawed unless the 

target outcome in the problem appeared in the first trial. In essence, they seemed to 

ignore the possibility that the other outcomes in the sample space might occur. Both the 

helpful and problematic beliefs found by Zimmermann and Jones proved to be beneficial 

in providing a framework for assessing student beliefs throughout a whole-class teaching 

experiment. 

 Students’ ability to construct models of problems is likely to factor into their 

ability to construct appropriate simulations. Yet only recently have research studies 

examined students’ thinking in relation to mathematical modeling. According to Lesh et 

al. (1997), model-eliciting activities require that students mathematically interpret 
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situations and problems. In the process of constructing models, students develop a 

multitude of unanticipated and effective mathematical models to solve problem (Lesh et 

al., 1997; Lesh & Clarke, 2000; Lesh & Lehrer, 2000). Biehler (1994) argues that in 

random experiments, such as probability simulations, what is the focus of interest is the 

probability generator. Through the process of constructing or modeling the probability 

generator, information is gained about the distribution of the population. Construction of 

models tends to begin at an intuitive level and graduates to more sophisticated reasoning 

which in turn enables the students to produce a more generalizable model.  

Technology 

Probability simulation can help students to connect empirical and theoretical 

probabilities providing students have an opportunity to examine the long run behavior of 

a simulation (Watkins et al., 1997). However, time constraints in generating sufficient 

trials during a classroom session have generally limited students’ ability to actually 

examine long runs. Now with the advent of technology, teachers possess the means to 

overcome this hurdle. Additionally, the use of technology is supported and encouraged by 

mathematics education groups. Both NCTM (2000) and the College Board (Watkins et 

al., 1997) have published expectations that students should have regular access to both 

computers and calculators with statistical computation and graphics capabilities. 

The College Board (Watkins et al., 1997) recognizes the role of technology both 

in today’s mathematics curriculum as well as outside academia. As a result, teachers of 

statistics can choose to focus on either or both of the following uses of technology: using 

it as a tool or using it conceptually. On the one hand, they can choose to instruct students 

on the statistical computing tools used by the professional community. On the other hand, 
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teachers can utilize technology to facilitate conceptual understanding of statistical ideas. 

This research study will concentrate on the use of technology to help students develop a 

conceptual framework to reason statistically. 

Not withstanding the caveats of Borovcnik and Peard (1996), technology offers 

advantages (Watkins et al., 1997) over the use of manipulatives. Some of these 

advantages include the ability to store large data sets that can then be manipulated and 

explored in order to help build a conceptual understanding. Furthermore, technology 

provides the advantage of speed coupled with the ability to visualize simulations. All of 

these advantages taken together help students to better understand the long run behavior 

of sampling distributions (Watkins et al., 1997), and at the same time provide the means 

by which to represent data graphically. Biehler (1991) and Konold (1991b) both support 

the use of technology in this way because they believe it enables students to construct 

models to simulate random experiments and, thus, develop an understanding of 

simulation. Technology provides students with a manner in which to conduct simulations, 

especially when the use of physical manipulatives can be limiting. Some of these 

limitations include the time and perseverance required for a large number of trials, the 

methods used by students to conduct these simulations, and the true “fairness” of 

manipulatives (Jiang & Potter, 1994). 

The use of technology in the classroom goes beyond that of manipulating and 

analyzing data. Statistical software can act as a pedagogical tool that helps students to 

“bridge mathematics and ‘real’ life by opening access to modeling of concrete situations 

and real data” (Balacheff & Kaput, 1996, p. 478). Ben-Zvi (2000) suggests that such tools 

support learning and teaching by providing students with opportunities to actively 
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construct knowledge, reflect on “observed phenomena,” and develop their own 

metacognitive processes. Because of the technology that is currently available, teachers 

have the opportunity to de-emphasize tedious computations in favor of greater “emphasis 

on statistical reasoning and the ability to interpret, evaluate, and flexibly apply statistical 

ideas” (Ben-Zvi, 2000, p. 130). 

Dörfler (1993) views technology as a means for human cognitive activity. That is, 

technology can become a tool for the cognitive development of students’ reasoning and 

understanding of mathematical concepts. For example, student use of technology lends 

itself to what Ruthven (1996) terms “proximation strategies.” By proximation strategies, 

Ruthven means that when a student is unable to directly solve a problem, she may 

explore different strategies in search of a solution. Technology provides the student with 

more options and strategies for solving problems that can lead to mathematical 

understanding. 

The above research is a clear indication of support for using technology in 

mathematics, and in particular, statistics. The use of technology in statistics can become a 

resource that helps students develop statistical reasoning beyond that of rote application 

of formulas and procedures. Technology by itself will not give students immediate access 

to the solution of a problem. Instead, the power of technology, such as its speed, 

efficiency, and ability to do tedious manipulations, is what allows students the freedom to 

concentrate on the conceptual components of a simulation. It is the reasoning students do 

about the structure of a simulation that enables them to make generalizations and 

abstractions about simulations and probability. 
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Teaching Experiments 

 The research methodology used for this study was a whole-class teaching 

experiment. A detailed description of the theoretical components of the teaching 

experiment follows, as well as how the teaching experiment provides the theoretical 

framework for this study in particular. 

Theory of Teaching Experiments 

  As described in Chapter 1, a whole-class teaching experiment is a conceptual tool 

for recording and analyzing how student understanding develops for a specific content 

domain (English et al., 2002), such as probability simulation. Through the use of whole-

class teaching experiments, researchers are able to capture a detailed picture of how 

student understanding develops through the interaction of teacher and students. In a 

whole-class teaching experiment, the researcher develops instructional lessons and 

activities including conjectures of how students may react to these lessons. By analyzing 

student thinking, the researcher then makes refinements and changes to the conjectured 

learning process in order to promote student understanding of the targeted content 

domain. It is through the analysis of student thinking that a working theory of the 

development of student thinking emerges. 

 Whole-Class teaching experiments go beyond providing a tool to describe student 

thinking as it develops. According to Cobb (2000) teaching experiments act as a 

mechanism for capturing how group interaction affects the mathematical development of 

students. This interaction can take place at the level of teacher and student or at the level 

of student and student. The examination of the social interaction that takes place within 
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the classroom as revealed by the teaching experiment (Cobb, 2000) can provide valuable 

information for classroom teachers. 

 The Developmental Research Cycle (Figure 2) is the two-phased process that 

Cobb (2000) uses to direct the whole-class teaching experiment. The Developmental 

Research Cycle consists of the instructional development and classroom-based analysis 

phases. The instructional development phase comprises the sequence of instructional 

lessons and activities that are based on an instructional theory, and the classroom-based 

analysis phase is where student thinking and reactions are analyzed using an 

interpretative framework. Following is a detailed description of both phases of the 

Development Research Cycle. 

Instructional Development

A whole-class teaching experiment begins with the instructional development 

phase (Figure 3). The initial step is the development of a hypothetical learning trajectory 

(Simon, 1995) that consists of three components: (a) the development of learning goals, 

(b) a plan of instructional lessons and activities, and (c) a conjecture or hypothesis of the 

learning process. According to Cobb (2000), the initial hypotheses are based on a 

domain-specific theory. This domain-specific theory is the instructional theory that the 

researcher uses to help with the planning and implementation of the whole-class teaching 

experiment.  

The domain-specific theory that Cobb (2000) relied upon and is reflected in his 

emergent perspective was that of the Realistic Mathematics Education (RME) theory. As 

described in Chapter 1, Cobb’s emergent perspective perceives both the social structure 

of the classroom and individual cognitions as equally critical in students’ mathematical 
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development. RME relies upon the principles that students learn mathematics in a 

constructivist manner and development of mathematical understanding is a result of a 

student’s ability to reflect on mathematical problems in a realistic or meaningful way. 

RME theory assumes teacher awareness of student mathematical knowledge and ways of 

thinking from which a sequence of learning activities are developed. Cognitively guided 

instructional theory was the domain-specific theory utilized in this study, and is described 

in more detail toward the end of this section. 

Classroom-Based Analysis  

In this phase of the Developmental Researcher Cycle (Figure 2), Cobb (2000) 

requires an interpretive framework that is essential for analyzing and implementing a 

teaching experiment. The interpretive framework that defines the constructs Cobb uses in 

his emergent perspective for examining both student reasoning and interactions within 

the classroom fall within two perspectives; the social perspective and the psychological 

perspective. The three components of the social perspective include: (a) classroom social 

norms, (b) socio-mathematical norms, and (c) classroom mathematical practices. 

The classroom social norms define a structure that is used to define and analyze 

the classroom interactions (Cobb, 2000). As described in Chapter 1, these interactions 

can be between students, whether in pairs, groups, or during whole-class discussions. 

These interactions also include communications between students and teacher. In a 

research study involving first-grade mathematics students, Cobb described the 

participation structure that developed when the teacher indicated her desire for students to 

share their thinking. The unfamiliar nature of this expectation caused a renegotiation of 

classroom social norms between the students and teacher. Thus, both students and teacher 
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created a participation structure on which classroom discussions would evolve. The 

classroom social norms that evolved included what was expected in justifying a solution 

as well as how to disagree with another student’s solution in an acceptable manner. 

 Whereas classroom social norms are more general in nature and applicable to any 

classroom environment, socio-mathematical norms are specific to students’ mathematical 

activities and provide the means to examine the participation structure as related to 

mathematical discourse (Cobb, 2000). Examples of socio-mathematical norms include 

what students negotiate to be a mathematical solution, an “elegant” or sophisticated 

mathematical solution, and an alternative mathematical solution. Cobb explains that when 

a teacher asks for a different solution, students in turn must determine or renegotiate what 

constitutes a different solution. When the class accepts the renegotiated meaning of a 

different solution, this taken-as-shared meaning has become a socio-mathematical norm. 

Cobb views both the classroom social norms and the socio-mathematical norms as being 

critical to a teaching experiment. Together these norms inform the level to which students 

have achieved intellectual autonomy during classroom instruction. 

 The third component of the social perspective is the classroom mathematical 

practices. Classroom mathematical practices relate to solution strategies invented by 

individual students that then become taken-as-shared by the rest of the class. Classroom 

mathematical practices are ways of reasoning upon which students agree. For instance, 

consider the case of a student doing whole number addition. A student may choose to 

solve the problem 26 + 18 by rewriting the problem as 20 + 10 and 6 + 8 and then add the 

results. The classroom social norms and socio-mathematical norms require that a student 

provide a reasonable explanation of her solution. At some point, this strategy would 



 47

become taken-as-shared by the class, and thus becomes a classroom mathematical 

practice because explanation is no longer needed. 

 Cobb’s (2000) psychological perspective recognizes the contributions of the 

individual student to her own learning. These individual contributions include beliefs 

about the nature of a mathematical activity, the role of the individual and others in the 

activity, the individual’s beliefs and values about mathematics, and mathematical 

conceptions. According to Cobb’s (2000) emergent perspective, it is the role of the 

researcher to analyze how the social and psychological perspectives interconnect. In other 

words, it is the researcher’s responsibility to examine how the social structure of the 

classroom and the individual students interact in order to develop a working theory of 

how students’ reasoning of a mathematical concept evolves. 

Cognitively Guided Instructional Theory

As stated earlier, the initial conjectures that are part of the instructional 

development phase of the developmental research cycle are guided by an instructional 

theory (Cobb, 2000). The instructional theory used for this study was informed by 

cognitively guided instructional theory (CGI) (Carpenter & Fennema, 1988). CGI is a 

theory that integrates what is known about students’ cognitive processes with pedagogy. 

In other words, a basic tenet of CGI is that a teacher makes instructional decisions based 

on what is known about the student’s thinking. In their study, Carpenter, Fennema, 

Peterson, Chiang and Loef (1989) implemented CGI by first informing teachers of 

current research on student reasoning of whole number arithmetic. Teachers were then 

supported to use this information and their own assessment of student knowledge and 

ability to inform their instruction. Carpenter et al. found that teachers who put into 
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practice a CGI strategy were more likely to have focused on developing student 

knowledge through a problem-solving approach than were the control group. 

Additionally, the CGI teachers tended to promote the student use of multiple problem-

solving strategies. CGI emphasizes the process of student solutions rather than the 

solutions themselves in order to provide the teacher with an opportunity to assess student 

thinking and at the same time encourage a variety of problem-solving strategies so 

students may connect to their own knowledge and thus build on it. 

 The intent of this section was to provide an overview of the general theory that 

underlies the teaching experiment. At the same time, it provided an explanation of the 

crucial components of a teaching experiment. The next section provides a review of some 

research utilizing a whole-class teaching experiment methodology that is similar to this 

study. 

Research on Whole-Class Teaching Experiments 

Teaching experiments have become an important investigative tool into students’ 

reasoning. In particular, teaching experiments have been used to illustrate how students 

reason statistically and probabilistically in an instructional environment. Wares (2001) 

used a teaching experiment to examine how middle school students construct statistical 

mathematical models. Because of the structure of the teaching experiment, Wares was 

able to design and modify activities to help students extend their reasoning to construct 

mathematical models. It also provided the opportunity for teacher-researcher questioning 

of student reasoning in order to plan the hypothetical learning trajectory. Two 

sociomathematical norms appeared. One was that students should be able to defend and 

justify valid mathematical models. The other related to the idea of a valid comparison of 
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mathematical quantities. Classroom mathematical practices identified during the course 

of the teaching experiment included students’ use of proportional reasoning to defend 

their mathematical model, their use of graphs for comparison, and the comparison of 

mathematical quantities using the concept of rate. 

 Polaki (2000) used two versions of a teaching experiment to compare elementary 

students’ growth in probabilistic reasoning. He found that both versions of the teaching 

experiment had a profound impact on students’ reasoning. Further, the study generated 

mathematical practices. The mathematical practices that emerged from the teaching 

experiment included use of invented formal mathematical language, a systematic method 

for generating two-dimensional outcomes, and using the sample space to reason about 

probability problems. These mathematical practices were considered instrumental in 

building students’ conceptual understanding of probability. 

 A review of Wares and Polaki’s teaching experiments was beneficial because the 

studies provided a look at the procedures and processes that were utilized in order to 

examine the individual and collective reasoning that developed. In particular, these 

studies provided a picture of how sociomathematical norms and mathematical practices 

developed during the course of a teaching experiment. The next section focuses on the 

theoretical framework that drove this study. Similar to Wares’ and Polaki’s teaching 

experiments, this framework is an adaptation of the approach used by Cobb (2000). 

Theoretical Framework 

 This study followed the Development Research Cycle (Figure 2) as adapted from 

Cobb (1999). This cyclic process consisted of the instructional development phase and 

the classroom-based analysis phase. The instructional development phase was driven by 
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the hypothetical learning trajectory that was informed by an instructional theory. For this 

whole-class teaching experiment, the theory used was cognitively guided instructional 

theory (Carpenter & Fennema, 1988), which, as described previously, relies on research-

based knowledge to inform instruction. Research on simulation (Zimmermann & Jones, 

2002; Benson, 2000; Benson & Jones, 1999) and the use of technology for simulation 

purposes (Biehler, 1991; Konold, 1991b; Watkins et al., 1997) guided the instructional 

theory component, including the design and selection of tasks as well as the interpretation 

of student reasoning and beliefs. The instructional development phase was also 

predicated on the crucial role that both individual and collective cognition played in 

informing the hypothetical learning trajectories.  

 The intent of this study was to document changes in students’ reasoning and 

beliefs throughout the course of a teaching experiment. Moreover, an integral part of 

examining student cognitions is the social structure of the classroom environment (Cobb, 

2000). Cobb’s interpretive framework was used to analyze the interactions within the 

classroom as they evolved throughout the whole class teaching experiment. Thus, 

emphasis was placed on documenting and analyzing the emergence and evolution of 

classroom social norms, socio-mathematical norms, and classroom mathematical 

practices. Changes in students’ reasoning and beliefs about probability simulation were 

observed in order to encapsulate the psychological aspects of students’ individual 

thinking. 

Summary 

 A review of the literature reveals that probability is a difficult concept for all 

students. Further, studies suggest that a mixture of problem content, cognitions, and 
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beliefs contribute to how students’ reason probabilistically. Although many studies have 

examined student beliefs and reasoning about probability, little research has documented 

how students reason about probability simulation. The research that is available indicates 

that the two-dimensional nature of probability problems (Zimmermann & Jones, 2002; 

Benson, 2000; Benson & Jones, 1999) is a critical factor in students’ abilities to reason 

about probability simulation. Furthermore, researchers seem to believe that technology 

can play a crucial role in helping students to reason about probability simulation. This 

study sought to address the void in the literature by examining the reasoning and beliefs 

of high school students about probability simulation, as well as the impact technology 

had on students’ conceptual development of simulation. Additionally, this study 

examined the emergence and evolution of societal factors in the classroom that 

contributed to this learning environment. 
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CHAPTER III 

THE METHODOLOGY 

This study utilized a whole class teaching experiment methodology (Cobb, 2000) 

to examine the emergence and evolution of students’ reasoning and beliefs about 

probability simulation. The teaching experiment methodology also provided the 

framework by which to examine and document the social environment of the classroom 

as it contributed to student cognitions. In particular this chapter describes the processes 

and procedures used to respond to the research questions on students’ individual and 

collective cognitions about probability simulation. It includes specifics about the student 

sample, the instructional program, procedures of the whole-class teaching experiment, the 

data collection, and the methods of analysis. 

Participants 

The participants for this study were 23 students enrolled in an Advanced 

Placement Statistics (APS) class in a Midwest high school. The prerequisite to enroll in 

the class was a grade of  “C” or better in an Advanced Algebra course. Thus, the level of 

mathematical ability of the students varied from average to high-level ability. Three of 

the students were at the junior-level and were taking APS concurrently with an honors-

level precalculus course. The remaining 20 students were senior-level students having 3 

years of mathematics prior to their senior year. Six of the 20 seniors were concurrently 

enrolled in an Advanced Placement Calculus course and 1 senior was enrolled in honors 

precalculus. The content of a student’s previous course determined the level of 
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probability instruction he or she had prior to this class. Thus, the extent of probability 

instruction ranged from simple probability problems involving tree diagrams and basic 

counting principles to introductory instruction involving permutations and combinations 

to a unit of probability involving conditional probabilities. 

Four of the students were purposefully sampled (Miles & Huberman, 1994) in 

order to create a case-study analysis. The rationale of the case-study analysis was to 

provide a more in-depth view of student reasoning and beliefs as they evolved during the 

whole-class teaching experiment. Based on the results of a preassessment (discussed in 

more detail later), 1 student was selected from each of the upper and lower quartiles and 

2 students were selected from the middle quartiles in order to provide a range of student 

abilities. Students were also chosen based on their ability to communicate their reasoning 

and beliefs in an effective manner. 

As the teacher-researcher, I was also a participant in this whole-class teaching 

experiment. As the name implies, I was both the daily classroom teacher of the APS 

students and the researcher conducting the whole-class teaching experiment. I am a full-

time high school mathematics teacher with 7 years experience in the classroom.  

Finally, both a witness and an additional researcher were participants in this 

research study. The witness was present during the entirety of the whole-class teaching 

experiment. She is a former high school mathematics teacher with over 30 years 

experience, and her role was to act as another pair of eyes in the classroom. The witness 

recorded what transpired during the instructional lessons, as well as collaborated with me 

to develop and revise the hypothetical learning trajectories for the subsequent 

instructional sessions. She also coordinated the videotaping of the teaching experiment. 
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More specifically, the witness focused her attentions on the 4-student case study group 

and attempted to identify the emergence and evolution of classroom sociomathematical 

norms and mathematical practices. An additional researcher was brought in to conduct 

the student case-study interviews in order to protect against any bias students may have 

exhibited had their teacher or the witness interviewed them. 

Procedures 

 A number of key components accompanied the teaching experiment: a) 

assessments and interviews, b) classroom setting, and c) follow-up activities. 

Written pre-, post-, and retention assessments were given to all students. The 

case-study students participated in interviews following the pre- and post-assessments. 

Further, the interview sessions of the 4 case-study students were each audio and 

videotaped, and the additional researcher recorded field notes as well as collected student 

artifacts that were created during the interviewing process. 

For the whole-class teaching experiment students were assigned to groups of 3 to 

4 students based on student responses to the preassessment and teacher knowledge of the 

students. Each group was made as heterogeneous as possible according to their assessed 

knowledge of probability simulation. The whole-class teaching experiment consisted of 

twelve 55-minute period instructional days. Two video cameras and six audio recorders 

captured each instructional episode. 

 Debriefing/planning sessions were conducted after each instructional session 

where the teacher-researcher recorded impressions, recollections, and any other thoughts 

relevant to the whole-class teaching experiment. The purpose of these 

debriefing/planning sessions with the witness was to develop and refine the hypothetical 
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learning trajectories. Finally, student artifacts, such as selected homework assignments, 

were also collected. 

Instrumentation and Interviews 

 A combination of assessment instruments and interviews were used to capture and 

document changes in students’ reasoning and beliefs about probability simulation. 

Instrumentation 

All students participating in the study were administered pre-, post-, and retention 

assessments (see Appendix A) during the course of the study. The preassessment was 

administered approximately 2 weeks prior to the commencement of the whole-class 

teaching experiment. This timeframe enabled the researcher to analyze the 

preassessments and select the 4 case-study students. At the conclusion of the 12-day 

whole-class teaching experiment, students were given a post-assessment, and 

approximately 4 weeks after the post-assessment, a retention assessment was 

administered. The paper and pencil assessments were an adaptation of an assessment 

protocol used in a previous study by the teacher-researcher (Zimmermann & Jones, 

2002). The three assessments contained parallel, researcher-constructed items designed to 

assess students’ abilities to assess and construct valid probability simulations. The intent 

of the pre-assessment was to provide baseline data to compare with later assessments, and 

it also provided the means by which the 4 case-study students were selected. 

The focus of the assessment instruments was on two-dimensional contextual 

probability problems involving simulation. The contexts of the problems were chosen to 

be accessible to teenage students. All three of the assessment instruments were 

mathematically isomorphic; hence, in describing the assessments I will use the 
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preassessment instrument as the exemplar. The preassessment consisted of two tasks. In 

the first task, the Pizza Problem, a fictional student, Stan, designed a simulation to 

determine the probability that the next two phone orders were for pizza with meat. 

Students were asked to determine the validity of Stan’s simulation design. In the second 

part of the Pizza Problem, students were provided with Stan’s simulation results and were 

asked to determine the probability that the next two phone orders were for pizza with 

meat. The intent of the first part was to determine the extent to which students were able 

to assess the validity of a simulation design. The purpose of the second part of the Pizza 

Problem was twofold: a) to determine if students were able to recognize the 

inappropriateness of the outcomes as they were recorded, and b) to ascertain if the 

students could determine whether or not the recorded results allowed them to calculate 

the required empirical probability. It should be noted that the outcomes were recorded as 

single outcomes and not as pairs as was required to solve the two-dimensional pizza 

problem. This continuous string provided students with the opportunity to recognize the 

inappropriate manner of recording the outcomes yet allowed them to determine the 

empirical probability of the problem. 

In the second task, the Radio Problem, students were given a situation involving a 

school radio station with a specified airtime format for three different types of music: hip-

hop, alternative, and country. Students were asked to design a simulation to determine the 

probability that hip-hop was played at two specified times when the radio was turned on. 

The next part of the Radio Problem asked students to make up data that they thought their 

simulation would produce and then to use this data to determine the probability that hip-

hop was playing both times the radio was turned on. The goal of this second task was to 
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determine if students could construct a simulation that incorporated a valid probability 

generator, an appropriately defined trial, and a properly determined empirical probability. 

Finally, students were asked about the effect of increasing the number of trials on the 

empirical probability for the Radio Problem. Students were encouraged to provide as 

much detail as possible and thoroughly explain their responses. 

Interviews 

Both before the teaching experiment began and within a week after the post-

assessment was given, the additional researcher interviewed the 4 case-study students. 

Specifically, the students were questioned about their responses to each of the pre- and 

post assessments. This purpose of the interviews was to develop a more in depth picture 

of their reasoning and beliefs related to the assessment items. 

The clinical interviews (Romberg, 1992) were conducted in a small, quiet room 

within the school, with the student situated across a table from the researcher. Each 

interview lasted approximately 25 to 45 minutes depending on the student’s responses. In 

addition to paper and pencil, students were provided with probability generators: colored 

chips, dice, spinners, a random number table, and graphing calculator. During the 

interview, each student was provided with a copy of his or her assessment responses. 

Building from student responses, the researcher asked questions aimed at probing student 

thinking and beliefs related specifically to the assessment instrument and probability 

simulation in general. Each interview was audio and videotaped. 

Developmental Research Cycle 

Following the pre-assessment, the teacher-researcher conducted a 12-session 

whole-class teaching experiment. The Instructional Development was one phase of the 
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Developmental Research Cycle, and, as indicated in Figure 2, the research base on 

probability and simulations developed in Chapter 2 together with the Classroom-based 

Analysis helped drive the development and refinement of the hypothetical learning 

trajectories. 

Instructional Development Phase 

Prior to each of the 12 sessions, the teacher-researcher and witness collaborated to 

develop a hypothetical learning trajectory for the subsequent instructional session. The 

hypothetical learning trajectory consisted of learning goals, instructional activities, and 

conjectured learning processes. The teacher-researcher and witness started with the 

learning goals and then developed an instructional activity that would be used to 

introduce and develop the learning goals. Finally the teacher-researcher and witness used 

research-based knowledge of probability and simulation along with the classroom-based 

analysis to construct hypotheses about the learning processes. In other words, the teacher-

researcher and witness would write down anticipated responses and actions students 

might exhibit as they worked through the instructional activity.  

To better illustrate the development of the hypothetical learning trajectory, 

Session 1 of the whole-class teaching experiment will be used as an exemplar. Prior to 

instruction, the teacher-researcher and witness met after school to discuss the first 

session. To begin with, learning goals were determined. For session 1 (see Appendix B), 

the learning goals focused on the component parts of a simulation, including the ability to 

construct a valid probability generator, define a trial, use the probability generator to 

simulate the problem and analyze the results. Next the teacher-researcher and witness 

chose an activity titled “Counting Successes,” (Scheaffer, Gnanadesikan, Watkins & 
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Witmer, 1996). This activity was chosen because it met the learning goals as previously 

determined and the only prerequisite knowledge was a basic understanding of 

proportions. The activity, “Counting Successes,” was also chosen as it involved a simpler 

one-dimensional contextual situation rather than a more difficult two-dimensional 

problem. In the activity (see Appendix C1), students were given an article in which a 

scheme was suggested for eliminating the need for change when making purchases. The 

activity required the students to simulate the scheme given in the article. Students were 

familiar with using a random-number table, thus, it was utilized for this activity. Students 

worked through the activity in groups, and when groups had finished the problem, the 

teacher-researcher facilitated a whole-class discussion posing questions that encouraged 

students to share their strategies and reflect on the reasoning of other students. 

As a part of the hypothetical learning trajectory, the teacher-researcher and 

witness hypothesized about the learning processes that students would experience and 

conjectured about anticipated problems students may encounter. For this instructional 

activity, it was conjectured that students would not have any difficulty constructing a 

valid probability generator using the random-number table. However, it was expected 

that some students would solve the problem using theoretical probability or some would 

question the randomness of their results if the outcomes of the simulation did not seem to 

match the stated probabilities of the problem. 

