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       Describing, organizing and reducing, representing, analyzing, and collecting data are 

fundamental statistical thinking processes. In this dissertation, I identify and describe 

levels of high school students’ thinking within each process. 
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       The study sought to describe the statistical thinking of high school students. The two 

research questions guiding the study were: (i) What are the defining characteristics of 

different patterns of high school students’ statistical thinking within the processes of 

describing, organizing and reducing, representing, analyzing, and collecting data? (ii) 

What levels of statistical thinking can be associated with each of the patterns? In order to 

answer the two research questions, high school students of various grade levels and 

mathematical backgrounds and recent high school graduates were asked to solve 

statistical thinking tasks during clinical interview sessions. The cognitive model 

described by Biggs and Collis (1982, 1991) was applied in differentiating among patterns 

of sophistication in the students’ responses to the interview tasks. The study identified 

and characterized levels of thinking which provide the basis of a framework useful for 

advising instruction, curriculum development, and further research in the area of high 

school statistics.   
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CHAPTER I 

THE PROBLEM AND ITS BACKGROUND 

Background 
 

       It is becoming more widely recognized among the mathematics education 

community that in today’s data-driven society, no student should leave high school 

without engaging in the study of statistics. It is no longer adequate for high school 

students to take a sequence of courses designed only to prepare them for the study of 

calculus. Statistical reasoning is essential for all students, regardless of what occupation 

they may choose to pursue (Gal & Garfield, 1997). Statistics play a key role in shaping 

policy in a democratic society, so statistical literacy is essential for all citizens in order to 

keep a democratic government strong (Wallman, 1993). Recognizing the key role 

statistics play in modern society, the National Council of Teachers of Mathematics 

(NCTM) (2000) recommended that “by the end of high school students have a sound 

knowledge of elementary statistics” (p. 48).  

       Several professional organizations have joined NCTM (1989, 2000) in the call for a 

more comprehensive treatment of statistics at the secondary level. The American 

Statistical Association (1991), for one, recommended that high school students engage in 

exploring data, using techniques of formal inference, planning studies, and analyzing how 

statistics are used in society. The American Association for the Advancement of Science 

(1993) echoed some of the same recommendations and emphasized that high school 
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graduates need to be able to critically analyze the design of studies in which statistical 

techniques are used. The need for comprehensive statistical education at all grade levels 

has been recognized not only in the United States, but in the international community as 

well (e.g., School Curriculum and Assessment Authority & Curriculum and Assessment 

Authority for Wales, 1996; Australian Education Council, 1994).  

       There is some evidence to suggest that the calls for expanded treatment of the subject 

of statistics at the secondary level have not gone unheeded. On the student questionnaire 

given with the 1990 National Assessment of Educational Progress (NAEP), 87.6 percent 

of all twelfth-grade students indicated that they had not taken probability or statistics, but 

by the 1996 NAEP that number had dropped to 79.2 percent (Shaugnessy & Zawojewski, 

1999). In the late 1990’s, reform curricula funded by the National Science Foundation 

(NSF) emerged at the secondary level integrating the teaching of statistics with the 

teaching of traditional topics such as algebra and geometry (Hirsch, Coxford, Fey, & 

Schoen, 1998;  Alper, Fraser, Fendel, & Resek, 1998). Even traditional algebra textbooks 

have begun to include statistical topics along with algebraic topics (e.g., Collins, 1998). 

In 1997, the College Entrance Examination Board administered its first Advanced 

Placement Statistics Examination to 7,600 students (Garfield & Chance, 2000). By 2001, 

the number of students taking the exam had grown to 41,609 (College Board, 2001a). 

The subject of elementary statistics appears to be taking root at the secondary level.  

       As the study of statistics becomes more common at the high school level, it is 

imperative that the research base for advising curriculum design, instruction, and further 

research be expanded. Extensive empirical research has been done within topics 
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traditionally included in secondary school curricula, such as algebra and functions 

(Chazan, 2000; Vinner, 1985; Sfard & Linchevski, 1994; Tall, 1992), geometry (van 

Hiele, 1986; Usiskin, 1982; Fuys, Geddes, & Tischler, 1988; Burger & Shaugnessy, 

1986), and calculus (Thompson, 1994; Ferrini-Mundy & Guadard, 1992; Heid, 1988; 

Orton, 1983). Since statistics is a relatively new topic in secondary school curricula, 

research in this area is not as well developed (Lajoie & Romberg, 1998). In fact, it is only 

within the past decade that research studies focusing upon the teaching and learning of 

statistics at any level have begun to accumulate (Shaugnessy, Garfield, & Greer, 1996). 

Therefore, the research base for advising statistics instruction at the high school level is 

only in the beginning stages of construction. 

       One powerful way to build the research base in the area of high school statistics is to 

conduct research focused upon building models that describe students’ statistical 

thinking. Cobb et al. (1991) and Resnick (1983) contended that research-based 

frameworks describing students’ thinking are vital for advising curriculum and 

instruction. Fennema and Franke (1992) pointed out that research-based knowledge of 

students’ thinking does, in fact, serve to improve teachers’ instruction. Jones et al. (2001) 

demonstrated the effectiveness of providing teachers with knowledge of students’ 

thinking in the area of statistics by successfully using a research-based statistical thinking 

framework to advise instruction at the elementary school level. The present study focused 

upon building a comparable framework with the potential to advise statistics instruction 

at the high school level.  
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       The high school framework constructed as a result of the present study describes 

various levels of students’ cognition across five different statistical thinking processes. A 

process is a cognitive operation that incorporates the organizing, coding, and interpreting 

of information (Reber, 1995). In conceptualizing the study, describing, organizing and 

reducing, representing, analyzing, and collecting data were identified as the five 

statistical thinking processes to be investigated. Within each statistical thinking process, 

descriptions of the characteristics of different levels of thinking were sought. This 

conceptual structure was derived from the research of Jones et al. (2000) and Mooney 

(2002), who constructed frameworks to describe the statistical thinking of elementary 

school and middle school students, respectively. Each of those studies, like this one, 

sought to describe students’ cognitive levels across statistical thinking processes. 

Research Questions 

       Two main research questions guided the construction of the high school statistical 

thinking framework: 

1. What are the defining characteristics of different patterns of high school students’ 

statistical thinking within the processes of describing, organizing and reducing, 

representing, analyzing, and collecting data?        

2. What levels of statistical thinking can be associated with each of the patterns?  

Statistical Thinking Processes 

       Describing, organizing and reducing, representing, analyzing, and collecting data are 

five non-disjoint statistical thinking processes. This section serves to identify some of the 

defining features of each of the processes and the relationships they have to each other. 
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Reports written by the National Research Council (2001) and Mooney (2002) were drawn 

upon to help define the first four processes, and an essay by Scheaffer, Watkins, and 

Landwehr (1998) was used to help define the fifth. 

Describing Data 

       Describing data “involves reading displays of data (e.g., tables, lists, graphs); that is, 

finding information explicitly stated in the display, recognizing graphical conventions, 

and making direct connections between the original data and the display” (National 

Research Council, 2001, p. 289). This process forms an essential part of the foundation of 

statistical thinking. Curcio (1987) emphasized this fact by pointing out that the ability to 

“read the data” is prerequisite to the abilities to “read between the data” and “read beyond 

the data.”  Students need to be able to “read the data” in order to engage in data analysis. 

Wainer (1992), in discussing how to assess students’ ability to analyze statistical graphs, 

emphasized this by pointing to the necessity of measuring ability to read information 

explicitly from graphs before investigating ability to answer higher level analysis 

questions involving comparing graphs and making inferences or predictions from them. 

Data description skills are indispensable parts of the repertoire needed to engage in 

analyzing data. 

Organizing and Reducing Data 

       Another important part of the overall foundation for statistical thinking is the process 

of organizing and reducing data. This process “incorporates mental actions such as 

ordering, grouping, and summarizing. Data reduction also includes the use of 

representative measures of center (often termed measures of central tendency) such as 
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mean, mode, or median, and measures of spread such as range or standard deviation” 

(National Research Council, 2001, p. 289). Students who can flexibly group data can 

later examine and reflect upon their groupings in order to find trends and patterns within 

the data. Those proficient in using measures of center and spread to describe data sets are 

able to convey important information about some of the defining features of the data sets 

using just a few summary statistics. These defining features can also be used to make 

comparisons among different sets of data. Therefore, organizing and reducing data is an 

essential part of analyzing data. 

Representing Data 

       Representing data is the third of the foundational statistical thinking processes 

investigated in this study. Representing data “involves displaying data in a graphical 

form” (Mooney, 2002, p. 27). This process includes being able to construct a data display 

for a given data set and constructing alternate displays for a data set. Students must be 

able to organize data and understand conventions like labeling and scaling in order to 

construct data representations (National Research Council, 2001). It is important to note 

that the construction of representations of data generally should not be an end in and of 

itself (Bright & Friel, 1998). Rather, the ability to represent data is important due to the 

fact that once visual representations have been constructed, they can be used to gain 

insight about the nature of the set of data. The representations can also be used to convey 

the results of data analysis to others.  
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Analyzing Data 

       The three foundational processes of describing, organizing and reducing, and 

representing data all come into play as students engage in the process of analyzing data. 

Analyzing data involves identifying trends and making inferences or predictions from 

charts, tables, or graphs (Mooney, 2002). It includes making comparisons within data sets 

or data displays, making comparisons between data sets or data displays, and making 

inferences from a given data set or data display. Curcio’s (1987) categories of “reading 

between the data” and “reading beyond the data” are parts of this process, since the 

former includes making comparisons within and among data sets, and the latter includes 

making inferences from data sets. The nature of informal data analysis is captured in 

Tukey’s idea of “Exploratory Data Analysis” (EDA), since “the goal of EDA is to see 

what the data in hand say, on the analogy of an explorer entering unknown lands” (Cobb 

& Moore, 1997, p. 807). Students who have engaged in EDA can go on to learn how to 

meaningfully employ methods of formal inference in the process of analyzing data (Cobb 

& Moore, 1997). Analyzing data is perhaps the most complex of the statistical thinking 

processes described thus far.  

Collecting Data 

       The final statistical thinking process investigated in the study is collecting data. This 

process includes planning, conducting, and critiquing surveys, experiments, and 

observational studies (Schaeffer, Watkins, & Landwehr, 1998). The collection of data is 

one of the central components of the practice of statistics (Moore, 1990; Cobb & Moore, 

1997; Wild & Pffankuch, 1999). Understanding data collection processes is an important 
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component for effective citizenship in a democracy (Wallman, 1993). Citizens are 

constantly presented the results of surveys, experiments, and observational studies. In 

order to be able to interpret the results of these studies, it is vital to have some 

understanding of the methods used in planning and conducting the studies. While many 

of the issues involved in collecting data are of a non-mathematical nature, the 

investigation of this process was included in the study in order to help provide a more 

complete portrait of students’ statistical thinking. 

Theoretical Perspective 

       The Neo-Piagetian model of development described by Biggs and Collis (1982) was 

used as a model for identifying levels of statistical thought in this study. The choice to 

use this model was made because it has been used effectively by other researchers to help 

identify various levels of sophistication in statistical thinking. The statistical thinking 

developmental framework for elementary school students formulated by Jones et al. 

(2000) and the Middle School Students Statistical Thinking (M3ST) framework 

(Mooney, 2002) are both based upon Biggs and Collis’ model. Watson, Moritz, and 

colleagues have conducted several studies in which they applied the Biggs and Collis 

model to describe the relative sophistication of students’ responses to statistical thinking 

tasks (e.g., Watson & Collis, 1994; Watson, Collis, Callingham, & Moritz, 1995; Watson 

& Moritz, 1999a; Watson & Moritz, 1999b; Watson & Moritz, 2000a; Watson & Moritz, 

2000b). Since Biggs and Collis’ model helped to construct the levels within the high 

school statistical thinking framework, in this section I will describe the model itself in 

some detail and the parts of the model that are especially relevant for describing the 
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statistical thinking of high school students. 

The Biggs and Collis Cognitive Model 

       According to Biggs and Collis (1982), human development follows “modes” which 

are similar to the “stages” of development described by Piaget (1983). Biggs and Collis’  

(1991) five modes of development are: sensorimotor (from birth), ikonic (from around 18 

months), concrete symbolic (from around 6 years), formal (from around 14 years), and  

post-formal (from about 20 years). A primary difference between the “modes” of Biggs 

and Collis and the “stages” of Piaget is that the Biggs and Collis model includes a “post-

formal” mode of development after the “formal” mode. Another difference is that Biggs 

and Collis emphasize that humans have the potential for “multimodal” functioning, in 

that they often use thinking characteristic of a lower mode of development in order to 

make sense of tasks that require functioning characteristic of a higher mode of 

development (Biggs & Collis, 1991). Finally, Biggs and Collis (1982) assert that 

decalages, which are instances of uneven functioning across modes by an individual on 

tasks from different subject areas, are more frequent than Piaget’s work implies (The 

research efforts of Jones et al. (2000) and Mooney (2002) indicate that instances of 

uneven functioning by a student may also occur across statistical thinking processes). 

Overall, however, Biggs and Collis’ (1991) “modes” of human development are quite 

similar in sequence and structure to Piaget’s stages. As humans attain each mode, their 

thought processes are qualitatively different from those exhibited during previous modes 

of development.          

       According to Biggs and Collis (1991), modal acquisition tells only part of the story 
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of human cognitive development. Biggs and Collis’ theory of development is again  

similar to that of Piaget (1983) in that it posits the existence of three distinct levels of 

development within each of the modes. The unistructural level is the first level of 

development within any given mode. Within this level, responses to tasks are incomplete 

because students simply seize upon the first relevant aspect of the given task which 

comes to mind. The multistructural level is the next highest level of functioning within a 

given mode. Here, students consider and seize upon various aspects of the task, but their 

responses are incomplete because they do not see the relationships among those various 

aspects. They see relationships among the aspects of a task only after reaching the 

relational level, which is the highest level of functioning within any given mode. These 

levels of development are based upon studies across several different content areas 

indicating that quantitative stages of learning occur before learning changes qualitatively 

(Biggs, 1999). The difference between the unistructural and multistructural levels is a 

quantitative one (dictated by the number of relevant aspects incorporated) whereas the 

difference between the multistructural and relational levels is a qualitative one (dictated 

by the quality of the relationship existing among the aspects incorporated).  

       Statistical thinking research using the Biggs and Collis model has focused upon 

describing students’ statistical thinking within the ikonic and concrete symbolic modes. 

The M3ST framework (Mooney, 2002) and the Jones et al. (2000) elementary school 

framework both describe students’ functioning within these two modes of development. 

The first level of thinking described in each framework captures the essence of relational 

thinking within the ikonic mode, and the remaining three levels described in each are 
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isomorphic to the unistructural, multistructural, and relational levels within the concrete 

symbolic mode. Watson, Moritz, and colleagues have focused upon describing statistical 

thinking within the same two modes of development (e.g., Watson & Collis, 1994; 

Watson, Collis, Callingham, & Moritz, 1995; Watson & Moritz, 1999a; Watson & 

Moritz, 1999b; Watson & Moriz, 2000a; Watson & Moritz, 2000b). Because of this body 

of research, we are beginning to have a better understanding of the characteristics of 

statistical thinking within the ikonic and concrete symbolic modes. 

       Researchers have yet to give a comprehensive description of what characterizes the  

various aspects of statistical thinking of students within the formal mode of development.  

Assuming that the timeline for modal acquisition reported by Biggs and Collis is fairly 

accurate, one would expect some high school students to function predominantly at the 

concrete symbolic mode of development, while others would tend to function at the 

formal mode of development. In the next subsection, I will describe some of the key 

characteristics of the formal mode of development, and then discuss how formal mode 

thinking might manifest itself within the context of statistics. 

The Formal Mode and Statistical Thinking 

       The ability to deal with more abstract concepts separates the formal mode thinker 

from the concrete symbolic thinker. In Piaget’s stage model, which is similar in structure 

to Biggs and Collis’ developmental model, hypotheticodeductive reasoning marks the 

transition to formal operational thought (Blackburn & Papalia, 1992). Blackburn and 

Papalia (1992) explained that “the elements of such thought are propositions – conceptual 

rather than physical entities” (p. 147). In other words, hypotheticodeductive thinkers are 
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able to go beyond reasoning about what is concrete and readily accessible to reasoning 

about abstract concepts and hypotheses. As such, formal mode thinkers have the ability to 

examine the underlying structure of a subject and generate solutions to problems based 

upon that structure (Biggs & Collis, 1991). Piagetian tasks involving combinatorial and 

proportional reasoning, which require hypotheticodeductive reasoning, are two types of 

tasks that traditionally have been used to differentiate concrete-symbolic thinkers from 

formal thinkers (Blackburn & Papalia, 1992). Students functioning at the level of formal 

operations are able to: write essays about hypothetical situations, design experiments to 

answer questions, justify various opposing positions with logical arguments, and examine 

broad concepts rather than just narrow sets of given facts (Woolfolk, 1993). 

       As an example of how formal mode thinking may be differentiated from concrete 

symbolic thinking within the context of statistics, consider the task in figure 1. 

 
 

Department Store Worker Salaries 
 
     Suppose that in 1975, a newspaper reporter took a random sample of 15 department stores from the state of 
Illinois. For each department store he sampled, he found out how much the highest paid man and the highest paid 
woman in the department store were paid per hour. The table below shows the results of his survey: 

Salaries (in dollars per hour) of the people in the reporter’s sample 
Store A B C D E F G H I J K L M N O 

Women 12.5 9.0 11.0 9.5 2.5 12.0 3.0 4.0 4.0 2.5 6.0 8.5 4.5 3.0 10.0 
Men 17.5 15.0 20.0 20.0 20.0 19.0 20.0 18.0 5.5 6.0 10.0 16.5 12.5 10.0 7.0 
 

After doing this survey, the reporter wrote,“There is no difference between the average hourly salary of the 
highest-paid male employees of department stores in Illinois and the average salary of their female counterparts.”  
Do the numbers from his survey support this statement?  Why or why not?   

 
Figure 1. Statistical thinking task involving the analysis of data 
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When this task was given to a group of high school students (Groth, 2002a), including 

two AP Statistics students who had begun the study of formal inference, they did not 

think beyond the data listed in the table in order to answer the question. Most calculated a 

mean salary for the males and a mean salary for the females and compared the two. No 

hints of thinking within the formal mode of development were evident in their responses 

to the question, since they never went beyond the data at hand. Thinking only about the 

data set at hand and not thinking about other possible data sets that could be drawn from 

the population placed all of the responses of students in the Groth (2002a) study within 

the concrete symbolic mode of development. 

       Even though only concrete symbolic responses were obtained in response to the 

question in figure 1, in conceptualizing this study I conjectured that such a question has 

the potential to reveal a variety of levels of thinking within the formal mode. In Biggs 

and Collis’ (1991) terms, students at a unistructural level of development in the formal 

mode may recognize that the sample is only one out of a large number of possible 

samples, and recognize the need to find out how likely the sample is to be observed by 

chance within the structure of a hypothetical distribution of all possible samples. Students 

at a multistructural level of development within the formal mode may have knowledge of 

a number of formal inferential methods and recognize the need to use one of them in 

answering the question. However, they may have an underdeveloped understanding of 

those methods, and might apply the wrong one in answering the question. Students at the 

multistructural level, for instance, might incorrectly use a two-sample t-test to compare 

the mean salaries in this situation. This type of mistake actually occurs quite frequently 
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on AP Statistics examinations (College Board, 2002). Students functioning at the 

relational level would be expected to use the correct formal inferential procedure (a 

matched pairs t-test) to analyze the data, and justify fully why the formal inferential 

procedure is appropriate in this situation. Hence, the Biggs and Collis model, even though 

previously used by researchers only to describe levels of thinking within the ikonic and 

concrete symbolic modes, can also provide a framework for describing levels of 

statistical thinking within the formal mode. 

Significance of the Study 

       This study was unique in its extensive focus upon high school students. As will be 

seen in the next chapter, several statistical thinking studies have included students of high 

school age, but have not focused exclusively upon them. The focus upon high school 

students was important for two reasons. First, little research currently exists to advise the 

teaching of statistics to high school students. This study helps to remedy that problem. 

Second, available research gives few clues about the characteristics of statistical thinking 

within the formal mode of development. This study plays a role in filling that theoretical 

gap. The focus upon high school students should, therefore, appeal both to teachers 

seeking to improve instruction in statistics and to researchers wishing to continue to 

detail the characteristics of thinking within the formal mode of development.  

       It is important to note that no framework of this nature is ever “complete.”  There is 

room for further investigation of processes and levels of high school students’ statistical 

thinking which are not included in the framework constructed by this study. 

Incompleteness is characteristic of all studies, since no form of research can ever claim to 

 14



 

give access to an external, unchanging, objectively existing reality (Smith & Deemer, 

2000). Therefore, while the framework constructed by this study does not claim to expose 

a complete and unchanging reality about all aspects of secondary students’ statistical 

thinking, it does contain insights about students’ thinking that can help advise teaching, 

research, and curriculum development in the area of high school statistics.  
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CHAPTER II 

REVIEW OF RELATED RESEARCH 

       In this chapter, I take up the task of analyzing and summarizing the literature that 

helped guide the development of the high school students’ statistical thinking framework. 

One goal of the chapter is to help to clarify and define the scope of my study and the lens 

through which data were viewed and analyzed. Another goal is to help to situate this 

study within the larger body of statistical thinking research. My discussion is divided into 

two main sections. In the first section, I discuss empirical research studies that have 

further explicated aspects of the Biggs and Collis (1982, 1991) developmental model. In 

the second section, I discuss the research literature pertaining to each of the five 

statistical thinking processes that comprise the framework: describing, organizing and 

reducing, representing, analyzing, and collecting data.  

Studies Further Explicating the Biggs and Collis Cognitive Model 

       As discussed in chapter 1, the general cognitive model described by Biggs and Collis 

(1982, 1991) was used to identify levels of sophistication in high school students’ 

statistical thinking. The model posits that human development follows five modes, which 

are somewhat similar in structure to Piagetian stages. Within each mode, three levels of 

development exist: unistructural, multistructural, and relational. At the unistructural level 

students demonstrate knowledge of only one relevant aspect of a task. At the 

multistructural level, students are aware of several of the components necessary to solve a 
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problem, but cannot integrate them properly to solve the problem. Upon reaching the 

relational level, students finally see the relationships among the components needed to 

solve the problem. In the first chapter, I discussed the Biggs and Collis model in detail, 

along with an explanation of the modes of development I expected to observe in the 

present study. In this section, I will discuss how the model has been used and refined in 

empirical research focused upon statistical thinking. 

       Jones et al. (2000) and Mooney (2002) both used Biggs and Collis’ developmental 

model to identify four distinct levels of statistical thinking. Clinical interviews were used 

in each study to form frameworks for levels of statistical thinking across four data 

analysis processes: describing, organizing and reducing, representing, and analyzing and 

interpreting data. Responses to clinical interviews were assigned to one of four 

categories: idiosyncratic, transitional, quantitative, or analytical. These categories were 

isomorphic to the levels of development within and preceding the concrete symbolic 

mode. The idiosyncratic category was the same in structure as the relational level of the 

ikonic mode, and the remaining three categories, respectively, were the same in structure 

as the unistructural, multistructural, and relational levels within the concrete symbolic 

mode. Both studies represent fairly straightforward applications of Biggs and Collis’ 

model for the purpose of identifying levels of sophistication in statistical thinking. 