The instructional development phase for subsequent sessions followed a similar 

pattern for developing the hypothetical learning trajectory. Table 1 shows a summary of 

the activities used by the teacher-researcher as well as the major concepts intended by the 
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activity. Appendix B contains the detailed hypothetical learning trajectories for each of 

the 12 sessions. 

 

Table 1 

Outline of Instructional Sessions for Whole-Class Teaching Experiment 

 
 Session Instructional Activity Concepts     
 
 1 Counting Successes 1D, Design Simulation 

2 True/False History Test MD, Design Simulation 
3 Free Throw Shooter and Blood Bank MD, Design Simulation 
4 Randomly-Generated Outcomes 1D, Randomness, Technology 

 
5 Designing Simulations on the TI-83 MD, CS, Technology 
6 Tree Diagrams MD, Theoretical Probability 
7 Venn Diagrams – Day 1 Theoretical Probability 
8 Venn Diagrams – Day 2 Conditional Probability 

 
9 A “False Positive” Aids Test Theoretical vs. Empirical 
10 What is Random Behavior? Representativeness 
11 What’s the Chance? Independence of Events 
12 Are these simulation designs valid? Validity of Simulation Design 

 
 
Note.  1D: One-Dimensional Sample Space 
 MD: Multiple-Dimensional Sample Space 

 

For this research study, the major learning goal for students was to develop a 

conceptual understanding of probability simulation that would enable them to recognize 

and construct valid probability simulations. The planned learning or instructional 

activities targeted two-dimensional probability simulations similar to the ones in the 

assessment. However, the activities began with one-dimensional situations in order to 

build student understanding more effectively. Figure 5 shows some of the tasks used 
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during instruction. For example, WCTE1 (whole-class teaching experiment – Session 1) 

refers to an activity involving a one-dimensional outcome. Sessions 4, 10, and 11 also 

required students to consider one-dimensional outcomes, whereas sessions 2, 3, and 5 

involve two-dimensional outcomes. Previous research-based knowledge, teacher 

knowledge of students, the pre-assessment instrument, as well as the APS curriculum also 

drove instruction. The conjectured learning process began with research-based 

knowledge of students’ reasoning and beliefs, the teacher’s prior knowledge of the 

students’ mathematical knowledge, student reasoning gained by the teacher-researcher 

from the preassessment, and elements of the APS curriculum. The conjectured learning 

process evolved as the teacher-researcher and witness refined the hypothetical learning 

trajectory following each session of the whole-class teaching experiment. 
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WCTE1 “Counting Successes” 
Students are given a newspaper article about 
eliminating the need for pennies. Using a 
random number table, students design a 
simulation to determine the “fairness” of the 
proposal. What is “fairness”? Is this proposal 
fair? Why or why not? 

WCTE2 “True/False History Test” 
There are five questions on the test. Design a 
simulation to determine the probability of 
getting 3 correct answers on the test. After 50 
simulations, what is the average number of 
correct responses? 
 

WCTE3 “Free Throw Shooter” 
The star free-throw shooter on the girls’ 
basketball team makes 80% of her free throws. 
She gets about 10 such shots each game. 
Design a simulation. What does a trial look 
like? What is the approximate probability that 
she makes more than 80% of her free throws in 
one game? How many free throws should she 
expect to make in a typical game?  Explain. 

WCTE4 “Randomly-Generated Outcomes” 
You will randomly be assigned to one of the 
following groups. 
Group 1: Using your calculator, simulate the 
outcomes of 100 coin tosses. Record your 
results as a string of H’s and T’s. 
Group 2: Make up the results of flipping a coin 
100 times. Record your results as a string of 
H’s and T’s. 
Which results are calculator generated and 
which are student generated? How can you 
tell? 

WCTE5 “Designing Simulations on the TI-83” 
Using your calculator, design a simulation for 
the following situation. 
The percentage of women in the labor force of 
a certain country is 30 percent. A company 
employs ten workers, two of whom are women. 
Estimate the probability that a company of ten 
workers would employ two or fewer women by 
chance. On the basis of your simulation, do you 
think that women are underrepresented in the 
company?  Why or why not? 

WCTE10 “What is Random Behavior?” 
Students are given a bag of Jolly Rancher 
candies. Without looking, groups are to 
develop a rule for predicting the next Jolly 
Rancher to be chosen from the bag. Do the data 
from the past selections help in making a 
prediction for the next selection?  Does the 
particular pattern of the sequential selections 
help in making a prediction for the next 
selection?  What is the best you can hope to do, 
in terms of correct predictions, with any 
decision rule?  Discuss what was learned about 
predicting future events in a random sequence. 

WCTE11 “What’s the Chance?” 
Students are given 10 tacks and asked to 
complete 2 experiments: 1) Toss 1 tack ten 
times and determine empirical probability the 
tack point will land down; 2) Toss all 10 tacks 
simultaneously and determine empirical 
probability. Was there a difference in the 
results? Explain what may account for the 
difference. 

WCTE12 “Are these simulation designs 
valid?” 
Students are given two simulation designs and 
asked to determine the validity of each design. 
Why are these designs valid or invalid? How 
would you change the design to make it valid? 

 

Figure 5. Sample Tasks Used During the Whole-Class Teaching Experiment (WCTE) 
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Classroom-Based Analysis Phase 

During each instructional session, the witness acted as an observer to the activities 

and whole-class discussions within the classroom. More specifically, her primary role 

was to pay particular attention to the case study group. The witness took notes that 

focused on identifying the emergence and evolution of classroom sociomathematical 

norms and mathematical practices. At the end of the day, the teacher-researcher and 

witness discussed and modified the hypothetical learning trajectory relying on the 

hypotheses of students’ development of the learning goals. 

As part of each instructional session, students were involved in small group and 

whole-class discussions. The purpose of the discussions was to highlight the reasoning 

and beliefs students used during probability simulation tasks. Throughout the whole-class 

teaching experiment, the teacher-researcher posed questions to students to both assess 

student reasoning and understanding and to encourage reflective thinking by the students. 

Student reasoning was assessed according to the steps of the simulation process (Yates et 

al., 1999) as previously outlined in Chapter 1. Previous research (Zimmermann & Jones, 

2002) was used to help identify emerging and evolving beliefs related to probability 

simulation. 

Data Sources 

Data sources for this research study included the following: (a) pre-, post-, and 

retention assessments; (b) audio and videotapes of classroom events; (c) student written 

work; (d) audio and videotapes of individual student interviews; (e) field notes of the 

witness; (f) audio tapes of instructional sessions of teacher-research and witness; and (g) 

teacher-researcher reflections. The pre-, post- and retention assessments, described 
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previously, were one source of data that provided a picture of student understanding of 

probability simulation over time. Audio and videotapes of student group work and whole-

class discussions that were recorded during the classroom instructional sessions provided 

two sources of data that complemented each other. The tapes helped to document changes 

in students’ reasoning and beliefs about probability simulation as well as provided the 

means to capture the emergence and evolution of classroom sociomathematical norms 

and mathematical practices. Student artifacts, such as homework collected from the 

students, provided further evidence of student reasoning. Additional data on students’ 

reasoning and beliefs about probability simulation were collected through the audio and 

videotaped interviews of the case-study students. The field notes of both the teacher-

researcher and witness, the audio taped instructional sessions, along with the reflections 

of the teacher-researcher provided data from the perspective of the teacher-researcher. 

The intent of the variety of data sources was to allow for triangulation of the data; that is, 

it provided multiple perspectives and interpretations (Eisenhart, 1988) of the data through 

the rich, descriptive pictures and discourse of student’s reasoning in the classroom 

environment. 

 Student-Generated data involved a variety of sources. The written assessment 

instruments provided both quantitative and qualitative data. Each day of the whole-class 

teaching experiment, one audiotape recorder per group was provided to record each 

group’s discourse providing qualitative data of students’ reasoning and beliefs about 

probability simulation. Other than the assessments, student written work was periodically 

collected. The students’ written work provided a variety of sources that enabled the 

teacher-researcher to track and record student reasoning and beliefs about probability 
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simulation beyond that of group and classroom discussions. This work was also useful in 

helping the teacher generate conjectured learning processes. Another source of student-

generated data was the clinical interviews of the 4 case-study students. The data collected 

from both the assessments and the interviews enabled the teacher-researcher to document 

changes in students’ reasoning and beliefs about probability simulation that occurred over 

the course of the whole-class teaching experiment. 

 Similar to the student-generated data, teacher-researcher and witness generated 

data also came from a multitude of sources. The witness took notes as she observed each 

instructional session. She focused on the case study group but was also an observer 

during whole-class discussions. The instructional planning sessions between the teacher-

researcher and witness were audio taped in order to provide a more complete record of 

the development and modification of the hypothetical learning trajectories. Finally, after 

each instructional session, the teacher-researcher recorded journaling notes to further 

capture the hypothesized learning processes of the students as they were directly related 

to that day’s instructional activities. 

Data Analysis 

This study utilized a mix-method design (Tashakkori & Teddlie, 1998), 

containing both a quantitative and a qualitative component. Quantitative analysis was 

carried out to assess changes in students’ reasoning in relation to probability simulation. 

A repeated measures analysis of variance (Kirk, 1982) was used to assess these changes 

with the dependent variable being student reasoning across the pre-, post-, and retention 

assessments. 
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Analysis of the many data sources began with the quantitative analysis of the 

assessments. Secondly, Miles and Huberman’s (1994) “three part analysis” (pp. 10-11) 

was used to carryout a qualitative analysis of the whole-class teaching experiment (refer 

to Figure 1). This analysis focused on students’ individual and collective reasoning and 

beliefs related to probability simulation and the classroom sociomathematical norms and 

classroom practices that emerged. In the first part of this process, data reduction, codes 

from all the data sources generated images and impressions of individual and collective 

student reasoning and beliefs.  

Summary 

 This chapter provided details of the methodology of whole-class teaching 

experiment used in this study. Outlined were the specifics of the students, the instruments 

used for assessment purposes, as well as a summary of the instructional activities. 

Finally, a summary of the data analysis was also provided. 
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CHAPTER IV 

ANALYSIS OF THE DATA AND RESULTS 

 The goal of this study was three-fold. The first goal was to trace students’ 

individual and collective reasoning about probability simulations during a teaching 

experiment, and at the same time, determine the extent to which technology played a part 

in student reasoning. A second goal was to determine beliefs students held about 

probability simulation and track changes in these beliefs as they occurred throughout the 

teaching experiment. Finally, it was the intent of this research study to determine what 

sociomathematical norms and classroom mathematical practices evolved during a whole-

class teaching experiment that focused on probability simulation. 

Quantitative and qualitative analyses of the pre-, post-, and retention assessments 

were used to examine changes in students’ reasoning before and after the whole-class 

teaching experiment. In addition, qualitative analysis was used to analyze data collected 

from the student interviews and whole-class teaching experiment. These data were used 

to trace the evolution and change in students’ reasoning and beliefs as well as to identify 

the emergence of sociomathematical norms and classroom mathematical practices. 

Quantitative Analysis of Pre-, Post-, and Retention Assessments 

 Of the 23 students who participated in the teaching experiment, 21 students 

completed all three assessment instruments. Each assessment contained parallel questions 

that were designed to determine the extent to which a student was able to (a) recognize 

and evaluate a valid simulation process, and (b) construct a valid probability simulation. 
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The means and standard deviations of each of the three assessments are presented in 

Table 2. 

 

Table 2 

Means and Standard Deviations for the Pre-, Post-, and Retention Assessment Scores 

  
  Assessment M SD N 

 Pre- 10.2 5.7 21 

 Post- 17.9 2.9 21 

 Retention 18.9 2.1 21 

   
Note. The maximum score possible on each of the assessments was 21. 

 

A multivariate test, using Wilks’s Lambda, revealed significant differences 

between the mean scores on the three assessments (Λ = 0.274; F (2, 19) = 25.219,  

p < .001). In view of these significant differences, pairwise comparisons were made to 

examine changes between the three assessments. These pairwise comparisons, shown in 

Table 3, indicate that the post-assessment scores were significantly higher than the 

preassessment scores (p < .001), and similarly, the retention assessment scores were also 

significantly higher than the preassessment scores (p < .001). There was not a significant 

difference between the post- and retention assessments (p = .116). The Wilks’ Lambda 

test was performed to determine if the assumption of normality was met (see Figure D1 

and Table D1 in Appendix D), and the test revealed no significant departure from 

normality for any of the three sets of different scores (p = .499, p = .249, p = .956). 
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Comparing the post- with the preassessment scores revealed that the mean score 

increased by over 75% while the standard deviation decreased by 3.6 points (see Table 

2). Not only do these figures represent a significant increase in student performance from 

the preassessment to the post-, they also indicate a much more consistent performance for 

the students at the time of the post-assessment. The mean score on the retention 

assessment actually increased from that of the post-assessment, albeit not significantly, 

and the decrease in standard deviation from the post- to the retention assessment is 

further indication of the consistency in student performance over time. In other words, 

students’ reasoning about probability simulation increased significantly after the whole-

class teaching experiment and students maintained the higher level of reasoning six 

weeks after the teaching experiment. 

 

Table 3 

Mean Differences of Pairwise Comparisons Between Assessment Scores 

  
  Pairwise Comparison Mean Difference p 

 Pre- and Post- -7.7 .000 
 Pre- and Retention -8.7 .000 
 Post- and Retention -1.0 .116 
 

 

The students’ growth in probability reasoning is further illustrated by examining 

the frequency of valid responses on each of the 10 major components that constitute a 

probability simulation. Table 4 shows the frequency of valid responses for the pre-, post-, 

and retention assessments on these simulation components. In all but one of the 
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components (assumptions in the construction task), students demonstrated an increased 

ability to reason about probability simulation. More specifically, significant progress was 

made by students in both their ability to use simulated outcomes to determine the 

probability of a situation and in recognizing the effect of repeated trials on the empirical 

probability. 

 

Table 4 

Valid Student Reasoning in Components of a Simulation by Assessment 

  
   Number of Students (n = 21) 
     
 Process in a Simulation Problem Pre- Post- Retention  

Evaluated a Probability Simulation 
 Assumptions 1 5 3 
 Evaluated probability generator 18 21 21 
 Recognized need for 2-D trial 14 21 21 
 Accepted randomness of outcomes 7 18 18 
 Calculated empirical probability 7 18 18 
 given the outcomes  
 
Constructed a Probability Simulation 
 Assumptions 5 1 2 
 Constructed probability generator 12 19 19 
 Constructed 2-D Trial 11 21 19 
 Calculated empirical probability 13 19 21 
 Repetition of trial 6 16 14 
  

 

Qualitative Analysis of Students’ Reasoning 

 Multiple sources provided data of students’ reasoning about probability 

simulation. One major source of data was the pre-, post-, and retention assessments, and a 
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second major source was the audio and videotapes of the whole-class teaching 

experiment instructional episodes. The qualitative analysis of each source has been 

separated into two sections that focus on reasoning. 

Students’ Reasoning on Pre-, Post-, and Retention Assessments 

The written responses of the students as well as the target interviews provided 

rich and informative qualitative data to support the findings summarized earlier in the 

quantitative analysis. This section contains the qualitative analysis of student responses 

on both the evaluation and construction tasks. As the simulation components required for 

both the evaluation and construction of a probability simulation are similar, tables have 

been organized to examine student reasoning by process across tasks and assessments. In 

this manner, student reasoning can be traced as it evolved before and after the whole-

class teaching experiment. 

For the preassessment evaluation task, students were asked to evaluate a 

simulation design for a pizza place that had 60 percent of their phone orders for pizza 

with meat and 40 percent of their orders for veggie pizza. The objective of the simulation 

was to determine the probability that the next two phone orders were both for meat 

pizzas. The evaluation task on the post assessment involved a 70% free throw basketball 

player. In this problem, the goal of the simulation was to determine the probability that 

the basketball player misses the next two free throws. The retention assessment 

evaluation task asked students to consider a simulation to determine the probability of 

getting stopped at a train track both to and from school if the chance of being stopped by 

a train was 60%. (See Appendix A for each assessment.) In order to identify a valid 

simulation, students needed to be able to recognize and evaluate the required components 
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or steps involved in the simulation process. 

The second part of the assessments was the construction task that concentrated on 

the students’ ability to construct a valid probability simulation and use the results to 

calculate a probability for the problem. Similar to the evaluation task, the components 

required to construct a simulation were examined and analyzed. Essentially the 

components needed to construct a simulation are the same as those needed to evaluate a 

simulation (see Table 4 for simulation components). In addition to assessing the students’ 

ability to construct a valid simulation, students were also questioned on what impact 

repeating a simulation many times would have on the empirical probability. 

The assessment construction problems, like those for the evaluation problems, 

were also contextual. In the preassessments, students were asked to construct a 

probability simulation to determine the probability that the songs played by a radio 

station at two specified times would both be hip-hop if the probability that the station 

plays hip-hop is .4, the probability it plays alternative music is .4, and the probability it 

plays country music is .2. On the post-assessment, students were to design a simulation to 

determine the probability of both engines failing on a space shuttle given that the 

probability of the first engine (S1) failing was .2 and the probability of the second engine 

(S2) failing was .3. Tennis was the context on the retention assessment. Students were to 

determine the probability of double faulting given the probability of a fault on the first 

serve was .8 and the probability of faulting on the second serve was .1. 

To identify a valid simulation, students needed to be able to recognize and 

evaluate the required components in the simulation process (Yates et al., 1999). These 

components include the following: stating assumptions, identifying a probability 
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generator, defining a valid trial, repeat the trial many times, and use the outcomes to 

determine the empirical probability. Taken together, these simulation process 

components provide the frame for analyzing students’ responses to the two simulation 

tasks. 

Assumptions  

Part of the simulation process, according to Yates et al. (1999) is to list the 

assumptions for the probability simulation design. Table 5 contains different assumptions 

students stated as they reasoned through both the evaluation and construction tasks for 

the pre-, post-, and retention assessments. The students made more assumptions on the 

construction task in the post- and retention assessments than on the preassessment, and in 

the retention assessment (evaluation task), the majority of students made an assumption 

about replacing the first drawn chip so as to maintain the target probability at its given 

value. This was not only a valid assumption; it was a vital assumption for the correct 

processing of the simulation. 

Students who stated assumptions of this kind added more detail to the problem 

than might be considered necessary. However, it should be noted that these assumptions 

were not inappropriate. Lacey’s reasoning provides an illustrative example. In explaining 

how she would change the given simulation for the pizza problem, Lacey wrote, “I would 

consider the day and season it is and if any special orders are made that day.” During the 

interview, Lacey elaborated on her written response. “If there was a holiday or a get-

together, then I don’t know if that could matter. I just think that if there is a holiday or a 

get-together then you might order more pizza.” When probed further, Lacey explained 

that she thought the simulation design had “too much fault in it” possibly indicating the 
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simulation did not account for these “special situations.” The type of reasoning exhibited 

by Lacey was typical of the other students counted in this category. Assumptions 

involving unaccounted for extraneous variables, noted by students on the preassessment 

construction tasks included such issues as song length, the amount of time music was 

played, and the total number of songs played within the targeted time slot. 

 

Table 5 

Explicitly Stated Assumptions by Assessment 

  
   Number of Students (n = 21) 
     
 Assumption Evaluation Construction 

 Pre- Post- Ret. Pre- Post- Ret. 

Unaccounted for extraneous variables 1 3 0 7 0 0 
Independent events 0 4 3 0 1 0 
Did not replace first drawn chip 0 2 0 1 0 0 
Replaced first drawn chip 0 0 12 0 1 1 
Did not make any assumptions 20 13 6 13 19 20 
 
Note. Student strategies may have been classified under more than one category. 
The first assumption listed in Table 5 is “unaccounted for extraneous variables.”  

 

Unlike Lacey and other students who made assumptions about the extraneous 

variables in the context of the problem, Thor reasoned about extraneous variables 

associated with actually conducting the simulation. In discussing the validity of the 

simulation design, Thor responded, “the balls may not completely randomize her 

selection. Yes, she does have 3/10 blue balls but she may have different sized balls or 

different textured balls that would cause bias.” Thor recognized the fundamental 
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importance of having the probability generator produce completely random outcomes, 

even though he may have been somewhat fastidious in his demands for randomization. 

By way of contrast, Ethan’s focus on extraneous variables was more idiosyncratic. 

“There are more variables to the problem . . . . the best situation that I could think of is 

that he probably plays country late at night when nobody is listening since nobody like[s] 

it.” Ethan’s reasoning is considered idiosyncratic because he used the fact that he did not 

like country music to assume no one did. Furthermore, Ethan seemed unaware that his 

assumptions had changed the problem. 

The assumption regarding independence of events did not appear until after the 

teaching experiment. Students, who stated that the events in the simulation were 

independent of each other, were assuming the outcome of the first event did not influence 

the outcome of the second event in the trial. During his post-assessment interview, Cade 

articulated the effect independence of outcomes had on the process, “I thought that each 

at bat is separate so her probability to get on base would be 30% each time, and if she left 

the ball out (during the simulation process) then it wouldn’t be like separate batting. Then 

it wouldn’t be 30%.” Although more detailed than most, Cade’s response typified the 

reasoning of the other students who discussed independence of events. 

The third and fourth assumptions that appear in Table 5 are related. Prior to the 

teaching experiment, none of the students referred to the replacement or non-replacement 

of the drawn chip in the pizza problem. Yet after the teaching experiment, 2 students 

specifically stated that replacement should not occur. On the softball problem, Kacy and 

Ingrid reasoned that “when there is a ball taken out, leave it out to have a better chance of 

grabbing a blue ball.” Both seemed unaware that by not replacing the first drawn ball, the 
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probabilities for the second at-bat were not the same as those for the first at-bat. On the 

retention assessment, 12 students explicitly wrote that the chip should be replaced in the 

train-crossing problem on the retention assessment, even though none of the students had 

made this claim previously. 

Only one student on each of the post- and retention assessment construction tasks 

discussed the replacement of a drawn chip. This may be partly due to the type of 

probability generator selected, that is, using the random number generator on the 

calculator, as described by the students, assumed independence of outcomes. (Use of the 

calculator is explained in more detail later.) Students may have also assumed that if the 

assumption of replacement or non-replacement was addressed in the evaluation task, it 

need not be addressed again in the construction task.  

Table 5 indicates that prior to the whole-class teaching experiment, more students 

made assumptions related to the construction task than on the evaluation task. However, 

following the whole-class teaching experiment, this situation was reversed. This can be 

traced largely to two sources. One was the decreased use by students of extraneous-type 

assumptions. The decrease in this type of reasoning caused the number of assumptions 

made on the construction problem to decrease. The other source was related to the 

assumption of replacement of a drawn chip or ball. In the evaluation problems, the 

probability generators provided in the problem involved balls or chips, which required 

replacement to maintain the original probabilities. In the construction problem, many 

students used spinners or random-numbers generated by a calculator which have 

replacement built into the probability generator. Thus, the characteristics of the 

simulation models used may account for the fact that more students noted the need for 
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replacement on the evaluation problems than on the construction problems in later 

assessments. 

The Probability Generator 

The next step in the simulation design process is to model the contextual setting. 

In other words, in the evaluation task students needed to be able to evaluate the validity 

of the probability generator used in the simulation problem, and in the construction task 

students needed to be able to construct a valid probability generator to simulate the 

problem. Since the reasoning exhibited by the students was different for each of the tasks, 

student reasoning on the evaluation and construction tasks has been separated. Table 6 

contains the reasoning demonstrated by students as they evaluated a probability 

generator, and Table 7 contains students’ reasoning as it was related to constructing a 

probability generator. 

 

Table 6 

Student Reasoning on Evaluating the Probability Generator by Assessment 

  
   Number of Students (n = 21) 
     
 Reasoning Pre- Post- Retention  

 Number of chips should equal number of orders 1 0 0 
 Equal amount of colored chips 2 0 0 
 Probability generator was valid 18 21 21 
 
  
 
 

Evaluation task. Overall, students had little difficulty recognizing a valid 

probability generator, although three students expressed difficulty with the simulation 
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process on the preassessment. On both the post- and retention assessments, all 21 

students demonstrated valid reasoning related to the probability generator for the given 

simulation problem. With respect to the 3 students who had difficulty on the 

preassessment, all of them seemed to struggle with the concept of proportion. Dayton’s 

reasoning was typical of these students. When probed about her thinking during the pre-

assessment interview, Dayton responded, “I said to put an equal amount [of chips] . . . 

who’s to say that he will get 60% next time. I said that to do this out of a monthly basis 

you would need an even amount of chips.”  Dayton seemed to believe that the past could 

not necessarily be used to predict future outcomes, and since we had no control over the 

future, she believed that orders for meat and veggie pizza should be equally likely.  

Construction task. In the preassessment, 14 of the students were able to explain 

how they would construct a valid probability generator to simulate the problem. Prior to 

the whole-class teaching experiment, students primarily referred to manipulative devices, 

such as chips, balls, and spinners, to construct a probability generator. However, on the 

post- and retention assessments, about half of the students constructed a probability 

generator using a randomly generated number on a graphing calculator. Also noteworthy 

was the increase in the number of students who chose to use a two-bag or two-spinner 

probability generator on the post- and retention assessments. Table 7 contains a summary 

of the various strategies students used to construct a probability generator for each of the 

radio, space shuttle, and tennis problems. The numbers within the parentheses represent 

those students whose reasoning for that particular strategy was either invalid or 

incomplete. Following is a more detailed analysis of the students’ ability to construct a 

probability generator for a probability simulation problem. 
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Table 7 

Student Strategies on Constructing the Probability Generator by Assessment 

  
   Number of Students (n = 21) 
     
 Strategy Pre- Post- Retention  

 None 6 0 0 
 Other device 1 1 1 
 One bag of chips or balls 9 (2) 0 0 
 Two bags of chips or balls 1 3 4 
 One spinner 4 3 (1) 4 
 Two spinners 0 4 2 
 Calculator 0 10 (1) 10 (2) 
   
Note. Student strategies may have been classified under more than one category. 
Numbers in ( ) denote number of students using invalid strategies. 
 
 
 

As noted in Table 7, 6 students did not use a probability generator on the 

preassessment. Of these 6 students, 2 students provided responses that did not contain 

any details of a probability generator, and 3 students replied that for the radio problem, 

they would just turn on the radio itself. Breanna belongs to this second group of students. 

She wrote, “My simulation would be to turn on the radio at 10:00 a.m. and then again at 

2:30 p.m. for every day for 4 weeks straight. At each day, record the type of music played 

at 10:00 a.m. and 2:30 p.m. as a set.” Tavi was another student who did not construct a 

probability-generating device. He seemed to understand the proportion necessary for the 

simulation, but did not relate these numbers to a generator device. Tavi replied, “For 

every hour, 24 minutes of it would be hip-hop, 24 minutes would be alternative, and 12 

minutes would be country. Your chances of hearing a hip-hop song at 10:00 a.m. is 40% 



 81

and your chances of hearing another hip-hop song at 2:30 p.m. is also 40%.” Tavi did not 

extend this to a device that would simulate the problem, nor did he define a trial. All of 

these students were able to construct a probability generator for each of the post- and 

retention assessments. 

Few students used probability generators other than chips/balls, spinners, or the 

calculator. However, on the radio problem, Edison constructed a valid probability 

generator using a 10-sided die: “I would take a die with 10 sides (they do exist) and mark 

off numbers 1-4 as hip-hop, 5-8 as alternative, and 9, 10 as country.” Cade used a 

combination of a calculator and a spinner to construct a probability generator for the 

space shuttle problem. He said he would “take a calculator and have it choose a random 

integer from 1-10: (for S1) 1-2 was failure, 3-10 [engine] works. If you get a 1-2, use a 

spinner divided in 10 spaces, 1-3 failure, 4-10 works.” 

Using a single bag of chips or balls was the preferred probability generator on the 

preassessment, but this strategy was not used in the post- or retention assessments. All 

but 2 of the 9 students who used this strategy did so in a valid way. Kacy was one of 

those who responded validly using the colored chips strategy, “You can get 10 chips, 4 

red (alternative), 4 green (hip-hop), 2 yellow (country)” and put them in a bag. Ingrid and 

Macy’s incomplete responses provided some insight into why students had shown a 

preference for using chips and one bag. Ingrid explained, “I would do exactly what Stan 

[the hypothetical student in the problem] did with the chips.” On the one hand, neither 

student had provided further explanation that would reveal their understanding of how to 

construct a valid probability generator for the radio problem. On the other hand, their 
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responses indicated that many of the students might have chosen chips to simulate the 

problem because chips were used in the previous pizza problem. 

An alternative strategy to using one bag of chips was to use two bags of chips. 

Oliver’s strategy was to use two bags with the same proportion of chips in each bag to 

represent the radio problem. Oliver wrote, “take 2 bags each with 4 chips marked with an 

‘H’ [for hip-hop], 4 with an ‘A’ [for alternative] and 2 with a ‘C’ [for country]. Mark one 

bag 10:00 and the other 2:30.” Oliver was also the only student to employ this strategy 

involving a combination of two probability generators on the pizza problem. The number 

of students using the strategy of two bags of chips increased to 3 and 4 on the post- and 

retention assessments, respectively, and in all instances students demonstrated valid 

reasoning typified earlier by Oliver. 

The structure of the space shuttle and tennis problems might have contributed to 

the increased use of either a two-bag or two-spinner strategy. In the preassessment radio 

problem, there were three choices of music that accounted for 100% of all music played 

in that problem (alternative 40%, hip-hop 40%, and country 20%). Thus, it was likely 

easier for the students to divide a single bag of chips or a single spinner into equal 

proportions that would total 100%. However, on the post- and retention assessments, the 

probabilities in the problems did not total to 100%. For example, recall that in the space 

shuttle problem it was stated that the probability engine 1 (S1) would fail was 0.2 and the 

probability that engine 2 (S2) would fail was 0.3. (See Appendix A2: Post-assessment for 

the detailed problem). Because the total of the probabilities provided in the problem was 

not 100%, students might have found it easier to reason using two bags or two spinners 

rather than one. In this way, students treated each outcome separately and then combined 
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the outcomes for one trial. Lacey’s post-assessment interview indicated how she 

approached the complexity of the probabilities in order to construct a valid probability 

generator. Lacey explained her thinking, “Well I sorta got confused . . . because you’re 

not going to need S2 if S1 doesn’t fail. So that’s why I just looked at it independently so 

it would be easier.” Lacey was aware that she needed to look at both outcomes for her 

trial, but decided to essentially run two sets of one-dimensional trials, one for each 

engine, and then pair the results. 

The student strategy of using one or two spinners was similar to that of using one 

or two bags of chips. On the preassessment, 4 students constructed a valid probability 

generator using a single spinner. Tasha’s design was typical of these students. She 

explained that she would use one spinner that was labeled “40% hip-hop, 20% country, 

40% alternative.” As discussed earlier, the probability generator required for the 

construction problems on the post- and retention assessments required students to reason 

somewhat differently than on the preassessment. Mai was 1 of only 2 students who 

provided a valid probability generator using one spinner on the post-assessment 

construction problem. “You have a spinner with 10 equal spaces. And because there are 

two power systems, you need to spin twice. First time, 1-8 means it [engine 1] didn’t’ 

fail, 9-10 means it failed. The second time 1-7 means it [engine 2] didn’t fail, 8-10 means 

it failed.” Mai was able to construct a single spinner that would generate the required 

probabilities for each outcome of the two-dimensional trial. Thor’s approach to the 

probability generator was unique. Thor created a spinner containing three regions, A, B, 

and C. According to Thor’s diagram, region C accounted for 80%, region A accounted 

for 20%. Thus, landing in region C was equivalent to getting a fault on the first serve. To 
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simulate the second serve, Thor marked a 10% sector of region C and labeled this region 

B. Thor wrote that region B accounted for “10% of the 80% [of region C].” Region B 

represented the probability of getting a fault on the second serve. In essence, Thor’s 

probability generator produced valid one-dimensional outcomes for what was a two-

dimensional problem. “If you land in A you didn’t fault on the first. B, faulted both. C, 

missed first made second.” Thor’s reasoning reflected the increased sophistication with 

which students constructed probability generators following the whole-class teaching 

experiment. 

Although none of the students used a two-spinner strategy on the preassessment 

problem, 4 students constructed a valid two-spinner probability generator for the post-

assessment problem. Ondrea’s explanation typified this strategy; “I’d take 2 spinners with 

numbers 1-10. Spinner 1 represents S1 [engine 1], so therefore any digit 1-2 would be S1 

failing. Spinner 2 represents S2, so any digit 1-3 will be S2 failing.”  

One of the most interesting trends revealed in Table 7 was the increased use of 

calculators as probability generators. In the preassessment there was no evidence of 

calculators being used to simulate the problems. However, this number increased 

dramatically to 10 students on both the post- and retention assessments. All but one of the 

students owned a TI-83 or TI-83+ graphing calculator. One of the many functions of this 

calculator is its ability to generate random numbers and, in particular, random integers. 

The function on the calculator is known as “randInt.” RandInt can be used one of two 

ways: (a) to generate a random integer n between two designated integers, a and b, such 

that a ≤ n ≤ b, or (b) to generate n random integers inclusive of the two designated 

integers. For example, a student could enter into their TI-83 “randInt(1, 20).” This 
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command would generate a random integer from 1 to 20. If a student were to add an 

additional parameter to the instruction, “randInt(1, 20, 5),” then the calculator would 

generate five random numbers from 1 to 20. 

Out of the 10 students who used the calculator to construct the probability 

generator, 9 of the responses illustrated a valid strategy. Ethan’s response was typical: “ I 

would simulate it by using the random number feature on my calculator. I would use 0-9 

for both serves. If he got an 8 or a 9 on the first one means he didn’t fault, but any 

number less than that means he did and then you look at the second number. This one you 

have to get a 0 to fault on. So for both trials you have to get a number less than 8 and 0 

for him to get a double fault.” Unlike Ethan’s model, Kacy’s calculator-generated 

simulation for the shuttle problem was not valid. Kacy described her simulation design as 

using “randInt on my calculator and use the variables 1 for S1 and 2 and 3 for S2. If I got 

a 1 that would mean S1 failed, and if I got a 2 or a 3 that would mean S2 failed.” Kacy 

was unable to translate the probabilities in the problem into a valid generator. Again, this 

may have been attributed to the nature of the probabilities within the problem as 

discussed earlier. The 2 students who were unable to construct a valid probability 

generator on the retention assessment transformed the two-dimensional problem to a one-

dimensional situation similar to what Kacy had done earlier. 

 No trends were evident in a comparison of the probability-generating device used 

by each student across assessments. One student used the same device across all three 

instruments. Five students used the calculator for both the post- and retention 

assessments, and 8 students used a different device for each assessment. This analysis, 

coupled with the fact so many students were able to construct a valid probability 
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generator, demonstrates the willingness with which students considered various devices 

for a simulation design. 

Recognized the Need for Two-Dimensional Trial 

Both the evaluation and construction simulation problems on each assessment 

instrument involved a two-dimensional trial. The problems required that students look at 

a pair of outcomes. As shown in Table 8, 15 of the 21 students recognized that the 

evaluation problem required a two-dimensional trial in the preassessment. By the post- 

and retention test, all students were able to demonstrate valid reasoning, using one of two 

strategies, when evaluating a two-dimensional trial. Furthermore, the students explicitly 

described a two-dimensional trial in the construction problems on the post- and retention 

assessments more often than in the preassessment. Following the whole-class teaching 

experiment, students were less likely to record the simulation outcomes as one-

dimensional trials. Table 8 contains a detailed summary by assessment of how students 

reasoned when asked to evaluate and construct a two-dimensional trial. 

In analyzing student reasoning of a two-dimensional trial, student strategies were 

classified as either valid or invalid. With respect to the valid category, students used two 

substrategies. The first substrategy, “explicitly stated a two-dimensional trial,” increased 

substantially after the teaching experiment. Students who exhibited this strategy 

explicitly stated that the question was about the next two outcomes or they provided 

specific details about the trial. Oliver’s response provided an example of this substrategy. 

He wrote that in order to conduct the simulation accurately one would need to “record 

how many times that he got red twice in a row.” It should be noted that students who 

explicitly stated a two-dimensional trial also recorded their outcomes as two-dimensional. 
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Table 8 

Student Reasoning on a Two-Dimensional Trial by Assessment 

  
   Number of Students (n = 21) 
     
 Reasoning Evaluation Construction 

 Pre- Post- Ret. Pre- Post- Ret. 

 Valid 
  Explicitly stated 2-D trial 12 17 11 9a 18 a 16 a

  Calculated/recorded 2-D trial 3 4 10 3 3 3 
  Invalid  
  Incomplete answer/ 4 0 0 1 0 0 
   not enough info 
  Calculated/recorded 1-D trial 3 0 0 8 0 2 
 
Note. Student strategies may have been classified under more than one category. 
 a Students also recorded their outcomes as 2-D. 
 

 

Students revealed the second substrategy when they calculated and/or recorded 

their outcomes as a two-dimensional trial, but had not clearly defined their trial. The 

strategy these students used to calculate the empirical probability on the evaluation 

problem for each of the assessments was basically the same as Ugo’s strategy. Ugo 

divided the outcomes into pairs illustrating that he knew he needed a two-dimensional 

trial. Students were more likely to explicitly define a two-dimensional trial on the 

construction problems than in the evaluation problems. 

Two subcategories of invalid strategies were evident when students reasoned 

about two-dimensional trials. The first subcategory contained students who provided 

insufficient detail or justification in which to categorize their response. Students in the 

second subcategory, “calculated/recorded 1-D trial,” reasoned incorrectly when they 
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calculated a one-dimensional empirical probability for the problem, as Bernard did. 

Given the outcomes, Bernard calculated an empirical probability of getting meat as 25/50 

when the problem required the probability that the next two pizzas were meat. More 

specifically, students recorded outcomes as a string of numbers or letters and in each case 

a one-dimensional probability was calculated. 

Accepted Randomness of Outcomes 

Randomness of outcomes is inherent in a simulation process. Therefore, students’ 

willingness to accept the apparent randomness of the outcomes was of interest. Outcomes 

for each of the assessment instruments were intentionally distributed equally between 

each possible outcome of the two-dimensional trial. For example, in the preassessment 

pizza problem the probability of an order for pizza with meat was given as 60% and the 

probability of an order for a veggie pizza was given as 40%. However, out of 50 

outcomes provided to students for this problem, 25 were for meat pizza and 25 were for 

veggie pizza. (See Appendix A1). Table 9 provides a summary of the various ways 

students approached the randomness of the outcomes of the simulation process. Due to 

the structure of the assessment questions, this simulation process was only observed on 

the evaluation task of the assessments. 
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Table 9 

Student Reasoning on Randomness of Outcomes by Assessment 

  
   Number of Students (n = 21) 
     
 Reasoning Pre- Post- Retention  

1) Accepted randomness 
 Implicitly accepted randomness 9 18 20 
 Explicitly accepted randomness 1 0 0 
2) Did not accept randomness 
 Exhibited representativeness 10 3 0 
 Relied on theoretical 1 0 0 
 Too few trials 0 2 1 
 
Note. Student strategies may have been classified under more than one category.  
 
 
 

Student strategies related to randomness were separated into two categories: 

accepted randomness or did not accept randomness. The students who accepted the 

randomness of the outcomes in a simulation did so in either an implicit or explicit manner 

(see Table 9). Student acceptance of randomness was considered implicit if no mention 

was made of the outcomes. In other words when these students were asked if they could 

determine the probability given the outcomes, they were not disturbed by the equal 

distribution of the chips. By the time of the post-assessment, 86% of the students 

accepted the randomness of the outcomes and 95% of the students accepted it on the 

retention assessment. The number of students who implicitly accepted the randomness of 

the outcomes grew sharply by the post- and retention assessments. 

Evan was the only student to explicitly accept the randomness of the outcomes. 

When asked if he could use the pizza outcomes to calculate the probability, Evan wrote 
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“Yes. I still could predict because the ratio is still 6:4 . . . because they came out equal 

does not mean that it is the true probability.” Evan recognized that these outcomes might 

not be a long-term reflection of the pizza situation. 

Students who did not accept the randomness of the outcomes used one or more of 

three subcategories. The most prevalent subcategory was that of representativeness. That 

is, the students believed that the sample of simulated outcomes should match or be 

representative of the population probabilities of the original problem. They did not accept 

the equal distribution of outcomes in the pizza problem because they believed the 

outcomes did not accurately reflect the problem situation. Mai, whose response was 

typical of these students, wrote, “In actuality their percentages of orders were for 60:40, 

not 50:50 like the outcome.” Mai persisted in her reasoning even after the whole-class 

teaching experiment. She was one of 3 students who was still bothered by 

representativeness. Nevertheless, her reasoning became somewhat more sophisticated in 

the post-assessment. Mai explained her reasoning about the softball player problem, “I 

don’t think you can determine the probability because the results of her experiment look 

very inaccurate, and don’t show a true example of her 30% base average.” Mai further 

wrote, “I don’t think this is good enough data to determine the probability, and she 

should do the experiment quite a few more times.” Mai, like the other two students, 

seemed cognizant of the fact that limited trials produce results that contain more 

variability.  

Ondrea was the only student to exhibit the second subcategory whereby she 

discounted the outcomes and relied on using theoretical probability. She reasoned that 

probability was determined theoretically, not through simulated results. Ondrea wrote 
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that the outcomes could not be used since “you can approach probability mathematically 

using equations, not trials.” This was the only time this reasoning substrategy was used 

throughout all three assessments. 

Students who used the strategy of too few trials to discount the outcomes of the 

problem were in the third subcategory. First appearing on the post-assessment, Mai and 

Thor used this strategy in the softball player problem. They reasoned that the outcomes 

did not reflect the probabilities originally given in the task. However, they reasoned 

further that there were not enough trials to provide accurate data. Sadie’s reasoning in the 

retention assessment problem was similar to that of Mai and Thor’s. She wrote,  “you 

could try to [determine the probability] but the number of trials is so small that it doesn’t 

get close to the theoretical probability.”  Sadie, like Mai and Thor, seemed to realize that 

although these outcomes were possible, they seemed problematic. Therefore, Sadie 

reasoned that more trials should be done. 

Calculated Empirical Probability Given the Outcomes 

The objective of a simulation process is to collect data or outcomes representative 

of a given situation. These outcomes are then used to determine the empirical probability. 

Thus, a student’s ability to determine this probability is integral to the simulation process. 

In each evaluation assessment task, simulated outcomes were presented in two forms (see 

Appendix A): (a) as a single count of each color drawn, and (b) as a string of 50 letters 

representing the color of each chip drawn. The second form enabled students to separate 

outcomes into pairs in order to determine a valid empirical probability for the two-

dimensional problem. Table 10 summarizes strategies students revealed when asked to 

use the outcomes of the simulation to determine the requested probability. 
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Table 10 

Student Strategies in Calculating the Empirical Probability by Assessment 

  
   Number of Students (n = 21) 
     
 Response Evaluation Constructionb

 Pre- Post- Ret. Pre- Post- Ret. 

Did not calculate probability 
 Outcomes were invalida 10 2 0 -- -- -- 
 Outcomes were not 2-D 4 6 2 -- -- --  
 Argued theoretical is better 1 0 0 -- -- -- 
Did calculate probability  
 Calculated valid 2-D probability 3 14 17 9 19 20 
 Calculated 1-D probability 1 0 0 5 0 1 
 Calculated using theoretical prob 1 0 1 2 1 0 
 or a mixed method 
No pattern 0 0 0 5 1 0 
 
Note. Student strategies may have been classified under more than one category. 
 a This was evidence of representativeness heuristic. 
 b No numeric entry indicates response was not applicable for this problem. 
 
 
 

More students were able to calculate a valid empirical probability in each of the 

post- and retention assessments than in the preassessment. Furthermore, reasoning that 

initially prevented students from determining the probability of the problem decreased on 

the post- and retention assessments. Certain types of student reasoning only appeared on 

the evaluation problems. This was attributable to the fact that students had to reason 

about outcomes that had been provided to them, rather than trying to make sense of a 

simulation they designed and executed. 

Students’ strategies fell into three major categories: those that did not involve the 

calculation of a probability, those that did involve the calculation of a probability, and 
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those where there was no prevailing pattern. With respect to the category that did not 

involve the calculation of a probability, students used three substrategies (see Table 10). 

The first substrategy was particularly dominant in the Pizza Problem and arose from the 

fact that students did not accept the outcomes as valid because of their reliance on 

representativeness. As discussed in the previous section on randomness of outcomes, 

these students were distracted by the equal distribution of outcomes that did not match 

the probabilities given in the problem. Consequently they were unwilling to use the data 

or to calculate a probability. This substrategy decreased sharply following the teaching 

experiment with only 2 students using it in the post-assessment and no student using it in 

the retention assessment. 

 Students using the second substrategy observed that the probability of an event 

like, meat both times, could not be calculated because the outcomes were not two-

dimensional. Sadie’s response was typical of these students, “No, because this 

experiment is only for one customer, not two.” Although their reasoning was essentially 

valid, students like Sadie failed to note that they could have paired the outcomes and 

transformed the original data into two-dimensional data. This substrategy continued 

following the teaching experiment but students’ reasoning was more sophisticated as is 

reflected in Makaila’s response in the post-assessment. She said, “You can’t determine 

the probability Beth gets on base both times with the data and results [in the problem].” 

She added that it would be “necessary to split the data into groups of two to simulate two-

at-bats and take into account of the fact that you are looking to see if she gets on base 

both times.” Even though Makaila did not actually calculate the probability, it was clear 
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that she and the other students who provided this kind of explanation understood what 

was needed in order to calculate the probability of a two-dimensional trial.  

The third substrategy, under the category “did not calculate a probability,” 

resulted from the fact that one student, Ondrea, believed that probability could only be 

determined theoretically. There was no further evidence of this substrategy in later 

assessments by Ondrea or any other student. In summing up the “did not calculate 

strategy,” it is worth noting that it appeared only on evaluation tasks. By way of contrast 

“the calculated a probability,” and the “no pattern” strategies appeared on both evaluation 

and construction tasks. 

The strategy where students made a probability calculation revealed itself through 

three substrategies: a valid two-dimensional probability was calculated, a one- 

dimensional probability was calculated, or a probability based on both empirical and 

theoretical considerations was calculated (see Table 10). Students using the first 

subcategory demonstrated their ability to calculate a two-dimensional probability in two 

different ways. In the evaluation problems, students used the same strategy that Lacey 

demonstrated. Lacey explained her process,  

I broke up the count into two sections [pairs of numbers] because the way I’d 
interpret the simulation and data would be to see if two chips were consecutively 
pulled out as meat pizzas. This happened 5 times out of the 25 ‘pulls.’ 
 

In other words, the students using this first substrategy on the evaluation problems 

divided the string of outcomes into pairs, counted the number of targeted pairs, and 

divided their answer by the total number of outcomes. Students using the first substrategy 

on the construction problems merely recorded their outcomes as two-dimensional trials, 

and then determined how many successes they encountered compared to the total number 
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of trials. On the post-assessment Bernard shared his reasoning about calculating the 

probability of both shuttle engines failing; “I did this [found the probability] by taking the 

number of times I simulated both the engines failing and divided by the number of times I 

did it.” Not all the students were as articulate as Bernard and simply wrote the probability 

as a ratio of targeted successes over total attempts. This substrategy dramatically 

increased following the teaching experiment with well over half the students using this 

substrategy. 

Students using the second substrategy calculated a one-dimensional probability 

for a problem that required a two-dimensional trial. Interestingly, Bernard used this 

strategy in the preassessment. Bernard explained, “since the times [number of outcomes 

for each chip] are equal then the probability is 1/2.” Essentially, Bernard took the 

recorded 25 meat outcomes and divided it by the 50 total outcomes. Bernard’s response 

indicated that he did not realize his answer was not the probability for the next two orders 

rather he was calculating the probability for a one-dimensional problem. This substrategy 

appeared predominantly on the preassessment and only appeared once more after the 

whole-class teaching experiment. 

Under the category “did calculate probability,” the third subcategory that involved 

theoretical probability, was not used by many students. However, it did appear 

consistently before and after the teaching experiment. Students who calculated a 

probability using a mixture of theoretical and empirical probability demonstrated 

reasoning similar to Thor’s. According to Thor, “if you only went off of his data, you 

could predict the wrong probability by multiplying the chance you would get meat for 

each time (.50 x .50) and come up with 25%, but Stan needs to do a few more tests before 
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he uses his data to make calculations.”  On the post-assessment, Thor argued that “a 50% 

chance of getting on base is not close to the theoretical value so it may not be very 

accurate. She may also need to perform the experiment more times.” On the retention 

assessment, Thor again used the same reasoning. Clearly, Thor consistently believed the 

outcomes were not representative of what he expected, and this influenced his reasoning 

when dealing with empirical probability. Furthermore, Thor relied on his knowledge of 

theoretical probability to use the one-dimensional simulated outcomes to calculate a 

probability for both the pizza and train-crossing problems, thus combining empirical and 

theoretical probabilities. Three other students exhibited this mixed reasoning. 

The third category, no pattern, reflected those students who reasoned in a more 

idiosyncratic manner when calculating the empirical probability for the problem. For 

example, recall that Ethan had argued no one listens to country anyway. Ethan reasoned 

that since there are only two kinds of music to listen to, the songs would be played 

evenly, thus the probability is 50%. After the whole-class teaching experiment, this type 

of reasoning decreased significantly to one student on the post-assessment, and on the 

retention assessment there was no evidence of idiosyncratic reasoning. 

Repetition of Trial 

In the simulation process, a trial is repeated numerous times before the empirical 

probability is determined. The question becomes how many times should a trial be 

conducted and what are the effects on the probability when the number of simulation 

trials is increased. Table 11 summarizes students’ responses when questioned about the 

effect of increasing the number of trials on the empirical probability. In general, students 

exhibited more valid reasoning on the post- and retention assessments. Furthermore, 
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more students in these later assessments reasoned that increasing the number of trials 

caused the empirical probability to approach the theoretical value. Their reasoning 

seemed to be connected to the concept of less fluctuation in the empirical probability over 

more trials. Because of the structure of the tasks, this simulation process appeared only 

on the construction tasks. 

 

Table 11 

Student Reasoning about the Repetition of Trials by Assessment 

  
   Number of Students (n = 21) 
     
 Response Pre- Post- Retention  

Valid 
 More accurate results 6 3 8 
 Less fluctuation of probability 0 10 2 
 Approaches theoretical, actual, predicted 1 10 7 
Invalid 
 Little or no effect 8 4 3 
 Other 2 1 3 
  
Note. Student strategies may have been classified under more than one category. 
 
 
 

Basically, student strategies were judged to be either valid or invalid. Student 

strategies considered to be valid fell into one or more of three substrategies (see Table 

11). Students using the first valid substrategy reasoned that increasing the number of 

trials would produce more accurate results. Thor provided the most articulate response. 

If you only do the experiment 50 times, you may not get a proper ratio that is 
accurate because there were only 50 trials. Each trial has less of an influence as 
you do more tests. If you do 100,000 tests, each test will have little change in the 
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overall outcome but all the tests together give you a much more accurate 
representation of your true value. 
 

Thor clearly understood the implications of many trials and was able to explain why a 

simulation should be repeated many times. Although the other 5 students also agreed that 

the results would become more accurate, their explanations were less detailed. On the 

post- and retention assessments, 3 and 8 students, respectively, used similar reasoning. 

Although these numbers represent a decrease in this strategy, this decrease is more than 

offset by the increase in the number of students who reasoned that the empirical 

probability would eventually approach the theoretical, explained in more detail later. 

Students who used the second substrategy, “less fluctuation of probability,” were 

referring to the behavior of the empirical probability over repeated trials. Breanna’s 

response was typical of students using this substrategy, “The more trials, the probabilities 

will fluctuate less.” These students understood that initially the probability could vary 

dramatically and that eventually the empirical probability would settle towards a 

particular value, namely the theoretical probability. Although this strategy did not appear 

in the preassessment, 10 students on the post-assessment and 2 on the retention 

assessment made specific mention of this strategy in their answers. 

The third valid substrategy occurred when students referred to the empirical 

probability approaching a theoretical or predicted value after many trials. Cade’s 

response was indicative of students who used this substrategy:  

Like flipping a coin and you could do it 50 times and it could be .47. You could 
do it a hundred times more, and it would still be in the area like we know it’s .5. 
It’s probably gonna approach .5 so you don’t necessarily need to do like 3000 
trials for that because we kinda know it will approach there. With this, if like I 
were say to do it a hundred more times but after a while say the probabilities that I 
was getting were like pretty close to the same, then I would say that’s enough 
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trials. But like after discussing some stuff in class, like 50 or 100, I don’t think 
you can really put a number on it and get close to the same probabilities over and 
over again. Like there’s not really a chance for it to change drastically. 
 
Cade seemed to be able to recognize that the long run behavior of repeating a 

simulation would provide the empirical probability that would approach the theoretical 

probability, and at the same time Cade, like the other students who reasoned similarly, 

seemed cognizant of the variation inherent in the process. As can be noted in Table 11, 

the use of this strategy increased considerably after the whole-class teaching experiment. 

The invalid strategies students used were classified into two subcategories: little 

or no effect and other. Students who reasoned that increasing the number of trials would 

have little or no effect relied on a variety of justifications. Of these students, 6 argued that 

since the probability generator did not change, the results would not change significantly. 

Seeming to understand short-term variation, Edison reasoned, “it’s all probability, 

anything could happen within the simulation.” Yet he did not realize the contradictory 

nature of his responses as he further reasoned that there would be little effect because 

anything could happen. He recognized the variability of simulated results in the short-

term but did not seem cognizant of the effect repeated trials would have on the long-term 

stability of the probability for the problem. Edison’s reasoning did not change by the time 

of the post-assessment. 