       While Jones et al. (2000) and Mooney (2002) each identified only one unistructural – 

multistructural – relational (UMR) cycle within the concrete symbolic mode, other 

researchers have identified more than one. Watson, Collis, Callingham, and Moritz 

(1995) documented the occurrence of more than one UMR cycle in the area of statistical 
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thinking. In their study, two UMR cycles within the concrete symbolic mode emerged as 

sixth-grade students engaged in analyzing data cards containing various bits of 

information about individual people. The first UMR cycle climaxed in students 

“interpreting the information on the cards in an aggregated rather than an individual 

sense” (p. 254). The second UMR cycle saw students move from realizing that they 

needed to justify causal claims made during data analysis to using statistics and graphical 

displays to justify the claims. Other studies, the results of which will be further discussed 

in the next section, have confirmed that there can exist two (Watson & Moritz, 1999a) or 

even three (Reading & Pegg, 1996) UMR cycles within the concrete symbolic mode. In 

theory, there seems to be no limit to the number of UMR cycles which may occur in any 

given mode of development (Pegg & Davey, 1998). 

       In addition to identifying several UMR cycles, empirical research has identified 

instances of multimodal functioning in statistical thinking. Multimodal functioning 

occurs when students use thinking characteristic of a lower mode of development to 

provide support for solving a task requiring thinking at a higher mode (Biggs & Collis, 

1991). Watson and Collis (1994) described how students used ikonic support to help 

compare the test scores for two classes. Visual strategies in comparing two graphs 

(ikonic) were used by some students to help support strategies based upon totals and 

averages (concrete symbolic). In the same study, ikonic strategies were also used to 

support concrete symbolic thinking in tasks involving interpreting a bar chart and 

determining the “fairness” of two dice. Watson, Collis, Callingham, and Moritz (1995) 

documented ikonic support for students’ concrete symbolic thinking within the context of 
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a data card analysis activity. In the study, they found that imaginative speculation about 

causes of data values while examining cards supported the sorting of cards in a 

systematic fashion. While these studies document only ikonic support for concrete 

symbolic thinking, it is important to note that it is also possible to have support at any 

given mode of thinking from any one or more of the modes below it (Pegg & Davey, 

1998).  

       Statistical thinking research also suggests that individual students exhibit decalages 

across statistical thinking processes. That is, a student who tends to function at a given 

level within one of the statistical thinking processes does not necessarily function at that 

same level for all statistical thinking processes. For example, some of the elementary 

school students in the Jones et al. (2000) study exhibited lower levels of thinking for the 

process of analyzing data than for other statistical thinking processes. Mooney (2002) 

found some inconsistency in the performance of middle school students across statistical 

thinking processes. Hence, a richer picture of an individual student’s statistical thinking is 

obtained when the student is asked to solve tasks incorporating different statistical 

thinking processes. A student who exhibits a particular level of thinking on tasks 

associated with one statistical thinking process will not necessarily exhibit that same level 

of thinking across all processes. 

       Empirical research, then, has helped to clarify how Biggs and Collis’ model of 

cognitive development may be applied to identifying levels of sophistication in students’ 

statistical thinking. Some studies have shown that only one UMR cycle may be readily 

identifiable from empirical data (Jones et al., 2000; Mooney, 2002). Other studies have 
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shown that it is sometimes possible to identify more than one UMR cycle within 

students’ thinking (Watson, Collis, Callingham, & Moritz, 1995). Research also has 

demonstrated that statistical thinking at a high mode of development is sometimes 

supported by thinking characteristic of lower modes (Watson & Collis, 1994). Finally, it 

has been demonstrated that individual students may exhibit different levels of 

sophistication in thinking across statistical processes (Jones et al., 2000; Mooney, 2002). 

The manner in which levels of statistical thinking were identified and described in each 

of these studies helped in the process of identifying and describing levels of thinking in 

the present study.  

Empirical Research of Statistical Thinking Processes 

     This study investigated high school students’ statistical thinking across five processes: 

describing, organizing and reducing, representing, analyzing, and collecting data. Study-

specific definitions were assigned to each process in chapter 1. To recapitulate briefly, 

describing data involves the explicit reading of data presented in tables, charts, or graphs. 

Organizing and reducing data is the process of arranging, categorizing, or consolidating a 

given set of data into summary form. Representing data entails displaying a given set of 

data by using graphs. Analyzing data involves identifying trends and making inferences 

or predictions from a data display or set, using formal inferential methods when 

appropriate. The process of collecting data involves planning, conducting, and critiquing 

surveys, experiments, and observational studies. In this section, I describe empirical 

research of each of the five processes.  
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Describing Data 

       Several aspects of students’ thinking within the process of describing data have been 

studied by researchers. The research literature illustrates the complexity of the process of 

describing data. It provides a framework detailing the different levels of sophistication in 

thinking that can be identified as students become more proficient in describing data. It 

makes us aware of the statistical representations students generally are able to read 

successfully and those that tend to cause difficulty. In addition, research illustrates the 

importance of this statistical thinking process by showing that students must have strong 

graph reading skills in order to engage in meaningful data analysis. Finally, it shows that 

students’ abilities to read data from different types of graphs, even some of those 

generally considered “difficult” to read, can be developed through instruction.  

The Complexity of the Process of Describing Data 

       Friel, Curcio, and Bright (2001) described the complex nature of the process of 

reading graphs. They defined “graph comprehension” as “the ability of graph readers to 

derive meaning from graphs created by others or by themselves” (p. 145). Through a 

review of literature from several different disciplines, they identified 4 factors that affect 

graph comprehension. The first factor is the purposes for which graphs are used. Graphs 

used within the context of data analysis are likely to carry more robust meaning than 

those presented in conventional textbook instruction. The second factor is the 

characteristics of the tasks in which graphs appear. Specifically, research has shown that 

graphs set within a context will be read differently than those that are context-free. 

Thirdly, the characteristics of the data set represented must also be considered. They 
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state, “The spread and variation within a data set, the type of data, the size of a data set, 

and the way a representation provides structure for data (i.e., graph complexity) can 

influence graph comprehension” (p. 141). The fourth factor influencing graph 

comprehension was identified as “learner characteristics.”  Logical and abstract thinking 

abilities, familiarity with different contexts for graphs, and mathematical knowledge and 

experience all come into play as students attempt to read graphs. Friel, Curcio, and Bright 

(2001) concluded that “making sense of graphs appears to be more complex than once 

thought” (p. 151). 

Levels of Sophistication in Describing Data 

       In constructing the Middle School Students Statistical Thinking (M3ST) framework, 

Mooney (2002) documented four levels of sophistication in middle school students’ 

thinking about tasks involving “describing data.”  Interview tasks were designed to 

investigate the abilities of 12 target students to read data from a two-column table, bar 

graphs, a scatter plot, and a line graph. At the lowest level of thinking, students 

demonstrated little awareness of the display features, recognized the same data 

represented in different displays only by using subjective judgments, and evaluated the 

effectiveness of displays based on irrelevant features or reasons. Students at the lowest 

level were not able to identify the units of data values or else misinterpreted them. At the 

highest level of thinking, students were able to correctly read all display features of 

graphs, and were able to pick out irrelevant or cosmetic features. They recognized the 

same data in different displays by using numerical rather than subjective reasoning. They 

also evaluated the effectiveness of different data displays by focusing upon relevant 
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display features. Mooney’s M3ST framework reveals the existence of various levels of 

thinking in response to tasks asking students to read statistical displays. 

Students’ Proficiency in Reading Different Types of Graphs 

       The Seventh Mathematics Assessment of the National Assessment of Educational 

Progress (NAEP) provided information about how well students in the U.S., in general, 

are able to read statistical graphs (Zawojewski & Shaugnessy, 2000). These NAEP data 

indicated that students did well on reading information from pictographs in grade 4, 

reading stem-and-leaf plots in grade 8, and line graphs in grade 12. However, students in 

grade 12 did poorly in reading box plots, with nearly two-thirds of student test-takers 

incorrectly answering a question requiring them to read from such a display. Box plots 

and stem and leaf plots had not previously been included on the NAEP, but as the results 

show, students were better able to make sense of stem and leaf plots than box plots. 

Zawojewski and Shaugnessy (2000) conjectured that difficulties in reading box plots may 

be due to the fact that they are a more complex type of display than stem and leaf plots. 

While stem-and-leaf plots explicitly show individual data points in their graphical 

displays, box plots tend to hide some of the data by presenting it in a more reduced form. 

Statistical displays incorporating higher levels of data reduction appear to be difficult for 

many students to read. 

The Importance of Graph Reading Skills for Data Analysis 

       It appears that the inability to read some types of graphical displays has a negative 

impact on secondary students who attempt to engage in data analysis. Biehler (2001) 

documented several difficulties twelfth-grade students had in reading data displays while 
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engaged in data analysis tasks during clinical interviews. Some students were unable to 

read information presented in a frequency bar graph. Some had difficulty interpreting the 

meaning of the labels on the horizontal axis of histograms. Also, describing the same data 

presented in the form of both a box plot and a histogram proved to be conceptually 

challenging for students. Different aspects of the process of describing data present 

cognitive hurdles for many students to overcome before they are able to meaningfully 

engage in statistical data analysis. 

Development of Graph Reading Skills through Instruction 

        Bright and Friel (1998) conducted a study to learn how instruction influences the 

abilities of students in grades 6, 7, and 8 to read information from statistical graphs and 

make connections between the graphs. They reported on the results of clinical interview 

sessions with four eighth-grade students who had just completed a unit emphasizing 

connections between different types of statistical graphs. They found that while the 

students tended to confuse the meanings of the x- and y-axes before the instructional unit, 

they did not do so after completing the unit. They also reported that line plots, with x’s 

representing individual data points, were much easier for the students to read than bar 

graphs, which present the data in a more reduced form. Also, while students 

demonstrated the ability to read both stem-and-leaf plots and histograms, they had 

difficulty seeing connections between the two representations. The researchers concluded 

that it is important for students to be given experiences that allow them to increase their 

ability to read graphical displays before they are asked to make comparisons between 

data represented in graphs and make inferences from graphical displays.  
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       Friel (1998) reported on eighth-grade students’ ability to read information from box 

plots after they had completed an instructional unit focused on topics related to sampling 

and using box plots to represent data. She reported on the results of clinical interviews 

with six students at the end of the instructional unit. She found that the students she 

interviewed had no problems with reading data from box plots. When shown a box plot 

comparing quiz scores for students in three different class periods and asked, “What are 

the minimum and maximum values and the median for first period” (p. 367), students 

experienced no difficulty. All students were able to answer correctly. In addition, some 

students even identified the lower and upper quartiles, even though they were not 

explicitly asked to do so. All of the students she interviewed demonstrated competence in 

reading information directly from box plots. Her findings suggest that the reason high 

school students generally have difficulty in reading box plots may be due to the lack of 

instructional attention currently given to the topic at the middle and high school levels. 

Summary 

       Describing data is a complex statistical thinking process. There are several different 

levels of sophistication in thinking within the process. Certain types of graphical displays, 

such as those that incorporate data reduction, can prove to be especially difficult for 

students to read. An inability to read several different types of graphical displays can 

impair high school students from performing data analysis tasks. Through instruction, 

however, it is possible for students to begin to see connections among statistical graphs 

and read complex displays such as box plots.  
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Organizing and Reducing Data 

       The body of research documenting students’ ability to organize and reduce data is 

even more abundant than the body of research about describing data. This is due to the 

fact that several researchers have investigated students’ understandings of measures of 

center. Some of these researchers have focused solely upon students’ understanding of 

the arithmetic mean and identifying difficulties students have with the concept. Others 

have taken a broader perspective, investigating students’ use of measures of center in 

general and describing how understanding of these measures tends to develop. Our 

understanding of how students use measures of spread is also growing, since some 

researchers have investigated students’ use of measures of spread along with their use of 

measures of center. Research concerning students’ ability to organize “raw” sets of data 

is sparse (Mooney, 2002), but is beginning to accumulate as seen in some of the studies 

to be discussed.  

Understanding of the Arithmetic Mean 

       Pollatsek, Lima, and Well (1981) conducted one of the first empirical research 

studies aimed at investigating students’ understanding of the arithmetic mean. They 

interviewed 37 psychology undergraduates at the beginning of an introductory statistics 

course. During clinical interview sessions, they asked students to solve problems 

requiring the computation of means and weighted means. Many of the students 

interviewed computed unweighted means in situations where it would have been correct 

to compute weighted means. One student correctly calculated a weighted mean in one 

problem context, but failed to do so in a different context. Pollatsek, Lima, and Well 
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concluded that students need to have three types of knowledge about the mean: 

functional, so that the mean is understood as a real-world concept; computational, 

including being able to work the algorithm in reverse; and analog, suggesting that 

teachers help students develop a mental image of the mean as the balance point for any 

given set of data. 

       Strauss and Bichler (1988) were among the first to investigate younger students’ 

understanding of the arithmetic mean. They conducted clinical interviews with 80 

students, 20 each of age 8, 10, 12, and 14. During the clinical interviews, students solved 

problems aimed at uncovering their understandings of seven different properties of the 

arithmetic mean. They found that almost all students interviewed were aware that the 

mean is influenced by values other than the mean, and that the mean does not necessarily 

equal one of the values in the data set from which it arises. Over 80% of the 12- and 14-

year olds were aware that the mean is located between the extreme values of a data set. 

Virtually all students were not aware that the sum of the deviations from the arithmetic 

mean is zero. Some students also had difficulty understanding that when an average is 

calculated, any zero values must also be summed, and that the average value is 

representative of the values in a set of data. The findings of Strauss and Bichler show that 

it is possible for students to have some understanding of the arithmetic mean without 

grasping all of its properties completely. 

       Cai (2000) compared students’ understanding of the arithmetic averaging algorithm 

in two countries: the U.S. and China. 232 sixth-grade students from Milwaukee, 

Wisconsin were compared to 311 sixth-grade students living in a demographically similar 
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city in China. Students were given 10 written tasks requiring the application of the 

arithmetic mean. Some problems required simple calculations, while others were more 

complex and required students to perform the algorithm in reverse. Chinese students were 

more successful than American students in obtaining correct answers to the items. Both 

sets of students were more successful with items requiring simple computation using the 

algorithm than with items requiring a more conceptual understanding. Chinese students 

were more successful with problems requiring the execution of the algorithm in reverse, 

mostly due to the fact that they were more familiar with using algebraic representations to 

solve problems. Based upon the data collected, Cai stated that allowing children to use 

invented strategies might help them come to understand the arithmetic mean and its 

applications, and that U.S. students should be taught to use both arithmetic and algebraic 

representations to solve problems. 

Understanding of Measures of Center in General 

       Mokros and Russell (1995) studied how students construct representative measures 

for data sets along with studying their understanding of the arithmetic mean. In the study, 

they interviewed 21 students, seven each from fourth, sixth, and eighth grades. Each of 

the students in the study had been taught the algorithm for computing the arithmetic mean 

during their mathematics classes. During the clinical interviews, students were asked to 

solve seven open-ended problems concerning the notion of average.  

       Mokros and Russell (1995) identified five predominant approaches to solving the 

problems: average as the mode, an algorithm, reasonable, the midpoint, and the balance 

point. Students who conceptualized average as the mode tended to come up with 
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idiosyncratic strategies to solve the problems. Students who conceptualized averages as 

algorithms tended to misapply the algorithm in solving problems, and common sense was 

often sacrificed in the use of the algorithm. Those classified as seeing the average as a 

“reasonable” value had a sense that the average should be representative of the data set 

from which it arises, but did not have a well-articulated mathematical definition for 

average. Students in the “midpoint” category also had a sense that the average should be 

representative, but for the most part were not aware of the fact that they were using the 

formal measure of center called the median to answer the problems. Students classified in 

the “balance point” category tended to use sound intuitive balancing strategies along with 

a misapplied algorithm for calculating the mean. Mokros and Russell concluded that 

students need to be taught to see data sets as entities rather than as disparate points, and 

that strictly algorithmic approaches to teaching the mean can prevent some students from 

seeing the mean as a representative measure. 

       NAEP data confirm that students frequently make poor choices in selecting measures 

of center to describe data sets (Zawojewski & Shaugnessy, 2000). When asked to choose 

between the mean and the median for describing sets of data, students predominantly 

chose the mean, even when outliers within the sets of data made the mean less indicative 

of center than the median. On a test item containing a data set structured so that the 

median would be a better indicator of center than the mean, only 4 percent of twelfth- 

graders correctly chose the median to summarize the data set and satisfactorily explained 

why it was the appropriate measure of center to use. The lack of use of the median could 

be explained by lack of familiarity with the statistic. On another item, only 33 percent of 
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twelfth graders were able to find the median when given a set of unordered data. It seems 

that since most students are familiar with the mean, and not the median, they think that 

the mean is the only measure of center that may be used to summarize data sets. 

       Watson and Moritz (1999b) demonstrated the usefulness of Biggs and Collis’ model 

for identifying different levels of understanding of problems involving measures of 

center. Their study gives insight about students’ understanding of concepts of average 

and how they use them as representative measures. Written tests were administered to 

classes of students in grades 3 through 11. They found that response levels (all within the 

concrete symbolic mode) generally improved with grade level. At the unistructural level, 

students demonstrated single, colloquial meanings for the concept of average and its 

application. At the multistructural level, students demonstrated some understanding of 

averaging within the context of the problem given, but sometimes did not demonstrate a 

sense of representativeness, or else were not able to obtain a correct numerical answer for 

the type of average they had chosen to use in response to the question. At the relational 

level, students coordinated the idea that a measure of center is representative of a data set 

with the correct computation of the measure of center. Even at the relational level, 

however, some students did not recognize the influence that outliers had upon the 

computation of the mean. As a result of a low percentage of students in the study being 

classified at the relational level, Watson and Moritz (1999b) set it as a goal “to help 

students build an early concept of average which is multifaceted and based on empirical 

data sets, followed by differentiation of how different measures of average represent data 

sets and examples from social settings” (p. 37).  
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       Watson and Moritz (1999a) further detailed the structure of the different levels of 

understanding of average, and also documented the longitudinal development in regard to 

understanding of the concept of average using data from 94 students in grades 3 to 9. At 

the “preaverage” level of understanding, students formulated imaginative stories in order 

to answer questions, and sometimes did not even see averages as numerical measures. 

Students at the next level, who had a single colloquial usage for average, simply had 

some idea of what an average is from out of school personal experience. Students with 

multiple structures for average had more than one single colloquial idea, and described 

averages using terms like “most,” “middle,” “in between,” or the “add and divide” 

algorithm. At the next level, “representation with average,” students mentioned the 

relationship between the average measure and the data set itself, and as a result often 

checked answers for reasonableness. At higher levels, students saw the need to reverse 

the algorithm for calculating the arithmetic mean in problems, and were able to do so 

successfully in one or more contexts. Longitudinal data showed that after 3 or 4 years, all 

students tended to develop an appreciation of the representative nature of averages. It also 

showed that students tended to progress to higher levels of understanding as they got 

older, rather than remaining at the same level or dropping levels. 

Measures of Spread and Measures of Center in Concert 

       Mevarech (1983) investigated college students’ ability to calculate variances and 

arithmetic means. In the first phase of the study, the participants were 56 college 

freshmen who had taken an introductory statistics course and 47 sophomores who had 

experienced two introductory courses. When presented with a questionnaire containing 
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problems that had been solved either correctly or incorrectly, students revealed 

misconceptions they held about calculating means and variances. Several students 

performed erroneous operations that involved adding weighted averages and adding 

variances. In the second phase of the study, 139 freshmen majoring in education were 

given the same questionnaire before taking an introductory college statistics course. 

Then, one group of the freshmen was taught via a conventional lecture/discussion 

strategy, while the other group was given instruction in which they were given frequent 

feedback about performance and were engaged in activities to correct misconceptions. At 

the end of the course, the second group had a higher mean score on problems involving 

computation of means and variances than the first group. Mevarech stated that this was 

evidence that students need to be engaged in activities aimed at dispelling misconceptions 

about calculating means and variances. 

       Reading and Pegg (1996) explored a slightly different aspect of students’ 

understanding of data reduction using measures of center and spread. Rather than 

investigating students’ proficiency in calculating formal measures of center and spread, 

they asked them to find the typical values in one data set presented numerically and one 

data set presented graphically. Their study included 180 students, 30 each from grades 7 

through 12. In coding different levels of sophistication in interview responses, they used 

Biggs and Collis’ (1982, 1991) model of cognitive development along with the notion 

that there can be several cycles of levels of development within any given mode. Using 

this perspective, they identified 9 levels of sophistication in students’ responses. The first 

3 levels represented a UMR cycle within the ikonic mode, while the last 6 levels 
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represented 2 UMR cycles within the concrete symbolic mode. There was a steady 

upward progression in levels of response with the ages of the students. At the lowest level 

of development, students’ responses indicated that they did not understand the 

requirements of the question. At the highest level of development, students responded to 

the questions using both a measure of center and a measure of spread. Only 4 students’ 

responses were classified at the highest level for the first task, and only 1 response was 

classified at the highest level for the second item. The modal level was the seventh, 

where students completed the problems by responding with one simple statistic, usually a 

measure of central tendency. These results suggest that students are far more likely to use 

measures of center than measures of spread when asked to describe data sets. 

       Mooney (2002) also detailed levels of student understanding of tasks requiring the 

use of measures of center and spread in the M3ST framework. Students responding to 

Mooney’s tasks at the idiosyncratic level of thinking could not describe sets of data using 

measures of center or spread. Students at the transitional level described the center and 

spread of data using invented measures that are partially valid. Among the responses at 

the quantitative level, the center and spread of data were described using either flawed 

procedures or correct and valid invented measures. At the highest level in the M3ST 

framework, the analytical level, students demonstrated the ability to describe data using 

correct and valid measures of center and spread. These levels of understanding described 

in the M3ST framework add to our understanding of the levels through which students 

may progress as they become more competent in using measures of center and spread to 

reduce data. 
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       Groth (2002b) investigated the possibility of extending the structure of the M3ST 

framework for the purpose of characterizing the thinking of high school students in 

regard to reducing data using measures of center and spread. Four students from an AP 

Statistics course participated in clinical interviews shortly after a unit in which they 

studied several measures of central tendency and spread. Many of the responses to 

questions administered during the clinical interviews could be categorized using the 

existing M3ST framework. In terms of the M3ST framework, none of the students 

interviewed exhibited higher than an analytical level of understanding of measures of 

spread. In fact, some students had an algorithmic conception of measures of spread, 

especially in regard to standard deviations. However, a higher level of thinking than 

“analytical” in regard to the use of measures of center was identified. Rather than using 

just one valid and correct measure of center to describe sets of data, one student 

interviewed was able to consistently use several different measures of center to describe 

“typical” values in sets of data. The study provided evidence that it would be feasible in 

this study to use a conceptual and theoretical structure similar to that of the M3ST 

framework in order to describe high school students’ understanding of measures of center 

and spread. 

Organization of Raw Data Sets 

       Research aimed at refining and extending the structure of the M3ST framework has 

also helped provide a clearer picture of the levels of sophistication through which 

students progress in organizing data. Mooney, Langrall, Hofbauer, and Johnson (2001) 

conducted clinical interviews with middle school students in which they asked the 
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students to organize raw sets of data. Four levels of thinking about these tasks were 

identified as a result of the study. Students at the idiosyncratic level, the first of the four 

levels, did not attempt to group or order data. At the next level, transitional, students 

would group or order data, but not do so in a summative form. They did group or order 

data in summative form upon reaching the quantitative level. At the highest level of 

sophistication in the framework, students would group or order the data in summative 

form, and would create original categories, sometimes not explicitly represented by given 

data points (e.g.,  students at the highest level, in response to one task, grouped different 

types of fish under the original category “fish”). The study served to modify the 

descriptors concerning data organization published in the original M3ST framework 

(Mooney, 2002). 

Summary  

       Researchers are still working on painting a complete picture of students’ thinking 

while organizing and reducing data. Research on students’ use of measures of center and 

spread is fairly abundant, while research detailing students’ abilities to group and order 

data has just begun to accumulate. Currently, we know that many students have 

significant conceptual gaps in their understanding of measures of center and spread. 

Research shows that students tend to have inflexible, shallow understandings of the 

algorithms for calculating means and variances. Some students’ understanding of means 

and variances is so purely algorithmic that they do not realize that the measures help to 

summarize data sets. They tend to use arithmetic means to summarize data sets even 

when it is not appropriate, and tend not use measures of spread when it would make sense 
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to do so. These problems are not universal, however, since the research does indicate that 

some students do operate at high levels of sophistication in thinking in regard to data 

reduction, making proper use of both measures of center and spread to summarize data.  

Representing Data 

       Many currently available computer software programs have the ability to produce 

multiple graphical representations of raw data. Researchers have studied students’ 

abilities to represent data both with and without the assistance of computers. Studies 

investigating students’ abilities to represent data graphically without the assistance of 

computers have dealt with several topics. These topics include production of line graphs, 

the types of errors made in producing graphs of verbally described data sets, the ability to 

complete partially constructed graphs, and the developmental levels which occur along 

the way to becoming more competent in representing data. The computer’s role in 

helping students represent data has only recently been considered by researchers. In 

particular, researchers have begun to describe how students function within a computer 

environment that assists with the representation of statistical data. They have also 

discussed how computer environments might be modified to help students become more 

proficient in representing data. 

Representing Data without the Assistance of Computers 

        Padilla, McKenzie, & Shaw (1986) investigated students’ abilities to represent data 

using line graphs. In their study, 625 students in grades 7-12 completed a multiple-choice 

instrument assessing their competence in subskills related to producing line graphs. 

Students correctly answered about half of the items. Average scores per grade level on 
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the instrument showed a general pattern of increase in grades 9-12, with the exception of 

a slight decrease in performance in grade 11. Padilla, McKenzie, and Shaw also reported 

performance on items related to specific subskills related to producing line graphs. 

Eighty-four percent of the students in the study could plot points and determine the x- 

and y-coordinates of any given point. However, only 32% could properly scale axes. 

Only 26% demonstrated the ability to use a best fit line. Forty-six percent were able to 

assign variables to axes. Fifty-seven percent were able to interpolate and extrapolate from 

bivariate data. Forty-nine percent could describe relationships between two variables in a 

line graph, and 47% demonstrated the ability to interrelate graphs. On the basis of the 

results of the study, the researchers recommended that teachers pay more explicit 

attention to helping students develop the subskills needed to produce line graphs. 

       Berg and Phillips (1994) also examined students’ ability to construct line graphs. In 

their study, 20 seventh-graders, 21 ninth-graders, and 31 eleventh-graders each 

participated in two rounds of clinical interviews. In the first round of interviews, the 

researchers examined students’ ability to construct and interpret line graphs set in several 

different contexts. In the second round of interviews, students were given Piagetian tasks 

related to locating points in three dimensions, multiplicative seriation, multiplicative 

measurement, and proportional reasoning. The results of the first round of interviews 

showed that fewer than 1/3 of the eleventh-graders were able to use age vs. weight data to 

correctly construct a line graph. Much of the performance related to constructing graphs 

seemed to be uniform throughout the grade levels, with the only differences existing in 

ordering or scaling axes and drawing distance vs. time graphs. Students who passed the 
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tasks presented in the second round of interviews did much better on the graphing 

interviews than those who did not. In essence, higher levels of cognitive development (in 

the Piagetian sense) seemed to be positively related to the ability to construct and 

interpret line graphs. Berg and Phillips (1994) concluded, “The evidence from this study 

suggests that these logical thinking abilities may indeed be the necessary tools that enable 

a person to construct and interpret graphs. The evidence also indicates that cognitive 

development is worth consideration when a researcher is attempting to determine the 

origins of graphing difficulties” (p. 331). 

       Mevarech and Kramarsky (1997) studied students’ ability to construct graphs of data 

stated in the form of a story. Ninety-two eighth-grade students were asked to construct 

graphs to illustrate the claims of three different students who each made different claims 

about how the amount of time they spent studying influenced their grades. Students were 

asked to construct the graphs once before instruction, and once after a formal unit on 

graphing in which they were introduced to bar graphs, histograms, line graphs, 

pictograms, pie diagrams, and linear graphs. The students who constructed correct graphs 

all chose to use line graphs. Students who constructed incorrect graphs displayed three 

types of alternative conceptions. One group of them chose to construct only one point 

that would have appeared on a correct line graph, or one bar that would have appeared in 

a correct histogram. A second group dealt with the covariation in the situation by 

constructing two graphs rather than displaying the variables of “grade” and “time spent 

studying” on the same graph. A third group seemed to think that each situation should be 

represented by a line graph, and that line graphs are always increasing. Accordingly, they 
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adjusted the points and/or scales in their representations so that the result of their efforts 

was a line graph which appeared to be increasing. Students who held alternative 

conceptions tended to be quite stable in using the same alternative conception to 

construct each graph they were asked to produce. Students’ ability to produce correct 

graphs seemed to improve only slightly after the instructional unit. Mevarech and 

Kramarsky (1997) concluded, “this study indicates that the transition from verbal 

descriptions to graphic representations is associated with various kinds of alternative 

conceptions that were robust in resistance to traditional instruction about graphing” (p. 

261). 

       Data from the NAEP provide some information about U.S. students’ abilities to 

complete partially constructed graphs (Zawojewski & Shaugnessy, 2000). Some of the 

items on the examination required students to complete a partially constructed graphical 

display using data presented in a table. Both eighth- and twelfth-grade students 

performed well on these tasks. 77 percent of eighth-graders and 90 percent of twelfth- 

graders were able to successfully complete the displays. Unfortunately, no information is 

available about the specific types of graphs the students were asked to complete, since the 

graphical construction items were classified as secure. Grade 4 students showed strong 

performance on items requiring the completion of pictographs and bar graphs requiring 

only the use of additive reasoning, with over half responding correctly. Their 

performance was weaker on an item requiring some proportional reasoning in the 

construction of a bar graph, with only 36 percent answering correctly. 



 

 40

       Mooney (2002) documented levels of sophistication in understanding in middle 

school students for the process of representing data using several different types of 

graphs. He found that students using idiosyncratic reasoning either did not construct 

displays for data, or else constructed displays that are both incomplete and 

unrepresentative of the data. They also did not complete partially constructed atypical 

displays. At the transitional level, students constructed data displays that were partially 

correct, and they made some progress in completing partially constructed atypical 

displays. Upon reaching the quantitative level, students were able to construct complete 

and representative data displays, perhaps with only a few flaws. They also successfully 

completed partially constructed atypical displays. At the highest level of reasoning, 

analytical, students were able to construct complete and representative displays while 

taking the characteristics of the data set and its context into account. 

Representing Data with the Assistance of Computers 

       Although numerous existing computer software programs allow students to produce 

several representations of statistical data quite quickly (Ben-Zvi, 2000), existing 

technology does not help them decide which type of representation is most appropriate 

for any given situation. Biehler (2001) noted some of secondary students’ poor choices in 

deciding upon representations for data when using a computer software package with the 

capability to produce several different types of graphs. Many of the students in his study 

did not take advantage of the software’s ability to produce multiple graphs of data. The 

software also had the ability to produce summary statistics, so some students were 

content to use the summary statistics to provide pictures of data sets and did not utilize 
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the software’s graphical capabilities. Many students in the study did not use box plots to 

represent data in situations where it would have been appropriate, seemingly not 

appreciating the fact that “box plots can be used to see properties of distributions such as 

symmetry and skewness that cannot be well-defined in empirical distributions” (p. 181). 

From Biehler’s study, we learn that technology with the capability to produce multiple 

graphical representations for statistical data does not necessarily help students develop 

more sophisticated thinking about representing data. 

       Friel, Curcio, and Bright (2001) provide some insight about why students such as 

those in Biehler’s (2001) study do not develop more sophisticated thinking about 

representing data by using technology. In order to develop more sophisticated thinking 

within this process, one must develop both graph comprehension and graph sense. Graph 

comprehension “includes a consideration of what is involved in constructing graphs as 

tools for structuring data and, more important, what is the optimal choice for a graph in a 

given situation” (p. 145). They state that graph sense “develops gradually as a result of 

one’s creating graphs and using already designed graphs in a variety of problem contexts 

that require making sense of data” (p. 145). While technology may ultimately be shown 

to play an important role in helping represent data to aid in developing graph 

comprehension, it is noted that “often, when students move to use technology such as 

computer graphing programs, they demonstrate a lack of understanding of the 

relationships among the graph, the type of data, the purpose of analysis, and the judgment 

task” (p. 151). Hence, graph comprehension and graph sense are not given a chance to 

develop. As a result, Friel, Curcio, and Bright (2001) recommend that researchers 
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investigate the possibility of helping students use technology that allows them to invent 

or reinvent their own graphical representations for displaying data. 

Summary 

       Research provides important information about students’ abilities to represent data. 

Students have difficulty with many of the subskills needed to produce graphs (e.g., 

scaling axes). Their ability to produce graphs seems to improve as they become more 

cognitively mature. Producing graphs of verbally described data sets presents a special 

set of difficulties, as does producing graphs whose construction requires proportional 

reasoning. Technology can help students develop sophisticated understandings of 

different data representations. However, the use of statistical software packages does not, 

by itself, guarantee the development of more sophisticated thinking about representing 

data. 

Analyzing Data 

       As one of the most complex statistical thinking processes, analyzing data has 

received a great deal of attention from the research community. At least three strands in 

this line of research are readily apparent. The first strand is that which has focused upon 

an investigation of individual cognition as students engage in informal data analysis. The 

second strand can be characterized by a focus upon the dynamics of the classroom social 

setting during informal data analysis. The third strand is that which deals with 

investigating students’ notions about formal inference and its intuitive foundations. My 

discussion of literature surrounding the process of analyzing data will be organized 

around the three strands.  



 

Informal Data Analysis and Individual Cognition 

       Batenero, Estepa, Godino, and Green (1996) investigated students’ preconceptions 

about statistical association. In the study, 213 students ages 17-18 completed a 

questionnaire in which they were asked to analyze data presented in 2×2, 2 3, and 3× ×3 

contingency tables. The researchers found that three different factors contributed to the 

difficulty of the tasks: the size of the table, the students’ own personal theories about the 

context of the problem, and some students’ inability to deal with the concept of inverse 

association. The researchers also identified two correct (or partially correct) strategies for 

analyzing the data in the tables, and three incorrect strategies. One correct strategy 

involved viewing the rows and/or columns in the table as distributions, and comparing 

them as such. A second correct strategy involved examining and comparing the 

frequencies of cases for and against the variables of interest. One group of students using 

incorrect strategies felt that there could be no dependency between variables presented in 

a table unless some of the cells contained zero values. A second group using an incorrect 

strategy confused an inverse association between variables with independence between 

variables. The third group with an incorrect strategy used only part of the information 

presented in the tables to make a decision about association between variables, 

sometimes using as little as one cell of the table to come to a conclusion. Batenero, 

Estepa, Godino, and Green (1996) concluded, “All of these findings show the complexity 

of a topic that is simple in appearance” (p. 167). 

       Friel (1998) studied students’ ability to analyze data presented in the form of box 

plots. After an instructional unit including box plots, the eighth-graders in her study had 
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little trouble in responding to questions about box plots that required them to “read 

between the data.”  They all demonstrated the ability to successfully analyze data 

between the quartiles of each box plot and between the extreme values. Almost all of 

them also successfully identified “outliers” in the data, with only one student unable to 

recall the concept of outliers. In questions requiring students’ to “read beyond the data,” 

students demonstrated the ability to compare the relevant features of box plots, such as 

medians, quartiles, and ranges. Some students also discussed the possible distributions of 

data within each box and used features such as clustering and spread in their analysis. 

Overall, the students studied demonstrated the ability to use box plots as tools for 

statistical data analysis. 

       Watson and Moritz (1999a) examined students’ abilities to make comparisons 

between two data sets presented in forms similar to bar graphs and line plots. In clinical 

interviews with 88 students in grades 3-9, they presented one task where the number of 

items in each data set was the same, and one task where the numbers of items in each set 

differed. Some students used simple visual strategies to compare the data sets, some used 

numerical strategies, and still others used visual and numerical strategies in concert. 

Using Biggs and Collis (1982, 1991) model of cognitive development, two UMR cycles 

within the concrete symbolic mode of development were identified. At the highest level 

of sophistication within the first cycle of development, students demonstrated the ability 

to draw correct conclusions, but only when the two data sets being compared were of the 

same size. At the highest level of sophistication in the second UMR cycle, students 

employed proportional reasoning in some manner in order to compare data sets of 
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unequal sizes. Some of the students who did not initially recognize problems inherent in 

comparing two groups of unequal size were later pointed to these problems by the 

researchers, and some of these students answered at a higher level after being given this 

information.  

       Mooney (2002) also identified various levels of sophistication among middle school 

students in response to data analysis tasks. In the formulation of the M3ST framework, 

four levels of response within the analysis process were identified. Students at the 

idiosyncratic level were not able to make comparisons within or between data sets. Any 

inferences that were made were not soundly based on the data at hand and its context. At 

the transitional level, students demonstrated the ability to make a single correct 

comparison between and within data sets. Inferences that were made were based on the 

data at hand, but may be only partially reasonable. Upon reaching the quantitative level 

of thinking, students made either local or global comparisons within and between data 

sets. Inferences were reasonable and were based upon the data and its context. At the 

highest level of thinking identified, the analytical level, both local and global 

comparisons were made within and between data sets. Reasonable inferences were made 

by considering the data, its context, and multiple perspectives.  

       The analyzing and interpreting data construct within the M3ST framework was 

extended by the research of Mooney, Langrall, Hofbauer, and Johnson (2001). Clinical 

interview items in this study allowed students to demonstrate the attainment of 

multiplicative reasoning in analyzing data sets. Students at the idiosyncratic level did not 

use relative thinking in the tasks where it was applicable. Transitional level students used 



 

 46

relative thinking, but did not numerically describe the data. At the quantitative level, 

students used relative thinking and numerical strategies to make comparisons. However, 

when they did so, they considered only part of the data set, ignoring some parts that 

contained relevant information. Upon reaching the analytical level, relative thinking and 

numerical strategies were used in order to compare all relevant features of data sets. The 

descriptors generated in this study can be merged directly into the overall structure of the 

M3ST framework. 

       Further information regarding students’ individual cognition while engaged in 

informal data analysis tasks is provided by NAEP data (Zawojewski & Shaugnessy, 

2000). In general, US students did quite poorly on tasks related to data analysis. Fewer 

than half demonstrated the ability to interpret graphs, make decisions from data presented 

in graphs, and explain reasoning behind any interpretations and decisions that were made. 

Less than 25% of all twelfth-graders responded correctly to an item requiring them to 

analyze a scatter plot and make a decision based upon the data presented in it. Likewise, 

less than 25% were successful with an item requiring the analysis of a histogram. The 

item required students to use proportional reasoning to read the histogram, and then to 

make predictions beyond the given histogram to another population. NAEP data seem to 

indicate that along with being the most structurally complex of the statistical thinking 

processes discussed so far, analyzing data is also the most challenging of the processes 

for students to master. 
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Informal Data Analysis in the Context of Social Interaction  

       As part of their study documenting two UMR cycles of levels of sophistication in 

thinking present among sixth-graders analyzing data cards, Watson, Collis, Callingham, 

and Moritz (1995) discussed the quality of responses to the data cards tasks that were 

given by students working in groups. Group responses to tasks were generally more 

sophisticated than the individual responses given during the clinical interviews that were 

used to identify and describe levels of sophistication in thinking in analyzing the cards. 

None of the group work produced was classified at the lowest level of thinking identified 

during clinical interviews. The lowest level of thinking evident in group responses was 

multistructural within the first cycle of development. While several did not exceed that 

level of response, evidence of thinking beyond the level were documented. Groups that 

did show evidence of progressing to higher levels of thinking were those who considered 

multiple aspects of the data cards in their analysis, and those who used means to compare 

groups of people on different characteristics. The researchers concluded that the levels of 

thinking established and used in the study may provide a useful means for evaluating the 

quality of work students produce while interacting in groups during data analysis 

activities.   

       Cobb (1999) provided a sociocultural perspective on the development of the 

statistical thinking process of analyzing data by discussing the results of a 10-week 

teaching experiment conducted with a class of seventh-graders. The goal of the teaching 

experiment was to get students to see data sets as entities, or distributions, rather than just 

sets of individual points. Cobb also wanted students to develop multiplicative reasoning 
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abilities in comparing sets of data. During the teaching experiment, students worked in 

pairs, using computer mini-tools to analyze data sets provided by the researchers. After 

working in pairs, they used an overhead projection unit to share the results of their 

statistical data analysis with the entire class. As students used the first mini-tool to 

analyze data, the classroom discourse indicated that students viewed data sets as 

collections of data rather than as distributions. After some time, the researchers 

introduced a second mini-tool designed to help students see data sets as distributions, 

allowing them to partition data sets to aid in the development of multiplicative reasoning. 

After using the second mini-tool, classroom discourse changed to indicate that students 

had begun to see data sets as distributions, and they began to realize that an important 

purpose of statistical data analysis was to compare distributions. Cobb’s (1999) study 

shows how students can gradually come to understand concepts underlying informal data 

analysis within a classroom context. 

       McClain and Cobb (2001) further elaborated on the classroom context and the 

sociomathematical norms which emerge during the course of a teaching experiment with 

the same goals and computer mini-tools discussed in Cobb (1999). McClain and Cobb 

(2001) noted that students had several questions about how the data sets they were to 

analyze were produced. The researchers would talk through the data production process 

with students in order to help them become more familiar with the data they were to 

analyze. Also, during whole-class discussions, notions about what were to be considered 

“important” parts of distributions emerged. Students began to see ranges, medians, 

maximum and minimum values, and the number of data points on each side of a value as 
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important characteristics of data sets. During class, students developed multiplicative 

reasoning by using the second computer mini-tool to begin to reason proportionally about 

intervals of sets of data. Students were not introduced to a number of specific types of 

graphs, but rather were exposed to social processes which constitute the essence of 

statistical thinking. In this process, they developed understandings of statistical measures 

as representative of a data set rather than as algorithms. They also developed 

multiplicative reasoning and came to see data sets as entities rather than as collections of 

individual points. 

       A study conducted by Ben-Zvi and Arcavi (2001) helps illustrate the necessary 

components in becoming proficient in computer-supported exploratory data analysis 

(EDA). During the study, the interaction of two seventh-grade students was videotaped as 

they engaged in statistical data analysis tasks. Ben-Zvi and Arcavi noticed and 

documented several of the changes that happened as the students became more proficient 

in the process of data analysis. They began to become more adept at focusing on relevant 

aspects of data sets rather than irrelevant ones. They demonstrated the ability to look 

locally at tables and graphs, but also began to see them more globally as the study 

progressed. An indicator of this was that they would transfer between viewing data 

locally and globally by setting appropriate scales on the graphs they worked with. 

Eventually, the students needed to realize that statistical data does not behave as 

deterministically as mathematical objects encountered in subjects such as algebra. They 

also gradually became aware of the fact that the lines used in statistical graphs are 

sometimes “meaningless,” in the sense that they may just be used to show trend. Each of 
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these competencies were developed within the context of collective informal statistical 

data analysis. 

       Whereas Ben-Zvi and Arcavi (2001) documented the components necessary for EDA 

which students developed, Biehler’s (2001) study documented some of the difficulties 

and cognitive obstacles high school students encountered within the context of computer-

supported informal data analysis. Biehler (2001) conducted clinical interviews with pairs 

of high school students engaged in data analysis tasks. Students experienced a number of 

difficulties with the tasks they were presented. Some students had difficulty overcoming 

the conception that cause and effect can be established as soundly in data analysis as it is 

in mathematics. They also had difficulty understanding that the reporting of exact 

numerical results is valued differently in mathematics than it is in a data analysis setting. 

Some students did not take into account that numerous variables could impact and 

influence a given variable. Students often did not take sample size into account in 

interpreting summary statistics. Biehler also found that students experienced difficulty 

when “common sense” notions about context conflict with statistical evidence. Biehler’s 

(2001) study reveals a number of difficulties with data analysis tasks which need to be 

taken into consideration by researchers, teachers, and curriculum developers. 

Research Concerning Understanding of Formal Inference and its Foundations 

       A study by Confrey and Makar (2001) illustrates how informal data analysis 

activities can lead students to see the need for formal inferential methods. The research 

was conducted during a series of workshops and a summer institute aimed at helping 

teachers develop an understanding of statistical concepts and the process of data analysis. 
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Teachers were initially engaged in data analysis by examining data from a very familiar 

context: students’ scores on a statewide standardized test. Data analysis was supported by 

the computer software program Fathom. In the initial sessions, teachers tended to focus 

upon examining individual data points from these data sets rather than trying to identify 

trends in the data. It wasn’t until later sessions that teachers’ data exploration activities 

led them to see the need for formal inferential techniques. This shift in thinking occurred 

when the researchers presented the teachers with the task of determining the “fairness” of 

a set of dice. The need to determine whether or not the dice were loaded helped lead the 

teachers to see the need for concepts from formal inference, such as Z scores and t tests. 

Ultimately, teachers also came up with interesting statistical statements about the 

standardized test data they had been working with. In engaging in the workshop, teachers 

became more statistically proficient as they gained information about students’ 

performance on statewide standardized tests. 

       Along with experiences in informal data analysis, an understanding of the concept of 

sampling distribution is vital if students are to understand and meaningfully apply 

techniques of formal inference. Chance, Garfield, and Del Mas (2001) investigated 

undergraduates’ understanding of sampling distributions within the context of a study of 

the effectiveness of a software program designed to simulate the sampling process and 

form sampling distribution graphs. During the study, five different levels of 

sophistication in undergraduates’ thinking about sampling distributions were identified. 