“Other” invalid reasoning about repetition of trials was generally more 

idiosyncratic. One such example was Ondrea who explained that the results would 

change because song popularity and other radio station routines would change. Recall 

that Ondrea would simulate the radio problem by actually listening to the radio. On the 

space shuttle problem, Tavi explained that he thought more simulations would be “more 
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realistic.” Although Tavi did not elaborate, he may have believed that the results should 

be more “accurate” and thus closer to the theoretical. This was supported when his 

response on the retention assessment was analyzed. When asked on the retention 

assessment if increasing the number of trials would change the results, Tavi wrote, “yes, 

because as the number of times increases, the probability gets more precise . . . to a 

certain point.” Tavi’s earlier reasoning typified that of the other students who also 

demonstrated an idiosyncratic reasoning strategy. 

Summary of Students’ Reasoning on Pre-, Post-, and Retention Assessments 

 Students were administered three assessments that were used to identify trends in 

student reasoning as related to probability simulation. A quantitative analysis was 

completed to examine the change in student performance across the assessments and a 

qualitative analysis was conducted to identify more detailed trends in student strategies in 

the various simulation components. The quantitative analysis revealed a significant 

increase in student performance following the whole-class teaching experiment. 

Furthermore, student performance was more consistent on both the post- and retention 

assessments. The qualitative analysis of the assessments uncovered trends in student 

reasoning that supported the quantitative findings. On the preassessments, students used a 

vast array of invalid and valid reasoning strategies on each of the simulation components. 

By way of contrast, student reasoning on the post- and retention assessments was not 

only more consistent but typically more valid than on the preassessments. 
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Students’ Reasoning During the Whole-Class Teaching Experiment 

The primary focus over the 12 instructional sessions was to develop students’ 

reasoning about probability simulation. During the whole-class teaching experiment data 

collected by both the teacher-researcher and the witness drove the development and 

modification of the hypothetical learning trajectory. Thus, it was the modified 

hypothetical learning trajectory that was used to determine daily learning goals and 

activities for the subsequent instructional session. The intent of this section is to follow 

the evolution of the students’ reasoning about probability simulation, in particular their 

reasoning about each of the simulation components: assumptions, construction of a 

probability generator, construction of a trial, randomness of outcomes, calculating 

empirical probability, and repetition of trial. All referenced activities can be found in 

Appendix C. 

Assumptions 

It was not until Session 4 that students were asked specifically to consider the 

assumptions of a probability simulation problem. Prior to this, learning goals had focused 

on using and constructing probability generators and defining trials. To help students 

begin to focus on assumptions, students were explicitly asked to list the assumptions for a 

given simulation problem. Most students responded using reasoning similar to that found 

on the preassessment; that is students tended to focus on “unaccounted for extraneous 

variables” that although valid, were not considered significant to the problem. To 

illustrate, consider student responses during group work on the “Labor Force” problem 

(see Appendix C2). Dayton told her group that they were assuming “just 10 workers” 

even though this was an explicit parameter for the problem. For the same problem, Kane 
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explained to his group that they were assuming each plant does not have to have exactly 

two women. 

Occasionally students referred to assumptions that might be considered more 

significant in interpreting the simulation results. For example, while working through a 

problem on having children, Cade made the assumption there would be no twins and 

Bernard stated that the group was assuming independence of births. The class had 

discussed the concept of independence and its role in simulation, but few students 

explicitly stated this as an assumption. However, independence was implied by their 

choice of probability generator. When students generated random numbers on the 

calculator, the numbers are generated independently of each other. It is unclear whether 

any students made this connection. Additionally, there was little evidence of student 

discussion about the role of independence except when explicitly asked. 

Students seldom referred to assumptions in a simulation process unless 

specifically asked. When assumptions were noted, they were often of a more trivial 

nature and part of the problem parameters. Yet, by the design of their probability 

generator, students implicitly assumed independence of outcomes, albeit unknowingly. 

Construction of the Probability Generator 

 In Session 1 of the whole-class teaching experiment, students were given the 

“Counting Successes” activity (see Appendix C1). In this activity students used a 

simulation to determine whether one pays $0 or $1 for a cola worth $0.75. The objective 

of the problem was to eliminate the need for change. Students were given the assignment 

of digits for the probability generator, and they used a random number table, which had 

been used prior to the whole-class teaching experiment, to conduct the simulation. 
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Following the activity the teacher-researcher discussed with the students how the 

calculator could be used to generate random numbers. 

 The students quickly adopted the calculator’s random number generator as the 

preferred probability generator for simulation problems. By Session 2 of the whole-class 

teaching experiment, most students were able to construct a valid probability generator 

using the calculator. Bernard’s strategy was typical of most students. When asked to 

simulate randomly answering a five-question true/false test, Bernard told his group “1 is 

true and 2 is false” indicating there was an equal chance of answering either true or false 

for each question, and that he would use his calculator to randomly generate 1’s and 2’s. 

The concept of equivalent probability generators proved to be slightly problematic 

for some students. A few students struggled with making the one-to-one correspondence 

between the probabilities in the problem and the probability generator. The following 

dialog, taken from Session 3, illustrates the difficulties that some of these students had. 

Bernard and his group members explained to Dayton why two probability generators 

were the same. Students were working on simulating an 80% free throw basketball 

shooter. Cade began by explaining he would use the integers from 1 to 8 to represent the 

probability of making a shot. 

Dayton:  No, 7 [meaning use the integers 1 to 7]. 

Cade:  No, 8. 

Dayton:  But then we should use 0 to 7. 

Bernard:  You can do 0 to 7 or 1 to 8. 

Cade:  You need ten numbers so . . . [Cade writes down the 
numbers]. On the calculator you can do 1 to 10, which is 
the same thing as 0 to 9 on the [random number] table. 
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Dayton:  Yea, it’s the same thing. 

This group had a similar discussion the next day when Cade chose to use the integers 1 

and 2 to represent the probability of having a boy or a girl. Lacey argued that the book 

had assigned the numbers 0 to 4 for a boy and 5 to 9 for a girl. Bernard and Cade 

explained to her these were “the same thing” meaning they were equivalent probability 

generators. Lacey’s questioning of her peers’ choice of random digits for the probability 

generator may have been an indicator of a fragile understanding of proportions. In other 

words, Lacey may not have immediately recognized the equivalence of the two 

probability generators because she did not see they were proportionally the same. As the 

following excerpt shows, Dayton’s earlier problem with equivalent probability generators 

may also have resulted from problems with proportions. In designing a simulation for the 

“Women Working” problem, Dayton questioned Bernard’s assignment of integers. 

Bernard:  You need to have 0 to 6 be men and 7, 8, 9 be women. 

Dayton:  Why? 

Bernard:  Because 30% are women. 

Dayton:  Why wouldn’t you just do 8, 9 because they’re only taking 
2 women? 

 
Lacey:  Because we’re dealing with 30%. That’s the proportion we 

want. 
 
These exchanges between the students support the analysis of the assessments. 

Recall that some of the students had struggled on the preassessment with proportions, and 

Dayton was one of these students. However, as the post- and retention assessments 

indicate, invalid reasoning related to proportions was not found in later instructional 
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sessions. Although these exchanges between students may have helped some students, 

like Dayton, reflect on their reasoning about proportions, it is unclear what the exact 

nature of any change in proportional reasoning may have been. 

Up until the end of the whole-class teaching experiment, the simulation problems 

involved independent outcomes. However, during Session 11, students were given the 

“Pay Your Bill” problem (see Appendix C3) in which the outcomes were not 

independent. In this problem, “Tom” is collecting $5 for delivery of the paper for a week 

from Mr. Bernoulli. Mr. Bernoulli offers Tom a choice of either paying Tom his $5 or 

letting Tom reach into a bag containing five $1 bills and one $10 bill and drawing two 

bills. Students were asked to design a simulation for this problem. Initially, students 

struggled with creating the probability generator for this situation. The following group’s 

conversation typified the difficulty students had with this particular problem. 

Ugo: 1 to 5 equals $1, 6 equals $10. Randint(1, 6, 2). We’ll do 
this 20 times. Got $2, $2, $11. [Recall that Randint(1, 6, 2) 
will generate two random integers from 1 to 6, inclusive.] 

 
[Ike begins to question the outcomes and rereads the problem for clarification.] 
 
Ugo: Do you put the dollar back in? 

Ike: It doesn’t say. 

Sadie: If you put it back in, they’d be drawing the same thing. 

Ike: The highest amount is $11. 

Ugo: I say put it back in. 

[They ask the teacher if they should put the bill back in, and she discusses the 
problem with them.] 
 
Sadie:  One person do randint (1, 6) and another person do randint (1, 5). 
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Ugo: If he picks a $10, he gets $11 no matter what. If I get 6 on my 
calculator, then he gets $11. 

 
[Ugo uses his calculator to generate the first number and explains to Mai her role 
in generating the second number.] 
 
Mai: Why am I doing the calculator? I’ll always get $1. 
 
Ugo: No. If you get a 5, then it’s $11 because a 5 is $10 [For the second 

calculator, numbers 1 through 4 would represent drawing $1 and 
the number 5 would represent drawing $10.] 

 
Most groups displayed similar type reasoning in that they used either two 

calculators to generate a valid trial or they used one calculator twice to generate two 

outcomes that combined to form a valid trial. 

From the beginning, students had little difficulty constructing valid probability 

generators. The preferred probability generator proved to be the random number 

generator on the graphing calculator, which students quickly became adept at using. 

Furthermore, students had little difficulty in constructing a valid probability generator for 

simulation problems that involved dependent events even though all problems prior to 

that point had involved only independent events. 

Construction of a Valid Trial 

When asked to construct a probability simulation on the preassessment, about half 

of the students were able to construct a valid two-dimensional probability trial. Of those 

students who did not construct a valid trial, most had constructed a one-dimensional trial. 

Therefore, the activity used on the first session of the whole-class teaching experiment 

was purposefully chosen to have a one-dimensional trial. Once students had worked 

through a couple of simulation problems involving one-dimensional trials, students were 

given multi-dimensional trial simulation problems, starting with Session 2. 
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During Session 2, students were asked to simulate randomly answering a five-

question true/false test. Overall, students made an easy transition from a one-dimensional 

problem to one that was multi-dimensional. The exchange between Bernard and Cade 

illustrates how easily most students made this modification. Bernard told the group, “1 is 

true, 2 false.” Cade responded, “”We’ll do 5 times.” Working in tandem, Bernard 

assigned the random numbers for the probability generator (1 for true and 2 for false) and 

Cade determined what the trial would look like (5 outcomes representing the 5 questions 

on the test). One group, however, recorded their outcomes as one-dimensional outcomes. 

Ondrea: 1 is true and 2 is false and you record it. 

Ethan: It’s as easy as that. 

Thor: 1 correct and 2 incorrect? 

Ondrea: 1 true, 2 false. 

[Teacher approaches and asks group about their simulation.] 

Ondrea: 1 is wrong, 2 is right. 

Ethan: We both got 25. 

Teacher: I’m confused. What did you do? 

[Ondrea shows teacher her calculator screen.] 

Teacher: What does your list represent? 

Ondrea: The test. 

Tasha: Your test has only 5 questions, not 50. 

Ondrea: Thor and I did this yesterday. We combined everything 
instead of 10 sets of 5. 
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Ethan: We have to do this 10 times [meaning 10 trials]. 
 
[Teacher discusses with the group how the calculator can be used to generate the 
desired trial.] 
 

In their attempt to simplify the recording of outcomes, Ondrea and Thor seemed unaware 

that their recorded outcomes did not accurately reflect the problem situation of simulating 

a five-question test; that is, a situation that involved ordered quintuples. After further 

discussion, the students changed their outcomes to replicate the outcomes of a five-

question test. Students were not seen to combine outcomes in a manner similar to that of 

Thor and Ondrea’s in any of the remaining teaching episodes. 

Accepted Randomness of Outcomes 

 The concept of randomness is central to probability and by natural extension to 

the study of statistics. Therefore, how students accepted the random outcomes of a 

probability simulation was relevant to this study. The preassessment revealed that 10 

students had exhibited the representativeness heuristic in their reasoning about the 

outcomes of the simulation. In spite of indications of representativeness on the 

preassessment, no evidence of this was found during the whole-class teaching 

experiment. Most students seemed accepting of the outcomes of their simulations. When 

simulating the true/false test, students would joke with each other that they had received a 

“perfect score” or that they had missed every question. They seemed to understand that 

all outcomes were possible, as some students would repeat the simulation to see how 

many perfect scores they could get. 

This apparent discrepancy between the preassessment and instructional episodes 

may be partially attributed to the group structure of the classroom. In other words, 
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students who exhibited representativeness on the preassessment may have taken fewer 

opportunities to share their thinking in a group setting. Furthermore, the 

representativeness heuristic appeared on the evaluation task of the preassessment where 

students were provided with contrived outcomes intended to help reveal misconceptions. 

In the classroom, students generated their own outcomes. Thus, students may have given 

more credence to their outcomes than those given to them in the assessments or, student-

generated outcomes may have not produced “unexpected” results. That is, student-

generated outcomes may have reflected the probabilities given in the problem, whereby 

students were not faced with a situation where the representativeness heuristic would be 

applied. 

 In anticipation of students struggling with the concept of randomness, the 

“Randomly Generated Outcomes” activity (see Appendix C4) was done during Session 5 

of the teaching experiment. In this activity, students were presented with different strings 

of outcomes resulting from tossing a coin 50 times. The outcomes were generated either 

by students in an earlier class who were trying to simulate random outcomes or the string 

of outcomes was actually generated using the random-number generator on the 

calculator. A string of outcomes was presented and students were asked whether the 

string was student or calculator-generated. Thor began by arguing that if the string were 

random (calculator-generated) then HHHHH would not appear. While some of the 

students agreed with Thor, others disagreed. Breanna reasoned that because of 

randomness, calculator-generated strings could be generated by students and visa-a-versa 

so she did not believe it was a worthwhile activity. At this point, students had not 

resolved the issue of what might or might not be a string of random outcomes. 
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During a whole-class discussion later that day, some of the students began to 

make a distinction between randomness as it related to a single event and the 

extrapolation of patterns over the long run. In a problem assigned later that period, 

students were asked to record their longest runs when simulating 20 shots by an 80% free 

throw shooter. During a class discussion, the teacher-researcher noted that in 14 sets of 

recorded trials the basketball player never shot exactly 2 baskets. The following is an 

excerpt from that discussion. 

Breanna: No, he’s an 80% shooter. 

Teacher: Would it be surprising if he shot 20 for 20? 

Class: No. 

Breanna: It would be more surprising if he shot only 2. 

Teacher: Do you think it is more likely for him in one game to shoot 
2 out of 20 if he’s an 80% shooter or more likely for him 
over 20 games to average 5 out of 20. 

 
Kane: It’s more likely for the one [game of] 2. 

Class: Yea. 

Mai: His average is 80% so they’re looking at a long period of 
time, and if he has a bad game, it’s going to average out. 

 
Makaila: If you shot 5 out of 20 for 20 games, you have to have an 

average of 80%. [Therefore, it is unlikely for an 80% free 
throw shooter to shoot 5 baskets out of 20 for 20 games.] 

 
Teacher: So if I change this to 5 games . . . [an 80% shooter to 

average 5 out of 20 shots over 5 games.] 
 
Mai: Yea, that’s different. Five games is not that many. 
 

In this conversation, students seemed aware that single events or short runs were more 

likely to contain unusual or unexpected results than long runs. Furthermore, students 
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were able to recognize the uncertainness in the short term, yet the long-term behavior 

could be predicted. In particular, students were generally not surprised by the outcomes 

of simulation problems. In this case Mai expressed a more developed understanding 

about randomness and its relation to long-term behavior. It is interesting to observe that 

Mai was a basketball player and the context of the problem may have contributed to her 

reasoning. 

Calculated Empirical Probability 

 The preassessment demonstrated that although some students experienced 

difficulty with the two-dimensional nature of the problems, they were generally able to 

use the outcomes to calculate an empirical probability. During Session 3, students were 

asked to simulate a problem involving an 80% free throw basketball player and then use 

the results to determine the probability that she missed at least 3 shots in 10 throws. 

Although, most students had little difficulty calculating the probability, in a whole-class 

discussion, Breanna specifically asked, “How do you use your results to determine the 

probability?” Cade explained how one counts the number of three or more missed shots 

out of total trials. Up until this point, students had been asked general questions about 

what results they would “expect,” but had not been asked to use their results to determine 

the probability of an event. Breanna’s question indicated that some students were 

unaware of how to transform their simulated results into an empirical probability. Cade’s 

explanation may have helped students who were unsure of how to calculate this 

probability. Following this incident, students did not exhibit any difficulty in determining 

empirical probabilities. 
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One difficulty a student had in calculating the probability was related to her 

ability to make sense of the target outcome. The discussion from Cade’s group provided 

some insight into Dayton’s struggle. Referring back to the basketball free throw shooter 

during Session 3, students were asked to determine the probability that the basketball 

player makes at least 8 free throws out of 10 attempts if she is an 80% free throw shooter. 

Cade’s group had been conducting the simulation and recording their outcomes. Recall 

from an earlier discussion that Cade had convinced Dayton that a trial consisted of 10 

numbers representing the 10 shots. 

Dayton: [Reading the problem to the group]. “What’s the 
probability she makes more than 8?” 

 
Bernard: That’s where we take our 20 [trials]. 
 
Dayton: I don’t understand how you do this. 
 
Cade: You add up the number of times you make 8 or more . . . 
 
Dayton: And take it out of 20. 
 

As Cade interpreted it, Dayton’s difficulty seemed to be connected to her ability to 

understand what the target outcomes were for the problem. Once the target outcomes had 

been identified and counted, Dayton knew the probability was determined by taking the 

number of target outcomes out of the total number of simulated trials. 

 In general, students did not have difficulty in taking their simulation outcomes 

and using them to determine the empirical probability, at least from the analysis of 

whole-class and individual group discussions. 
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Repetition of Trial 

 An integral part of a simulation process is to repeat the trial many times (Yates et 

al., 1999). Therefore, it was of particular interest to determine how students reasoned 

about the number of trials they considered sufficient, and how this might have changed 

during the whole-class teaching experiment. Prior to the whole-class teaching 

experiment, almost 50% of the students said that increasing the number of trials in a 

simulation would do little if anything to change the empirical probability. 

 There was generally little discussion about how many trials should be done for a 

given simulation, and in the end, students seemed to agree that around 20 trials was 

sufficient. This was in spite of evidence to suggest that in later instructional sessions 

students believed that more trials would provide more accurate data. In most cases, 

students were not told how many trials to conduct for a particular simulation. Therefore, 

it was up to them to determine how many trials would be appropriate or sufficient. For 

much of the whole-class teaching experiment, students tended to do between 10 and 20 

trials per person in the group. They would then often combine their outcomes before 

determining the probability for the simulation problem. 

During the third instructional session as students were determining the number of 

trials to conduct, Mai said to her group members “We should do a bunch, maybe 10 

times. The group members then decided to each do 10 trials and combine their results. 

Mai and her group members did not discuss why 10 trials were satisfactory. In fact, when 

left to work in their groups, students seldom discussed why a particular number of trials 

were appropriate. However, Cade’s group was an exception. During the same session, 

Cade suggested to his group that they do 50 sets of data because “I think the more sets 
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you use, the more accurate it is until a certain point. Then it just gets to be the same 

thing.” Cade was able to articulate how a large number of trials affected the probability of 

a simulation problem. Cade was one of the target students who had been interviewed 

prior to the whole-class teaching experiment, and his suggestion to the group to do more 

trials may be attributed to the interview questions that focused on this particular 

simulation process. 

On the following day while working in groups, the teacher asked Thor how many 

trials he should do. Thor responded, “About 4 million. It depends, until it [the empirical 

probability] stops changing.” Although some students understood the implications of 

repeated trials, few verbalized this type of reasoning. Informed by student responses, the 

teacher-researcher and witness modified the hypothetical learning trajectory to include 

theoretical probability. 

 Theoretical probability provides students with concepts that help them develop an 

understanding of the purpose of repeated trials in a simulation process. Therefore, the 

focus of instruction for Session 6 was theoretical probability. After students had worked 

through some problems involving theoretical probability, they were asked to work on 

simulation problems. The teacher-researcher facilitated a discussion on how theoretical 

probability related to simulation. At the same time, she used the overhead graphing 

calculator to reconstruct the simulation problem students had just completed. In this 

particular problem, students were asked to design a simulation to determine the 

probability of two out of three traffic lights being green. Students had determined that the 

theoretical probability was 37.5% of getting two green lights. 

Teacher: [Simulating on overhead.] How many trials should I do? 
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Ugo: 30 something. 

[Teacher did 30 trials and empirical probability for problem was 52%.] 

Teacher: Would it [the results] change if I did more simulations? 

Kane: I don’t think it will affect the data. Each day you have the 
same situation. 

 
Teacher: What if I’m looking over the long run? 

[Students did not respond, so teacher did more trials on overhead calculator.] 

Teacher: Any observations? Will I get to 20%? [Will the empirical 
probability approach 20%.] 

 
Sadie: If you do it a long, long time then you’ll probably get close 

to our theoretical value. 
 

 As the teacher-researcher and witness conjectured about the hypothetical learning 

trajectory for Session 9 of the whole-class teaching experiment, they felt that many 

students did not yet understand how many trials was “enough” and why many trials were 

desirable. As a result, a lesson was designed to demonstrate graphically what happened to 

the empirical probability as the number of trials was increased. The graphing calculator 

was used to simulate and collect data. The data were then used to graph the empirical 

probability against the number of trials. A whole-class discussion followed the teacher-

researcher demonstration. 

Teacher: Tell me what you can interpret about the graph. 

Ugo: The more trials that you run, the more I think accurate is 
the word I’m looking for, either accurate or precise. The 
graph fluctuates less because you have more data, and it’s 
harder to fluctuate your data points. 

 
Kane: The more data you gather, the closer you get to your 

predicted value. 
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Teacher: How many trials should I do to simulate something? 

Lacey: The more trials you do, the closer you’ll be to the estimated 
probability. 

 
Teacher: What happens when I do 500 trials?  This [referring to the 

graph] is 202 [trials]. 
 
Dayton: Flatten out. 

Teacher: You don’t think it’s going to peak any more? 

Dayton: Nope 

Breanna: I don’t think 20 trials would be wrong as long as you say 
you did 20 trials. 

 
Teacher: So if you were trying to simulate the spread of a disease, 20 

trials would be enough? 
 
Breanna: I think doing 20 trials isn’t necessarily wrong, but of course 

more trials would be better. It’ll give you a more accurate 
number [empirical probability]. 

 
 According to the above dialog, the students had developed a rich, conceptual 

understanding of how the number of trials in a simulation affects the empirical 

probability. Students also seemed to make a connection between the behavior of the 

empirical probability and the increased number of trials. The strength of this connection 

was borne out in the post- and retention assessments where students referred to the 

“target” probability value by many different terms, such as the “predicted value,” the 

“estimated probability,” or a “more accurate number.” 

 Even though the discussion of repeated trials seemed to have been resolved by 

Session 9, students continued to struggle with how many trials were enough. As Breanna 

argued, “I think doing 20 trials isn’t necessarily wrong, but of course more trials would 
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be better.” Students ultimately decided that while many trials was ideal, for classroom 

purposes 20 trials should be enough. 

Summary of Students’ Reasoning During the Whole-Class Teaching Experiment

 The reasoning exhibited by students in the classroom during the whole-class 

teaching experiment supported the findings of the assessments in that students were able 

to construct valid probability generators and trials for simulation problems. Student 

difficulties related to the construction of the probability generator were connected to the 

concept of proportionality. After some discussion, students were able to use their 

simulated results to determine an empirical probability. Finally, student reasoning during 

the whole-class teaching experiment concerning the number of trials mirrored student 

reasoning found on the assessments. That is, students would complete approximately 10 

to 20 trials but would reason trials should be repeated until the empirical probability 

approaches the theoretical probability. It should be noted that the judgment heuristic of 

representativeness did not appear during the whole-class teaching experiment. The 

analysis of the classroom dialogs provided insight into the evolution of some of the 

reasoning strategies, and the role that group and whole-class discussion played in 

affecting change in students’ reasoning strategies. 

The Role of Technology

 In its Advanced Placement Statistics curriculum, the College Board (2000) 

mandates that students have access to technology. Moreover, technology lends itself to 

simulation in that it enables students to conduct many trials in a relatively short period of 

time. Thus, one of the research questions this study sought to address was how 

technology impacted students’ reasoning about probability simulation. 
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 Because of time constraints and limited availability to computer labs, technology 

was confined to the graphing calculator. As mentioned previously, students were required 

to own a graphing calculator and most students had a Texas Instrument’s TI-83 graphing 

calculator. However, one student in the class owned a TI-86 graphing calculator that had 

significantly different menu options than the TI-83. It is also noteworthy that prior to the 

whole-class teaching experiment, students had been using a graphing calculator for at 

least two or three years in other mathematics and science classes. Therefore, students 

were comfortable with the technology. Nonetheless, it became evident that some students 

knew more about the technology than others and certain students were quicker to pick up 

the newly learned features. 

 Table 12 presents a summary of the ways in which technology impacted the 

learning of the students during the whole-class teaching experiment. An elaboration of 

each category follows the table. 

 

Table 12 

The Impact of Technology 

  
 Impact 
   

In class, students preferred the calculator as a probability generator to other devices 
Calculator syntax focused students on simulation components 
Calculator provided a transparent medium for dealing with dependent events 
Programming capabilities of the calculator had limited value 
Calculator provided a common language to discuss simulation 
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Preferred Calculator as Probability Generator Over Other Devices 

 During classroom instruction, students exhibited a preference for the calculator as 

the probability generator over other devices, such as spinners, chips, etc. In Session 1 of 

the whole-class teaching experiment, students completed a simulation activity using a 

random number table. After discussing the activity and comparing results, the teacher-

researcher introduced students to the random number generating feature of the calculator. 

By all indications, most students had not seen or used this feature before this time. 

Students seemed to immediately adopt the random number generating feature of the 

calculator as their preferred probability generator. When spinners were brought in the 

following day, the students discussed valid ways to use the spinners for simulation 

problems, but preferred the efficiency of the calculator. 

 The post- and retention assessments further support the willingness of the students 

to use the calculator to simulate problems. On the preassessment none of the 21 students 

used a calculator to design their simulation, however, in later assessments about 50% of 

students described a simulation design that involved using the calculator to randomly 

generate the outcomes. In spite of the focus on using the calculator to do simulations in 

the classroom, over half of the students chose a valid non-calculator method of simulation 

on the post- and retention assessments. These results indicate the mental flexibility the 

students demonstrated in constructing valid probability generators using both technology 

and other random generators, such as chips, balls, and spinners. 

Calculator Syntax Focused Students on Simulation Components 

A second impact of technology was that the calculator syntax helped to focus the 

students on two of the simulation components, namely the assignment of random digits 
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and the trial. Students became very skilled at using the calculator to simulate problems. 