At level 1, which they called idiosyncratic reasoning, students simply had knowledge of 

words and symbols related to sampling distributions, but had no real conceptual 
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knowledge of them. At level 2, verbal reasoning, students could select correct definitions 

for sampling distributions and the central limit theorem, but could not apply the  

definitions to solve problems. Level 3, transitional reasoning, was characterized by the 

ability to identify some of the dimensions of the sampling process along with an inability 

to fully integrate them. Students at level 4, procedural reasoning, could identify all of the 

dimensions of the sampling process, but lacked some confidence in integrating them to 

match a given sampling distribution with its corresponding parameters. The highest level 

of reasoning observed, level 5, was that at which students could identify the dimensions 

of the sampling process, integrate them, and demonstrate confidence by stating the 

dynamics of the process in their own words.  

       Konold, Well, Lohmeier, and Pollatsek (1993) also examined undergraduates’ 

understanding of the foundations of formal inference within the context of instruction 

aided by a computer simulation. The purpose of their study was to describe students’ 

understanding before and after instruction guided by a simulation tool. It was conjectured 

that the tool would help students understand the law of large numbers, that “statistics of 

larger samples (e.g., means) more closely approximate the corresponding parameters of 

populations and are thus less variable than those of smaller samples” (Konold, Well, 

Lohmeier, & Pollatsek, 1993, p. 299). Twelve undergraduates recruited from psychology 

courses took part in interviews. The students were asked to solve tasks requiring an 

understanding of the law of large numbers both before and after 75 minutes of instruction 

aided by a computer simulation illustrating the law. The researchers found that after 

instruction, students did have some understanding of the law of large numbers, but were 
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not sure about when it was and was not applicable. Most of the students were able to 

understand why means of large samples exhibit less variability than means of small 

samples. However, misunderstandings about percentages and the need for random 

sampling blocked many students from attaining a complete understanding. Their findings 

echoed those of Well, Pollatsek, and Boyce (1990), who experienced moderate success in 

using computer simulations to help students come to understand how sample size affects 

sampling distributions. 

       Saldanha and Thompson (2001) conducted a teaching experiment in which they 

attempted to help tenth- and eleventh-graders begin to conceive of collections of samples 

as distributions. In a 20-session teaching experiment, computer simulation activities were 

used to investigate whether or not the outcomes of stochastic experiments were 

“unusual.”  In a reported episode from the experiment, the researchers had students draw 

a sample of candies from a sack containing half red and half white candies. Students were 

not told the proportion of each color in the sack. After drawing a number of samples and 

seeing that there were more white than red candies, they concluded that the sack 

contained more whites than reds. They were surprised when the instructors told them that 

the proportion of red candies in the sack was the same as the proportion of white candies. 

The students came to the conclusion that it would be best to draw numerous samples 

from the bag in order to reach more appropriate conclusions. At that point, the 

researchers engaged the students in conducting probability simulations for drawing 

samples to form a sampling distribution. In using the software program ProbSim to 

simulate drawing numerous samples, students realized that the samples they had initially 
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drawn were not that unusual to observe within the overall sampling distribution. In 

coming to this realization, the students had successfully developed sound intuitive 

notions about ideas underpinning formal inference.  

       Shaugnessy, Watson, Moritz, and Reading (1999) have also investigated students’ 

conceptions about some of the ideas underpinning formal inference. In their study, 324 

students from grades 4, 6, 9, and 12 gave written answers to tasks asking them to estimate 

the spread of a distribution within the context of a sampling situation. Only 30% gave a 

reasonable range of spread for the tasks administered. Few students used words related to 

variability or spread in responding to the questions. There was no clear pattern of growth 

through grade levels regarding the measurement of variability in the situations presented 

in the tasks. Many students overestimated the amount of variability that would be present 

in the given situation. When Torok and Watson (2000) conducted a follow up study 

making use of clinical interviews with tasks similar to those of Shaugnessy et al. (1999), 

their findings were somewhat contradictory in the sense that they did see a clear pattern 

of improvement of appreciation of variation in sampling situations as students attained 

higher grade levels. They also described levels of sophistication in response to the tasks 

administered: students progressed from a weak appreciation of variation to an isolated 

appreciation of concepts of variation and clustering. They then developed a more 

complete, yet inconsistent appreciation of the two concepts. Students responding at the 

highest level demonstrated a complete and consistent grasp of both concepts. 

 

 



 

 55

Summary 

       Several themes emerge from the preceding discussion of students’ abilities to analyze 

data. While instruction can be effective in helping students draw viable conclusions from 

data sets, students do sometimes draw unsophisticated and poorly supported conclusions 

in the process of analyzing data sets. Research suggests that teachers need to move 

students towards seeing data sets as entities rather than as individual points. Teachers 

then must help students reason multiplicatively rather than additively when comparing 

sets of data. Teachers charged with the duty of helping students understand formal 

inference must be aware of the incomplete and incorrect conceptions students tend to 

bring to the topic, and how some researchers have worked to find ways to overcome 

them. Technology and social interaction are two tools that appear to have helped students 

develop more sophisticated strategies for analyzing data. 

Collecting Data 

       Students’ thinking in regard to data collection is beginning to be investigated by the 

research community. Three strands of research within this statistical thinking process are 

identifiable. The first strand of research findings describes students’ knowledge of data 

collection methods. Specifically, researchers have described students’ ability to 

differentiate between random and nonrandom situations, and also how students’ 

knowledge of data collection methods impacts their analysis of data. A second strand of 

research deals with individuals’ abilities to critique samples collected from populations. 

Within this strand, students’ understandings of how randomization, sample size, and 

sources of bias affect the representativeness of samples are treated. A third strand of 
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research describes how students’ notions about collecting data develop during instruction. 

Studies within this strand have been conducted at the college level, and they provide 

insight about the cognitive hurdles students encounter as they learn about collecting data. 

Students’ Knowledge of Data Collection Methods 

       Data gathered by means of random selection are highly valued in several different 

types of data collection designs. Konold et al. (1991) described students’ perceptions of 

what constitutes a random situation. The study compared “expert” perceptions of 

randomness to those of “novices.”  Four statistics instructors and one professional 

statistician were given the “expert” label, and 20 psychology undergraduates were given 

the label “novice.”  Each of the participants was given 18 different cards, upon which the 

description of a situation was written. Participants were to classify each situation as 

“random” or “non-random,” and then justify their classification during an interview. The 

researchers identified five different categories of justifications. One category of response 

identified was that some students would classify a situation as random only if each of its 

outcomes had the same probability. In another category, some would categorize a 

situation as random only if it had more than one possible outcome. A third category of 

response was to classify a situation as random only if there was no prior knowledge about 

the outcome, so that any predictions would be impossible. The fourth category of 

response was characterized by an unwillingness to call a situation “random” if any 

control of outcomes was possible. A fifth category of response, exhibited only by experts, 

was to determine if a situation was random by comparing it to some standard model of 

randomness.  
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       Knowledge of the methods used to collect any given set of data can influence how 

students engage in data analysis. McClain and Cobb (2001) gave middle school students 

several different sets of contextualized data to analyze during a teaching experiment. 

They found that students had several questions about how the data was collected when 

given the sets. Listening to students’ concerns, the researchers answered all questions 

students had about how the data they were to analyze was collected. The students were 

able to analyze the data meaningfully once their questions about the data collection 

process had been answered. Batanero, Estepa, Godino and Green (1996) also documented 

how students’ perception of contextual factors surrounding data collection played a role 

in students’ analysis of data. The researchers did not document any cases of students 

asking questions about the methods of collection of the data presented in contingency 

tables that they were to analyze. However, some students involved in their study seemed 

to form their own “personal theories” about the contextual factors surrounding the data. 

Some of the “personal theories” students generated contributed to a low level of 

sophistication in data analysis. These studies show that when students are given sets of 

contextualized data, they often are not satisfied to analyze the data without considering 

the context from which the data arose and the methods used to collect the data. 

Students’ Abilities to Critique Samples 

       Watson and Moritz (2000a) detailed some of the notions students bring to the process 

of critiquing sampling methods used in studies. They interviewed 62 students from 

grades 3, 6, and 9 on the basis of responses students had given to a written questionnaire 

about sampling. The interview questions investigated the students’ personal meanings for 
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the word “sample,” their thoughts on selecting samples, and how they thought increasing 

sample size affects the representativeness of the sample. The researchers identified six 

levels of sophistication in response to the set of sampling tasks. At the lowest level, 

students had only a simple notion of the concept of “sample,” and did not demonstrate 

understanding of the roles of methods of selection or sample size in choosing a statistical 

sample. At subsequent levels of sophistication, students began to realize that some type 

of random or stratified selection was often desirable in obtaining a representative sample. 

They subsequently also began to realize that large random samples were more 

representative of the population from which they were drawn than small random samples. 

Students at the highest level of thinking recognized bias in sampling in multiple contexts 

and understood the roles of randomization and sample size in producing a representative 

sample. The results suggest that students come to understand the roles of sample size and 

sample selection methods in sampling before they are able to recognize bias in multiple 

contexts. 

       Watson and Moritz’ (2000b) analysis of a written survey given to students in grades 

3-11 sheds further light upon the development of students’ notions of sampling. They 

detailed students’ development of appropriate meanings for the word “sample.”  They 

also analyze how well students can apply sampling concepts within a context and 

question claims made on the basis of samples. The levels of thinking revealed in 

understanding of the word “sample” ranged from a low level of thinking in which the 

word held no clear meaning, to the highest level of thinking in which students recognized 

that a sample is a small part of the overall population and spoke of representative 
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samples. In response to tasks asking students to critique claims made upon the basis of 

samples, students’ responses ranged in sophistication from those who offered no criticism 

of situations in which bias would naturally occur to those who recognized the need for 

samples to be representative and unbiased. When the questionnaire was administered to 

some of the same students 2 to 4 years later, it was found that students tended to improve 

by one or two levels of sophistication in thinking, but rarely improved by more than two 

levels. The study suggests that a need exists to help students identify bias in multiple 

contexts as they develop meanings for sampling terminology and sample selection 

methods. 

       Data from NAEP provide information about a large representative sample of U.S. 

students’ responses to tasks involving sampling. Zawojewski and Shaughnessy (2000) 

note that about 2/3 of eighth-grade students taking the NAEP could correctly choose the 

sampling method that would provide the least biased results when given several choices 

of sampling methods in a multiple choice question. Students also did well on a secure test 

item designed to assess students’ ability to recognize the potential for sample bias, with 

over half of grade 8 students and ¾ of grade 12 students producing correct answers. Over 

half of eighth-grade students were able to respond correctly to an item testing knowledge 

of the importance of sample size in producing a representative sample. The results seem 

to indicate that students tend to have some fairly solid ideas about sampling from a 

population despite the relative neglect of statistics in current school curricula. 
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Developing Understanding of Data Collection through Instruction 

       Derry, Levin, Osana, Jones, and Peterson (2000) described the development of 

undergraduates’ statistical thinking ability in regard to data collection within the context 

of a semester-long statistics course with 22 undergraduate education majors. Task-based 

interviews were used to gather data from students before and after the course, and work 

produced by students over the course of the semester was also gathered. During the 

course itself, students engaged in studying techniques of experimentation, correlation, the 

structure of an effective statistical argument, and sampling techniques. A comparison of 

interview scores from before and after the course indicated that the course was successful 

in developing some of students’ conceptions in regard to the collection of data. Students 

showed significant gains in being able to recognize the need for correlational evidence in 

some situations, the design of convincing experiments, and the grasp of the concept of 

random sampling. At the same time, after the course many students still tended to confuse 

the concepts of random sampling and random assignment. The researchers noted that it 

was difficult for students to break from a traditional instructional environment in favor of 

an inquiry-based one. The difficulties associated with the transition may have limited the 

quality of learning displayed.  

       Heaton and Mickelson (2002) also describe education majors’ developing 

conceptions in regard to data collection during a semester-long statistics course. The 

researchers, who were also the instructors for the course, had the primary goal of helping 

students develop mature ideas about the process of statistical investigation. In the first 

major assignment for the course, students were to pose quantifiable questions of interest 
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about aspects of mathematics teaching and learning at their practicum sights. In the 

second major assignment, students were to design projects for elementary school children 

that would require the children to engage in data collection and analysis. Students had 

difficulty in collecting data and critiquing their own studies during the first assignment. 

Some formulated insignificant, relatively uninteresting questions. They seemed to 

struggle with how to ask quantifiable questions and then design data collection methods 

to match them. The collection of data was also made difficult by the often fast-paced 

nature of events in classrooms. The second assignment presented its own unique 

difficulties. In designing assignments, the education majors generally did not carefully 

take into account the fact that the choice of question to be investigated would have a 

substantial impact on all other phases of the investigation. In one instance, however, the 

assignment proved to be highly successful. An education major that engaged a sixth-

grade class in a study of questions surrounding racial discrimination got children to 

informally discuss notions such as construct validity and external validity. The study 

shows that even though it may be a difficult task, it is possible to help teachers engage 

children in meaningful investigations involving the collection of data. 

Summary 

       Research shows the complexity involved in understanding data collection. Students’ 

views of data sets are largely shaped by perceptions about how the data in the set was 

gathered. The concept of randomization and data collection designs incorporating it take 

considerable cognitive effort for students to understand. The cognitive demand associated 

with formulating quantifiable questions of interest and gathering data to answer them is 



 

 62

also high. Tasks involving detecting bias and determining appropriate sample size are 

likewise non-trivial in nature. Despite the high cognitive demands associated with 

collecting data, research does indicate that many students are highly capable of advancing 

to sophisticated levels of thinking within this statistical process.  

Relationship to this Study 

       The existing empirical research helped to shape the current study in numerous ways. 

Several of the studies discussed identify statistical concepts students seem to have 

difficulty in understanding. Statistical thinking tasks, described in the next chapter, were 

designed to investigate the nature and prevalence of some of those difficulties and 

misconceptions among high school age students. Existing literature also provides several 

instances in which researchers have classified statistical thinking by levels of 

sophistication of response. These documented levels of response helped shape the lens 

through which interview data were coded by levels of response. Finally, gaps in the 

research base helped to shape the study. For instance, the current study sought to fill the 

gaps that exist in our understanding of the statistical thinking of high school age students 

and how well some of them understand the tools of formal inference. Since it was guided 

by, and situated within, the existing body of empirical research, this study added to the 

overall picture of students’ statistical thinking abilities which existing research had 

already begun to paint.
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CHAPTER III 

RESEARCH DESIGN AND METHODOLOGY 

       In chapter 1, I stated that the purpose of this study was to construct a framework to 

describe the statistical thinking of high school students. In order to accomplish that goal, I 

constructed a set of statistical thinking tasks and administered them to high school 

students and recent high school graduates during individual clinical interview sessions. I 

analyzed the data from the clinical interview sessions in order to identify and describe 

patterns of response. The different patterns of response were then examined in light of the 

Biggs and Collis (1982, 1991) cognitive framework. This chapter documents my study 

design and methodology in detail.  

Study Design 

       A qualitative design was chosen for the study for two main reasons. First, the 

purpose of the study was to describe statistical thinking processes. A qualitative design is 

well-suited to this purpose, since qualitative designs allow one to investigate intricate 

processes rather than just end products (Merriam, 1988; Strauss & Corbin, 1990; Bogdan 

& Biklen, 1992). Second, as evidenced by the literature review, little research exists that 

focuses specifically upon the statistical thinking of high school students. A need exists to 

explore and describe statistical thinking at the high school level and to develop theory 

about it. Qualitative designs are helpful for studies that involve exploring phenomena, 
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describing them, and developing theories (Morse, 1991). Given the purpose and the 

nature of the study, a qualitative design was deemed necessary. 

       Within the qualitative design, structured, task-based clinical interviews were used as 

a primary means of data collection. Structured, task-based interviews are those in which 

an interviewer presents one or more tasks to a problem-solver in a preplanned way 

(Goldin, 2000). In this study, interviews were also structured in the sense that all 

respondents received the same set of questions in the same order (Fontana & Frey, 2000). 

In such interviews, the problem-solver interacts with both the interviewer and a task 

environment (Goldin, 2000). Hence, interviews can be viewed as “active interactions 

between two (or more) people leading to contextually based results” (Fontana & Frey, 

2000, p. 646).  

       Task-based interviews helped to focus the study upon describing students’ statistical 

thinking processes. Goldin (2000) noted that task-based interviews allow researchers to 

“focus research attention more directly on the subjects’ processes of addressing 

mathematical tasks, rather than just on the patterns of correct and incorrect answers in the 

results they produce” (p. 520). This means that task-based interviews were an appropriate 

choice of data collection within the overall qualitative design, since one of the reasons for 

choosing a qualitative design was to focus on thinking processes rather than simply on 

finished products. Goldin (2000) also pointed out that the emphasis on students’ thinking 

processes rather than on their ability to use algorithms to produce right or wrong answers 

fits well with the overall spirit of the current mathematics education reform movement. 

Therefore, descriptions of statistical thinking processes that can be provided by task-
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based interviews are of interest to both teachers and researchers concerned with current 

issues in statistics education at the high school level. 

       The needs of teachers were taken into account in the decision to structure the task-

based interviews, since it is valuable to consider a study’s impact on practice (Sowder, 

2000; Lester & William, 2002). One advantage to having a structured interview script as 

part of a study is that the script can later be used by teachers as an assessment instrument 

(Goldin, 2000). Teachers can gain insight about their students’ statistical thinking by 

administering some or all of the script to students. They can then compare their students’ 

levels of response to those documented in the study, and then use that information to 

design instruction to help students advance to higher levels. An unstructured interview 

can not be replicated as easily.  

       The fact that structured interview scripts are easier to replicate than unstructured 

interviews is also of interest to mathematics education researchers. According to Goldin 

(2000), the mathematics education research community is vulnerable to attack from 

opponents of reform, partially because the research base in mathematics education is 

perceived as lacking replicable results. Structured interview scripts can be replicated 

quite easily in subsequent studies. They allow for the investigation of detailed thought 

processes while they simultaneously help fill the need for replicable mathematics 

education research. Subsequent researchers may use the interview script to both extend 

and revise the framework constructed as a result of this study. 
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Participants 

       Purposeful sampling (Patton, 1990) was used in the selection of study participants. 

The goal of purposeful sampling is to “select information-rich cases whose study will 

illuminate the questions under study” (Patton, 1990, p. 169). The central questions of this 

study concerned the identification and description of different levels of statistical 

thinking. Therefore, a maximum variation sampling strategy (Patton, 1990) was used to 

select the purposeful sample. A maximum variation sample includes people who have 

had significantly different experiences in some area, and it allows the researcher to 

describe patterns of variation within the group studied (Patton, 1990). In this study, 

students were chosen on the basis of the different types of mathematics courses they had 

taken while in high school. The goal was then to describe the variation within the 

responses to interview tasks given by these students. Maximum variation samples are not 

drawn in order to make statistical generalizations to a larger population, but rather to 

describe variation and significant patterns within the group (Patton, 1990). Accordingly, 

in this study, I did not seek to statistically generalize my findings to all high school 

students, but instead sought to describe the patterns in thinking observed among the 

diverse sample chosen. 

       There were three different categories of participants interviewed for the study. The 

participants in the first category were college freshmen who had recently completed a 

semester-long high school statistics course. Participants in the second category were 

college freshmen who had recently completed a year-long high school statistics course. 

The participants in the third category were still in high school at the time of the clinical 
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interviews. Each of the participants in the third category was enrolled in Algebra, 

Geometry, AP Calculus, or AP Statistics at the time of the interview sessions. In total, 

fifteen students participated in clinical interviews. Three of the participants fell into the 

first category, four into the second, and eight into the third.  

       Students were recruited from each of the three categories by contacting several 

university instructors and high school teachers. Several instructors at a Midwestern 

university helped in the recruitment of students by mentioning my study in their classes 

and asking for volunteers. The first two categories of students interviewed included 

students from three of those instructors’ classes. The very first category also included a 

student from a different Midwestern university who was recruited with the help of her 

former high school statistics instructor. Teachers at two different Midwestern high 

schools helped in the recruitment of students in the last category by discussing my study 

with their classes and asking for volunteers. Four students in the last category came from 

one of the high schools, and four came from the other high school. Figures 2, 3, and 4 

summarize some of the important information about the students in categories 1, 2, and 3, 

respectively. Each of the students’ backgrounds is further discussed in Appendix A along 

with some anecdotal information for each student. 
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Student Year in school at time of study Technology with which the student 
indicated familiarity 

Lisa College freshman Simple pocket calculator 
Kristen College freshman TI-83 and Excel
Laura College freshman TI-83 
 
Figure 2. Students who had recently completed a semester-long high school statistics  
 
course 
 

 
Student Year in school at time of study Technology with which the student 

indicated familiarity 
Jeff College freshman TI-83, TI-86, Fathom, and Minitab
Hillary College freshman TI-83, Excel, and Minitab
Paul College freshman TI-83 
Julie College freshman TI-83, Excel, and Fathom
 
Figure 3. Students who had recently completed a year-long high school statistics course 

 

Student Year in school at time 
of study 

Course enrolled in at 
time of study 

Technology with which 
the student indicated 
familiarity 

Crystal High school senior AP Statistics TI-83, Excel, Fathom, 
Data Desk

Bill High school senior AP Calculus TI-89, Excel
Luke High school senior AP Calculus TI-89, Excel
Daniel High school freshman Honors Geometry Scientific, non-graphing 

calculator 
Jessica High school 

sophomore 
Geometry Scientific, non-graphing 

calculator, Excel
Nancy High school 

sophomore 
Geometry Scientific, non-graphing 

calculator, Excel
Brooke High school 

sophomore 
Algebra TI-82, TI-83, Excel

Rick High school 
sophomore 

Algebra TI-82, TI-83, TI-85, TI-
86, TI-89, Excel

 
Figure 4. Students still enrolled in high school at the time of the study 



 

 69

 

Interview Protocol 

       A set of tasks designed to assess students’ statistical thinking across the processes of 

describing, organizing and reducing, representing, analyzing, and collecting data was 

administered during the individual interview sessions with students. In order to enhance 

the study’s potential to advise high school statistics instruction, the specific content for 

each of the tasks came from current curricular recommendations for high school statistics 

courses. While there is no universal consensus about the statistical content which should 

be studied by high school students, recommendations have recently been set forth by 

NCTM (1989, 2000), the College Entrance Examination Board (2001b), mathematics 

education researchers (e.g., Biehler, 1997), and practicing statisticians concerned about 

improving the quality of statistics education (e.g., Cobb & Moore, 1997). In this section, I 

will begin by briefly discussing each of these recommendations. I will conclude the 

section by explaining how the literature discussed and pilot-testing of tasks helped guide 

the construction of the statistical thinking tasks administered during the study. 

       In its Curriculum and Evaluation Standards for School Mathematics, NCTM (1989) 

set forth recommendations for the statistical content to be studied by high school 

students. The recommendations were groundbreaking, since the study of statistics in high 

school was not prevalent in 1989. The statistics standard for grades 9-12 stated that all 

high school students should be able to read, interpret, and construct charts, tables, and 

graphical displays for data. All high school students were also to be able to flexibly use 

measures of central tendency, variability, and correlation to describe and analyze data. In 
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addition, all high school students were to understand ideas behind sampling, design 

experiments to test hypotheses, communicate results to others, and evaluate statistical 

claims made by others. NCTM recommended that college-intending high school students 

study distributions such as the normal, Student’s t, Poisson, and chi square, and 

understand when it is appropriate to use each distribution in formal hypothesis testing and 

construction of confidence intervals. The intuitive foundations for formal inference were 

to be laid by having students construct and analyze sampling distributions using 

simulations. Technology was to be integrated appropriately in the teaching of all 

statistical content.  

       In the Principles and Standards for School Mathematics, NCTM (2000) updated its 

recommendations for the statistical content to be studied by all high school students. The 

data analysis and probability standard of the Principles and Standards is similar in spirit 

and content to the statistics standard of the Curriculum and Evaluation Standards, with a 

few notable exceptions. In the Principles and Standards, no mention is made of the study 

of formal inference by high school students, even though all students are still to gain an 

intuitive understanding of its foundations by constructing sampling distributions using 

simulations. The Principles and Standards also gave more specific recommendations for 

the types of graphical displays that are to be understood and used by high school students. 

Histograms, parallel box plots, and scatter plots are all listed as important types of 

graphical displays. Finally, it is notable that probability is merged into the data analysis 

standard, and is not given its own standard as in the 1989 document. Probabilistic content 

to be studied by all high school students included understanding the concepts of sample 
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space and distribution, computing and interpreting expected values for random variables, 

and understanding conditional probability, independent events, and compound events.  

       In both of its Standards documents, NCTM recommended that high school students 

study statistics throughout grades 9-12, and did not explicitly recommend that they take 

the subject as a separate course. Recommended content for a one-year course in statistics 

for high school students is given by the College Entrance Examination Board (2001b) in 

its course description for Advanced Placement (AP) Statistics. The course description for 

AP Statistics is quite ambitious. Accordingly, the College Board at no point recommends 

that all high school students take the AP course. The goals for the AP course exceed the 

goals set forth for all students by NCTM (2000). As recommended by NCTM, students 

are to engage in exploratory analysis of data in which several graphical displays and 

statistical measures are used. They are to become familiar with different methods of data 

collection and become proficient in planning, conducting, and critiquing surveys, 

experiments, and observational studies. AP students also are to study probabilistic 

content such as computations requiring formal probability theory, independent random 

variables, the normal distribution, and sampling distributions. In the AP course, students 

are to study formal statistical inference extensively. They are to understand when it is 

appropriate to use chi square tests and different types of t tests in formal inference. By the 

end of the course, students are to understand and use confidence intervals and hypothesis 

tests for both means and proportions. The inclusion of such an extensive study of 

techniques of formal inference sets the AP course recommendations apart from other 

recommendations for high school statistics.  
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       Just as recommendations for the amount of formal inference to be studied by high 

school statistics students vary by curriculum document, recommendations for the amount 

of probability to be studied during a statistics course also vary. Cobb and Moore (1997) 

provide perspective upon how extensively probability needs to be studied in introductory 

statistics courses which include the study of formal inference. While maintaining that 

“probability is an essential part of any mathematical education” (p. 820), they also hold 

the position that a “first course in statistics should contain essentially no formal 

probability theory” (p. 820). Cobb and Moore (1997) support their position by explaining 

that “informal probability is sufficient for a conceptual grasp of inference” (p. 821). 

Students who understand that “the sampling distribution of a statistic…records the 

pattern of variation of the outcomes of, for example, many random samples from the 

same population” (p. 821) have enough understanding of probability to have a conceptual 

grasp of statistical inference. Therefore, content such as the theoretical derivation of 

probability distributions and formal rules for computing probabilities are best left for 

courses other than introductory statistics. This position stands in opposition to the AP 

Statistics course’s inclusion of the study of formal probability rules. It also suggests that 

Data Analysis and Probability might be better conceptualized as two separate standards 

by NCTM (2000) rather than being merged into one, since the probability part of the 

standard suggests that students learn formal probabilistic rules. 

       While recommendations surrounding the study of formal inference and probability 

seem to vary, the recommendation that all students learn to use technology appropriately 

in the process of data analysis seems to be a constant in all recent curricular 
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recommendations. Biehler (1997) discussed features that should be present in statistical 

software packages for data analysis at the secondary level. He stated that computer 

software packages need to strike a balance between ease-of-use and ease-of-learning. He 

recommended that software allow students to become familiar with methods and 

concepts of statistics by allowing for exploratory data analysis and not just applications 

of formal statistical methods. Software should also allow students to conduct Monte 

Carlo simulations to simulate simple and multistage experiments. Software also needs to 

be flexible, allowing teachers the ability to redesign it to meet specific curricular goals. 

Biehler considered these types of data analysis tools as indispensable to the teaching of 

statistics at the secondary level.  

       All of the literature discussed in this section was taken into account in the design of 

statistical thinking tasks. Interview tasks allowing students to demonstrate knowledge of 

the content included in the “Data Analysis” portion of the “Data Analysis and 

Probability” standard (NCTM, 2000) were included. In addition, the interview protocol 

included data analysis tasks whose context allowed for the application of formal 

inferential methods. In accord with Cobb and Moore’s (1997) views about the role of 

formal probability within an introductory statistics course, no questions designed to 

assess students’ knowledge of formal probability were included in the interview protocol. 

Students’ informal notions about probability, however, were examined in questions 

dealing with sampling distributions, and in questions that can be answered via simulation. 

Finally, the interview protocol allowed students to make use of statistical software 

packages and graphing calculators in responding to tasks. While not all students who 
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were interviewed were proficient in using one or more software programs for data 

analysis, it was seen as important to allow students who were proficient in their use to 

have access to them so they would solve interview tasks in a manner which was natural 

for them. 

       The wording of the tasks, the order in which they were presented, and the context in 

which they were set were advised by the collection of empirical data (Groth, 2002a). In 

the first phase of pilot-testing, a set of tasks was devised and administered to four 

different students representing a range of mathematical ability. As a result of this phase, 

unwanted ambiguities in wording, contexts confusing for students, and tasks not serving 

to reveal a wide range of statistical thinking were eliminated. Tasks that did serve to 

reveal a wide range of statistical thinking were retained. In areas where the interview 

script did not give adequate information about a statistical thinking process, tasks were 

added. In the second phase of pilot-testing, the entire interview script generated as a 

result of the first phase was completed by an AP Statistics class in the form of written 

responses. As a result of the second phase, slight revisions in terms of wording, contexts, 

content of tasks, and order of presentation of tasks were made. The end result of the pilot-

testing process was the interview script in Appendix B. Tables showing the process each 

task was designed to assess and how its content was aligned with current curricular 

recommendations for high school statistics are presented in appendices C, D, and E. 

Procedure 

        Each of the interview participants was informed that it would take a total of 

approximately 2-3 hours to answer all of the interview questions. Six of the participants 
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in the first two categories decided to split the total interview time between two interview 

sessions. Julie was the only student in the first two categories who decided to do the 

entire interview in one session. Most of the participants in the last category were 

interviewed during study hall periods, so the total interview time for these students was 

generally split among three different 50-minute study hall periods. Only one of the 

students in the last category, Daniel, decided to do the entire interview in one sitting by 

scheduling an interview session after school hours.  

       Before each interview session, each student was asked to complete a brief 

questionnaire (Appendix F). The first item on the questionnaire was administered in order 

to attempt to determine which types of technology the students were able to use when 

solving statistical problems. At least one piece of technology the students indicated 

familiarity with was made available during the clinical interview sessions, and students 

were allowed to use the technology to whatever extent they wished during the interview 

sessions. The software programs Excel and Fathom were made available during every 

clinical interview session, as was a TI-83 calculator. The purpose of the remaining items 

on the questionnaire was to have students share some anecdotal information about their 

previous experiences with statistics. The information they shared on these items is 

reported in appendix A. 

       During the clinical interview sessions, the interview protocol (Appendix B) was 

administered in the same order to each of the students. Each student started by 

completing task 1 and then proceeded, in the order shown, through the entire interview 

protocol until completing all parts of task 5. As students were interviewed, I collected 
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data by taking field notes, audio recording responses, and keeping any written work they 

completed. The audio recordings were later transcribed for analysis. 

Data Analysis 

       Analysis of interview transcripts was advised by the constant comparative method 

described by Maykut and Morehouse (1994). Analysis of the interview responses took 

place concurrently with data collection. I grouped responses to the interview sub-tasks 

into five categories according to the statistical thinking processes (describing, organizing 

and reducing, representing, analyzing, and collecting data) to which they pertained. Some 

sub-tasks failed to give useful information about thinking within any of the five 

processes, and the reasons why they failed to do so are reported in detail in the next 

chapter. 

       After the responses had been placed into five groups according to statistical thinking 

processes, sub-tasks that elicited responses about similar statistical content were clustered 

together. Each of the clusters provided information about students’ thinking for a 

statistical thinking subprocess. For example, within the broad process of organizing and 

reducing data, four different clusters of interview items provided information about 

students thinking within the four subprocesses of using measures of center, using 

measures of spread, recognizing the effect of data transformation upon center and spread, 

and organizing raw sets of data.  

       Within each statistical thinking subprocess identified, I expected to see evidence of 

different modes of thinking as well as levels within each of the modes (Biggs & Collis, 

1982, 1991). Hence, I examined interview responses within each of the subprocesses and 
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grouped them according to their relative complexity. I then wrote descriptors to capture 

the essence of each different pattern of response identified. The descriptors that were 

written are reported in the next chapter.         

       The end result of the constant comparative method of data analysis was the 

generation of sets of descriptors for different patterns of thinking within each of the five 

processes of describing, organizing and reducing, representing, analyzing, and collecting 

data. I examined each set of descriptors for agreement with the levels of thinking 

described in the Biggs and Collis (1982) cognitive framework. I then matched each 

descriptor with both a mode of development (concrete-symbolic or formal) and a level 

within the mode (unistructural, multistructural, or relational).  

       Some of the aspects of a check-coding procedure described by Miles and Huberman 

(1994) were used to finish the process of data analysis. First, a random sample of six 

students was drawn. Then, two other researchers familiar with the Biggs and Collis 

cognitive framework analyzed responses given by each of the six students drawn. Each of 

the researchers categorized the student responses according to the descriptors I had 

formulated during my own data analysis. I then met with the two researchers to discuss 

the conclusions they had come to during data analysis. In cases where disagreement 

occurred about categorizations of students by descriptors or the evidence supporting the 

formulation of sets of descriptors, the disagreements were discussed until consensus was 

reached. In cases where disagreements occurred, the originally written descriptors were 

revised or student responses were re-categorized. The next chapter reports the end result 

of the data analysis process.
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CHAPTER IV 
 

RESULTS 

       The interview protocol that served as the primary data gathering instrument for the 

study (appendix B) was designed to elicit various degrees of sophistication in patterns of 

response to questions involving describing, organizing and reducing, representing, 

analyzing, and collecting data. In the first main section of this chapter, I report upon the 

patterns that were identified and discuss the relative sophistication of each. In this 

section, the interview tasks that led to the identification of the patterns of response are 

discussed along with illustrative student responses. In the second main section, I discuss 

the connections between the patterns identified and the Biggs and Collis (1982, 1991) 

cognitive model.  

Patterns of Response to Statistical Thinking Tasks 

       Patterns of response of various degrees of sophistication were evident within each of 

the five statistical thinking processes investigated. The analysis of interview data led to 

the identification of three such patterns within the process of describing data and four 

such patterns within representing data. Within each of the processes of organizing and 

reducing, analyzing, and collecting data, there were several subprocesses. Each 

subprocess has its own set of patterns of response. For example, the subprocess of “using 

measures of center” lies within the broad process of organizing and reducing data, and 

four distinct patterns of response were identified for the subprocess. The processes of 
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analyzing and collecting data are similarly split into subprocesses. Each of the patterns 

identified within each statistical thinking process and subprocess are discussed in detail in 

this section.  

       I have adopted several writing conventions in relating my findings. First, I have 

summarized the patterns of response from least to most sophisticated in each of the 

following sections by using figures. The description of the least sophisticated pattern of 

response appears at the bottom of each figure, the intermediate patterns above it, and the 

most sophisticated patterns on the very top. Second, a detailed discussion of each of the 

patterns summarized in the figures appears immediately after each figure. In each case, 

the detailed discussion progresses from the least sophisticated pattern of response that 

was evident to the most sophisticated pattern evident. Third, I have used the phrases 

“patterns of response” and “patterns of thinking” interchangeably, recognizing that some 

may argue that students’ responses are not always completely indicative of their thought 

processes. Finally, in discussing interview protocol tasks, I have used a decimal system 

that places the task in front of the decimal point and the subtask immediately after (e.g., 

task 3, part 2 is abbreviated as “3.2”).  

Describing Data 

       As defined in previous chapters, describing data involves reading data displayed in 

both graphs and tables. Several interview items (Appendix B) were aimed at assessing 

students’ thinking in both areas. However, patterns of response of various degrees of 

statistical sophistication were observed only in regard to some of the questions pertaining 
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to graph reading (1.10, 2.5, 4.1). Hence, the patterns of response to be discussed in this 

section pertain only to students’ abilities to read statistical graphs.  

       Three different graph reading tasks led to the identification of patterns of thinking 

within the process of describing data. In one such task (1.10), students were asked to 

explain the meanings of points in several different statistical graphs that were produced 

from a set of data an individual had collected over the course of a shopping mall survey 

consisting of several different questions. Both one variable (dotplot and boxplot) and two 

variable (scatterplot) graphs had been produced from the data. In task 2.5, students were 

asked to find the highest value in a one variable display of the distribution of test scores 

for a population of students. Task 4.1 involved describing the meaning of a point 

displayed in a scatterplot showing the relationship between ice cream consumption and 

temperature.  

       Some of the interview questions designed to identify various degrees of 

sophistication in patterns of response in regard to describing data failed to do so. One 

question pertaining to graph reading (1.11) was considered unhelpful in discerning 

patterns of response because students who had more familiarity with the technology used 

to produce the graphs in the question had an advantage over those who did not. Those 

who were familiar with the conventions of TI graphing calculators were able to interpret 

the “max” and “min” labels included at various points in the question, while the others 

could at best make reasonable conjectures about them. The interview questions asking 

students to read tables (2.3, 5.2) did not elicit different patterns of response. All students 

interviewed exhibited no difficulty in reading values from tables. Each student simply 
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correctly read the required information from each table and gave no further explanation. 

The patterns of response discernible in connection with describing data derived from 

tasks that actually were successful in eliciting thinking about graph reading are 

summarized in figure 5. 

 

Pattern descriptor Students whose responses reflected 
the pattern 

Relates information about the appropriate number 
of variables when discussing meanings of points 
on both one and two variable statistical graphs. 
Correctly relates information about display 
conventions of a variety of graphs. 

Crystal, Jeff, Julie, Brooke 

Relates information about the appropriate number 
of variables when discussing meanings of points 
on both one and two variable statistical graphs. 

Bill, Luke, Kristen, Nancy, Jessica, 
Paul, Daniel, Laura, Rick 

Relates information about only one variable when 
discussing meanings of points on both one and two 
variable statistical graphs. 

Lisa, Hillary 

 
Figure 5. Describing statistical graphs 

 

       In the least sophisticated pattern of response identified, students related information 

about only one variable when discussing meanings of points on both one and two variable 

statistical graphs. Lisa and Hillary both realized that the dotplot and the boxplot 

displaying data about responses to mall survey questions (task 1.10) contained 

information about one of the variables in the data set. They also both demonstrated the 

ability to read the one variable graph displaying test scores presented in task 2.5. Neither 

of them, however, completely described the information contained within the points of 

the scatterplots presented. For example, when Hillary was asked to explain what the point 
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farthest to the left in the scatterplot in task 1.10 (comparing hours of sleep per week to 

age) represented, she replied, “That would be like the minimum, like the minimum hours 

of sleep or the minimum age.  Oh, wait, on this one it would just be the minimum hours 

of sleep, not age.” When asked to explain the meaning of the point farthest to the left in 

the scatterplot presented in task 4.1 (comparing ice cream consumption to temperature), 

she replied, “That’s the lowest temperature, the day with the lowest temperature.” In each 

case, her descriptions mentioned only one of the relevant variables. 

       In the next pattern of response identified, students demonstrated the ability to 

describe the meanings of data points contained in both one and two variable statistical 

graphs. Kristen’s responses to task 1.10a (scatterplot showing age vs. hours of sleep) and 

1.10d (dotplot showing ages of people in the sample) are illustrative. She successfully 

described the meaning of the point farthest to the left on the scatterplot, stating, “Well, 

it’s kind of hard to get specific with the age, but you would say that someone who is 

under 25, probably 16, because that’s the lowest age on here, gets 20 hours of sleep a 

week.” She also successfully described the meaning of the point farthest to the left in the 

dotplot, stating, “That is just showing one person who is 16.”  

       The most sophisticated pattern of response identified within the subprocess was that 

at which students successfully read both one and two variable statistical graphs and also 

fully described the meanings of display conventions within each type of graph presented. 

Crystal, for example, in response to task 1.10 stated that the leftmost point on the 

scatterplot (age vs. hours of sleep) showed “a 16 year old who gets 20 hours of sleep.” 

She showed the ability to read one-variable displays and their conventions as well, 
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correctly identifying, for example, the bar near the center of the boxplot as “the median 

amount of sleep.” In this pattern of response, complete descriptions of meanings of points 

on both one and two variable displays were coordinated with complete descriptions of 

display conventions. 

       In summary, three different patterns of response were identified in regard to reading 

statistical graphs. Students giving the least sophisticated responses left important 

components out of their descriptions of statistical graphs. Two variable displays were 

described as if they were one variable displays, and some display conventions were 

misidentified. Responses in the next pattern differentiated between one and two variable 

displays, but some display conventions were still misidentified. The most sophisticated 

pattern of response was that at which the differentiation between one and two variable 

displays was coordinated with the correct reading of the display conventions of the 

graphs.  

Organizing and Reducing Data 

       The statistical thinking process of organizing and reducing data involves arranging, 

categorizing, or consolidating a given set of data into summary form. In order to 

investigate students’ thinking about this process, questions were included in the interview 

script to attempt to uncover students’ thinking in regard to four subprocesses: using 

measures of center (1.4; 2.6, 5.8b), using measures of spread (2.2; 3.4; 5.8a), recognizing 

the effect of data transformation upon center and spread (2.10), and organizing raw sets 

of data (1.3). Descriptors characterizing patterns of thinking for each of the four 

subprocesses are discussed in this section.  
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Subprocess 1: Using Measures of Center 

       As discussed in chapter 2, students’ use of measures of center has been investigated 

extensively by researchers. Some researchers have chosen to focus only upon students’ 

understanding of the arithmetic mean (e.g, Pollatsek, Lima, & Well, 1981; Strauss & 

Bichler, 1988; Cai, 2000). Others have focused upon students’ use of measures of center 

in general (e.g., Mokros & Russell, 1995; Zawojewski & Shaugnessy, 2000; Watson & 

Moritz, 1999a). My study of students’ understanding of measures of center had the latter 

focus, since I was interested in investigating students’ choices of measures of center in 

various situations.  

       Three different interview tasks elicited students’ thinking about measures of center. 

In one task (1.4a), students were asked to find the typical income in a skewed data set. In 

another (2.6), students were to find the typical test score within a slightly skewed data set 

presented graphically. Finally, in a third task (5.8b), students were asked to find the true 

weight of a fish given a skewed set of measurements. The strongly skewed nature of the 

data in some of the data sets made the choice of a measure of center a non-trivial matter. 

The patterns of thinking identified for the subprocess and the students whose responses 

reflect them are summarized in figure 6. 

       One task (1.4b) that was designed to elicit different patterns of thinking about using 

measures of center failed to do so. In the task, I asked students to find typical political 

party affiliation for people in a data set. Students all answered the task in a similar 

manner, finding the typical political party affiliation by simply comparing the numbers of 
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people belonging to each different party. Different patterns of thinking relating to the use 

of measures of center were not evident in responses to the question.  

 

Pattern descriptor Students whose responses reflect 
the pattern 

Uses reasonable formal measures to locate centers 
of data sets. 

Hillary, Paul 

Uses a combination of reasonable formal and 
visual measures to locate centers of data sets. 

Bill, Nancy, Crystal 

Uses a combination of formal and visual measures 
to find centers of data sets, only some of which are 
reasonable for the given set of data. 

Lisa, Kristen, Jeff, Julie, Jessica, 
Rick, Daniel, Brooke 

Uses only visual approaches to find centers of data 
sets, only some of which are reasonable for the 
given set of data. 

Laura, Luke 

 
Figure 6. Using measures of center 

 
 
       As noted in figure 6, one of the important criteria distinguishing among patterns of 

sophistication in thinking for this subprocess was the use of formal or visual measures 

reasonable for the given sets of data. The data set of salaries for people in a sample (task 

1.4a) contained a value of $2,000,000. This value was an outlier, since it was more than 

1.5 times the interquartile range away from the third quartile of the data set. Likewise, the 

data set of measurements for the weight of a fish (task 5.8b) contained an outlier. The 

observation of 10.1 pounds for the data set was an outlier on the low side. Hence, I did 

not consider the mean to be a reasonable measure of center for either task (1.4a or 5.8b), 

since it would be unduly influenced by the outliers. I did consider the median to be a 

reasonable measure of center in each case. I also considered the use of the mean to be 
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reasonable if the extreme points in the data set were discarded. Visual measures that 

produced results close to those produced by those two formal approaches were 

considered reasonable. In the test scores task (2.6), although the data set was slightly 

skewed right, there were no outliers. Hence, the use of the mean, median, or mode was 

considered reasonable for describing the typical value in the data set.  

       Students giving responses within the least complex pattern used only visual 

approaches to find the centers of data sets. In some cases, the visual approach used was 

not reasonable because it did not account well for skewness. Luke’s responses are 

illustrative. When asked to find the typical income of the data set in task 1.4a, he replied, 

“I would say about $50,000 to $55,000. Because the majority of the data is around 50 to 

60, and there’s some a little bit higher, and some a little bit lower. Then there’s like some 

outliers of 2 million and 16,000, and 14,000. But the majority of the data is between 

$50,000 and $55,000.” In response to task 2.6, he stated the typical test score would be 

“between 6 and 9” because “from about 6 to 10, there’s a high concentration of kids.” 

Finally, when asked to find the true weight of the fish in task 5.8b, he stated, “About 22 

[pounds]. It looks like about the average. I ignored 10.1 [pounds], because like I said 

earlier, some outliers you just have to ignore, and realize there was something wrong with 

the data or something. So, I took the average of the other 6 [without computing it], and 

it’s about 21.5, or 22 [pounds], somewhere around there.” Hence, Luke used only a visual 

strategy in each context. No use is made of the formal measure of median to describe the 

centers of the skewed sets. In the first case, his visual estimate of $50,000 to $55,000 is 

fairly far away from the actual median income of $42,500. 
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       In the next pattern of thinking within the subprocess, students were able to use two 

different relevant strategies to locate the centers of data sets. The use of both formal and 

visual approaches was evident in responses reflecting this pattern. In using the two 

different approaches, however, students sometimes still produced unreasonable answers 

by not accounting well for skewness. For example, when asked to find the typical income 

in task 1.4a, Kristen stated, “Oh, in my opinion?  Oh, I have no idea.  I never know, 

like…I would say 24,000 [dollars], because there are lots of 20 thousands, but then there 

are some really high ones, and then there’s lower ones…somewhere around 24 [thousand 

dollars].” Her visual approach, in this case, had produced an estimate fairly far from the 

median income. In response to the fish weighing task (5.8b), Kristen stated, “if you just 

added all those weights together and then divided by 7, you got 19.7 [pounds] as the 

average.  If you just looked in the middle, you got 21.5.  So, then I just add 21.5 to 19.7 

and divided the two, and got 20.6.  So, I just did the average of both averages.” This 

formal strategy, although somewhat unconventional, did take the skewness of the data set 

into account. In general, responses reflecting this pattern used some formal measures in 

describing centers of data sets, but the formal and visual approaches did not always 

produce results reasonable for the given data sets. 