Early on in the whole-class teaching experiment, students were rattling off such lingo as 

randint (1, 2, 5) to simulate a woman having 5 children, and everyone understood that 

this jargon referred to the assignment of the numbers 1 for boy, 2 for girl (or visa versa), 

and the five represented the 5 children. The calculator syntax focused the students on two 

of the components of simulation: assigning random digits to match the probabilities of 

the problem and defining the trial. Therefore, the graphing calculator helped students to 

think about the trial. That is, in entering the syntax into their calculator to generate the 

random numbers, students had to first be able to assign random digits appropriately. Then 

they had to be able to determine how many outcomes were required for a valid trial. So 

by using the calculator to simulate problems, students had lots of practice in both 

assigning the digits to match the probability of the problem and in defining the trial; in 

essence, their calculator-generated representations made the parameters of simulation 

explicit. 

Calculator Provided a Transparent Medium for Dealing with Dependent Events

 Students’ proficiency in using the calculator to simulate problems enabled 

students to view the calculator as a transparent medium for dealing with dependent 

events. From Session 2 of the whole-class teaching experiment, students used their 

calculators to run simulations by generating strings of random numbers. Up until the final 

session, simulation problems involved independent events. In other words, the probability 

for one outcome was not affected by the previous outcome. During Session 12, students 

were given the “Pay Your Bill” problem that involved pulling two bills out of a bag (see 

Appendix C3). The second bill drawn was not independent of the first bill drawn. Thus, 
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the syntax students had been using to simulate problems on the calculator was no longer 

valid. To enter something like RandInt (1, 6, 2) would assume that the second bill drawn 

had the same chance of being chosen as the first bill drawn. Even though a couple of 

groups faltered initially, the groups ultimately designed valid simulations. Ike shared with 

the class how his group handled the problem. 

The actual amount of money we’re going to need is $10 or $11. We, on one 
calculator, got a random number from 1 to 6, and then, if we got a 6 we 
automatically knew we had $11 because we had 6 equal to $10 bill. And if we got 
any other number, we got a second calculator to make this go faster and had a 
randint 1 through 5, 5 being a $10 bill. So if we got say a 2 on the first calculator 
and go to a second calculator and got a 5, we got $11. But if we got a 3 on the 
second calculator then it would just be $2.  
 

Ike’s group realized that they would have to alter how they usually designed their 

simulation process, and explained how they used two calculators to design a valid 

probability simulation. In other words, the calculator provided a transparent medium for 

dealing with dependent events. Students in this group were able to make the connection 

between the context of the problem to the use of two calculators to reflect the dependent 

events in the problem. 

Programming Capabilities of the Calculator Had Limited Value 

 In an attempt to utilize the programming capabilities of the TI-83 calculator, it 

was determined that these capabilities had limited value to the students. Because of the 

programming capabilities of the calculator, during Session 4 of the whole-class teaching 

experiment, students were given an activity that guided them through a programming 

exercise. The purpose of the program was to run a defined simulation, calculate the 

empirical probability for all accumulated trials, and display both the outcomes and the 

updated probability. Once the initial programming was completed, the students needed 
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only to hit the enter key to update the outcomes and display the new probability. In this 

manner, as students completed more trials, they could see the probability settle towards a 

particular value. Although students appreciated the effectiveness of the program, 

generally they were frustrated with the time-consuming nature of the programming. 

Additionally, many students had done little if any programming previously and did not 

try to make sense of what the commands were doing. According to Kane, “By the time 

you press all the buttons, you could have it done.” Evan was particularly frustrated. He 

was the only student to own a TI-86, and no one else in the class, including the teacher-

researcher, was able to help him translate calculator commands for his particular 

calculator. Evan was able to use his calculator for generating random numbers, like that 

for the TI-83. The activity for programming simulations on the TI-83 seemed to have 

limited value for instructional purposes because of the frustration experienced by students 

in programming their calculators. Some students, though, did use the program to run 

many simulations and commented on the results. Oliver ran his simulation “195 times,” 

and Thor told his group, “I’ve done a lot. It’s giving me the probability overall.” Since 

students had limited themselves to about 40 trials per simulation, they did not readily see 

the advantages in automation that programming could offer if, for example, 500 or more 

trials were completed.  

Calculator Provided a Common Language to Discuss Simulation 

 A final impact of technology on how students reasoned about probability 

simulation was that the calculator provided students with a common language with which 

to discuss probability simulation. Recall that one way to simulate a problem is to enter 

“RandInt (1, 2, 10).” This calculator command will randomly generate 10 integer values 
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of 1 or 2. Using the syntax of the calculator, students would use calculator-speak to 

discuss their simulation designs with one another. For example, in simulating 20 shots by 

an 80% free-throw shooter, Breanna told her group that she was doing “randint 0, 9, 20.” 

Although Kane asked Breanna for an explanation of what her directions meant, Makaila 

was able to translate Breanna’s abbreviated calculator-speak into directions of how to use 

the calculator to simulate the problem, and at the same time, Makaila also correctly 

interpreted Breanna’s numbers for Kane. Other students also referred to this calculator-

speak to explain their simulations to their classmates. 

In summary, technology influenced how students reasoned about probability 

simulation in a number of ways. Prior to the whole-class teaching experiment, students 

had not used the random number generator feature on the calculator. However, once they 

were shown how to use it, they embraced its use for the remainder of the teaching 

experiment. Furthermore, students prior familiarity and comfort with the technology 

extended into this unit. However, the concentrated use of the calculator in the classroom 

did not hinder students using other valid probability generators on assessments. In 

general, students found the calculator to be the efficient and easy device to use for 

probability simulations. In spite of this, students struggled with the programming 

capabilities of the calculator. However, this struggle could be partially attributed to the 

lack of classroom time devoted to programming. In an instructional environment, the 

calculator proved to the preferred probability generator, and the number of students who 

used the calculator to create simulations increased from the preassessment to the post- 

and retention assessments. The calculator was also found to focus students on the 

components of a simulation process as well as provide a transparent medium for 
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simulating dependent events. Finally, the use of the calculator provided students with a 

common language with which to discuss their simulation designs. 

Qualitative Analysis of Students’ Beliefs 

 Beliefs held by students can influence how they reason about probability 

simulation. In other words, reasoning and beliefs together determine how a student 

approaches and thinks about problems. Thus, a goal of this study was to examine the 

beliefs students exhibited as they reasoned about probability simulation. As in the case of 

students’ reasoning, multiple sources provided data of students’ beliefs about probability 

simulation: (a) pre-, post-, and retention assessments; (b) audio and videotaped 

instructional sessions; and (c) teacher-researcher and witness field notes. Schoenfeld’s 

(1985) definition combined with other research about beliefs (Fischbein & Gazit, 1984; 

Fischbein et al., 1991; Fischbein & Schnarch, 1997; Garfield & Ahlgren, 1988; Piaget & 

Inhelder, 1975; Shaughnessy, 1992; Zimmermann & Jones, 2002) guided the 

identification and analysis of students’ belief about probability simulation. More 

specifically, the analysis of beliefs was guided by codes like the following: a student said 

they “believed,” a student responded to a question that asked what they believed, or a 

student added an afterthought to their response that reflected a disposition. 

The qualitative analysis of students’ belief has been separated into two sections. 

The first section contains a summary of the analysis of student beliefs that were revealed 

predominately in the assessments with supporting evidence from instructional sessions. 

The second section summarizes student beliefs that were unique to the classroom and not 

necessarily found on the written assessments. 
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Students’ Beliefs on Pre-, Post-, and Retention Assessments 

Table 13 contains a summary of the beliefs students expressed during the various 

assessments. It also shows the number of students found to hold each belief. These beliefs 

have been categorized as either helpful or problematic. Helpful beliefs are considered to 

be potentially beneficial in learning because they can be linked to a normative view of 

simulation. Problematic beliefs, on the other hand, may constrain students from learning 

various aspects of simulation because they incorporate misconceptions that are contrary 

to a normative view of the simulation process. 

Helpful Beliefs on the Pre-, Post-, and Retention Assessments 

 Students’ helpful beliefs were diverse and these beliefs were held to varying 

degrees. Most of the helpful beliefs identified in the assessments were related to trials in a 

simulation process. Generally, students believed the probability generator should 

correspond to the probabilities in the problem. Other helpful beliefs were related to 

increasing the number of trials and about assumptions in a simulation problem. 

Inherent assumptions in a simulation model. Students demonstrated the belief that 

assumptions were inherent in a simulation model. The number of students who held this 

belief increased from the preassessment to the retention assessment. Of particular 

interest, though, was how beliefs about the nature of the assumptions changed across 

assessments. The beliefs about assumptions initially held by students were more 

idiosyncratic than those exhibited by students after the whole-class teaching experiment. 
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Table 13 

Student Beliefs by Assessment 

  
   Number of Students 
     
 Belief Pre- Post- Retention  

Helpful beliefs 
 Inherent assumptions in simulation model 8 8 15 
 Probability generator should correspond 18 21 21 
 to given probabilities 
 Number of trials (n) that should be simulated 

• n ≤ 10 6 1 0 
• 10 < n < 100 8 3 8 
• n ≥ 100 4 15 10 
• Other 3 2 3 

 Context influences number of trials 0 5 0 
 Increased trials make empirical probability  7 16 15 
 more “accurate” 
 
Problematic belief 
 Probability generator should not correspond 2 0 0 
  to the given probabilities 
 Representativeness 10 3 0 
 Outcome approach 2 0 0 
 
 

 Of the 8 students who held the belief that assumptions were part of the simulation 

process on the preassessment, 7 expressed some type of idiosyncratic assumption, similar 

to Lacey’s assumptions that were discussed previously. Recall that Lacey assumed that 

the situation would change according to the season, day, and so on. Although the number 

of students who held the belief that assumptions were part of simulation remained at 8 for 

the post-assessment, the assumptions students referred to changed in nature. Assumptions 

were less idiosyncratic and related more to the mechanics of the simulation process, such 

as the assumption of independence of events and the replacement of a drawn chip. 
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Breanna’s response on the post-assessment was typical of students who noted that 

independence of events was assumed as part of the simulation: “Lora must take note of 

the fact that she is assuming one bat is independent towards the 2nd bat of Beth. 

Therefore, Lora assumes that each time Beth goes up to bat she will always have a 30% 

chance one will get onto base at each bat.” At the time of the retention assessment, 15 of 

the 21 students held to some degree the belief that assumptions were a part of the 

simulation process, and all explicit assumptions were related to independence and 

replacement. 

Probability generator should correspond to given probabilities. A strong belief 

that appeared even before the whole-class teaching experiment was that the probability 

generator should reflect the probabilities that were provided in the contextual problem. 

On the pre-assessment 18 of the 21 students held this belief. According to their responses, 

these students either explicitly or tacitly believed the simulation was valid because the 

probability generator matched the probabilities of the problem. Makaila’s response to the 

preassessment pizza problem exemplified this belief: “Yes [the simulation is valid], 

because he took each ‘order’ with the same probability 6:10 for meat and 4:10 for 

without meat. This means that the data should accurately show how probable two meat 

pizza orders are.” Makaila determined the probability generator was valid because she 

made a one-to-one correspondence between the probability generator of chips and the 

probability stated in the problem. 

Number of trials that should be simulated. Student responses to the question “how 

many times would you do the simulation” provided insight into students’ beliefs about 

the number of trials needed for a simulation process. As Table 13 reveals, the number of 
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trials students believed should be simulated increased substantially from the 

preassessment to the post-assessment. Before the whole-class teaching experiment, 14 

students expressed the belief that less than 100 trials was appropriate and only 4 of the 

students believed that more than 100 trials should be completed. On the post-assessment, 

these numbers were reversed. More specifically, 4 students held the belief that less than 

100 trials on the post-assessment was satisfactory, whereas 15 students believed they 

should do more than 100 trials. 

Two of the students whose beliefs about the number of trials were classified as 

“other” on the preassessment had designed their simulation to actually listen to the radio 

and both said they would do this for a month. The third student when asked how many 

times he would repeat the simulation process answered “many, many times.”  Students’ 

“other” responses on the post- and retention assessments referred to non-numeric 

answers. That is, these students believed that trials should be repeated until the 

probability settled around a particular value. More specifically, these students seemed to 

hold the belief that the more trials one did, the more accurate or better the results. This 

belief was also reflected in the responses of students who said they would do more than 

100 trials. Thor’s response typified the reasoning of these students, “I would perform the 

simulation 100’s of times to acquire a good estimate of the actual [probability].” 

Context influences number of trials. Students in this group students believed the 

context of the problem directly influenced how many trials one should do. This belief 

was identified in students who justified the number of trials they would do by referring to 

the context of the problem. Interestingly, this belief only appeared on the post-

assessment. When students were asked how many trials they should do, 5 students on the 
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post-assessment justified their answer by referring to the context of the problem. The 

problem involved the probability of two failed engines on a space shuttle. Thus, students 

seemed to believe that precision was especially critical. As Thor explained when asked 

how many simulations he would do, “As many as possible. This is a space shuttle. Lives 

depend on this value. You want it to be accurate to the nth degree.”  

Increased trials will make empirical probability more “accurate.” The final helpful 

belief identified on the assessments was the belief that increasing the number of trials will 

make the empirical probability more precise, or as many students stated, more “accurate.” 

Prior to the whole-class teaching experiment, one-third of the students held this belief, 

and on the post- and retention assessments, the number of students holding this belief 

more than doubled. Other students believed that eventually the probability would level 

off at some value or it would fluctuate less. Basically, all of these beliefs reflect the 

disposition of the students that increasing the number of trials will cause the empirical 

probability to approach a theoretical value. Kacy stated this belief succinctly, “the greater 

amount of results will give a more accurate probability.” This belief was also evident 

during instructional episodes. Kane explained, “The more data you gather, the closer you 

get to your predicated value.”  

Problematic Beliefs on the Pre-, Post-, and Retention Assessments 

 The problematic beliefs that appeared on the assessments were related to 

judgment heuristics. Furthermore, these beliefs appeared predominately on the 

preassessments and did not appear on the retention assessment. The most common 

heuristic used was that of representativeness, although two students seemed to 

demonstrate the outcome approach on the preassessment. 
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 Probability generator should not correspond to given probabilities. One 

problematic belief that was identified on the assessments was the belief that the 

probability generator given in the evaluation task should not correspond to the 

probabilities stated in the problem. Two students did not believe the probability generator 

was valid for the pizza problem. Instead they believed that the chance of either type of 

pizza should be equal rather than match the probabilities given in the problem. Because 

of their belief, they suggested making the number of chips of each color the same. Kacy’s 

explanation reflected her belief, “There is a better chance that the next two pizzas will 

have meat because there are 2 more red chips which stand for meat than blue chips. So 

Stan has a higher chance pulling out red but he still had a good chance of getting blue.” 

Therefore, Kacy recommended that the probability generator be changed so that the 

number of chips of each color should be equal. In spite of the probabilities given in the 

problem, Kacy believed that there should be an equal chance of either meat or veggie 

pizza. However, on each of the post- and retention assessments all 21 students held the 

belief that the probability generator should correspond to the probabilities given in the 

problem. 

Representativeness. As shown in Table 13, the representativeness heuristic 

(Kahneman & Tversky, 1972) appeared in 10 of the 21 preassessments. Moreover, this 

belief did not appear on the retention assessment. In particular, these students held the 

belief that the outcomes of the simulation should always approximate the given 

probabilities in the problem. In the pizza problem, the outcomes of meat and no meat 

were purposefully made to equal each other. When asked if the outcomes could be used 

to determine the probability Tavi explained, “No, because your percentage probability 
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has changed and you’re left with a 50/50 chance of having the next two orders containing 

meat.” Like Tavi, the 10 students who exhibited the representativeness heuristic believed 

that the outcomes for the pizza problem should reflect the 60% and 40% for each type of 

pizza as given in the problem. 

A more subtle form of representativeness appeared in the reasoning of 3 students. 

These students demonstrated the belief that repeated trials would not substantially change 

the empirical probability because it was all related to “proportions.” Kane, Bernard, and 

Macy exhibited the representativeness heuristic in their belief that given a valid 

probability generator, simulated trials would always represent the probability of the 

problem regardless of the number of trials conducted.  

In Kane and Bernard’s case, they persisted in their beliefs that increasing the 

number of trials would have little or no effect as is evident by their responses on the 

assessments. Kane wrote on each of his three assessments that the probability would not 

change if the number of trials were increased. Kane’s response on his post-assessment 

provided a glimpse of his fragile beliefs. When he had simulated the problem, his 

outcomes resulted in an empirical probability equal to the theoretical probability for the 

problem. Kane wrote that the probability would not change significantly since his 

empirical probability was equal to the theoretical. Although Kane seemed to have some 

understanding that the empirical probability would eventually approach some number, he 

did not understand the inherent randomness of a small number of trials and its effect on 

the probability. Said another way, Kane was unaware that with a small number of trials, 

the empirical probability could fluctuate dramatically. 
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Bernard’s more detailed assessment responses reflected his belief that since the 

problem dealt with proportions the empirical probability would not change. When asked 

if the probability would change, Bernard said “No, because it is dealing with percents.” 

In his post-assessment interview, Bernard explained that he did not think the probability 

would change “because in most cases there is a theoretical probability and every time you 

do it, it gets closer and closer to that. And so it wouldn’t really matter the further you 

get.” Macy’s beliefs about the empirical probability seemed to vacillate across the three 

assessments. In the pre- and retention assessments, she believed the probability would 

become more accurate. On the post-assessment she stated that the probability would 

“probably only change a couple percents because the data will still be the same for the 

most part.” Macy, like Bernard, seemed to believe that the probability would stay the 

same regardless of the number of trials because it was all “proportional.” These students 

believed that the problem was basically about proportions, and that the empirical 

probability of a simulation would mirror or be representative of the original problem 

regardless of the number of trials. 

Outcome approach. A final problematic belief identified was that of the outcome 

approach. People who reason using the outcome approach believe they are asked to 

predict the outcome rather than determine the probability of an event (Konold et al., 

1993). In the preassessment, Ingrid and Kacy exhibited the outcome approach heuristic. 

When asked to design a simulation for the radio problem on the preassessment, Kacy 

provided a valid simulation design and Ingrid’s explanation was incomplete. However, 

both students proceeded to predict what they believed would happen. Kacy wrote, “I 

predict a 30% chance of hearing another hip-hop song.” Ingrid responded, “My guess 
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would be one hip-hop and one alternative.” The unsolicited responses of these girls may 

be an indication they held the belief that in the process of designing a simulation, they 

were also being asked to predict the outcomes of the simulation. The outcome approach 

never appeared again. 

Students’ Beliefs During and After the Whole-Class Teaching Experiment 

As described above, a variety of both helpful and problematic beliefs appeared on 

the written assessments. A number of additional beliefs became apparent during the 

analysis of the whole-class teaching experiment as well as during the target students’ 

interviews that were conducted immediately after the conclusion of the teaching 

experiment. Again, these beliefs have been categorized as either helpful or problematic. 

Helpful Beliefs During the Whole-Class Teaching Experiment 

 Three helpful beliefs appeared during the whole-class teaching experiment: (a) 

empirical probability was more reliable than theoretical; (b) number of trials was 

different for practical classroom use versus the “ideal”; and (c) the purposes of 

simulations were useful but limited. The first helpful belief discussed in this section 

appeared during the target interviews when students were asked whether empirical or 

theoretical probability was more reliable. The other two helpful beliefs appeared during 

the whole-class teaching experiment, and each of them generated intense classroom 

discussions. These beliefs were related to the role of simulations and how many trials 

were required for a simulated process. Because of the scope of questions asked on the 

assessments, none of these beliefs had appeared in the analysis of the assessments. 

 Empirical probability versus theoretical probability. One helpful belief that was 

held by students was the belief that the empirical probability was actually more reliable 
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than the theoretical probability. During the post-assessment interviews, the interviewer 

asked 3 of the 4 students a follow-up question; “Let’s say that you have theoretical 

probability and then the one from the simulation. Which one is more dependable in terms 

of describing the situation?” Of the 3 students, 2 students responded that the empirical 

probability was more reliable than the theoretical. According to Lacey, “I would say 

experimental [empirical] probability just because that is using an actual simulation as 

long as there is no bias. Just because theoretical, you know, it’s how it’s suppose to be 

but things don’t always happen. You don’t always have the ideal probability.” Bernard 

expressed similar beliefs and reasoning. This belief also appeared during the whole-class 

teaching experiment when the teacher-researcher asked the class a similar question. 

Breanna answered, “I just like simulated better. It seems more real.” 

In his response, Cade seemed to believe that collecting the actual data rather than 

simulating it would serve two purposes. One was to provide the theoretical probability, 

and the other was to provide more reliable data. Cade reasoned “. . . if you’re actually 

doing it and getting the data then it’s a lot better than trying to simulate this. I mean, for 

all I know, I could be way off than actually getting the data.” 

Lacey, Bernard, and Breanna believed that the simulation process inherently 

contained random fluctuation that would reflect a more realistic situation, unlike a 

theoretical probability that was void of random fluctuation. Cade, however, held the 

belief that there was too much randomness inherent in the simulation process. Therefore, 

a theoretical probability was more reliable. 

The number of trials: Ideal versus practical. Students who exhibited this belief felt 

there was a difference in the number of trials that should be done “ideally” if time and 
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effort were not a factor and the number of trials that could “practically” be done, say for a 

class problem. Throughout much of the whole-class teaching experiment, students 

discussed how many trials should be done for a simulation process. Toward the beginning 

of the instructional sessions, most students held the belief that between 10 and 20 trials 

was sufficient. Kane, in particular, believed that many trials were unnecessary. During 

Session 4 Kane told Dayton that he had done 10 trials, and when Dayton said she had 

done 15, Kane informed her, “it’s a waste to do 5 more” [than he had done]. This 

comment supported Kane’s beliefs on his assessments when he had stated that 

completing more trials would have little or no effect on the probabilities. 

Breanna seemed especially concerned with how many trials were needed for a 

simulation process. She held a strong belief that more trials were more accurate, but she 

seemed overly concerned about exactly how many trials was enough. During the final 

session, Breanna reasoned with the teacher-researcher: 

How can you set a number? If I were to do this and say did 50, you’d say ‘oh no, 
you didn’t do enough to actually get that number.’ I would disagree with you. I’d 
say I know I did 50 trials and this is what I got from it. You’re like saying like if 
you did 100 trials, you’re wrong from the person who did 200 trials. Not 
necessarily wrong, just not as accurate. You’re saying if you want to find a 
statistical answer you have to do as many [trials] as possible, but I don’t 
understand how someone can set that number. 
 

Breanna understood the implications of repeated trials, but her belief about the number of 

trials needed for a simulation seemed connected to how her answer would be marked. 

Breanna was concerned that her answered would be considered as incorrect because she 

completed an insufficient number of trials, in spite of the fact that a person could not 

know exactly how many trials was sufficient. After further discussion, the students 

agreed there was an ideal number of trials and a practical number of trials for classroom 
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purposes. Recall that a similar belief was found on the assessments. After the teaching 

experiment, students generally recorded between 20 and 50 trials, but when asked how 

many total trials they would do, 15 students demonstrated the belief that more than 100 

trials should be completed. 

 Beliefs about the purpose of simulations. In general, students believed that 

simulation was a useful tool. That is, they believed that simulations were considered 

helpful in providing information. However, when asked why someone would want to 

simulate an event, most student responses were limited to examples used in class; 

however one student generated an idiosyncratic response. 

 In his post-assessment interview, Cade suggested that simulations could be used 

in marketing to determine what “percentage of people are gonna use this product.” Later, 

Cade also said simulation could be used to test products. Bernard and Dayton’s answers 

were limited to examples that had appeared in class or on the assessments, such as engine 

failure and determining free throw percentages. Lacey’s interview response revealed a 

belief that simulations were used to determine a probability, however, her suggested uses 

for simulation were idiosyncratic. When asked, “If it’s everyday life when would you 

ever see yourself using simulation?” Lacey answered, “When would I use probability? 

Um, I would probably see the probability that I fall asleep before I get my homework 

done. The probability that I’ll see my friends on a weekend, or I’ll have to work on a 

Saturday.” Although Lacey’s suggestions were unlike class examples, they were 

idiosyncratic in that they contained little practical value. 

 Approximately halfway through the whole-class teaching experiment, the teacher-

researcher asked students “why do we do simulations? What’s the point?” Lacey said it 
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was “to be more accurate.” Edison suggested, “To test a theory. To see the difference 

between simulated and theoretical.” And Ondrea responded, “To make it at least as 

random as possible.” During the last session of the whole-class teaching experiment, 

Sadie said that the point of simulating an event was “to predict.” Taken together, these 

responses indicated that students were beginning to develop rudimentary beliefs about the 

purpose of simulation. That is, students were beginning to believe that a randomized 

simulation could be used to obtain data to test a theory. 

Problematic Beliefs During the Whole-Class Teaching Experiment 

 Beyond the written assessments, only one problematic belief was found during the 

instructional episodes. This was the belief that a theoretical probability could always be 

determined. The students did not seem to have any conception that determining the 

theoretical probability in some complex situations could be intractable. This belief proved 

to be very resistant to change. 

 When students discussed the number of trials required for a simulation process or 

the purpose of conducting simulations, students would often refer to the “theoretical” 

probability. Students talked about the empirical probability approaching a theoretical 

probability or that a simulation was used to verify if the results were the same as the 

theoretical probability. As Edison was quoted earlier, the purpose of doing a simulation 

was “to see the difference between simulated and theoretical.” Thus, the teacher-

researcher posed the following question to the students; “Can we always determine the 

theoretical probability?” Breanna responded, “Yes. I think so.” Many others in the class 

echoed this response. The general belief of the students was that a theoretical probability 

could always be determined. As a result of this dialog, the teacher-research and witness 
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chose to have the students engage in the “Thumbtack Activity.”  Even though this 

activity was not a simulation, but rather an actual experiment, it was chosen to help 

students see that a theoretical probability was not always possible to calculate. When 

asked how they would determine the theoretical probability of a tack landing point-

touching the floor if 10 thumbtacks in a cup were tossed onto a flat surface, Kane replied 

“use physics.” On the following day in an attempt to create a perturbation in the students’ 

beliefs that a theoretical probability could always be determined, students were presented 

with a wooden cube in which a corner had been haphazardly cut off. The exposed surface 

had been painted black. Students were again asked how the theoretical probability could 

be determined and again they said physics could be used. What then transpired was a 

whole-class discussion about the number of trials required for a simulation (discussed 

earlier) and theoretical versus simulated results. Following is an excerpt of that 

discussion: 

Ondrea: You’re shooting for doing trials to get to that 50% 
[theoretical] but you know it’s 50% so what’s the point of 
proving you’ll get it? 

 
[Some discussion has been omitted for brevity and flow of discussion.] 

Teacher: [To Ondrea] Since we can figure out the probability, why 
do we do the simulation? 

 
Ondrea: Exactly! 

Sadie: Sometimes you’re not going to know the theoretical 
probability. 

 
Breanna: Sometimes you can get the theoretical probability in 2 

trials. Why would you need 1000? 
 
Teacher: Is that the goal, to get the theoretical probability? 
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Cade: I think the point of simulation is to prove the theoretical 
probability. Like I can walk up to him and say you have a 1 
in 50 chance of dying. 

 
Teacher: Is there always a theoretical probability? 
 
Students: [Some respond “yes” and others “no.”] 
 