       Student responses reflecting the next pattern incorporated both formal and visual 

methods in order to produce reasonable values for the centers of the given data sets. Bill, 

a student in this category, used a reasonable visual strategy in order to answer the typical 

income task (1.4a), and he used a reasonable formal strategy to answer the fish weighing 

task (5.8b). In response to the former task, he stated, “About 45 [thousand dollars], 



 

 88

maybe? No, wait a minute. Maybe about 40. First I see that I have more incomes from the 

younger generation. And even though none of theirs reach 40…they’re all about 26, 28, I 

used those to outbalance the fact that you’ve got one over here at 50, and 86, an 110,000, 

stuff like that. I tried to balance them out. And then your median category, the 30’s, 

they’re all making around 40 or 45.” In response to the fish weighing task, he used a 

reasonable formal strategy: “21.316 [pounds]. I took the average of the greatest 6 (using 

calculator), and just threw out the 10.1, because I don’t think that’s right, anyway.” When 

presented with the test score task (2.6), he opted for a visual approach in which he 

equated mode with typical value. In response to the task, he chose 6 as the typical value, 

stating “it had the highest mark on the graph, leading me to assume that the most people 

received a 6.” Responses reflecting this pattern in general were characterized by a fit 

between the strategy used for finding center and the context of the data at hand.  

       Some students interviewed used reasonable formal approaches to find the centers of 

each of the data sets. Hillary’s responses help to illustrate. Her response to the typical 

income task (1.4a) was, “If you just average them, you get $140,000 a year for the 

average, but you might have the one that earned 2 million a year and the one that earned 

5,000 a year might skew it…might mess up the data and make it look larger than it really 

is.  You might want to throw those two out, and then figure out what the average is for 

the rest of those.  If you did that, (using calculator) then the average would be 44,000 a 

year.” She used a similar strategy for the fish weighing task (5.8b): “21.3 [pounds].  I just 

discarded the 10 because it was so extreme, and I took the average (using calculator) of 

the 6 remaining measurements.” When asked to find the typical test score for students in 
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Arkansas (task 2.6), she correctly identified the mode as 6. She further mentioned that the 

typical score would likely lean toward the median because the data set was somewhat 

skewed. Hence, responses in the most sophisticated pattern within the subprocess were 

characterized by the inclusion of reasonable formal strategies for finding the centers of 

data sets in each context. 

       Overall, the responses to tasks within the subprocess of using measures of center 

revealed an array of patterns of thinking. A progression from the use of only visual 

measures to the use of only appropriate formal measures was apparent. Intermediate 

patterns of response involved the gradual incorporation of formal measures. The 

intermediate patterns also revealed differing degrees of fit between the measures of center 

chosen and the contexts at hand. The most sophisticated pattern of response was 

characterized by the use of reasonable formal measures to describe the centers of each of 

the data sets. 

Subprocess 2: Using Measures of Spread  

       Three different questions in the interview protocol were aimed at uncovering 

students’ understanding of measures of spread (2.2, 3.4, 5.8a). Each of the three tasks 

helped in the construction of descriptors for the subprocess. In task 2.2, valuable 

information about the measures of spread students had at their disposal was obtained as 

they compared the spreads of test scores for three different classes. In task 3.4, similar 

information was obtained as students were asked to compare the spreads of salaries for 

department store workers listed in two different columns in a chart. Responses to task 

5.8a helped to round out the picture of students’ thinking within the subprocess, as 
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students were asked how spread out they considered a set of weight measurements to be. 

The skewness of the set of measurements in this subtask made the choice of measure of 

spread more difficult, since simple use of the range would not capture the tightly 

clustered nature of most of the data in the set. Three different patterns of response were 

discerned as interview responses to the three tasks were analyzed, and they are 

summarized in figure 7. 

 

Pattern descriptor Students whose responses 
reflected the pattern 

Gives quantifications and subjective verbal 
descriptions of spread that are suitable for given 
sets of data. 

Luke, Crystal, Paul, Laura, Nancy 

Gives quantifications and subjective verbal 
descriptions of spread. Some descriptions or 
quantifications are not suitable for given sets of 
data. 

Kristen, Bill, Jeff, Lisa, Julie, 
Jessica, Hillary, Rick 

Gives subjective verbal descriptions of spread 
rather than quantifications. 

Brooke, Daniel 

 
Figure 7. Using measures of spread 
 

 
       As noted in the pattern descriptors in figure 7, one of the criteria distinguishing 

among patterns of sophistication in thinking for this subprocess is the ability to 

incorporate descriptions and quantifications of spread suitable to the data set at hand. In 

the test scores task (2.2) and the department store workers salary task (3.4), I considered 

the range to be a suitable measure of spread, and any verbal description that captured the 

idea of the range to be suitable. In each of the two tasks, there were no outliers (i.e., no 

points farther than 1.5 times the interquartile range away from the first or third quartiles) 
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present in the data set that would cause the range to be an unreasonable measure of 

center.  In the fish weighing task (5.8a), the data point showing 10.1 pounds was an 

outlier. Hence, I did not consider the range or descriptions capturing the idea of the range 

to be suitable, because they neglect to describe the tightly clustered nature of most of the 

data set. Standard deviation also was not considered a reasonable measure of spread for 

the data set, since it would be unduly influenced by the outlier in the data set. Formal 

measures of spread such as interquartile range or else descriptions that noticed the cluster 

in the data set were considered suitable.   

       The least sophisticated approach to the tasks within the subprocess was demonstrated 

by students who gave verbal descriptions of the spreads of data sets rather than 

quantitative measures of the spreads of the data sets. Brooke’s responses reflected this 

pattern. When asked to describe the spread of the test scores in task 2.2, she said, “I 

would say for class B it’s probably the most spread out. Because it’s not missing, but 

there’s a bigger jump between 15 and 20.” Her response does not quantify the spread of 

class B, but rather discusses “jumps” between discrete data points. When asked to 

describe the spread of the first set of salaries in task 3.4, Brooke replied, “They’re really 

not that spread out. If you would get rid of the extremes like 5.50, I think you would 

pretty much see that it’s not incredibly spread out.” Again, she focused upon describing 

parts of the set rather than quantifying the spread of the set. Finally, when asked about the 

spread of the measurements of the weight of a fish in task 5.8a, she said, “Well, they’re 

not that spread out…most of them don’t…I mean, none of them are the same. But I know 

that happens when you get on the scale sometimes. But, they’re pretty similar except for 
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there is one, and that is the 10.1. Maybe he only weighed half the fish.” While the verbal 

descriptions reflecting this pattern capture some of the important characteristics of the 

spreads of the data sets, no evidence was present that students were able to assign a 

numerical value to spread.  

       Responses in the next pattern identified indicated that students were able to give both 

verbal descriptions of spreads of data sets and quantifications of spread. However, their 

descriptions and quantifications did not always take important characteristics of the data 

sets into account. Kristen’s responses are illustrative. She verbally described spread and 

also quantified spread in the test score task (2.2). She stated, “Class C. Well, it’s kind of 

between B and C. Like Class A is all about in the same range, it only differed by like 6 

points or whatever. But, for C I just have…they go from 7 all the way to 20…there’s just 

a few skips in between…it’s pretty spread out.” Her response to the department store 

worker income task (3.4) showed her ability to quantify the overall spread by looking at 

the range. She said, “Pretty spread out. There’s a 13 dollar difference there, no, 14, no 

even more than that. From 5.50 to 20 is pretty spread out.” Her response to the fish 

weighing task (5.8a) gives an example of a situation in which a quantification for spread 

was given that did not take the skewness of the data set into account. She seemingly did 

not notice the tightly clustered nature of the points at the high end of the data set, stating 

simply, “About 13 pounds…this is the same fish? That’s weird. It’s pretty spread out. 

How one fish can be 10 pounds and the other end 23…that’s something my dad would 

do.” The verbal descriptions and quantifications of spread reflecting this pattern of 

response were not always well-suited to the data at hand.  
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       In the most sophisticated pattern of response identified, students were able to adjust 

their quantifications and verbal descriptions of spread to capture the important 

characteristics of the spreads of the data sets they were asked to examine. Luke’s 

responses help to illustrate this pattern of thinking. He quantified the spread in the test 

scores task (2.2). The following interaction took place in response to the task: 

Luke: C. It has the largest range.  
 
I: Largest range meaning… 
 
Luke: Lowest to highest test score. 

Luke similarly used the range in order to quantify the spread of department store worker 

salaries (task 3.4). In answering the fish weighing task (5.8a), Luke took the salient 

characteristics of the data set into account in describing the spread. He stated, “Well, 

they’re not very spread out, except for the 10.1 [pounds]. And the other ones look fairly 

close, they’re about 21 or 22. And the 10.1, I don’t know what happened, if there’s 

something wrong with the scale or something. But, except for that point, the one outlier, 

they’re not very spread out.” Since students giving responses reflecting this pattern 

demonstrated the ability to adapt verbal descriptions and quantifications to include 

descriptions of clusters within a data set when applicable, their responses were 

considered to be more sophisticated than those reflecting the previous pattern. 

       The three patterns of response identified within the subprocess of using measures of 

spread bear some resemblance to the first three patterns identified within the subprocess 

of using measures of center. The least sophisticated pattern of response evident within 

each subprocess was that at which students made use of subjective visual strategies for 
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reducing data sets. At a more sophisticated pattern of response within each subprocess 

students made use of some formal objective strategies along with subjective strategies for 

reducing data, but those strategies were not always well-suited to the data at hand. At the 

third pattern of response within each subprocess, the subjective and formal objective 

strategies that were incorporated for data reduction were each well-suited to the data. 

This similarity in structure suggests that patterns related to thinking about measures of 

spread somewhat resemble those related to measures of center. Even though this is the 

case, it is possible for students to give more sophisticated responses to tasks within one of 

the two subprocesses.   

Subprocess 3: Recognizing the Effects of Data Transformation upon Center and Spread 

       NCTM (2000) recommended that high school students should “recognize how linear 

transformations of univariate data affect shape, center, and spread” (p. 324). Because of 

this recommendation, one task (2.10) on the interview protocol was designed to 

investigate students’ patterns of thinking in a situation where each value of a univariate 

data set was increased by a constant of 15. The situation in the task was that a teacher 

increased the test scores for each student in a class by 15 points. The students interviewed 

were asked to describe the impact that this type of linear transformation would have upon 

the center and spread of the data set. Three different patterns were evident as responses to 

this item were analyzed. They are summarized in figure 8. 
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Pattern descriptor Students whose responses reflected 
the pattern 

Recognizes the effect of data transformation on 
both measures with a complete quantitative 
description of the impact on one measure of center.

Laura, Luke, Bill, Jeff 

Recognizes the effect of data transformation on 
both measures without completely quantifying the 
effect upon center. 

Kristen, Hillary, Lisa, Crystal, 
Daniel, Julie, Jessica, Rick 

Recognition of the effect of data transformation on 
only one of two measures: center or spread. 

Paul, Nancy, Brooke 

 
Figure 8. Recognizing the effects of data transformation upon center and spread 

 

       The least sophisticated pattern of response within the subprocess was that at which 

students recognized the effect of data transformation on only one of the two measures: 

either the center or the spread. Brooke, for example, recognized that adding 15 points to 

each test score would cause the typical score to increase, saying, “Well, on the graph it 

would show that it would increase. But you still would have the same shape, in terms of it 

would be going down, however the scores would be higher.” She seemed to have no 

recognition of the non-impact on spread, stating, “I think the spread would probably be 

more evident if you had more numbers in between. Because the way you have it now, 

there’s just one number difference in all of the scores. But if you add 15 on, then there 

would be a noticeable difference.” Her response indicates that she felt adding 15 on to 

each score would actually increase the distances between the points in the data set. In 

general, responses in this category incorporated only one relevant aspect of the task, 

recognizing either that the typical score would increase or that the spread would remain 

unchanged.  
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       In the next pattern of response identified for this subprocess, students were able to 

grasp two relevant aspects of the task, recognizing the impact of data transformation upon 

both center and spread. However, they were not able to fully quantify the change 

regarding the center. A typical response reflecting this pattern was given by Crystal. In 

response to the question of how the proposed data transformation would impact the 

typical score, she replied, “Adds 15 points to every person’s score? That would 

drastically raise the average score. And it wouldn’t make sense, because it’s only a 20 

point test, and then people would get over 20, so it wouldn’t really make sense. It would 

drastically raise the average score.” She indicated recognition of the increase of the 

typical score, but did not quantify the increase. She simply stated that it would increase 

“drastically.” In response to the question about spread, Crystal replied, “The spread 

would actually stay the same, because every person got 15, so the spread would stay the 

same if you raised the numbers…just because…it would all stay the same.” While 

responses reflecting this pattern correctly described the impact of the data transformation 

upon both center and spread, they did not fully quantify the impact upon center. 

       At the most sophisticated pattern of response identified, the impact upon center and 

spread was correctly described and quantified. Jeff’s response to the task reflected this 

pattern. Jeff recognized that in the task situation, “The mean would be raised by 15 

points.” In terms of spread, he recognized that, “The lowest point would be raised by 15, 

as well as the highest point.  The range would still be the same.” Hence, Jeff and the 

other students whose responses reflected this pattern fully quantified the impact on both 

center and spread in terms that were suitable for the given context.  
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       The three different patterns discernible for the subprocess show a gradually 

increasing awareness of the impact of data transformation upon center and spread. In the 

least sophisticated pattern, students seem to grasp the impact upon only one of the two 

measures. In the next pattern, an understanding of the impact upon both measures is 

demonstrated, but is not fully quantified. Students whose responses reflected the third and 

most sophisticated pattern identified gave quantitative descriptions not included in 

responses reflecting the previous two patterns. 

Subprocess 4: Organizing Raw Sets of Data 

       The research community is just beginning to gather information describing how 

students organize raw sets of data (e.g., Mooney, Langrall, Hofbauer, & Johnson, 2001). 

In order to gather this type of information about high school students, in task 1.3 I asked 

students to organize a data set containing answers people had given to questions 

administered during a shopping mall survey. The data set contained both measurement 

variables (age, annual income, and hours of sleep per week) and categorical variables 

(favorite color, political party affiliation, and a “yes” or “no” response to a question about 

computer literacy) pertaining to the sample of people that had been interviewed. Both 

types of variables were included in the data set because of the NCTM (2000) 

recommendation that high school students be able to “understand the meaning of 

measurement data and categorical data” (p. 324). As students organized the given set of 

data, three different patterns of response were apparent. They are summarized in figure 9. 
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Pattern descriptor Students whose responses reflected 
the pattern 

Uses both relevant strategies for grouping 
demonstrated in the previous pattern: (i) Forming 
groups within an ordering of values of a 
measurement variable; (ii) Forming groups by 
using a pre-existing categorical variable within the 
data set. 

Daniel, Hillary, Paul, Luke, Jeff, 
Laura 

Uses the strategy of ordering the values of a 
measurement variable to organize data. One of the 
following two grouping strategies is also 
incorporated: (i) Forming groups of values within 
the ordering; (ii) Forming groups by using a pre-
existing categorical variable within the data set.  

Bill, Rick, Nancy, Crystal, Kristen, 
Julie, Jessica 

Uses the strategy of ordering the values of a 
measurement variable to organize data. 

Brooke, Lisa 

 
Figure 9. Organizing raw sets of data 

 

       The least sophisticated pattern of response apparent was that at which students used 

only the strategy of ordering the values of a measurement variable in order to organize 

the data set. Within this pattern, no grouping strategies were evident. Lisa, one of the 

students whose response reflected this pattern, chose to organize the data set from oldest 

to youngest. Brooke, the other student whose response reflected the pattern, organized the 

data set by putting the data set in order from greatest to least according to the 

measurement variable of annual income. No clusters or groups were formed by either 

student in organizing the data. 

       At the next discernible pattern of response, students still used the strategy of 

organizing the data by ordering the values of measurement variables from least to 

greatest. However, this was not the only organization strategy used. Responses reflecting 
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this pattern also incorporated one grouping strategy in organizing the data. Some used the 

strategy of creating clusters and groups within the values of a measurement variable, 

while others used pre-existing categorical variables within the data set to form groups. 

Bill, for example, organized the data from least to greatest according to age. Then, within 

that organization, he formed groups according to decades (i.e., 20’s, 30’s, 40’s, etc.). 

Julie also organized from least to greatest according to age. However, she did not form 

groups within that ordering, but used the strategy of separating the data into groups by 

political parties. Responses reflecting this pattern were more complex than those the 

previous pattern because one strategy for grouping was incorporated with a strategy for 

ordering according to values of a measurement variable.  

       The most sophisticated pattern of response for the subprocess was that at which 

students organized data by using both of the grouping strategies used by students whose 

responses reflected the previous two patterns. Each student whose response reflected this 

pattern used the strategy of forming groups within values of a measurement variable as 

well as the strategy of forming groups by using a pre-existing categorical variable. 

Daniel, for example, sorted the cards by the pre-existing categorical variable of favorite 

color. He did the same with the pre-existing categorical variable of political party 

affiliation. He incorporated another type of grouping strategy as well, mentioning the 

possibility of forming groups of $10,000 each within the measurement variable of 

income. Hillary, another student whose response reflected this pattern, formed clusters 

within an ordering of the measurement variable of age. She also discussed grouping by 

using the pre-existing categorical variable of political party affiliation. Each of the 
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responses reflecting this pattern at some point incorporated two relevant strategies for 

forming groups within the set of data. 

       Hence, students’ responses within the subprocess of organizing raw sets of data had a 

total of three discernible patterns. The least sophisticated pattern was that at which 

students used a simple ordering of values of measurement variables to organize data. At 

the next pattern discernible, a grouping strategy was used in addition to an ordering 

strategy in order to organize the data set. The most complex pattern of response for the 

subprocess was that at which students incorporated two different relevant grouping 

strategies in organizing the data.  

Representing Data 

       Representing data is the process of displaying a given set of data by using graphs. 

Some researchers investigating students’ thinking in this area have chosen to focus on 

subskills related to producing graphs, such as scaling and labeling axes (e.g., Padilla, 

McKenzie, & Shaw, 1986). Others have focused on students’ abilities to produce certain 

types of graphs, such as line graphs (e.g., Berg & Phillips, 1994; Zawojewski & 

Shaugnessy, 2000). Still others have taken a different approach, investigating the types of 

graphs students produce when asked to effectively represent given sets of data (e.g., 

Mevarech & Kramarsky, 1997; Mooney, 2002).  My study of students’ thinking while 

representing data falls into this last category, since I presented students with situations 

and data sets and asked them what types of graphs would be effective in each case. 

       Responses to several different tasks were incorporated in forming a set of descriptors 

for the patterns of response in regard to representing data. Tasks 1.5, 1.6, and 1.7 each 
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required students to produce graphical representations for bivariate situations. Since 

NCTM (2000) recommended that high school students “display and discuss bivariate data 

where at least one variable is categorical” (p. 324), tasks 1.5 and 1.6 each involved at 

least one categorical variable. Task 1.5 dealt with one categorical variable (favorite color) 

and one measurement variable (income). Task 1.6 involved two categorical variables 

(computer literacy and political party affiliation). Task 1.7 was also a bivariate situation, 

but it involved two measurement variables (age and income). In tasks 4.8 and 4.9, 

students were asked to conceptualize and discuss displays for a set of univariate 

measurement data. In each of the task situations, students were prompted to give multiple 

representations. Four different patterns were evident in students’ responses to these data 

representation tasks. The four patterns are summarized in figure 10. 

 

Pattern descriptor Students whose responses reflected 
the pattern 

Conceptualizes multiple valid representations in 
both univariate and bivariate situations. 

Bill, Rick, Crystal 

Conceptualizes graphs in both univariate and 
bivariate situations, incorporating multiple 
representations in some bivariate situations. 

Lisa, Hillary, Daniel, Paul 

Conceptualizes multiple graphs for bivariate 
situations only or conceptualizes one valid graph 
for each univariate and bivariate situation. 

Jeff, Luke, Jessica, Julie, Kristen, 
Laura, Brooke 

Conceptualizes one graph for bivariate situations.   Nancy 
 
Figure 10. Representing data 

 

       Some of the tasks designed to elicit students’ thinking about data representation were 

not used in the construction of the pattern descriptors in figure 10. Task 3.2 was designed 
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to determine patterns of response for representing data in a context where values for 

men’s and women’s salaries were displayed. Some students responded to the task as if it 

were a bivariate situation, while others conceptualized the situation as the comparison of 

two univariate measurement variables. While this difference in perception itself is 

interesting, it did not help in the formation of descriptors for different patterns of 

sophistication in response, since both conceptualizations of the situation are equally 

valid.  Also, students’ different abilities to read some of the graphs in tasks 1.8 and 1.9 

made it virtually impossible to compare the components of their responses which dealt 

with data representation. A further complication is that students who had greater 

familiarity with the graphical conventions of TI calculators were able to interpret the 

boxplots and histograms in 1.8 and 1.9 more effectively than those who were not familiar 

with them (this is the same difficulty that arose in task 1.11). The patterns of thinking 

summarized in figure 10 and described in detail below were not discerned in any manner 

in the responses to these problematic tasks.  

       The least sophisticated pattern of response was displayed by Nancy. She was able to 

conceptualize one graph for each of the bivariate situations presented. She used a line 

graph to display information about favorite color and income (1.5), pie graphs to break 

down computer literacy by political party affiliation (1.6), and a scatterplot to compare 

age and hours of sleep per week (1.7). She was not able to conceptualize a graphical 

representation to display information about the variable of ice cream consumption (task 

4.8). When asked if she could do so, she replied, “I don’t think so, because people are 

going to wonder where you got these numbers [in the chart showing the data] from.” Her 
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response indicated that she did not see how it would be possible to construct a graphical 

representation to display information about just one variable.  

       Several responses were more structurally complex than Nancy’s. At the next pattern 

of response identified, students showed the ability to do more than simply conceptualize 

one graphical representation for each bivariate situation. Luke, Jessica, and Julie gave 

responses similar to Nancy’s in that they were not able to conceptualize a graphical 

representation for the univariate measurement data situation. However, the responses of 

Luke, Jessica, and Julie were more structurally complex in the sense that each of these 

students demonstrated the ability to conceptualize multiple representations for some of 

the bivariate situations (e.g., Luke conceptualized two graphs for favorite color vs. 

income and also for computer literacy vs. political party affiliation). Jeff, Kristen, Laura, 

and Brooke gave responses similar to Nancy’s in the sense that they conceptualized only 

one graphical representation for each bivariate situation. However, the responses of this 

group of students were more structurally complex in the sense that each of them included 

the conceptualization of one representation for the univariate measurement data situation 

(e.g., Jeff discussed using a histogram to represent the ice cream consumption data). 