Teacher: Give me an example where there isn’t a theoretical 

probability. [Students do not offer any suggestions.] So 
how do you figure out the probability that someone dies 
from cancer? 

 
Cade: You can get the entire population. 
 
Teacher: That didn’t come from theoretical mathematics. 
 
Ugo: [To the class.] You have to look at the data, that’s her [the 

teacher’s] point! 
 

At the end of this last instructional session, many students continued to hang on to the 

belief that a theoretical probability could always be determined for any event. However, a 

few students were beginning to demonstrate a belief that simulated data could provide 

useful information for prediction purposes. 

Summary of Students’ Beliefs During the Whole-Class Teaching Experiment 

 Unlike student reasoning, student beliefs revealed during the whole-class teaching 

experiment differed from those beliefs exhibited on the assessments. The analysis of 

group and classroom dialog revealed that some of the beliefs evolved and transformed in 

a helpful manner. That is, students’ beliefs about empirical probability, the number of 

trials for a simulation, and the purpose of simulations changed in a manner that would be 

considered a more normative point of view. At the same time, a problematic belief was 

also revealed: a theoretical probability could always be determined. For some students, 

this belief was deep seeded and difficult to change. 



 140

Sociomathematical Norms and Classroom Mathematical Practices 

 Throughout the whole-class teaching experiment, students became quite adept at 

constructing and conducting simulation problems. In the process of learning about the 

simulation process, four sociomathematical norms arose during both the small group 

discussions and the whole-class discussions. The sociomathematical norms that emerged 

were general in nature and refer to what constituted a valid (normative) simulation or a 

valid approach to some part of the simulation process. The classroom mathematical 

practices that were identified indicate the link between sociomathematical norms and 

mathematical practices; that is for each sociomathematical norm there are a number of 

corresponding mathematical practices (Cobb, 1999). The sociomathematical norms and 

their corresponding classroom mathematical practices are summarized in Table 14. 
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Table 14 
 
Sociomathematical Norms and Classroom Practices  
 

 
 

Sociomathematical Norms 
 

Classroom Mathematical Practices 
 

 
What counts as a valid simulation 

 
• Must use a valid probability generator 
• Need to ensure a trial is valid  
• Must conduct at least 30 trials per group 
 

What counts as a valid probability 
 generator 

 

• Must have 1-1 correspondence to probabilities 
given in problem 

• Will accept equivalent probability generators 
• Will use the calculator as the mechanism for 

generating a trial 
 

What counts as a valid trial 
 
 
What counts as a sufficient number 
of trials 

• Number of outcomes in a trial must correspond 
to target question 

 
• Will combine results of 10 trials per person in 

group 
• Number of trials depends on whether we are 

dealing with an “ideal” or a “practical” situation 
 

 
 

As indicated by Table 14, a process can on one level be considered a sociomathematical 

norm and on another level be considered a classroom mathematical practice. For 

example, as students evaluated the validity of a simulation, they developed classroom 

mathematical practices about the probability generator, the trial, and conducting the 

simulation to collect data. These led to the need for new sociomathematical norms. For 

example, as soon as students adopted the practice of using a valid probability generator, 

they needed to establish a new sociomathematical norm, “what counts as a valid 
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probability generator” This generative process reveals the reflexivity between 

sociomathematical norms and classroom mathematical practices. 

What Counts as a Valid Simulation

 Beginning with Session 1, students began to ask the question “What counts as a 

valid simulation” In the “Counting Successes” activity (see Appendix C1), students were 

given detailed information to carry out the simulation process. Throughout the activity, 

students repeatedly questioned and discussed with each other the specifics of the 

simulation. For example, Dayton clarified with her group that the probability generator 

consisted of “75 or less you pay $1, greater than 75 you pay nothing.” Dayton further 

explained that one should “look at the first two of every one.” That is, using the random 

number table, use two digits to simulate the random number. Lastly, Dayton also focused 

her group on the number of trials to conduct when she asked them “How many times do 

we do it [the simulation]?” From the sociomathematical norm of “what counts as a valid 

simulation” three classroom mathematical practices emerged: (a) must use a valid 

probability generator, (b) need to ensure the trial is valid, and (c) must conduct at least 30 

trials per group. 

Classroom mathematical practices related to a valid simulation process. The first 

classroom mathematical practice that emerged was that a valid probability generator must 

be used. The practice began to appear in Session 1 as students reasoned about the validity 

of the probability generator specified in the “Counting Successes” activity. During 

Session 2, the teacher-researcher gave students two examples of probability generators 

for the “Counting Successes” problem. One probability generator was equivalent to the 

one students had been given in the original problem, but used different digits. The second 
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probability generator was incorrect. When asked if these were valid probability 

generators for the problem, students recognized the one-to-one correspondence of the 

alternative generator that was valid, and they also noted that the second probability 

generator was invalid because there was not a correspondence between the probabilities 

in the problem and the second probability generator. At this point, students were 

beginning to develop a taken-as-shared approach (Cobb, 2000) to requiring the use of a 

valid probability generator for a simulation design. During Sessions 3 and 4, isolated 

incidents appeared where a student questioned the probability generator, such as the time 

Dayton required help from her group in making sense of how to construct the probability 

generator for the basketball free throw problem. However, by Session 5, it appeared that 

the classroom mathematical practice of using a valid probability generator had become 

taken-as-shared by the students. More specifically, in the process of constructing a 

probability generator for a particular problem, students discussed the exact assignment of 

random digits, but no longer required their peers to justify why the probability generator 

was valid. 

 The second classroom mathematical practice that emerged was that it was 

necessary to ensure a trial was valid. Like the previous mathematical practice, this 

practice began to appear during Session 1. Although students had been given what 

constituted a valid trial for the “Counting Successes” activity, students discussed why it 

was appropriate for this problem. Students discussed how one 2-digit number on the 

random-number table represented buying one can of cola. Thus, the trial was one 2-digit 

number from the random-number table. The following day, students began to construct 

simulation problems that also required them to recognize a valid trial. By the end of this 
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session, they had developed the classroom mathematical practice that a valid trial was 

required for a simulation, and that a trial was valid if it corresponded to the target 

outcome or outcomes. For example, students simulated randomly answering a five-

question true/false test. While most groups determined that a trial was 5 numbers 

representing the 5 questions on the test, recall that Ondrea’s group had run their outcomes 

together in one long string. Following a whole-class discussion facilitated by the teacher-

researcher, Ondrea and her group determined that their outcomes were invalid for this 

problem and proceeded to correctly identify a valid trial. After this episode, the 

classroom mathematical practice of ensuring a valid trial for a simulation appeared to be 

taken-as-shared by the students in that they did not require each other to explain their 

choice of a trial. 

 The third classroom mathematical practice identified was that at least 30 trials per 

group must be conducted for a simulation. In the “Counting Successes” activity, students 

were asked to “purchase 60 colas.” After that first day, students were not generally told 

how many trials they should do. During the first few sessions, students would ask one 

another how many trials the other person or group was doing, and the responses varied 

from as low as 10 to as many as 30. At the same time, student groups decided to “share 

the work” by each member conducting 10 to 20 trials and combining their results as a 

group. Thus, by approximately Session 3, the classroom mathematical practice of a group 

conducting at least 30 trials for an in-class activity had emerged. It appears that this 

classroom mathematical practice became taken-as-shared without a whole-class 

discussion, but rather was determined within individual groups.   
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What Counts as a Valid Probability Generator

 Like that of the previous sociomathematical norm, the sociomathematical norm of 

“what counts as a valid probability generator” appeared during Session 1. As discussed in 

the previous section, Dayton had discussed with her group that the probability generator 

consisted of “75 or less you pay $1, greater than 75 you pay nothing.” In another group 

dialog, Ingrid explained to Edison and Tavi how the numbers were assigned for a valid 

probability generator. In spite of limited discussion about what actually constituted a 

valid probability simulation, students frequently discussed the need to use a valid 

probability generator. It seems that the class quickly recognized that there was an 

unstated norm that you must construct a valid probability generator. Three classroom 

mathematical practices emerged related to validating a probability generator. One 

mathematical practice was related to the assignment of random digits; another 

mathematical practice referred to the acceptance of equivalent probability generators; and 

a third mathematical practice involved the use of the calculator as a probability generator. 

 Classroom mathematical practices related to a valid probability generator. One 

classroom mathematical practice that emerged was that a valid probability generator 

would reflect a one-to-one correspondence to the probabilities stated in the problem. A 

probability generator was considered valid if random digits had been assigned to model 

the outcomes in the problem. This classroom mathematical practice began to emerge 

during Session 1 when reasoning through the “Counting Successes” activity. As 

discussed earlier, students helped other group members make sense of the probability 

generator by appealing to a one-to-one correspondence between random numbers from a 

random number table to the probability of paying $1 for a cola. As early as Session 2, it 
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became standard practice for the students to immediately construct the probability 

generator and share this with other group members as if to ensure the accuracy of their 

generator. If all members did not agree on a particular probability generator, a negotiating 

process took place until everyone was in agreement. This negotiation relied upon a 

matching of numbers from a random number table to corresponding numbers that 

matched the probability in the problem. The classroom mathematical practice did not 

become taken-as-shared until after the emergence of another classroom mathematical 

practice, that of acceptance of equivalent probability generators which is discussed 

below. 

The mathematical practice that equivalent probability generators were acceptable 

emerged during Sessions 3 and 4. At this time, students were still negotiating with each 

other about what constituted a valid probability generator. On an assigned homework 

problem students were to assign random digits to simulate 50% democratic and 50% 

republication. Ondrea shared that she had assigned the digits 01 to 50 democratic and 51 

to 100 republican. Breanna responded that she had used 0 to 9, assigning odd digits to 

represent democratic and even digits to represent republican. After a short discussion, 

students agreed both methods were not only valid, but their probability generators were 

also equivalent. After this point, students seemed to have taken-as-shared that equivalent 

probability generators existed and were acceptable, and at the same time, the classroom 

mathematical practice that valid probability generators required a one-to-one 

correspondence to the probabilities in the problem became taken-as-shared. 

 A third classroom mathematical practice that appeared in relation to a valid 

probability generator was the use of the graphing calculator as a tool for generating 
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random numbers. In Session 1 of the whole-class teaching experiment, the teacher-

researcher demonstrated how to use the random-number generator on the graphing 

calculator. Students immediately adopted the calculator as their preferred method of 

generating random digits. Later when spinners were discussed, students were able to 

discuss how to use them to construct valid probability generators, but given the choice 

students preferred the graphing calculators for simulation problems done in class. Thus, 

the classroom mathematical practice of using the calculator to generate trials became 

taken-as-shared as early as Session 2. 

What Counts as a Valid Trial

 The sociomathematical norm of “what counts as a valid trial” emerged during the 

first session. Even though students were given the entire simulation process from 

assignment of random numbers to what counts as a trial for the situation, students 

clarified and discussed with each other what a valid trial should look like. This 

sociomathematical norm was better illustrated in later sessions when it became necessary 

for students to construct their own trial. During Session 2, Dayton’s group clarified what 

counts as a valid trial. In this situation, the group was creating a simulation for a five-

question true/false test. 

Bernard: 1 is true, 2 is false. 
 
Cade: We’ll do 5 times [for the 5 questions]. 
 
Dayton: We’re not doing true/false. We’re doing right or wrong. 

 
In this excerpt, Dayton was clarifying that the trial did not represent what the answers to 

the questions were but rather it represented whether the outcomes were right or wrong. 
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Thus, this group was discussing the sociomathematical norm of what constituted a valid 

trial. 

 Classroom mathematical practice related to a valid trial. Students developed the 

classroom mathematical practice that the number of outcomes in a trial must correspond 

to the target question. This practice emerged in two different forms. One form of the 

mathematical practice emerged when students referred specifically to the context of the 

problem and matched the trial to the required outcomes. For example, during Session 2 

Mai explained to Oliver “each trial represents taking a test.” Similarly, Breanna defined a 

trial to her group as “consists of 10 shots.” In each case, the student was connecting the 

trial directly to the context of the problem. 

The second form of the classroom mathematical practice of matching the 

outcomes in a trial to the target question emerged when students talked about a trial in 

“calculator-speak.” Calculator-Speak occurred when students referred to a simulation 

design as randInt(1, 2, 5), meaning they would generate a string of 5 randomly generated 

ones and twos to simulate a particular problem. Some students developed this 

mathematical practice of calculator-speak approximately midway through the 

instructional sessions. Thus, for some of the students calculator-speak became a taken-as-

shared form of the classroom mathematical practice requiring students to match the 

number of outcomes on the calculator with the n-tuple required for a valid trial. However, 

even if a student used calculator-speak to refer to a trial, that student was still required to 

explain the assignment of random digits even though the number of outcomes in the trial 

was assumed by the student to be understood by other group members. This was probably 

attributable to the fact that there were equivalent ways to assign numbers for a probability 
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generator so it was necessary for students to clarify how they had assigned integers for 

their particular probability generator. Consequently, although the classroom mathematical 

practice of requiring that the number of outcomes in a trial must correspond to the target 

question emerged, how numbers were assigned for a probability generator could not be 

taken-as-shared by all students in the class. 

What Counts as a Sufficient Number of Trials

 The sociomathematical norm of “what counts as a sufficient number of trials” 

actually appeared after the classroom mathematical practice of combining individual 

results for a “group” simulation. There were some individual discussions about how 

many trials should be done. For example, during Session 3 Cade commented to his group 

that “I think the more sets you use, the more accurate it is.” Generally, students told their 

group members they would do 10 or 20 trials without justifying their decision. During 

Session 6, the teacher-researcher asked the class how many trials they should do for a 

simulation. Students did not agree how many trials were sufficient. Some argued that 30 

trials were enough. Others reasoned that enough trials should be conducted to get close to 

a “theoretical” value even though few students or groups conducted more than 50 trials. 

Another class discussion took place during Session 9 at which time another classroom 

mathematical practice emerged, the number of trials was dependent on an “ideal” versus 

a “practical” situation. A detailed description of the related classroom mathematical 

practices follows. 

Classroom mathematical practices related to number of trials. Two classroom 

mathematical practices emerged related to this sociomathematical norm. The first 

classroom mathematical practice was that each person in the group would complete 
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approximately 10 trials and then combine their results. For much of the whole-class 

teaching experiment, students generally followed the practice that each student would do 

between 10 and 20 and then combine their results. Thus, the number of trials for a 

particular simulation was usually around 40 to 80. However, within individual students 

and different groups, these numbers would vary. Dayton informed her group, during 

Session 3, that she would complete 4 trials. No one addressed this, although moments 

later, Cade said “Let’s only do 20. This is going to take forever.” This practice turned out 

to be the average number of trials this group would simulate, and in fact, it was the 

average for all the groups with episodic exceptions. In one case, Oliver completed 134 

trials and on another problem he completed 115. 

 Another classroom mathematical practice that emerged among many of the 

students was to discuss that many trials were needed; yet students would usually 

complete less than 100 trials. Early in the teaching experiment, Lacey told her group “I 

think the more sets you use, the more accurate it is until a certain point. Then it just gets 

to be to be the same thing.” In spite of Lacey’s insight, the group still limited the number 

of trials to around 50 sets for a group total. The classroom mathematical practice was 

found in other instances as well. When the teacher-researcher asked Thor and his group 

how many trials they thought they needed, Thor responded “about 4 trillion. It depends. 

Until it stops changing.” The group actually did about 20 trials per person. The teacher-

researcher asked the class a similar question about the number of trials. Breanna 

explained that more trials would be better and provide a more accurate number. However, 

Breanna’s group regularly completed about 20 trials per person. Toward the end of the 

whole-class teaching experiment, a classroom mathematical practice that emerged and 
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was taken-as-shared by the students was that there was an ideal number of trials and a 

practical number of trials. An ideal number of trials was considered to be enough for the 

empirical probability to approach the theoretical probability. A practical number of trials 

was considered sufficient for class activities and homework. The students resolved this 

mathematical practice during a whole-class discussion about what counts as a sufficient 

number of trials, and this practice became taken-as-shared by the students in spite of 

repeated attempts by the teacher-researcher to facilitate discussions that what students 

practiced should reflect their beliefs. That is, if they believed that trials should be 

repeated until the empirical probability becomes more precise or ceases to fluctuate, then 

this is what they should practice on their class problems and homework. 

Summary of Analyses of the Data and Results 

 The analyses of the quantitative and qualitative data provided evidence to support 

significant progress by students in reasoning about probability simulation. Student scores 

on the post- and retention assessments were significantly higher than the scores on the 

preassessment. Student reasoning on the components of the simulation process following 

the whole-class teaching experiment generally became more valid and at the same time, 

their reasoning became more sophisticated and normative. 

 Technology was found to play an integral part in the instruction of probability 

simulation. In some ways it supported and encouraged reasoning, and in other ways it 

discouraged or prevented it. The familiarity and efficiency of the calculator made it the 

preferred probability-generating device. Furthermore, the syntax required for generating 

random numbers proved beneficial in focusing students on integral components of the 

simulation process, and it also provided a common language with which students could 
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communicate about probability simulations. Furthermore, the calculator was found to be 

a transparent medium for students in dealing with dependent events. Finally, the 

programming capabilities of the calculator, although a potentially powerful tool, proved 

to be more frustrating than helpful. 

This study also revealed that students hold certain beliefs related the probability 

simulation. Some of these beliefs were considered helpful to instruction and others were 

considered more problematic. Furthermore, some of these beliefs changed as the teaching 

experiment progressed, while others proved resistant to alteration. An analysis of helpful 

beliefs revealed many beliefs, including the belief that assumptions were an inherent part 

of the simulation process. Students also exhibited the belief that the probability generator 

should correspond to the probabilities stated in the problem. Although students believed 

that the more trials completed, the closer the empirical probability would get to the 

theoretical probability, students differentiated between what they believed to be an ideal 

number of trials and a practical number of trials. Moreover, some students exhibited the 

belief that the context of the problem directly affected the number of trials that one 

should do. Other helpful beliefs that were revealed included the belief that the empirical 

probability was more reliable than the theoretical probability and the use of simulation 

had potential benefits. 

Although a number of problematic beliefs were revealed, two of these beliefs 

turned out to be more resistant to change than others. The representativeness heuristic 

appeared prior to the whole-class teaching experiment, and in spite of a decreased 

occurrence on later assessments, there was still evidence of its use on the post-

assessment. Finally, another problematic belief identified was the belief by students that a 
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theoretical probability could always be determined. This belief, in particular, was held 

very strongly by many students. 

 During the teaching experiment four sociomathematical norms were identified 

from which emerged a number of classroom mathematical practices. The first 

sociomathematical norm that appeared was “what counts as a valid simulation.” 

Connected to this norm were three classroom mathematical practices: (a) a valid 

probability generator was required, (b) a valid trial is needed, and (c) at least 30 trials per 

group should be done. The second sociomathematical norm that appeared was related to 

the justification of a valid probability generator. The practices that emerged within this 

norm included the following: (a) the probability generator must have a one-to-one 

correspondence to the probabilities in the problem, (b) equivalent probability generators 

are acceptable, and (c) the calculator will serve as the mechanism for generating a trial. 

The concept of a valid trial encapsulated the third sociomathematical norm. From this 

norm developed the classroom mathematical practice that the number of outcomes in a 

trial must correspond to the target question. Finally, the fourth sociomathematical norm 

required the justification of what was a sufficient number of trials. Two practices were 

identified related to this norm: (a) a group’s simulation results would be the combined 

outcomes of 10 trials per person, and (b) the number of trials depended on whether the 

students were dealing with an ideal or a practical situation. Some of the classroom 

mathematical practices became taken-as-shared by the students, such as the need to 

ensure a valid trial and the requirement of having a one-to-one correspondence to 

probabilities given in a problem. Other practices were observed but not necessarily 
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shared by all students. For example, one such mathematical practice was that one must 

conduct at least 30 trials for a simulation problem. 
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CHAPTER V 

SUMMARY, DISCUSSION, AND CONCLUSIONS 

 The purpose of this study was to examine the role instruction played in changing 

students’ reasoning and beliefs about probability simulation. At the same time, this study 

sought to examine what impact technology had on students’ reasoning and beliefs. 

Additionally, it was the goal of this study to investigate the sociomathematical norms and 

classroom mathematical practices that evolved during a whole-class teaching experiment 

(Cobb, 2000) that focused on probability simulation. This chapter provides a summary of 

the study and a discussion of the findings as they are related to the current research base. 

The limitations of this study, the implications for curriculum and instruction, and the 

recommendations for future research are also addressed. 

Summary of the Study and its Findings 

 Probability simulation is a critical part in the study of high school level statistics 

(NCTM, 2000; College Board, 2000). Simulations provide students with the opportunity 

to look at long run behavior patterns and develop an understanding of probability. When 

students construct and analyze probability simulations, they are, in a sense, formulating 

and analyzing mathematical models, and thus developing skills necessary to solve more 

open-ended type problems (Lesh et al., 1997; Lesh & Clarke, 2000; Lesh & Lehrer, 

2000). 

 What little research is available about probability simulation indicates that 

students struggle with the two-dimensional nature of probability problems (Benson, 
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2000; Benson & Jones, 1999; Zimmermann & Jones, 2002). Furthermore, students carry 

a myriad of beliefs, some helpful and some problematic, that affect how they reason 

about probability simulation (Zimmermann & Jones, 2002). Finally, it is has been 

suggested that appropriate use of technology can help students develop a better 

conceptual understanding of simulations (Balacheff & Kaput, 1996; Ben-Zvi ; Biehler, 

1991; Konold, 1991b). 

 Despite NCTM’s (2000) recommendations for increased focus on statistical 

thinking and the fact that more students are enrolling in the Advanced Placement 

Statistics courses (Straf, 2002), there is little research that provides teachers with 

instructional guidance. This study sought to bridge the gap between teaching practice and 

research as it related to probability simulation. Moreover, it was the intent of this study to 

help fill the void in research regarding students’ individual and collective reasoning and 

beliefs about probability simulation. 

Purpose of the Study 

 Using a whole-class teaching experiment (Cobb, 2000) as the setting for the 

research, this study investigated the development of students’ reasoning and beliefs as 

they worked through the components of probability simulation. In particular, this study 

addressed the following research questions: 

1. How does high school students’ individual and collective reasoning about 

probability simulation change during a whole-class teaching experiment? 

What role does technology play in this change? 

2. How do high school students’ beliefs about probability simulation change 

during a whole-class teaching experiment? 



 157

3. What kind of sociomathematical norms and classroom mathematical practices 

evolve during a whole-class teaching experiment that focuses on probability 

simulation? 

Methodology 

 A class of 23 high school students enrolled in an Advanced Placement Statistics 

course participated in a 12-day whole-class teaching experiment. Twenty-one of the 

students were administered a pre-, post-, and retention assessment to provide quantitative 

data that could be used to examine changes in student reasoning. These assessments 

along with the audio and videotapes of the instructional episodes provided qualitative 

data related to students’ reasoning and their beliefs about probability simulation. The 

whole-class teaching experiment was grounded in Cobb’s (1999) developmental research 

cycle, consisting of an instructional development phase and a classroom-based analysis 

phase. During the instructional development phase, a review of content-specific research 

was conducted which in turn informed the development and modification of the 

hypothetical learning trajectory (Simon, 1995) and guided the selection of classroom 

tasks and activities. The tasks and activities were implemented during the classroom-

based analysis phase where data were gathered about students’ reasoning and beliefs. 

These data were used to modify and refine the hypothetical learning trajectory and to 

trace changes in students’ individual and collective reasoning as well as their beliefs. 

Results of the Study 

 Quantitative and qualitative analyses provided numerous results related to 

students’ reasoning and beliefs about probability simulation. The analyses also revealed 

the impact of technology on students’ reasoning as well as sociomathematical norms and 
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classroom mathematical practices that emerged during the whole-class teaching 

experiment. 

Students’ Individual Reasoning about Probability Simulation 

 A Wilks’s Lambda multivariate test revealed that there was a significant 

difference (p < .001) between the mean scores on the pre-, post-, and retention 

assessments. Furthermore, a pairwise comparison indicated that the post-assessment 

scores were significantly higher than the preassessment scores (p < .001), and similarly, 

the retention assessments scores were significantly higher than the preassessment scores,  

(p < .001). However, there was no significant difference between post- and retention 

scores even though mean scores were slightly higher on the retention assessment. Growth 

in students’ ability to reason about probability simulation was further substantiated by an 

analysis of student reasoning across six different components as they both evaluated and 

constructed a probability simulation: assumptions, probability generator, two-

dimensional trial, accept random outcomes, calculate empirical probability, and repetition 

of trial. In 5 of the 6 major simulation components, the frequency of valid responses 

increased from the preassessment to the post-assessment. More specifically, students 

made significant progress in their ability to use simulated outcomes to determine the 

probability of an event and to recognize the effect of repeated trials on the empirical 

probability. The key patterns of students’ reasoning on each of the six different 

components of simulation will be described in turn. 

Not only did more students explicitly state assumptions after instruction, such 

assumptions became more normative. These normative assumptions related mainly to 
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maintaining a valid probability generator by replacing a drawn chip and to the 

independence of events. 

 Students became more versatile in their ability to recognize and construct a valid 

probability generator. In spite of initially demonstrating some difficulty in constructing a 

valid two-dimensional probability generator, student reasoning progressed to a point 

where students were able to construct valid probability generators for multi-dimensional 

trials and trials involving dependent events. During instruction students tended to rely on 

their graphing calculator to generate random numbers. However, they showed versatility 

in using other devices, such as spinners, balls, and chips, in the post- and retention 

assessment problems. What invalid reasoning occurred resulted from students’ inability 

to use proportions correctly and to recognize a valid sample space, especially in the case 

of two-dimensional trials. 

 Over 85% of the students accepted the randomness of simulated outcomes. For 

those students who had difficulty with randomness, the representative heuristic was a 

barrier to accepting “unexpected” results. Interestingly, representativeness only occurred 

on written assessments and not during class instruction. 

Because students overcame their difficulties in calculating two-dimensional trials, 

all but one student were able to calculate an empirical probability. The students’ ability to 

calculate the probability was connected to their ability to define a valid two-dimensional 

trial and then use their definition to calculate the empirical probability. 

 With respect to repetition of trials, students showed increased awareness that as 

the number of trials increased the empirical probability approached the theoretical value.  
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While they did not always want to simulate a substantial number of trials, they were 

aware that the empirical probability showed less fluctuation and more stability as the 

number of trials grew. 

Impact of Technology on Students’ Reasoning 

 The calculator was found to have impacted students’ individual and collective 

reasoning in five different ways. First, students showed a preference for the calculator as 

a probability-generating device, especially during instruction. Next, the syntax of the 

calculator seemed to help students to focus on the components of the simulation process. 

It also provided students with a transparent medium for dealing with more complex 

problems that involved dependent rather than independent events. The exclusive use of 

the graphing calculator provided a common language for students to discuss probability 

simulation. The fifth impact of technology contrasted with the others as it was not 

beneficial in helping students reason about simulation. In spite of the powerful 

programming capabilities of the calculator, it was found that the difficulty of learning 

how to program the calculator outweighed its potential benefits. 