Therefore, responses classified within this pattern incorporated one more relevant aspect 

in their responses than those in the previous pattern. In summary, one group of responses 

reflecting this pattern incorporated the additional aspect of the production of multiple 

representations for some bivariate data, while another group incorporated the additional 

aspect of producing a graphical representation for a univariate measurement data set.  
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       Each of the responses reflecting the next pattern incorporated both the idea of 

multiple representations for bivariate data and a representation for the univariate 

measurement data situation. Lisa, for example, conceptualized multiple graphical 

representations for tasks 1.5 and 1.6, and one graphical representation for task 1.7. She 

decided upon the use of a dotplot in the univariate measurement data situation, saying 

that such a graph would make it easier to see concentrations of values and the overall 

average value for the variable. In general, responses reflecting this pattern all 

incorporated multiple representations for some bivariate situations and one graphical 

representation for the univariate situation.  

       One final pattern of response was identified in regard to representing data. In this 

pattern, students incorporated the idea of multiple representations for data in both 

univariate and bivariate data situations. Bill, for example, conceptualized multiple 

representations for tasks 1.5 and 1.7, and one representation for task 1.6. When presented 

the univariate measurement data situation in task 4.8, he discussed using both a line graph 

and a bar graph to display the data. Responses reflecting this pattern differed from those 

at the previous pattern in the sense that multiple representations were discussed for both 

univariate and bivariate situations.  

       Responses to data representation tasks differed in degree of complexity. At the least 

sophisticated pattern of response evident, only one graphical representation was  

conceptualized for each of the bivariate data situations, and none could be conceptualized 

for univariate measurement data. Responses reflecting the next pattern incorporated 

either the idea of multiple representations or the representation of both univariate and 
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bivariate data. It was not until the next pattern of response that students incorporated 

multiple representations as well as representations for both bivariate and univariate 

situations. The most sophisticated responses incorporated the idea of multiple 

representations across both univariate and bivariate situations.  

Analyzing Data 

       The process of analyzing data involves identifying trends and making inferences or 

predictions from a data display or set. Responses to tasks in the interview protocol led to 

the identification of patterns of response for eight different subprocesses within the 

process of analyzing data. The first of the subprocesses includes patterns of response 

involving the comparison of univariate data sets (2.1, 2.7). The second subprocess 

involves the analysis of the relationship between a sample mean and the population from 

which it was drawn (2.8). The third of the subprocesses requires the identification of 

atypical points within a tabular data set (3.3). The fourth describes patterns of response 

for making a multiplicative comparison (5.7). 

       The last four subprocesses all involve students’ analysis of bivariate data sets 

containing two measurement variables. The patterns of response evident when students 

identify atypical points in such sets of data were investigated and described (task 4.5). 

Interpolation (task 4.3) and extrapolation (task 4.4) were the next two subprocesses 

investigated and described. Finally, responses given to tasks involving the description of 

the relationship between two variables (4.2 and 4.10) led to the identification of patterns 

of response for the subprocess of describing bivariate relationships when both variables 

involved are measurement variables.  
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       Some of the tasks administered during the interview sessions that were designed to 

elicit students’ thinking about data analysis did not prove to be helpful in discerning 

patterns of response. When task 2.9 did not elicit different patterns of response among the 

first few students interviewed, I changed one of the numbers in the problem. This led to 

the construction of a better interview item for future studies, but it made comparison 

among students’ responses for the purpose of this study impossible. Tasks 3.5, 3.6, 4.6, 

and 4.7 were designed to elicit thinking about formal inference. None of the students 

interviewed demonstrated such thinking, and there was no discernible difference in 

patterns of sophistication among the responses given. Finally, tasks 5.3, 5.4, and 5.5 were 

designed to elicit students’ thinking about using simulations or formulas to find the 

likelihood of events. None of the students interviewed used these strategies to answer the 

questions, and the responses that were given did not indicate a variety of patterns of 

thinking. The patterns of response reported below for each of the subprocesses come 

from the tasks in the interview protocol that did serve to indicate a variety of patterns of 

thinking. In subprocesses that included more than one task, I categorized students by the 

most sophisticated response they gave to the tasks. 

Subprocess 1: Comparing Univariate Data Sets 

       The comparison of univariate data sets is an important data analysis skill that has 

been investigated and described in several studies of middle school students (e.g., Watson 

& Moritz, 1999a; McClain & Cobb, 2001). Two of the tasks included in the interview 

protocol served to elicit a variety of patterns of response from students in regard to the 

comparison of univariate data sets. Task 2.1 asked students to decide which two classes 
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in a set of data were the most similar in performance based upon the variable of test 

score. Task 2.7 required students to examine two graphs showing distributions of test 

scores for students in two different states and compare the two states using the graphs. 

The patterns of response summarized in figure 11 and described in detail below come 

from the analysis of students’ responses to the two tasks. In cases where a student used a 

more sophisticated approach in one situation than in the other, the student is classified 

within the chart in figure 11 according to the more sophisticated pattern of response 

given.  

 

Pattern descriptor Students whose responses reflected 
the pattern 

Compares sets of data by using multiple relevant 
attributes of the aggregates. 

Kristen, Jeff 

Compares sets of data by using one relevant 
attribute of the aggregate sets such as shape, 
center, or spread. The comparisons made are often 
supplemented by point-by-point comparisons or 
irrelevant features of the data sets. 

Laura, Julie, Luke, Crystal, Nancy, 
Paul, Hillary, Lisa, Bill, Daniel, 
Jessica 

Compares sets of data by using a point-by-point 
strategy. 

Rick, Brooke 

 
Figure 11. Comparing univariate data sets        

 

       The least sophisticated responses within the subprocess incorporated only one 

strategy for comparing the univariate data sets in each of the tasks. They included only 

point-by-point comparisons in each case. Rick’s comparison of test scores for two classes 

(task 2.1) relies upon point-by-point comparisons: 
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I think it would be B and C. Even though B has two less students than C did, I 

think they were very similar. If you look at their lowest kid’s low score at 7, and 

if once you go and keep on going, they both had a kid that got in the 20’s that got 

all of them right. They both had kids, actually two of them, that only got one 

wrong, that was 19. Both had a kid that only scored 15. And then they also both 

had the same kid that scored 14. And 13 and 12 is very similar. And the biggest 

difference would have to be that two kids are missing, and in class B the kid 

scored 9 and the…in class C the kid scored 11. And that’s the biggest difference 

between scores, is by 2 points. That, and that there’s two kids missing. But out of 

those two classes, class B and class C are very similar. 

His comparison of test scores in two different states (task 2.7) also uses only point-by-

point comparisons: 

Um, then I would say that the scores in Wisconsin seem to be higher than the state 

of Arkansas. Seems like there are fewer 7’s, but there are a lot more 11’s and 

13’s. Even the 20’s and 19’s seem to be higher. And everything seems to be 

higher, except for the 1’s and the 3’s and the 5’s, that’s all lower. But it keeps on 

going up, once you keep on going up, the test scores eventually are better. 

Students’ explanations within this pattern of response gave little evidence that they 

viewed data sets as aggregates, since relevant features associated with aggregates such as 

shape, center, and spread were not incorporated. 

       Responses reflecting the next pattern gave more evidence that students viewed data 

sets as aggregates, since they used one relevant characteristic such as shape, center, or 
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spread in order to make comparisons among sets. In some explanations reflecting this 

pattern, however, point-by-point comparisons and irrelevant features of data sets were 

incorporated in comparisons. Julie, for example, gave the following response when asked 

to compare the test score data sets in task 2.7: “I would say that overall the students in 

Wisconsin had a higher average on the test, but there were still students in both states that 

scored either a 1 or a 20. So, it was even that way, but overall the students had a higher 

average test score in Wisconsin.” The data sets are compared on the basis of the relevant 

characteristic of the average. A point by point comparison is also incorporated, as she 

compared the numbers of students getting high and low test scores in each data set. In 

general, responses reflecting this pattern compared data sets based upon one of the 

relevant characteristics of each set of data, and were at times supplemented by point-by-

point comparisons or irrelevant features of the data sets.  

       The responses reflecting the next pattern clearly demonstrated the view that the data 

sets being compared were aggregates with several different important characteristics. 

Responses reflecting this pattern incorporated two different relevant features in drawing 

comparisons between data sets. One student, Jeff, gave two responses reflecting the 

pattern. He examined the range of scores and the centers of the test score data sets (task 

2.1), stating, “The range of values in both of them are from 7 to 20.  The middle looks to 

be right around 15 for both.” In drawing comparisons between the test score data sets 

presented in task 2.7, he used the characteristics of shape and center, stating, “I’d say it’s 

slightly higher.  Because I would say the middle is about 10 or 11.  This one’s pretty 

symmetrical, peaking at 11.” Both responses reflected the most sophisticated pattern of 
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thinking, since in each one he used two different relevant characteristics to draw 

comparisons between data sets. The first response incorporated spread and center, and the 

second incorporated center and shape. Responses reflecting this pattern indicate a 

perception that data sets are aggregates with several different important characteristics 

that can be used in order to draw comparisons.  

       In summary, three patterns of response were discernible within responses to 

interview tasks involving comparisons of univariate data sets. The first pattern described 

incorporated only point by point comparisons in response to the tasks. The next pattern 

saw students begin to use one relevant characteristic of the data sets as aggregates in 

order to draw comparisons, with these comparisons often supplemented by irrelevant 

features of the data sets or else point-by-point comparisons. Responses reflecting the next 

pattern incorporated multiple relevant characteristics in drawing comparisons. It was 

clear in responses reflecting the most sophisticated pattern that data sets were treated as 

aggregates with several multiple characteristics that can be used for the purpose of 

drawing comparisons.  

Subprocess 2: Analyzing Sample Means 

       Understanding the relationship between a statistic and a parameter is an important 

part of the foundation for statistical thinking (NCTM, 2000). Several researchers have 

investigated students’ intuitive and formal understandings of the relationship between 

statistics of samples and the corresponding parameters of the populations from which 

they were drawn (e.g., Confrey & Makar, 2001; Chance, Garfield, & DelMas, 2001; 

Konold, Well, Lohmeier, & Pollatsek, 1993; Saldanha & Thompson, 2001; Shaugnessy, 
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Watson, Moritz, & Reading, 1999). My study included an interview question to examine 

students’ thinking about the relationship between the mean of a sample and the mean of 

the population from which it was drawn. Task 2.8, similar in structure to items used by 

Konold, Well, Lohmeier, & Pollatsek (1993), elicited different patterns of response in 

regard to the effect of sample size upon that relationship. The patterns are summarized in 

figure 12. 

 

Pattern descriptor Students whose responses 
reflected the pattern 

Recognizes that the larger the random sample, the 
more likely its mean will be close to the population 
mean; and that smaller samples are more likely to 
produce extreme results. 

Julie, Hillary, Laura, Luke, Lisa, 
Bill, Crystal, Jessica 

Recognizes that the larger the random sample, the 
more likely its mean will be close to the population 
mean. 

Jeff, Kristen, Nancy, Brooke 

Recognizes that different size samples can be 
drawn from a population, but does not recognize 
the impact of changing sample size upon the 
sample mean.  

Paul, Daniel, Rick 

 
 Figure 12. Analyzing sample means 

 
 
       Responses reflecting the least sophisticated pattern of response identified within the 

subprocess indicated that students recognized that different size samples can be drawn 

from a population, but demonstrated little understanding of how sample size influences 

that variability of the sample mean. For example, when Paul was asked if he thought 

there would be any difference between the means of two samples of different sizes, he 

replied, “No.  Um, because it is a simple random sample, so everyone has an equal 



 

 112

chance of getting picked.  So by trying to do that, the ones that were picked will be 

spread out and averaging out to be basically the same, and that would be the same for 

both groups.” When asked if one of the samples was more likely than the other to yield 

an average of 17, he stated, “No.  Because not…too few of students scored 17 or above.  

It’s not going to average out to be 17, most likely below, because most students did score 

less than 17.” Responses reflecting this pattern revealed little more than the recognition 

that samples of different sizes can be drawn from a population. 

       In the next pattern of response, students understood what it meant to draw a sample 

from a population, and also understood that the larger the random sample drawn, the 

closer its mean is likely to be to the population mean. They did not, however, have 

sophisticated enough understandings of sample mean variability to realize that a small 

sample is more likely than a large sample to produce an extreme result. Brooke’s 

responses to each part of the task help to illustrate. In response to the question of whether 

or not there would be a difference between the averages of a large and a small sample, 

she replied, “I think that there would be a difference. Because when you only survey or 

check 5 students’ scores, you really don’t have enough data to see where the average was, 

but when you take 15, you have a little bit better of an idea. Chances are that all students 

won’t have a separate score, most of them will have some type of repeating number that 

would be the same thing.” Her response seems to indicate an intuitive understanding of 

the fact that the mean of a large sample is usually nearer the population mean than the 

mean of a small sample. However, when asked if one of the two sample means was more 

likely than the other to produce a result greater than 17, she replied, “Probably the second 
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teacher, because she has a lot more students to choose from. Adding them all together 

would probably give a bigger number.” Her response indicated that she had the correct 

relationship reversed. She thought that the larger sample was more likely to produce 

extreme results. Her responses were more sophisticated than those reflecting the previous 

pattern, but lacked the connectedness expected of a more mature response. 

       Students whose responses reflected the most sophisticated pattern identified for the 

subprocess demonstrated a more complete intuitive understanding of the relationship 

between the means of samples and the means of populations. Hillary’s responses to both 

parts of the given task exemplify this type of connected intuitive understanding. In 

response to part a, she stated, “The one that takes the 15 will probably get closer to the 

real average of all the students, just because she’s using more scores.  And, if the other 

one only used 5, then she could get some extremes in there.  Even if it is at random, she 

could pick one extreme, and it would ruin it.” For part b, she responded, “Um, the one 

that picked 5 will be more likely to get something above 17. Because there’s only 

about…there’s only, like a small percentage that got above 17. So, if they pick 15, 

they’re going to have to start picking from the ones that are lower than 17, and that will 

bring the average down.  But if they are only picking five, then they could pick the five 

that are, all five could be above 17.” The responses reflecting this pattern demonstrate a 

more complete intuitive understanding of the nature of the subprocess that was lacking at 

the previous patterns of response identified. 

       Three different patterns of response, then, were identified within the subprocess of 

analyzing sample means. The least sophisticated pattern was marked by students grasping 
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only the relevant concept of sampling, and the most sophisticated was marked by students 

demonstrating a more complete intuitive understanding of the relationship between 

sample size, sample mean, and population mean. Notably, none of the students 

interviewed discussed the formal notion that the distributions of small sample means do, 

across all contexts, exhibit greater variability than the distributions of large sample means 

of samples drawn from the same population. Instead, all students reasoned intuitively 

from the given context and did not incorporate general principles used in formal methods 

of data analysis. 

Subprocess 3: Identifying Atypical Points in a Tabular Data Set 

       Part of the process of analyzing data is making comparisons within data sets. This 

competency falls within Curcio’s (1987) category of “reading between the data.” Two 

different questions in the interview protocol gave students opportunities to make 

comparisons among the points in tabular data sets and identify atypical values. Task 2.4 

asked students to identify any unusually high or low values in a set of test scores for a 

class, and task 3.3 asked students to identify any unusually high or low values among 

salaries listed for department store workers. Each of the two questions gave students the 

opportunity to identify outliers within the data sets and give reasons why they considered 

the points identified to be outliers. The two tasks differed from those included in Friel’s 

(1998) study in that the formal term “outlier” was not included in either question, and that 

the data were presented in the form of tables rather than boxplots. The purpose of putting 

the data in tables rather than boxplots was to allow students to generate their own 

strategies for identifying atypical points rather than suggesting a strategy through a given 
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representation. The patterns of response that were obtained within the subprocess are 

summarized in figure 13. In cases where students gave responses reflecting different 

patterns of sophistication for each task, the students’ names appear in the table next to the 

more sophisticated pattern of response given.  

 

Pattern descriptor Students whose responses reflected 
the pattern 

Formal procedure used to identify atypical points Paul 
Distance from main cluster of points or distance 
from the center of the data set is discussed in the 
identification of atypical points. 

Luke, Laura, Jeff, Brooke, Julie, 
Daniel 

Distances between individual data points are 
discussed in the identification of atypical points. 

Bill, Hillary, Kristen, Jessica, Rick 

Qualitative criteria alone are used to identify 
atypical points. No quantitative comparisons are 
made between points in the data set.  

Lisa, Crystal, Nancy 

 
Figure 13. Identifying atypical points in a tabular data set 

 

       The least sophisticated pattern of response within the subprocess was characterized 

by responses that took only contextual factors into account in determining atypical points. 

Crystal gave the following characteristic response when asked if she saw any unusual 

values in a chart showing department store worker salaries (task 3.3):  

Yes, I do. I think 8.50 is pretty low. That’s interesting that the highest paid person 

only gets 8.50 an hour. So, that’s pretty low. But then, you go over to the men’s, 

and there’s one for 5.50. That’s crazy. So, I don’t know what kind of store that 

would be. (I: asks Crystal to explain why 8.50 is low). I would consider it to be 

low because they took the highest paid woman at that job, and usually that would 
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probably be a manager type person who gets the highest paid. And, seeing that’s 

8.50, I know that managers don’t usually get paid 8.50. So, maybe that would say 

that all of the people in that business, all of the managers or higher people are 

men, and the women are just kind of, like, associates or something like that.  

 
 (In response to the second part of the task) I would say that 5.50 an hour is pretty 

low, again, just because it’s supposed to be the highest paid person, the highest 

paid man at that company. And, that’s like, minimum wage, or maybe below, so 

that’s kind of different. And, maybe, again, um, that might be um, a place where a 

lot of women are higher up, because some jobs are dominated by women. So, it 

might be a job like that. 

Identification of atypical points within the data set rested on contextual factors alone in 

this pattern of response. No quantitative comparisons among points within the data set 

were made. Qualitative criteria alone were used. 

       In the next pattern of response identified, students began to incorporate quantitative 

comparisons among points within the set in their explanations. However, these 

quantitative comparisons were generally quite unsophisticated, in that they simply 

involved discussion of jumps between individual data points in the set. Hillary gave a 

response characteristic of this pattern when asked if there were any unusually high or low 

values within a table showing test scores for a class (task 2.4). She stated, “Um, in class 

c, the 7 is pretty low compared to the other ones.  Because the other ones are within 2 or 

3 of each…like between each other there’s 3, but between 7 and the next score, there’s 
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4.” In order to identify atypical points, she examined the distances between individual 

points in the set. While responses reflecting this pattern incorporated quantitative 

comparisons, the quantitative comparisons that were made were simply those among 

distances between discrete points.  

       Responses reflecting the next pattern indicated that students saw data sets as 

aggregates. They used the quantitative criterion of distance from a central cluster of 

points in order to identify atypical data values in some cases. In other cases, they used the 

criterion of distance from the center of the set of data. Both of these strategies mirror the 

structure of common formal methods that are used to identify outliers (see Yates, Moore, 

& McCabe, 1998 for a detailed discussion of common formal methods). The strategy of 

examining distance from a central cluster of points comes out well in Luke’s response to 

task 3.3 (identifying unusually high or low salaries in a table). He stated, “Yeah, like the 

low salaries, the 5.50, the 6, and the 7, they look real low, because most of them are 

around 18 or 19 or 17 or 20. And so, those look like, the 5.50 especially, really low. But 

the higher values, the 20’s and the 19’s, those don’t look too high, it just seems about 

average.” The three data points identified as unusually low were labeled as such because 

of their relatively large distance away from the main cluster of data points in the set. 

Hence, salient characteristics of the data set, and not just quantitative differences among 

individual points, came into play in the identification of unusual data values in responses 

reflecting this pattern. 

       In the most sophisticated pattern of thinking identified, one student used a unique 

strategy to identify atypical points within each column of data presented in task 3.3 
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(department store worker salaries). Paul produced a boxplot for each column of data on a 

TI-83 calculator, and then examined each column for atypical values. This strategy is 

similar to responses reflecting the previous pattern, in that he examined the data sets for 

unusual values by judging their distance from a central cluster of points. However, his 

strategy is different from those reflecting the previous pattern in that he introduced the 

formal tool of the boxplot in order to help him make the comparisons. Such a strategy 

was not suggested by anything present in the context of the task or in the data set. Paul 

reasoned from the general principle that boxplots can be used as guides in identifying 

atypical points in univariate data sets.  

       An interesting array of patterns of response emerged in the identification of atypical 

points in a tabular data set. The least sophisticated pattern was marked by the use of only 

contextual criteria to identify atypical points, the second by the use of primitive 

quantitative criteria, and the third by the use of quantitative criteria that made use of the 

distances of points from a central cluster of points in the data set. One more sophisticated 

pattern of response was also evident, in that one student used a formal strategy to assist in 

the identification of atypical points. The formal method that was used mirrored the 

structure of response at the previous pattern, but it formalized the structure by using a 

boxplot to examine distance from the center of the data set to the highest and lowest 

values in the set. 

Subprocess 4: Making Multiplicative Comparisons 

       Task 5.7 was included in the interview protocol in order to elicit different patterns of 

response from high school students in regard to analyzing two-way tables. In the task, 
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students were asked to examine a two-way table showing the number of trout and non-

trout caught by two different fishermen fishing in the same lake. Students were told that 

one of the fishermen had used new bait designed to help catch trout, and the other did 

not. They were then asked whether or not they felt the new bait helped one catch more 

trout. Multiplicative reasoning, in some form, was necessary to give a complete answer to 

the task, since one fisherman had caught slightly more fish than the other. The 

requirement to use multiplicative reasoning was built into the task as a result of Cobb’s 

(1999) observation that this type of reasoning is an important part of many data analysis 

tasks. The patterns of thinking that emerged in response to the fishing bait task (5.7) are 

summarized in figure 14. 

 

Pattern descriptor Students whose responses reflected 
the pattern 

Makes only multiplicative comparisons when only 
multiplicative comparisons are warranted. 

Paul, Crystal, Jeff, Luke 

Makes additive and multiplicative comparisons 
when only multiplicative comparisons are 
warranted. 

Hillary, Laura 

Makes additive comparisons when multiplicative 
ones are warranted. 

Kristen, Lisa, Bill, Julie, Daniel, 
Nancy, Jessica, Brooke, Rick 

 
Figure 14. Making multiplicative comparisons 

 

       At the least sophisticated pattern of response, several of the students interviewed 

made only additive comparisons between fish populations and no multiplicative ones. 

Daniel gave the brief, yet highly illustrative response reflecting this pattern, “Not really. 

Because they only caught three less non-trout, and five more trout.” He was able to draw 
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comparisons that might have some relevance to answering the question. However, 

nowhere in the responses reflecting this pattern is the recognition of the fact that differing 

numbers of fish caught by the fishermen make additive comparisons very limited in 

value. 

       Student responses reflecting the next pattern incorporated both additive and 

multiplicative comparisons. However, no choice was made between the two types of 

comparisons. The responses indicated no preference for either type of comparison. 

Hillary’s response reflected this pattern, since she stated, “I would think that it does, 

because for boat B, he caught less non-trout fish than boat A did, and he also caught more 

trout.  And he also has a higher percentage of trout.” In her response, both additive and 

multiplicative comparisons are made, and one is not preferred over the other. While 

responses reflecting this pattern incorporate one more relevant strategy than those 

reflecting the previous pattern, they do not indicate that one strategy is more suitable for 

drawing comparisons than the other. 