Students’ Beliefs About Probability Simulation

 Students revealed a number of beliefs considered either helpful or problematic as 

related to instruction. Many of the helpful beliefs were directly related to the simulation 

components; such as assumptions are necessary in carrying out a simulation, and the 

probability generator should correspond to the probabilities in the problem. Other helpful 

beliefs appeared that were related to simulation trials. Namely, students held the belief 

that although many trials provide a more precise empirical probability, they also believed 

there exists a difference between an ideal number of trials and a practical number of 
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trials. Even more specifically, some students believed that the context of the problem has 

an influence on the number of trials. Three problematic beliefs were discerned: (a) 

representative heuristic, (b) outcome approach, and (c) the theoretical probability can 

always be determined. The first two problematic beliefs focused students’ attention on 

irrelevant aspects of the simulation while the third belief tended to devalue simulation as 

a viable strategy. The three beliefs are considered problematic because they rival not only 

a normative view of probability, but more specifically, of probability simulation. 

Students’ Collective Reasoning About Probability Simulation

 In examining students’ collective reasoning, four sociomathematical norms 

emerged. Each of these sociomathematical norms spawned one or more classroom 

mathematical practices. The following classroom mathematical practices were related to 

the sociomathematical norm “what counts as a valid simulation”: (a) you must use a valid 

probability generator, (b) you need to ensure the trial corresponds to the sample space of 

the contextual situation, and (c) you must conduct at least 30 trials per group. Three 

practices emerged within the sociomathematical norm of “what counts as a valid 

probability generator”: (a) you must have 1-1 correspondence to probabilities given in 

problem, (b) equivalent probability generators are acceptable, and (c) the calculator will 

be used to generate trials. The third norm “what counts as a valid trial” revealed just one 

mathematical practice: the number of outcomes in a trial must correspond to target 

question. The last sociomathematical norm “what counts as a sufficient number of trials” 

produced three classroom mathematical practices: (a) combine results of 10 trials per 

person in a group, and (b) recognize the limitations on the number of trials created by 

time constraints. 
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Discussion of the Findings 

 The first research focus of this study was to examine students’ reasoning as they 

worked through problems involving probability simulation. This focus also included an 

investigation into the role and impact of technology. A second research focus was to 

identify and track students’ beliefs as they reasoned about simulation. Finally, this 

research set out to identify sociomathematical norms and classroom mathematical 

practices that emerged during a whole-class teaching experiment that focused on 

probability simulation. 

Students’ Reasoning About Probability Simulation 

 Across all six simulation components, students made significant progress in their 

reasoning throughout the whole-class teaching experiment. The following provides an 

interpretation of how these changes occurred as well as how the findings of this study 

relate to current literature. 

 Assumptions. From the beginning of the whole-class teaching experiment, 

students noted implicit assumptions in a simulation design. What is significant is how 

students in this study moved from a more idiosyncratic way of reasoning about 

assumptions to one that was more normative. In particular, these normative assumptions 

related primarily to maintaining a valid probability generator, and in the case of a small 

number of students, to assumptions relating to independent events. Yates et al. (1999) 

note that independence is often a critical assumption. It is possible that the number of 

students assuming independence may actually have been even higher than indicated by 

the post- and retention assessments since the syntax of the calculator assumed 

independence of events, and thus students may have reasoned they did not need to make 
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this explicit. Students’ limited attention to assumptions may also be attributable to a 

limited instructional focus on assumptions by the teacher-researcher. Very little 

instructional time was spent exploring or discussing the role of assumptions in the 

simulation process, and it was not until Session 4 of a 12-session teaching experiment 

that the teacher-researcher focused students’ attention to assumptions. 

 Probability generator. In spite of almost exclusive use of the graphing calculator 

during instruction, students displayed tremendous versatility in their choice and 

explanation of valid probability generators on the post- and retention assessments. One 

possible explanation for students’ increased ability to construct valid multi-dimensional 

trials is the use of calculator technology. The syntax required by the calculator focused 

students’ thinking on assigning appropriate valid random numbers and recognizing the 

number of outcomes needed for a trial. With that said, the calculator may have worked 

against students who struggled with proportionality. According to Borovcnik and Peard 

(1996), some students may benefit from a more kinesthetic approach that utilizes 

manipulative devices, such as spinners and chips before relying on the calculator. Such 

hands-on devices may help students develop more concrete cognitive models before 

progressing to more abstract simulation models generated by technology. 

 The fact that students did not generally struggle with constructing a valid 

probability generator confirms Benson and Jones’ (1999) research that suggests 

constructing probability generators is not generally problematic for students, at least in 

the case of one-dimensional trials. Analysis of the preassessment found that an 

incomplete understanding of proportionality contributed to the difficulty some students 

had in constructing a valid probability generator. This finding is consistent with earlier 
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research (Garfield & Ahlgren, 1988; Green, 1983) that suggests the mathematical concept 

of proportionality is a hindrance to students’ ability to reason probabilistically. 

Two-dimensional trials. After instruction, students appeared to have overcome 

their difficulties in defining a two-dimensional trial. Furthermore, students were able to 

construct valid trials of complex, multi-dimensional problems during instruction. The use 

of the troublesome representative heuristic that appeared on the preassessment did not 

appear on later assessments or during instruction. Because a whole-class teaching 

experiment focuses more on collective reasoning, changes in individual reasoning with 

respect to representativeness were difficult to trace. Thus, it is unclear how changes may 

have occurred in the reasoning of individual students to modify misconceptions, like 

representativeness. Of the approximately one third who had transformed a two-

dimensional trial into a one-dimensional trial on the preassessment, almost all of these 

students were able to define valid two-dimensional trials after the teaching experiment. 

The numerous simulations done in class may have provided the necessary opportunities 

to reason about multi-dimensional trials. In addition, the use of the graphing calculator 

may have played a role in helping students develop valid reasoning about trials since 

students needed to use the correct syntax for the calculator to generate appropriate 

random numbers. 

 Benson & Jones (1999) reported that subjects were able to construct a valid one-

dimensional trial; however, two-dimensional trials proved difficult for even the college 

students in their sample. The results of the preassessment bear this out, and students who 

were unable to recognize or construct a valid trial typically transformed the problem to a 

one-dimensional trial supporting the findings of Zimmermann and Jones (2002). 
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However, instruction and technology seem to have played a role in helping students 

develop valid reasoning about multi-dimensional trials because 90% were able to 

construct valid trials for two-dimensional problems during the retention assessment.  

 Randomness and empirical probability. Whether a student calculated an empirical 

probability was often related to the student’s willingness to accept the random outcomes 

of a simulation. Of the students who did not accept the randomness of the outcomes, all 

10 did not calculate a probability. Thus, it is not surprising that as students’ acceptance of 

the random outcomes increased, so did students’ ability to calculate a valid probability. 

It turns out that student misconceptions for the two simulation components are the 

same. That is, they are both related to representativeness. Although evidence of the 

representativeness heuristic was found on each of the written assessments, albeit in 

decreasing amounts, it was never identified during class instruction. A number of issues 

may be connected to the apparent resolution of the representative heuristic. A 

combination of instructional strategies, including having students simulate various 

problems, compare the results obtained by different groups, and having the whole-class 

discuss randomness, may have helped students develop an understanding of randomness 

in simulated problems. On the one hand, integrity of the belief in the random integer 

feature of the graphing calculator may be partially responsible as students relied solely on 

it for generating random numbers. On the other hand, the group structure of the class may 

have contributed to the apparent lack of the representative heuristic during instructional 

sessions. That is, students who reasoned using representativeness may not have been 

mathematically confident, and, therefore, may have contributed less during group dialogs. 
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The fact that representativeness only appeared on the preassessment evaluation 

task and not on any of the construction tasks may also help to explain the inability to 

identify use of the representativeness heuristic during instruction. Representativeness was 

found when students were provided with outcomes they believed did not represent the 

given problem. During instruction, students always generated their own outcomes. Thus, 

the students may have placed a greater faith in student-generated outcomes or 

“unexpected” imbalances across outcomes did not occur; thereby limiting the opportunity 

for them to fall victim to representativeness. Notwithstanding these hypotheses, 

representativeness did not appear on the retention assessment even when students faced 

the previously troublesome evaluation task. Hence, there is evidence that most students 

seemed to have overcome representativeness even across the time gap between post-

assessment and retention assessment. If students had resolved the misconception of 

representativeness, it is unclear how student reasoning changed. 

The findings of this study support the conclusions of Batanero & Serrano (1999) 

that students struggle with the concept of randomness. The findings also mirror those of 

Zimmermann and Jones (2002) who found similar evidence to suggest that some students 

struggle with the concept of randomness, and the difficulties are related to reasoning 

based on representativeness (Kahneman & Tversky, 1972). Although Batanero and 

Serrano concluded that instruction failed to help students make sense of randomness, 

there is more evidence in this study, vis-à-vis the retention assessment, that students did 

overcome problems with representativeness and as a consequence gained a better 

appreciation of randomness. 
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 Repetition of trial. Students became more aware that as the number of trials 

increased the empirical probability would approach a theoretical value. In particular, 

students noted that the empirical probability would show less fluctuation and more 

stability as the number of trials grew. Activities had been designed to focus students’ 

thinking on tracing the empirical probability as the number of trials was increased. A dual 

instructional approach of having students repeat numerous trials as well as analyze a 

graphical display to track the change in the empirical probability as the number of trials 

was increased helped students to develop an understanding of the long-term effects to the 

empirical probability. The effects of this dual approach were evident as students reasoned 

during their post- and retention assessments and during class discussions that focused on 

how many trials should be conducted. Students often made comments such as “until it 

stops fluctuating” or “until it approaches a theoretical value.” They recognized that with 

enough trials, the probability would fluctuate less and settle towards a theoretical value. 

Aspinwall and Tarr (2001) found that a student’s understanding of experimental 

probability was related to his or her understanding of the law of large numbers. Thus, the 

increase in the ability of students in this study to calculate the empirical probability may 

have helped students to understand the concept that the empirical probability will 

eventually settle towards some theoretical value.  

The Role of Technology 

Technology was found to play an integral part in students’ reasoning about 

probability simulation. It was probably most influential in focusing students’ thinking on 

constructing a probability generator and in defining a two-dimensional trial. The 

calculator also helped students to understand the effect of many trials on the empirical 
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probability. The syntax for the graphing calculator required that the students understand 

the assignment of random digits in order to be able to define a valid trial. The many 

simulation problems students worked helped them to become proficient at using the 

calculator for simulations, and therefore they also became more adept at assigning 

random digits and defining valid trials. 

Another positive impact of the graphing calculator was that it enabled students to 

complete many trials quickly, which in turn led to a deeper understanding of the long-run 

effects to empirical probability. As Biehler (1991) had suggested, technology proved to 

be beneficial in helping students explore how empirical probability changed over 

numerous trials. The positive impact of technology on students’ reasoning in probability 

simulation supports Biehler’s (1991) and Konold’s (1991b) claims that technology can be 

used to both enhance learning and to develop a richer understanding of simulation. 

Students’ Beliefs about Probability Simulation 

Students’ beliefs about assumptions became more helpful during the teaching 

experiment, and they focused specifically on beliefs about maintaining the probability 

generator. It is likely that as students developed the classroom mathematical practice of 

ensuring that a valid probability generator had a one-to-one correspondence with the 

problem, their beliefs about assumptions changed. Their belief in a one-to-one 

correspondence appeared to be intuitive and by the post- and retention assessments they 

were explicitly stating their belief that a drawn chip must be replaced to guarantee that 

correspondence was maintained. 

Even though students would only do 30 or 40 trials during a classroom 

simulation, 81% developed the belief that more than 100 trials were desirable. This was 
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tied to their belief that with enough trials the empirical probability would eventually 

approach the theoretical probability. Through the course of selected activities and 

problems, students were able to see how the empirical probability changed as more trials 

were added. The graphical demonstration of how the empirical probability changed as the 

number of trials increased seemed to have a major impact on students’ beliefs as evident 

in their responses both during instruction and on written assessments. Students frequently 

would explain that additional trials would make the empirical probability more precise or 

the empirical probability would fluctuate less and become more stable. The repeated 

experiences of examining these changes appeared to have a major influence on students’ 

beliefs about the long-run behavior of the empirical probability. 

Most of the students’ problematic beliefs were related to misconceptions about 

probability. Representativeness and the outcome approach were two types of 

misconceptions uncovered in the qualitative analysis of this study. Although the 

representativeness heuristic (Kahneman & Tversky, 1972) appeared throughout all three 

written assessments, the frequency with which it was found decreased substantially. In 

the case of the outcome approach (Konold et al., 1993) there was only one recorded 

instance and this appeared prior to instruction. As mentioned earlier, the methodology of 

this study limited the teacher-researcher’s ability to trace how changes occurred in 

individual thinking. However, it can be conjectured that technology may have played a 

part in changing students’ beliefs, especially those related to representativeness. Because 

of the opportunities students had to compare and discuss simulation outcomes with group 

peers and classmates, they were able to see a variety of sampling distributions. 

Furthermore, students’ increased knowledge of empirical probability and repeated trials 
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may have also contributed to a more complete understanding of the random nature of 

probability simulation. 

A number of beliefs were identified in this study, and in accord with the literature 

it seems that students’ beliefs were a major contributor to students’ reasoning about 

probability simulation (Fischbein & Gazit, 1984; Fischbein et al., 1991; Fischbein & 

Schnarch, 1997; Garfield & Ahlgren, 1988; Piaget & Inhelder, 1975; Shaughnessy, 

1992). Some of the beliefs identified in this study were also found in earlier studies, 

specifically those related to assumptions, the probability generator, and long-run effect of 

the empirical probability (Zimmermann & Jones, 2002). The results of this study also 

support Zimmermann & Jones’ (2002) conclusion that students exhibited the problematic 

belief that simulated outcomes should always represent the probabilities in the problem. 

Sociomathematical Norms and Classroom Practices 

 During the whole-class teaching experiment, four sociomathematical norms arose 

from the students’ discourse: what counts as a valid simulation, what counts as a valid 

probability generator, what counts as a valid trial, and what counts as a sufficient number 

of trials. Each of these four norms led to the development of a number of classroom 

mathematical practices. Taken together, the sociomathematical norms and classroom 

mathematical practices provide insight into the collective reasoning of the students in a 

classroom environment (Cobb, 2000). 

What counts as a valid simulation. During the first session, students were 

grappling with the notion of what was required for a valid simulation. The group 

structure of the classroom lent itself to the development of classroom mathematical 

practices as a social outgrowth of interactions about individual students’ thinking. 
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Without being provided with the simulation steps outlined by Yates et al. (1999), it 

became necessary for the students to communally develop classroom mathematical 

practices that essentially replicated these steps so that they would have a common process 

to follow and discuss with other class members. Thus, it was necessary that the classroom 

mathematical practices associated with the sociomathematical norm of justifying a valid 

simulation become taken-as-shared so that students could discuss and make sense of each 

other’s simulations. The ease with which students developed a multi-step process for 

designing a simulation suggests that the mechanics of simulation are within easy grasp 

for many students in the upper grades of high school. 

What counts as a valid probability generator. Because a valid probability 

generator is a critical component of the simulation process, classroom mathematical 

practices quickly emerged from the sociomathematical norm of justifying a valid 

probability generator. Students immediately and rather easily adopted the practice of 

ensuring a one-to-one correspondence between the probability generator and the context 

of the problem. The ease with which students developed such a correspondence is not 

surprising as similar results were found in earlier studies (Benson, 2000; Benson & Jones, 

1999; Zimmermann & Jones, 2002), some of which involved much younger children. 

Another practice emerged when students discussed the equivalence of generators. Some 

of the problems presented to students were intended to promote multiple ways of 

assigning random digits for a valid probability generator. Students compared generators, 

and then through a negotiating process, they determined that equivalent probability 

generators were acceptable. The last classroom mathematical practice of using the 

graphing calculator to act as the probability generator, like the previous two practices, 



 172

became taken-as-shared early in the teaching experiment. Students’ ready access to a 

calculator and their familiarity with using it most likely helped to encourage the 

development of this technology-oriented mathematical practice. Biehler (1991) and 

Konold (1991b) advocate the use of technology as a learning tool suggesting that it can 

be used to construct simulation models and thus help students to develop a better 

understanding of simulation. The findings of this study give merit to Biehler’s and 

Konold’s suggestion given that the calculator’s use as a probability generator seemed to 

be beneficial in helping students make sense of the simulation process, in particular the 

modeling of contextual situation. 

What counts as a valid trial. Very early during student discourse, the 

sociomathematical norm concerning a valid trial emerged. This was not surprising 

because preassessment test results corroborated research that students struggled with two-

dimensional probability problems (Benson, 2000; Benson & Jones, 1999; Zimmermann 

& Jones, 2002). Hence, it was necessary for students to grapple early with the notion of 

what constituted a valid two-dimensional trial. The choice of activities, group work, and 

whole class discussions seemed to facilitate a more complete understanding of what 

constituted a valid trial. In addition, the increasing difficulty of the multi-dimensional 

trials seemed to provide students with contextual and mathematical skills that they could 

discuss and build upon. The choice of activities also seemed to allow for the emergence 

of the classroom mathematical practice of requiring that the number of outcomes in a trial 

must correspond to the number of outcomes in the target question. While the calculator 

seemed to help facilitate student understanding of what was required for a valid trial, its 

use also precipitated the emergence of calculator-speak. As students relied upon 
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communicating about simulation via calculator speak, it became necessary that the 

mathematical practice of requiring the number of outcomes in a trial correspond to the 

number of outcome in the target question become taken-as-shared so that students could 

communicate with one another 

What counts as a sufficient number of trials. Although it took until the end of the 

teaching experiment for the classroom mathematical practice of recognizing the time 

constraints of conducting an ideal number of trials to appear, the practice of completing 

about 40 trials per group emerged on the second day. There was little discussion by 

students to discern how they determined that an average of 30 to 40 trials was sufficient 

for a problem. However, the experiences of comparing simulation results combined with 

classroom discussions about the long-term consequences of repeated trials seemed to 

influence the emergence of the practice related to an ideal number of trials. Even though 

students would agree that more trials would provide a better answer, they limited 

themselves to a “practical” number of trials for what they termed “classroom purposes” 

in spite of the fact that they believed that an “ideal” number of trials would provide better 

results. 

In retrospect, other instructional decisions could have been made to help 

students see that 40 trials are not sufficient for determining a more precise 

empirical probability (K. Berk, personal communication, June 29, 2002). 

Specifically, 40 trials do not provide a picture of the variability inherent in so few 

trials. One instructional suggestion is to relate the number of trials to opinion polls. 

It is likely that students would readily agree that polls of only 40 people would not 

provide a very accurate picture of people’s opinions. Another suggestion would be 
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to create a graphical representation of the simulation outcomes generated by each 

student so as to view the variability of these outcomes and see how this distribution 

changes as more trials are conducted. Finally, students could be asked to explore the 

standard deviation of simulation problems and how it changes as the number of 

trials is increased. These instructional suggestions may help students to overcome 

the classroom mathematical practice that 40 trials are sufficient for a simulation 

problem.  

Limitations of the Study 

 Three limitations related to the findings of this study have been identified. The 

limitations concern the level of reasoning on probability simulation before instruction, 

data on students’ individual reasoning, and the dual role of teacher –researcher. 

 One limitation of this study was the large number of students who possessed a 

higher level of reasoning about probability simulation prior to the whole-class teaching 

experiment. This was higher than would have been predicted from studies by 

Zimmermann and Jones (2002) and Benson and Jones (1999). Although this class 

contained students with varied mathematical backgrounds and abilities, there was still a 

relatively large group of students that demonstrated a high level of understanding of 

probability simulation as revealed on the preassessment. Hence, there may be limitations 

as to the extent to which this class represents high school students’ thinking on 

probability simulation. 

 A second limitation was the restricted amount of data available on how individual 

reasoning and beliefs changed. As a result of the methodology of the whole-class 

teaching experiment, changes in individual reasoning were difficult to trace. For example, 
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the representative heuristic was used by a number of students prior to the teaching 

experiment, but no evidence of this type of reasoning was found during instruction. 

Additionally, the combination of a focus on collective reasoning and the exclusive use of 

the calculator by students as a probability-generator device, may have hidden individual 

misconceptions or fragile beliefs related to probability simulation. 

 A third limitation of this study was the dual role of the teacher and researcher. As 

Ball (2000) recognizes, there are distinct advantages to being both the teacher and the 

researcher. As the teacher, one can draw from her own personal knowledge and 

experience as a teacher. A teacher also possesses first-hand knowledge of how her 

students interact with each other and the teacher, as well as insight into the knowledge 

that students bring to the classroom. Additionally, the teacher and students have a shared 

history. Yet this intimate knowledge of how students reason and interact can also act as a 

limitation in this type of study. The complex nature inherent in the dual role of teacher 

and researcher can make it difficult to provide the objectivity required for analysis. For 

example, the teacher must make instructional decisions for the benefit of her students that 

may not be beneficial in studying change in students’ reasoning. Therefore, this dual 

responsibility can be both advantageous as well as a limitation. 

Implications for Curriculum and Instruction 

 The findings of this study can help curriculum leaders and mathematics teachers 

by providing valuable information on how students reason about probability simulation. 

The implications for curriculum contain recommendations for changes to curriculum to 

help facilitate development of student reasoning about probability simulation. The 
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implications for instruction are recommendations targeted specifically to classroom 

teachers.  

Implications for Curriculum 

Probability simulation is a requisite of the Advanced Placement Statistics 

curriculum (College Board, 2000), and NCTM (2000) recommends its inclusion in any 

high school curriculum containing probability and statistics. Therefore, the results of this 

study are particularly useful to curriculum planners and mathematics teachers. 

As indicated by the findings of this study, students were able to overcome most of 

the difficulties that prevented valid reasoning about probability simulation. In the 

process, students developed a stronger understanding of random behavior, empirical 

probability, and the connections between empirical probability and theoretical 

probability. Thus, the implementation of probability simulation in the high school 

curriculum is not only appropriate, but also encouraged. Probability simulation could also 

be incorporated at the middle school limiting the complexity of simulations students are 

asked to do. For example, problems would focus primarily on one-dimensional trials. The 

topic of probability simulation integrated early in the curriculum may help some students 

develop a better conceptual understanding of probability and random behavior, which are 

considered critical concepts for all students according to NCTM (2000). 

Implications for Instruction 

 As a teacher and researcher, it was important that this research be able to provide 

classroom teachers with recommendations that could be implemented during the course 

of instruction. The findings of this study support the following recommendations for 

instruction. 
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 Given the impact technology had on helping students develop a richer 

understanding of probability simulation and its components, it is essential that technology 

play a major part in simulation instruction. Technology had a positive influence on how 

students reasoned about randomness, trials, and empirical probability, all of which are 

critical components of simulation. The technology used in this study was limited to the 

graphing calculator. However, computers may prove to be even more beneficial 

considering their speed and computing power, and hence, their ability to run a larger 

number of trials quickly. Software, such as Fathom, that is specifically designed to focus 

on statistical processes, graphical displays, and various data distributions could be used to 

look at larger and more complex probability simulations. 

Analyses revealed that students in this study developed a higher level of 

understanding of probability simulation that involved multi-dimensional trials and both 

independent and dependent events. Thus, activities should be created that capitalize on 

these strengths and extend the reasoning of students to even more challenging and 

complex probability simulation problems. In particular, teachers should present problems 

that require more thought provoking assumptions, more demanding insights when 

defining a trial, and decision-making related to important concepts, like independence, 

dependence, and conditional probability. 

The more normative view of assumptions students developed during the teaching 

experiment was encouraging but also limiting. Students failed to recognize that other 

implicit assumptions may exist in a simulation, such as there are only two kinds of pizza 

or no commercials will be on the radio station, and limited themselves to independence 

and maintaining a valid probability generator. While these assumptions are important, 
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they are rarely the only implicit assumptions. Thus, instruction should include a larger 

and more explicit focus on assumptions. Students should develop the understanding that 

inference is based on both explicit and implicit assumptions. Likewise, given the 

resistance students had in actually doing many trials, instruction should incorporate 

activities or problems that help students to understand the variability in a simulation of 

only 40 or 50 trials. Looking back, there are a number of activities and whole-class 

discussions that could be incorporated that specifically target the concept and role of 

assumptions and the practice of doing many trials. 

Recommendations for Future Research 

 This study utilized a whole-class teaching experiment methodology. Therefore, it 

was difficult to trace changes in individual reasoning. Future research needs to examine 

how individual reasoning and beliefs about probability simulation change during 

instruction. The research also needs to identify what catalysts promote or impede such 

change. Lesh and Kelly (2000) describe a three-tiered approach to teaching experiments. 

Tier 3 is the researcher level where researchers construct models so as to analyze and 

interpret the reasoning and actions of students and teachers in a learning environment. 

The research literature for this study exemplifies what has been accomplished at Tier 3. 

Tier 2 is the teacher level. At this level the teacher develop ways to collect data about 

what and how students learn in an effort to influence student learning. Lastly, Tier 1 is 

the student level. The intent of this tier is to focus on how the individual students develop 

ideas or models. Such a model would be helpful in tracing how individual students 

resolve misconceptions, like representativeness. Similarly, research is also needed to 

explore how students’ concept of proportionality changes as they reason about 
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probability simulation. In particular, more Tier 1 level research is needed that looks at 

how students build concepts of theoretical and empirical probability and how they make 

connections between these two concepts. 

 A major focus of this study was to investigate the students’ individual and 

collective reasoning and beliefs about probability simulation. Although students made 

tremendous strides in reasoning, the findings of this study provide a limited view of the 

role of the teacher and how her reasoning and beliefs influenced instructional decisions 

about teaching probability simulation. Additionally, how did modifications to the 

hypothetical learning trajectory change the way the teacher would have otherwise 

approached instruction, and how do the hypothetical learning trajectories of the teacher 

lead to breakthroughs in learning by the students? Research at the Tier 2 level is needed 

to study the cognitive processes and pedagogical practices employed by teachers that 

support and facilitate learning about probability simulation.  

 This study demonstrated that probability simulation is accessible to high school 

students and that instruction can be used to help students develop a richer understanding 

of simulation and its related mathematical concepts, randomness, empirical probability, 

and probability. Furthermore, a simple graphing calculator can be a powerful 

technological tool that can be used to enhance concepts like constructing probability 

generators and trials, and act as a tool to provide a substantial number of trials. Finally, 

by its very nature, probability simulation encourages students to share and debate key 

concepts that promoted understanding. 
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Preassessment 
 

 
Task 1: Pizza Problem 
 

A student, Stan, was given the following problem. 
 
 
The Pizza Wagon has determined that 60 percent of their phone orders for 
pizza contain meat (sausage, pepperoni, etc.) and the remaining 40 percent 
of their phone orders are for pizzas with no meat (cheese, veggie, etc.). What 
is the probability that the next two phone orders for pizza are each with 
meat? 
 
 
To simulate the Pizza Wagon’s situation, Stan used colored chips. Stan chose 
6 red chips to each represent an order for pizza with meat, and he chose 4 
green chips to each represent an order for pizza without meat. To simulate 
the actual order, Stan put all 10 chips into a bag, shook the bag, and drew 
out one chip. He recorded the color, put the chip back, and then repeated this 
action a total of 50 times. 
 

1) Remembering that the Pizza Wagon is trying to determine the probability that the next 2 
pizzas have meat, do you think that Stan’s simulation would enable him to determine the 
probability that the next two pizzas have meat? Justify your response. 

 
 
 
 
 
 
 
 
 
 
 
2) If you don’t think Stan’s simulation will work, how would you change the simulation to 

determine the probability that the next two pizzas have meat?
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3. Suppose Stan conducted his experiment 50 times and his results were as follows: 
 

RRRGRRRGGGGRGRRGGGGRRRGRGRRGGGRRGGGRRGGRRRGGRGRGGR 
 
    Red chip 25 times 
    Green chip 25 times 

 
 

Using the outcomes or the results from Stan’s experiment, could you determine the 
probability that the next two phone orders for pizza have meat? If your response is “yes,” 
calculate the required probability and explain your reasoning. If your response is “no,” 
explain why not. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Task 2: Radio Problem   
 
 

The school radio station plays three types of music: hip-hop, alternative, and 
country. The DJ uses a format such that the probability he plays hip-hop is 
0.4, the probability he plays alternative is 0.4 and the probability that he 
plays country is 0.2. If you turn your radio on at 10:00 am and then again at 
2:30 pm, what is the probability that both times you hear a hip-hop song? 

 
 
 
4. How would you simulate this situation to determine the probability that both times you hear 

hip-hop? Assume you would have access to such things as spinners, chips, dice, calculator, or 
anything else you think may help. Describe your simulation precisely and make sure you 
provide me with enough detail that I could go and repeat the simulation. (Use the back of the 
paper to write your answer.) 
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5. Make up some data that you think your simulation would produce and write it below. 
 

 
 
 
 
 
 
 

 
6a. Using your data in #5, determine the probability that both times you turn on the radio you 

hear a hip-hop song.  Explain how you did this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b. How many times would you do the simulation? Why? 
 
 
 
 

 
 
 
 
 
 
 
 

6c. Would your solution change if you did the experiment 50 times, 1000 times, or 100,000 
times?  Explain why or why not. 
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Post-assessment 
 

 
Task 1: Free Throw Shooter Problem 
 

Lora was asked to design a simulation for the following problem. 
 
 
Beth’s basketball statistics show that historically, when she is at the free 
throw line, Beth makes about 70% of her free throws.  What is the 
probability that Beth misses both free throws? 
 

 
To simulate the Free Throw Shooter situation, Lora used colored balls. Lora 
let 7 red balls represent making the shot, and she let 3 blue balls represent 
missing the shot. To simulate the actual problem, Lora put all 10 colored 
balls into a bag, shook the bag, and drew out one ball.  She recorded the 
color, put the ball back, and then repeated a number of times. 
 

1) Remembering that you are trying to determine probability that Beth misses both free throws, 
do you think that Lora’s simulation would enable her to determine the probability that Beth 
misses both free throws? Justify your response. 

 
 
 
 
 
 
 
 
 
 
 
2) If you don’t think Lora’s simulation will work, how would you change the simulation to 

determine the probability that Beth misses both free throws?
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3. Suppose Lora conducted her experiment 50 times and her results were as follows: 
 

RBBBBRRBRBBBRRRRBBRBRRRRRRBBRBRRRBBRRRRRBBBRBRRBRR 
 
    27 Red (made) 
    23 Blue (missed) 

 
 

Using the results from Lora’s experiment, could you determine the probability that Beth 
missed both free throw shots?  If your response is “yes,” calculate the required 
probability and explain your reasoning.  If your response is “no,” explain why not. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Task 2: Space Shuttle Problem * 
 
 

A primary power system, S1, on a space shuttle has a backup system, S2. If S1 
fails during a mission, S2 automatically takes over. Suppose the probability 
that S1 fails during a mission is 0.2 and the probability that S2 fails is 0.3.  
What is the probability that both power systems fail? 

 
 
 
4. How would you simulate this situation to determine the probability that both power systems 

on the space shuttle fail? Assume you would have access to such things as spinners, chips, 
dice, calculator, or anything else you think may help. Describe your simulation precisely and 
make sure you provide me with enough detail that I could go and repeat the simulation. (Use 
the back of the paper to write your answer.) 

 
 
* From The Art & Techniques of Simulation by M. Gnanadesikan, R. L. Scheaffer, & J. Swift, © 1987 by Dale 
Seymour Publications, an imprint of Pearson Learning Group, a division of Pearson Education, Inc. Used by 
permission.
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5. Make up some data that you think your simulation would produce and write it below. 
 

 
 
 
 
 
 
 

 
6a. Using your data in #5, determine the probability that both power systems fail.  Explain how 

you did this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b. How many times would you do the simulation? Why? 
 
 
 
 

 
 
 
 
 
 
 
 

6c. Would your solution change if you did the experiment 50 times, 1000 times, or 100,000 
times?  Explain why or why not. 
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Retention-assessment 
 

 
Task 1: Train Crossing Problem 
 

Tim was asked to design a simulation for the following problem. 
 
 
Alana has to drive over a set of railroad tracks on her way to and from 
school everyday. Every time she crosses, Alana has a 60% chance of being 
stopped by a train. What is the probability that Alana gets stopped by a 
train both on her way to AND from school on any given day? 
 

 
To simulate the Train Crossing situation, Tim used colored balls. Tim let 6 
red balls represent getting stopped by the train, and he let 4 blue balls 
represent not getting stopped by the train. To simulate the actual problem, 
Tim put all 10 colored balls into a bag, shook the bag, and drew out one ball.  
He recorded the color, put the ball back, and then repeated a number of 
times. 
 

1) Remembering that you are trying to determine probability that Alana is stopped by the train 
both times she crosses, do you think that Tim’s simulation would enable him to determine the 
probability that Alana is stopped by a train both times? Justify your response. 

 
 
 
 
 
 
 
 
 
 
 
2) If you don’t think Tim’s simulation will work, how would you change the simulation to 

determine the probability that Alana is stopped by a train both times? 
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3. Suppose Tim conducted his experiment 50 times and his results were as follows: 
 

RBBBBRRBRBBBRRRRBBRBBBRRRRBBRBRRRBBRRRRRBBBRBRRBBB 
 
    25 Red (stopped by the train) 
    25 Blue (not stopped by the train) 

 
 

Using the results from Tim’s experiment, could you determine the probability that Alana 
was stopped by a train both times she crossed?  If your response is “yes,” calculate the 
required probability and explain your reasoning.  If your response is “no,” explain why 
not. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Task 2: Kyle’s Serve Problem   
 
 

When playing tennis, a player gets a second chance to serve if his first serve 
is out of bounds (considered a “fault”).  Kyle’s tennis statistics show that he 
has a 0.8 probability of getting a fault on his first serve and a 0.1 probability 
of getting a fault on his second serve (assuming his first serve is a fault).  
What is the probability Kyle faults on both serves? 

 
 
 
4. How would you simulate this situation to determine the probability that Kyle faults on both 

serves? Assume you would have access to such things as spinners, chips, dice, calculator, or 
anything else you think may help. Describe your simulation precisely and make sure you 
provide me with enough detail that I could go and repeat the simulation. (Use the back of the 
paper to write your answer.) 
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5. Make up some data that you think your simulation would produce and write it below. 
 

 
 
 
 
 
 
 

 
6a. Using your data in #5, determine the probability that Kyle faults on both serves.  Explain 

how you did this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b. How many times would you do the simulation? Why? 
 
 
 
 

 
 
 
 
 
 
 
 

6c. Would your solution change if you did the experiment 50 times, 1000 times, or 100,000 
times?  Explain why or why not. 
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INSTRUCTIONAL PROGRAM: HYPOTHETICAL 
 

LEARNING TRAJECTORIES 
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Session 1 
 

Learning Goals 
• To construct a valid probability generator. 
• To determine and explain an event or trial for the simulation. 
• To use the probability generator to simulate a 1-dimensional probability situation. 
• To use the simulation results to compare with “expected” results. 
 
Instructional Activities 

Activity – “Counting Successes”  
(Scheaffer, Gnanadesikan, Watkins & Witmer, 1996). 

 
Conjectured Learning Process 
• Students will be able to construct a valid probability generator using a 1-1 

correspondence between the probability given in the problem and numbers found in 
the random number table. 

• Students will be able to use the random number table to determine the outcomes as 
required in the problems. 

• Some students will attempt to solve the problem using theoretical probability, thus 
questioning the need to simulate the problem 

• Some students may question the randomness of their results if the outcomes of the 
simulation do not seem to match the stated probabilities of the problem. 

 
Session 2 

 
Learning Goals 
• To construct a valid probability generator. 
• To determine and explain an event and trial for the simulation. 
• To use the probability generator to simulate a multi-dimensional probability situation. 
• To use the simulation results to compare with “expected” results. 
 
Instructional Activities 

Activity – “True/False History Test”  
 (Scheaffer et al., 1996). 

 
Conjectured Learning Process 
• Students will be able to construct a valid probability generator using a 1-1 

correspondence between the probability given in the problem and numbers found in 
the random number table. 

• Students will most likely struggle with the multi-dimensional nature of the outcome 
(i.e. 5 answers on a test). 

• Students may struggle with being able to recognize the sample space. 
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Session 3 
 
Learning Goals 
• To construct a valid probability generator using other devices than random number 

generator on calculator (dice, spinners). 
• To determine and explain an event and trial for the simulation. 
• To use the probability generator to simulate a multi-dimensional probability situation. 
• To be able to recognize the sample space. 
• To use the simulation results to compare with “expected” results. 
• To address (list) assumptions inherent in the simulation problem. 
 
Instructional Activities 

Activity – “Free Throw Shooter” & 
“Blood Bank” (Scheaffer et al., 1996) 

 
Conjectured Learning Process 
• Students will be able to construct a valid probability generator using a 1-1 

correspondence between the probability given in the problem and various devices. 
• Some students will continue to with the multi-dimensional nature of the outcome (i.e. 

10 shots in a game). 
• Some students may struggle with being able to recognize the sample space. 
• Most students (if not all) should be able to recognize how to represent the 33% in the 

“Blood Bank” problem on a random number generator (other than the calculator). 
• While students will be able to recognize some assumptions inherent in the problems, 

they may not recognize the most relevant ones (i.e. assuming the free throw shooter 
shoots 10 shots every game and each shot is independent of the previous shot). 

 
Session 4 

 
Learning Goals 
• To recognize and understand the concept of randomness 
• To use the probability generator to simulate a multi-dimensional probability situation. 
• To use the simulation results to compare with “expected” results. 
• To address (list) assumptions inherent in the simulation problem. 
• To use technology (calculators) to design & conduct simulations. 
• To look at “long run” behavior in simulated situations 
 
Instructional Activities 

Activity – “Designing Simulations on the TI-83” (Rossman, 1996) 
 



 200

Conjectured Learning Process 
• Students will struggle with the concept of randomness. 
• Students will have difficulty recognizing randomly vs. man-made outcomes. 
• Will not recognize that runs are likely in long sequence of randomly generated 

outcomes. 
• Using the technology, students may struggle with “logic” of programming. 
 

Session 5 
 
Learning Goals 
• To recognize and understand the concept of randomness 
• To address (list) assumptions inherent in the simulation problem. 
• To use technology (calculators) to design & conduct simulations. 
• To look at “long run” behavior in simulated situations 
 
Instructional Activities 

Activity – “Randomly-generated outcomes” 
2nd Session on “Designing Simulations on the TI-83”   
Homework:  “Women Working” (Gnanadesikan, Scheaffer, & Swift, 1987) 
  

Conjectured Learning Process 
• Students will struggle with the concept of randomness. 
• Students will have difficulty recognizing randomly vs. man-made outcomes. 
• Will not recognize that runs are likely in long sequence of randomly generated 

outcomes. 
• Using the technology, students may struggle with “logic” of programming. 
 

Session 6 
 
Learning Goals 
• To use tree diagrams to determine the sample space of a situation 
• To recognize and use the Multiplication Principle to determine the number of 

outcomes in a given situation. 
• To be able to determine the theoretical probability of simple situations. 
• To use technology (calculators) to design & conduct simulations. 
• To compare long run behavior of simulations with theoretical probability 
 
Instructional Activities 

Activity – “Tree Diagrams” 
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Conjectured Learning Process 
• Students will be able to draw tree diagrams. 
• Students will be able to use the Multiplication Principle to determine the number of 

outcomes in a sample space. 
• Some students may still not recognize the significance of long run behavior of 

simulations.  However, now that we are comparing to theoretical, it may help more 
students to realize that a simulation must be done “many” times. 

• Students will become increasingly comfortable with using the calculator to design 
and run simulations. 

 
Session 7 

 
Learning Goals 
• To recognize mutually exclusive events and be able to determine the probability of 

such events. 
• Be able to recognize non-disjoint events and be able to determine the probability of 

such events. 
• Be able to construct Venn diagrams to illustrate sample space and use to determine 

the probability of an event. 
 
Instructional Activities 

Activity – “Probability Workshop” (Rossman, 1996) and teacher examples 
 
Conjectured Learning Process 
• Students may not be familiar with Venn diagrams.  However, once shown, students 

will be able to draw and use to determine probability of events. 
• Students may struggle with the difference between mutually exclusive events and 

those that are not. 
• In familiar situations (such as cards), students will be able to determine the 

probability of mutually exclusive events and those that are not.  However, students 
may have difficulty transferring this knowledge to unfamiliar situations. 

 
Session 8 

 
Learning Goals 
• Be able to construct Venn diagrams to illustrate sample space and use to determine 

the probability of an event. 
• To be able to determine the conditional probability of an event. 
 
Instructional Activities 

Activity – “Tree Diagrams,” teacher examples and “Probability Workshop”  
(Rossman, 1996) 
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Conjectured Learning Process 
• Given a familiar contextual example, students will be able to make sense of Venn 

diagrams and use them to determine the probability of an event. 
• Some of the students should recognize how to determine the conditional probability 

of an event.  For a few students, this is almost entirely new. 
• Students will be able to determine P(A), however, they may struggle with 

determining P(A and B). 
• Likewise, students will be able to determine P(A), but may have difficulty with 

determining P(A | B) in order to calculate P(A & B). 
 

Session 9 
 

Learning Goals 
• Be able to determine the theoretical probability of independent events. 
• Be able to compare empirical and theoretical probabilities. 
• To recognize the long run behavior of simulations 
• To recognize that one cannot predict the next event or predict in the short run. 
 
Instructional Activities 

Theoretical problems involving coin tosses –  
demo simulation with TI-83 ProbSim. 

Problem involving “false positive” of Aids test 
 

Conjectured Learning Process 
• By looking at a graph of toss # vs. probability of heads will understand the long-run 

behavior of simulations. 
• Students have difficulty applying probability concepts. They will have difficulty 

interpreting the Aids problem and then determining how to solve.  Most students will 
also have difficulty recognizing that P(at least one) is the same as 1-P(none) 

• Students will apply various heuristics in trying to “predict” the outcome of the Jolly 
Rancher activity.  They will struggle with the limitations of predicting the next or in 
the short run and how this connects to examining long run behavior to draw 
conclusions.  

 
Session 10 

 
Learning Goals 
• To recognize, interpret and use complements of events. 
• To recognize that not all simulated events can be determined by theoretical 

probability. 
• To recognize that one cannot predict the next event or predict in the short run. 
• To recognize the role of independence in determining probabilities. 
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Instructional Activities 
Warm-up worksheet on sets involving complements. 
Activity – “What is Random Behavior – Jolly Ranchers” (Rossman, 1996) 
 

Conjectured Learning Process 
• By using a smaller set of outcomes, students will have an easier time recognizing 

what a complement is and how to use it to simplify problems.  
• Students will apply various heuristics in trying to “predict” the outcome of the Jolly 

Rancher activity.  They will struggle with the limitations of predicting the next or in 
the short run and how this connects to examining long run behavior to draw 
conclusions.  

• Students will be surprised the role independence plays in the tack experiment. 
 

Session 11 
 
Learning Goals 
• To be able to simulate an event with an unspecified number of trials. 
• To recognize that not all simulated events can be determined by theoretical 

probability. 
• To recognize the role of independence in determining probabilities. 
 
Instructional Activities 

Activity – “What’s the Chance” – focus is on independence 
(Scheaffer et al., 1996)  

 
Conjectured Learning Process 
• Students will be surprised the role independence plays in the tack experiment.  
• Students may struggle with the fact that the number of trials is unspecified. 
• Students will continue to not do “enough” trials to provide a “confident” probability 

of a situation. 
 

Session 12 
 
Learning Goals 
• To determine if a simulation is valid. 
• To recognize that not all simulated events can be determined by theoretical 

probability. 
 
Instructional Activities 

Problem – “Are these simulation designs valid?” 
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Conjectured Learning Process 
• Students will begin to do more trials to determine empirical probability.  
• Related to the valid simulation designs, in the second case, students will intuitively 

believe that it is invalid.  With some probing (and coaxing) they will determine the 
actually outcomes of the game to determine if the probability generator for the 
simulation is valid. 
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APPENDIX C 
 

INSTRUCTIONAL ACTIVITIES 
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C1. Counting Successes (Scheaffer, Gnanadesikan, Watkins, & Witmer, 1996) 
 
Read the article from the Milwaukee Journal (May 1992) entitled 
“Non-cents: Laws of probability could end need for change,” which 
follows: 
 
a. Does this seem like a reasonable proposal to eliminate carrying 

change in your pocket? 
b. Do you think the proposal is fair?  Explain your reasoning. 
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Activity 

2. Investigate a single random outcome per trial. 
Suppose the soft drink machine you use charges $.75 per can.  
The scheme proposed by Mr. Rossides requires you to pay either 
$0 or $1, depending on your selection of random number.  You 
select a two-digit number between 01 and 00 (with 00 
representing 100).  If the number you select is 75 or less, you pay 
$1.  If the number you select is greater than 75, you pay nothing. 
 
a. From a random number table choose a random number 

between 01 and 100.  If this represents your selection at the 
drink machine, how much do you pay for your drink? 

b. The article suggests that things will even out in the long run.  
Suppose that over a period of time you purchase 60 drinks 
from the machine and use the random mechanism for payment 
each time.  This can be simulated by choosing 60 random 
numbers between 01 and 100.  Make such a selection of 60 
random numbers. 

 
i. How many drinks did you pay $1?  What is the total 

amount you paid for 60 drinks? 
 
ii. If you had paid the $.75 for each drink, how much would 

you have paid for 60 drinks?  Does the scheme of random 
payment seem fair? 
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iii. C2. Labor Force Problem*  
 
Use a separate sheet of paper to record your answers!!  Using your 
calculator, design a simulation for the following situations. 
 
1. The percentage of women in the labor force of a certain country is 30 

percent.  A company employs ten workers, two of whom are women. 
 

a. Design a simulation to answer the questions below:  
 

i. What assumptions are you making? 
 

ii.  Define a trial for this simulation 
 

iii. How are you assigning the outcomes to random digits? 
 

iv. What commands did you put into your calculator? 
 

v. How many trials did you do to answer each question? 
 

Questions: 
 
A. Using your simulation results, determine the probability that 

this would occur by chance. 
 

B. Estimate the probability that a company of ten workers would 
employ two or fewer women by chance. 

 
C. Estimate the expected number of women that a company of ten 

workers would employ. 
 

D. In simulating the number of women among the ten workers, 
what number occurs most frequently? 

 
E. On the basis of your simulation, do you think that women are 

underrepresented in the company?  Why or why not?  
 
* From The Art & Techniques of Simulation by M. Gnanadesikan, R. L. Scheaffer, & J. Swift, © 1987 by 
Dale Seymour Publications, an imprint of Pearson Learning Group, a division of Pearson Education, Inc. 
Used by permission. 
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C3. Pay Your Bill (Walton & Walton, 1987) 
 

Pay Your Bill 
 
When Tom tries to collect $5 a week for delivering the daily paper, Mr. Bernoulli offers 
Tom a choice.  He proposes that he either pay Tom $5 weekly or each week let Tom 
reach into a bag containing five $1 bills and one $10 bill and draw two bills.  Being a 
doubter, Tom is suspicious that Mr. Bernoulli’s scheme is a scam.  
 
1. Design a simulation for this problem.  Describe your design in detail. 
 
2. Record the outcomes of your simulation. 
 
3. According to your simulation results, which method of payment should Tom choose?  

Justify your answer. 
 
4. What is the expected value for this problem? 
 
5. How does this compare with your expected value? 
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C4. Randomly Generated Outcomes (Scheaffer et al., 1996) 
 
The activity used in the whole-class teaching experiment was an adaptation of the 
following activity. The adaptation concentrated on turning an individual or group activity 
into a whole-class activity. 
 
Provide students with a piece of overhead transparency and overhead marker. Randomly 
assign each student either a “C” for calculator-generated or a “S” for student-generated. 
Make sure only that student knows whether he or she is a “C” or an “S”. Have them mark 
the upper right corner of their overhead transparency with their designated letter. 
 
Then have each student consider tossing a coin 50 to 100 times. They are to generate 
these outcomes (H or T) according to their earlier designation. 
 
The results are collected and displayed one at a time on the overhead for students to judge 
whether the outcomes are calculator-generated or student-generated. The “C” or “S” is 
covered and revealed after students have made their guesses. A discussion about 
randomness follows the activity. 
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APPENDIX D 
 

TEST FOR NORMALITY OF ASSESSMENT SCORE DIFFERENCES 
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Figure D1. Boxplots for Assessing Normality 
 
 
 

Table D1 
 
Shapiro-Wilk’s Test of Normality of Assessment Score Differences 
  

  Difference Statistic df p 

 Pre- and Post- .960 21 .499 

 Pre- and Retention .937 21 .249 

 Post- and Retention .984 21 .956 
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Probabilistic Simulation Pre-assessment 
 

 
TASK 1: PIZZA PROBLEM 
 

A student, Stan, was given the following problem. 
 
 
The Pizza Wagon has determined that 60 percent of their phone orders for 
pizza contain meat (sausage, pepperoni, etc.) and the remaining 40 percent 
of their phone orders are for pizzas with no meat (cheese, veggie, etc.). What 
is the probability that the next two phone orders for pizza are each with 
meat? 
 
 
To simulate the Pizza Wagon’s situation, Stan used colored chips. Stan chose 
6 red chips to each represent an order for pizza with meat, and he chose 4 
green chips to each represent an order for pizza without meat. To simulate 
the actual order, Stan put all 10 chips into a bag, shook the bag, and drew 
out one chip. He recorded the color, put the chip back, and then repeated this 
action a total of 50 times. 
 

1) Remembering that the Pizza Wagon is trying to determine the probability that the next 2 
pizzas have meat, do you think that Stan’s simulation would enable him to determine the 
probability that the next two pizzas have meat? Justify your response. 

 
 
 
 
 
 
 
 
 
 
 
2) If you don’t think Stan’s simulation will work, how would you change the simulation to 

determine the probability that the next two pizzas have meat?
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3. Suppose Stan conducted his experiment 50 times and his results were as follows: 
 

RRRGRRRGGGGRGRRGGGGRRRGRGRRGGGRRGGGRRGGRRRGGRGRGGR 
 
    Red chip 25 times 
    Green chip 25 times 

 
 

Using the outcomes or the results from Stan’s experiment, could you determine the probability 
that the next two phone orders for pizza have meat? If your response is “yes,” calculate the 
required probability and explain your reasoning. If your response is “no,” explain why not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TASK 2: RADIO PROBLEM   
 
 

The school radio station plays three types of music: hip-hop, alternative, and 
country. The DJ uses a format such that the probability he plays hip-hop is 
0.4, the probability he plays alternative is 0.4 and the probability that he 
plays country is 0.2. If you turn your radio on at 10:00 am and then again at 
2:30 pm, what is the probability that both times you hear a hip-hop song? 

 
 
 
4. How would you simulate this situation to determine the probability that both times you hear 

hip-hop? Assume you would have access to such things as spinners, chips, dice, calculator, or 
anything else you think may help. Describe your simulation precisely and make sure you 
provide me with enough detail that I could go and repeat the simulation. (Use the back of the 
paper to write your answer.) 
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5. Make up some data that you think your simulation would produce and write it below. 
 

 
 
 
 
 
 
 

 
6a. Using your data in #5, determine the probability that both times you turn on the radio you 

hear a hip-hop song.  Explain how you did this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b. How many times would you do the simulation? Why? 
 
 
 
 

 
 
 
 
 
 
 
 

6c. Would your solution change if you did the experiment 50 times, 1000 times, or 100,000 
times?  Explain why or why not. 
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Probabilistic Simulation Post-assessment 
 

 
TASK 1: FREE THROW SHOOTER PROBLEM 
 

Lora was asked to design a simulation for the following problem. 
 
 
Beth’s basketball statistics show that historically, when she is at the free 
throw line, Beth makes about 70% of her free throws.  What is the 
probability that Beth misses both free throws? 
 

 
To simulate the Free Throw Shooter situation, Lora used colored balls. Lora 
let 7 red balls represent making the shot, and she let 3 blue balls represent 
missing the shot. To simulate the actual problem, Lora put all 10 colored 
balls into a bag, shook the bag, and drew out one ball.  She recorded the 
color, put the ball back, and then repeated a number of times. 
 

1) Remembering that you are trying to determine probability that Beth misses both free throws, 
do you think that Lora’s simulation would enable her to determine the probability that Beth 
misses both free throws? Justify your response. 

 
 
 
 
 
 
 
 
 
 
 
2) If you don’t think Lora’s simulation will work, how would you change the simulation to 
determine the probability that Beth misses both free throws?
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3. Suppose Lora conducted her experiment 50 times and her results were as follows: 
 

RBBBBRRBRBBBRRRRBBRBRRRRRRBBRBRRRBBRRRRRBBBRBRRBRR 
 
    27 Red (made) 
    23 Blue (missed) 

 
 

Using the results from Lora’s experiment, could you determine the probability that Beth missed 
both free throw shots ?  If your response is “yes,” calculate the required probability and explain 
your reasoning.  If your response is “no,” explain why not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TASK 2: SPACE SHUTTLE PROBLEM   
 
 

A primary power system, S1, on a space shuttle has a backup system, S2. If S1 
fails during a mission, Ss automatically takes over. Suppose the probability 
that S1 fails during a mission is 0.2 and the probability that S2 fails is 0.3.  
What is the probability that both power systems fail? 

 
 
 
4. How would you simulate this situation to determine the probability that both power systems 

on the space shuttle fail? Assume you would have access to such things as spinners, chips, 
dice, calculator, or anything else you think may help. Describe your simulation precisely and 
make sure you provide me with enough detail that I could go and repeat the simulation. (Use 
the back of the paper to write your answer.) 
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5. Make up some data that you think your simulation would produce and write it below. 
 

 
 
 
 
 
 
 

 
6a. Using your data in #5, determine the probability that both power systems fail.  Explain how 

you did this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b. How many times would you do the simulation? Why? 
 
 
 
 

 
 
 
 
 
 
 
 

6c. Would your solution change if you did the experiment 50 times, 1000 times, or 100,000 
times?  Explain why or why not. 
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