       Responses reflecting the next pattern did indicate a preference for multiplicative 

comparisons in the given situation. Jeff, for example, came to a decision by using 

percentages to draw a multiplicative comparison between the catches of the two 

fishermen. He stated, “I think it [type of bait] would [make a difference], because the guy 

who wasn’t using the bait, he only caught a third of his catch was trout.  The other guy, 

with the new bait, he caught, um, 47% of his catch was trout.” His response indicated 

recognition of the fact that percentages are an efficient means of comparison in the given 

situation, since the numbers of fish caught by each fisherman were unequal. The use of 
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the most relevant strategy in order to come to a decision in the given situation indicated 

thinking characteristic of this pattern. 

       Three different patterns emerged among the responses given to the task within the 

subprocess of making multiplicative comparisons. The least sophisticated pattern was 

marked by students’ use of only one weak strategy for drawing comparisons between the 

two fishermen. The second pattern was characterized by the use of both additive and 

multiplicative strategies with no preference expressed for either one. The most 

sophisticated pattern was marked by recognition of the need to make multiplicative 

comparisons in the given situation.  

Subprocess 5: Identifying Atypical Points in a Graphical Bivariate Data Set 

       One of the tasks included in the interview protocol elicited patterns of thinking in 

identifying atypical points in data presented in a graph. In task 4.5, students were asked to 

identify atypical points within a bivariate data set that was accompanied by a scatterplot 

display. The two variables involved were both measurement variables, one being ice 

cream consumption and the other outside temperature. The responses to the task were 

used in order to formulate the set of descriptors for the subprocess of identifying the 

atypical points within a graphical bivariate data set. This subprocess was not merged with 

the subprocess of identifying atypical points in a tabular set because of important 

qualitative differences in the patterns of response that were apparent. Four different 

patterns of response emerged within the subprocess. Their qualitative characteristics are 

summarized in figure 15. 
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Pattern descriptor Students whose responses reflected 
the pattern 

Distance from a visual line of best fit is discussed 
in the identification of atypical points. 

Lisa, Luke 

Distance from the central cluster of points is 
discussed in the identification of atypical points. 

Crystal, Hillary, Kristen, Julie, 
Jessica, Brooke 

Subjective and ill defined quantitative comparisons 
are used in the identification of atypical points. 

Laura, Jeff, Paul, Bill, Rick 

Contexutal criteria alone are used to identify 
atypical points. 

Daniel, Nancy 

       
Figure 15. Identifying atypical points in a graphical bivariate data set 

 

       The least sophisticated pattern of response within the subprocess was characterized 

by the use of contextual criteria alone to identify atypical data points. No evidence of the 

use of quantitative comparisons among values in the data set was given. Daniel’s 

response is typical of the least sophisticated pattern. When asked if any unusual points 

existed within the data set, he stated, “Yeah, it looks like they are selling quite a bit of ice 

cream when it’s only 23 degrees outside.” His response incorporated only a contextual 

factor from the setting of the task, namely that one would not expect to sell much ice 

cream when it is 23 degrees outside. The point with an x-coordinate of 23 degrees itself 

did not deviate in any noticeable manner from the overall trend of the data (see 

scatterplot accompanying task 4.5). The apparent lack of attention to the overall trend of 

the data characterized responses reflecting this pattern. 

        In the next pattern, quantitative comparisons were incorporated within the responses 

given. However, they were not incorporated in a coherent manner. Rick’s response to the 

task helps to illustrate this pattern of response. He stated (referring to the scatterplot 
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accompanying task 4.5), “The unusual point that I saw was around 47 degrees. That 

seemed very, very low. That received .3. I mean, if you just take 40 degrees, then you’re 

degrees colder…some people were eating .4. There was a huge difference. Also, when it 

was 78 degrees, it was below .4. And when it was 40 degrees, some people were eating 

ice cream to .4, so….4 seemed unusually high, and .70 seemed unusually low. Those are 

the extremes.” His explanation seems to jump from point to point. While quantitative 

comparisons are incorporated, no systematic comparison strategy is evident in the 

responses reflecting this pattern.  

       In the third pattern identified, a systematic quantitative comparison strategy became 

evident. It also became evident that students began to see the data set as an aggregate 

rather than a set of discrete points. When asked to identify atypical points, responses 

reflecting this pattern discussed the distances points were from the central cluster of 

points within the data set. Brooke’s response exemplifies this pattern. She stated (see the 

scatterplot accompanying task 4.5), “Not really unusual, there’s somewhat of a peak at 

about 72 degrees, where there’s more people eating ice cream. And at that same point, 

there’s less people eating ice cream. But other than that it all basically falls into a 

cluster.” This pattern of response was characterized by a clear indication that the data set 

was viewed as an aggregate, and that atypical points were those that fell outside the 

central cluster of the data.  

       One final pattern of response was identified in regard to the subprocess. In the most 

sophisticated pattern observed, students identified atypical points in the data set by 

discussing their distances from a hypothetical line of best fit. In response to the relevant 
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task, Luke stated, “Not really, maybe on the one day when it was 72 degrees, the highest 

point on the graph up here, that’s a little bit unusual, because it doesn’t exactly fit. But 

maybe people just wanted to eat a lot of ice cream that day…that looks like the only 

unusual one. The others stay about the same distance from the line of best fit.” Responses 

reflecting the most sophisticated pattern observed for the subprocess incorporated the 

formal statistical tool of the line of best fit in order to determine whether or not data 

points could be considered atypical. 

       The patterns of thinking for the subprocess of identifying atypical points in a 

graphical display and the subprocess for identifying atypical points in tabular displays 

have similarities and differences. At the least sophisticated pattern of thinking within 

each subprocess, contextual criteria are used without quantitative criteria in order to 

identify atypical points. In the next pattern within each subprocess, weak quantitative 

criteria come into play, although the nature of the weak quantitative criteria differs 

somewhat in each of the subprocesses. For the third pattern of each subprocess, it 

becomes apparent that students view data sets as aggregates, since distance from the 

central cluster of points is used in order to determine whether or not points are atypical. 

At the fourth pattern within each, a formal statistical tool is introduced in order to help 

determine whether or not points are atypical. The nature of the formal tool introduced and 

precisely how it is used differs for each of the subprocesses. By keeping the two 

subprocesses related to identifying atypical points separate, some of the detail about the 

nature of the formal tools being used is preserved. The slight qualitative differences of 

other patterns are also preserved.  
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Subprocess 6: Interpolating within Bivariate Data 

       An important part of analyzing data is making inferences and predictions from data 

sets. Because of the importance of this aspect of analyzing data, in task 4.3 students were 

asked to do so with a set of bivariate data. For the task, they needed to predict a 

reasonable value for the ice cream consumption given a value for temperature that was 

not listed in the given data set. The patterns of response for interpolation are summarized 

in figure 16. 

 

Pattern descriptor Students whose responses reflected 
the pattern 

Visually determined best fit line used to 
interpolate. 

Bill, Lisa, Luke 

Trend of the data is used to interpolate. Laura, Paul, Jeff, Jessica 
Data in the immediate vicinity is used to 
interpolate. 

Daniel, Julie, Kristen, Hillary, 
Crystal, Nancy, Brooke, Rick 

 
Figure 16. Interpolating within bivariate data 

 

       In the least sophisticated pattern of response identified, students used quantitative 

criteria to make the necessary interpolation, but they used only data in the immediate 

area. Hillary’s response to the task illustrates this pattern well. Looking at the graph and 

the data in the area of interest, she stated, “I’d say [the total consumption would be] 

somewhere around .3 or .5 [pints of ice cream per 100 people].  Because if you average 

[the y-coordinates] between when it’s 44 and 55 degrees, it’s .34 [pints of ice cream per 

100 people], but if you add in the one [data point] where it’s 52 degrees, then it [the total 
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consumption] is .375 [pints of ice cream per 100 people].   Because there is no 

measurement for 50 [degrees], so I would just use the ones [the observations] that are 

closest to 50 [degrees] to kind of guess.” Responses reflecting this pattern gave no 

indication that students saw the data as an aggregate, since only data in the immediate 

vicinity were used in order to make an interpolation. The trend of the data set as a whole 

was not mentioned.  

       In the next pattern, the trend of the data was mentioned in the explanation of the 

interpolation process. Paul’s response is indicative of this pattern. He predicted, “Around 

.4.  Um, it’s in the middle, it seems like it kind of separates into two groups.  Below 50 

degrees, um, the average consumption is less than .4, but above 50 it is above.  So for the 

average, it would be around the .4 area.” His explanation indicated that he took the trend 

of the entire data set into account in the process of interpolation by taking into account 

the data both above and below 50, even though this data was not all in the immediate 

vicinity of interest. The response illustrates the use of quantitative criteria for 

interpolation used in concert with the view of the data set as an aggregate. 

       One last pattern of thinking was identified within the subprocess. In the next pattern, 

students used a hypothetical visually determined best-fit line in order to help in the 

interpolation process. Luke was one of the students who used such a strategy. In reply to 

the question, he stated, “I would say about 3.8 pints per 100 people…or .38, I mean. 

Well, like I said, it’s going to be a straight line through here, so I just kind of went up to 

50 and saw where the point would be, like the middle of the points that are around it. And 

it looks like it’s going to be close to .4 but not all the way to exactly .4.” The introduction 
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of a hypothetical object to help reason out the answer was a unique characteristic of this 

pattern of response.  

       In summary, three patterns of response were evident within the interpolation 

subprocess. In the first pattern, quantitative criteria were used in order to interpolate, but 

only the data in the immediate vicinity of the point of interest was taken into account. 

Responses reflecting the next pattern took the trend of the entire data set into account in 

making an interpolation. The most sophisticated pattern identified was that at which 

students introduced the idea of a hypothetical line of best fit.  

Subprocess 7: Extrapolating from Bivariate Data 

       In task 4.4 (the Ice Cream task), students were asked to make a prediction for the 

amount of ice cream consumption at a temperature lower than any of those given in the 

data set. While the process of extrapolating from bivariate data would seem on the 

surface to elicit the same patterns of response as those observed in interpolating within 

bivariate data, many more patterns of response were identified for extrapolation. Six 

different patterns of thinking were identified, as shown in figure 17. 
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Pattern descriptor Students whose responses 
reflected the pattern 

Formally determined best fit line is used in order to 
extrapolate. 

Paul 

Visual/algebraic best fit line is used in order to 
extrapolate. 

Bill 

Visual line of best fit is used in order to 
extrapolate. 

Hillary, Lisa, Jeff, Luke, Jessica 

Trend/direction of the data is used in order to 
extrapolate. 

Laura, Crystal, Nancy, Brooke 

Data that would occur in the immediate vicinity 
are used in order to extrapolate. 

Kristen, Julie, Rick 

Context and personal theories are used in order to 
extrapolate. 

Daniel 

 
Figure 17. Extrapolating from bivariate data 

 

       The least sophisticated pattern of response to the task was given by Daniel. He made 

use of non-quantitative contextual factors alone in order to make an extrapolation. When 

asked to predict how much ice cream would be consumed if the temperature hit 10 

degrees Fahrenheit, he replied, “Probably none at all. Because they could just go outside 

and grab some snow and make their own snow cones.” This response was easily the least 

sophisticated of all those obtained. No quantitative criteria for the decision were 

articulated whatsoever.  

       In the next pattern of response to the task, students generated quantitative data based 

on personal theories in order to predict data points that may occur in the area of interest 

to the prediction. Once data points had been predicted for the area, the prediction was 

thought to be close to the conjectured points. Julie, for example, looked at the data that 

were closest to the area of interest and made a prediction based mainly upon those data, 
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and not the overall trend. She predicted (see scatterplot accompanying task 4), “Well, 

based on the graph and the lists, the lowest point on here is only 27 [degrees], and that’s 

not even represented, so there would be none. According to this information, it would be 

zero pints.” In this pattern of response, only an imagined part of the data set was used in 

order to make a prediction. The perception that data are perceived as an aggregate is not 

apparent.  

       The next pattern of response to this task did provide evidence that students viewed 

the data set as an aggregate. In responses reflecting this pattern, the trend or direction of 

the data was used in order to make a prediction. Crystal’s response captures the nature of 

this pattern well. She stated, “OK, well, it doesn’t show under 20 degrees Fahrenheit, so 

they didn’t do a survey of that, but seeing that it’s a positive association, you could just 

take from that relationship, and I would just assume that it would be under .25, maybe 

around .2 pints would be consumed. Just looking at the association that’s already going, 

and taking in backward, making it negative and seeing that like at 25, it’s going to be 

about .25, so it’s going to decrease from that, and so I’m saying .2.” This pattern of 

response was marked by students taking the entire data set into account in making an 

extrapolation.  

       At a more sophisticated pattern of response, students introduced a hypothetical visual 

best fit line in order to help make extrapolations. One student whose response was 

characteristic of this pattern was Hillary. In response to the task, she stated, “I’d say .24, 

because if you draw a line of best fit in there, then you get to about 10 degrees would be 

.24 or .23.” Students giving responses reflecting this pattern not only paid attention to the 
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trend of the overall data set, but also introduced a hypothetical best fit line in order to 

capture the trend and make reasonable predictions from it. 

       Bill’s response to the extrapolation task was a bit more sophisticated than those at the 

last pattern detailed. He used a visual line of best fit in order to extrapolate, just like the 

students giving responses reflecting the previous pattern. However, Bill also assigned an 

algebraic equation to the line he had constructed in order to help make his extrapolation 

more precise. He explained, “I would actually do an equation. So, basically an equation y 

= mx + b.  And, you said if x = 10. My slope is about, we agreed on, .375 over 30. Plus 

about .25.  I mean, this is an approximation. I would say about .2625.” His response 

differed from those reflecting the previous pattern in that he introduced an algebraic 

equation for the visual line of best fit he had constructed.  

       One slightly more sophisticated pattern appeared in response to the extrapolation 

task. Paul gave a response that can be characterized as more sophisticated than that of the 

previous patterns. Like the students who gave responses reflecting the previous two 

patterns, Paul used a best fit line in order to make an extrapolation. However, unlike the 

students who used visually determined best fit lines, Paul relied upon a formal procedure 

to determine the line of best fit. Recognizing that a least squares regression would 

produce an objective line of best fit rather than a subjective one, he entered the data into 

two lists in the TI-83 calculator. He then used the calculator to generate a line of best fit, 

and he determined the value of the line at 10 degrees. His response was considered more 

sophisticated than those reflecting the previous patterns because he tied together all of the 

relevant aspects of the problem in order to make an objective extrapolation. 
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       The extrapolation task elicited an exceptionally wide array of patterns of response. 

Specifically, it elicited a much wider array of patterns of response than the interpolation 

task. Although the descriptors for the two subprocesses could be merged into one set, 

they were kept separate in order to emphasize the differences in patterns of thought the 

two different tasks elicit. Responses to the extrapolation task involved elicited more 

responses reflecting the less sophisticated patterns of thinking. At the same time, they 

also elicited more sophisticated use of the formal statistical tool of the line of best fit.  

Subprocess 8: Analyzing Bivariate Relationships 

       The last of the subprocesses examined under the overarching process of analyzing 

data was the subprocess of analyzing bivariate relationships. NCTM (2000) considered 

the analysis and description of bivariate measurement data important, stating that for such 

data, high school students should “describe its shape, and determine regression 

coefficients, regression equations, and correlation coefficients using technological tools” 

(p. 324). As students analyze such bivariate relationships, they also need to understand 

that if two variables are correlated, “the correlation may be due to an underlying cause” 

(NCTM, 2000, p. 328). 

       Two interview tasks were designed in order to prompt students to analyze a given 

bivariate relationship. In the first task (4.2), students were asked to explain as fully as 

possible the bivariate relationship between the two measurement variables of temperature 

and ice cream consumption presented. In the second task (4.10), students were asked to 

comment on the possibility of a causal relationship between the two variables involved. 

Their responses to the two tasks revealed four different patterns of response within the 



 

 132

subprocess. The patterns seem to be differentiated by the manner in which students 

answered questions about causality between the two variables involved. Those patterns 

are summarized in figure 18. 

 

Pattern descriptor Students whose responses 
reflected the pattern 

Goes beyond discussing the direction of the 
quantitative relationship between the two variables 
displayed. Identifies intervening variable beyond 
the two variables shown in the data set. 

Julie 

Describes direction of the relationship between the 
two variables involved and uses that relationship 
and quantitative anomalies to argue for or against a 
causal relationship between the two variables. 

Lisa, Bill, Rick 

Describes direction of the relationship between the 
two variables involved and uses that relationship to 
help argue for a causal relationship between the 
two variables. 

Luke, Nancy, Crystal, Hillary, 
Paul, Brooke, Kristen 

Describes direction of the relationship between the 
two variables involved. 

Daniel, Jeff, Jessica, Laura 

 
Figure 18. Analyzing bivariate relationships 

       Students giving responses reflecting the least sophisticated pattern within the 

subprocess demonstrated the ability only to describe the general direction of the 

quantitative relationship between the two variables involved. Daniel’s description, for 

example, simply was, “As it gets warmer, people eat more ice cream.” While this 

captures part of the relationship between the two variables involved, it only captures one 

very small part of the overall relationship. In this pattern of response, the quantitative 

relationship was not referred to in arguing for or against a causal relationship between the 

two variables. 



 

 133

       In the next pattern of response identified, students began to use the data given in 

order to form arguments about cause and effect relationships between the two variables. 

Crystal, for example, commented, “It’s a positive association, it pretty much goes upward 

as the temperature gets warmer, more ice cream is consumed, which makes sense, 

because it’s supposed to cool you off it’s kind of a summer-type food.” When asked if 

she thought that there was a causal relationship between the variables of ice cream 

consumption and temperature, she used the data set to back up a claim that temperature 

caused ice cream consumption to increase. She stated, “I would agree with that statement 

[that higher temperatures cause ice cream consumption to increase], because this study 

shows that there’s a positive association. When temperature increases, more ice cream is 

consumed. So, I would agree with that.”  In responses reflecting this pattern, an explicit 

connection was made between the data display and any proposed causal relationship 

between the two variables.  

       In the next pattern of response within the subprocess, students went further in 

forming arguments about the quantitative rationale for causal relationships between the 

two variables presented in the problem. In addition to arguing that the overall trend of the 

quantitative data and the context seemed to indicate a causal relationship, responses 

reflecting this pattern identified anomalities within the data set presented that seemed to 

provide evidence against a direct causal relationship. When asked to comment on a 

newspaper headline saying that one variable in the data set caused the other, Bill said, “I 

agree. Basically the data set shows exactly what he said. You could even go on to say in 

some instances the higher temperature may not have directly caused the higher 
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consumption, such as the unusual point [he had previously identified the point (71, .549) 

on the scatterplot in task 4 as the “unusual point”]. But overall, his statement is agreed 

with.” Therefore, responses reflecting this pattern were characterized by the lack of 

complete acceptance of a simple causal relationship between the two variables presented 

in the data set.  

       A more sophisticated pattern was identified in Julie’s responses to the tasks within 

the subprocess. The following exchange took place when Julie was asked to comment on 

the possibility of a causal relationship between the two variables presented in the data set:  

Julie: Well, since there is a correlation, you can say the temperature affects the ice 

cream consumption, but you can’t say that it causes, because there are other 

factors that may influence ice cream consumption. Temperature doesn’t cause 

people to eat ice cream, so… 

I: What other factors might come into play? 
 

Julie: When it’s a high temperature, people may go outside more, so ice cream 

might be a way that people relieve warmness, but that would be the most obvious 

factor. And when it’s warmer, people would rather go out because of the weather 

to eat ice cream…so…yeah. 

Julie’s response indicated that she recognized that quantitative evidence presented within 

a data set does not necessarily mean that one variable causes another. She went on to 

identify a variable not directly shown in the data set that could have an impact upon ice 

cream consumption. Her response was more sophisticated than the others in that she 

hypothesized about the impact of a relevant variable not included in the given data set.  
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       The last subprocess identified within the process of analyzing data included four 

different patterns of response. The first three patterns became progressively more 

sophisticated until students questioned simple cause and effect relationships between two 

variables by referring to quantitative evidence presented within the given data set. One 

student exhibited a more sophisticated pattern of response by going beyond the 

quantitative data presented and basing an argument against simple causation on a single 

relevant variable not explicitly presented in the data set.  

Collecting Data 

       The process of collecting data includes planning, conducting, and critiquing surveys, 

experiments, and observational studies. Three different subprocesses within the process 

of collecting data were addressed: designing a non-experimental study, designing an 

experimental study, and critiquing a study. Five tasks (1.1a, 1.1b, 1.1c, 1.1e, 3.7) elicited 

students’ thinking within the subprocess of designing non-experimental studies. One task 

(1.1d) elicited thinking within the subprocess of designing an experimental study, and 

one (1.2) led to the identification of patterns of response within the subprocess of 

critiquing a study.  

       One set of tasks (3.1, 5.1) was designed to elicit students’ thinking about 

randomness, which is an important part of both experimental and non-experimental 

design. However, because of students’ different understandings of the contexts in which 

the tasks were set, it was not possible to discern patterns of response about randomness 

from the responses given to the tasks. Students’ success in responding to these tasks 

seemed more dependent upon their knowledge of fishing and department store 
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organization than their knowledge of randomness. Hence, the patterns of response 

described in this section were identified as a result of the tasks that involved designing a 

non-experimental study, designing an experimental study, and critiquing a study.  

Subprocess 1: Designing a Non-Experimental Study 

       Important statistical thinking skills for high school students include being able to 

“understand the differences among various kinds of studies and which types of inferences 

can legitimately be drawn from each” (NCTM, 2000, p. 324) and to “know the 

characteristics of well-designed studies, including the role of randomization in surveys” 

(NCTM, 2000, p. 324). In tasks 1.1a, 1.1b, 1.1c, and 1.1e, students were asked to design 

studies in order to answer questions of interest about people who live in the state of 

Florida. No study design was imposed upon them, and they were free to approach the 

questions in any manner they deemed reasonable. In task 3.7, students were asked to 

expand a survey that had taken place in one state in order to include the entire United 

States. Students’ responses to the tasks led to the formulation of the descriptors for 

patterns for the subprocess summarized in figure 19. 
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Pattern descriptor Students whose responses reflected 
the pattern 

Concern for the representativeness of study 
participants is articulated, and randomization used 
in concert with stratification in some cases to 
obtain it. 

Paul, Crystal, Hillary, Kristen 

Concern for the representativeness of study 
participants is articulated, and stratified sampling 
or random sampling is used in some cases to obtain 
it. 

Rick, Bill, Luke, Daniel 

Concern for representativeness of study 
participants is articulated, but no strategy is 
described to attempt to achieve it. 

Jeff, Lisa 

Discusses data gathering instruments or procedures 
without articulating concern for the 
representativeness of those to be included in the 
study. 

Laura, Julie, Brooke, Jessica 

Discusses data gathering instruments or 
procedures, but primarily relies upon pre-existing 
studies for information. 

Nancy 

 
Figure 19. Designing a non-experimental study 

       The least sophisticated pattern evident in response to the subprocess of designing a 

non-experimental study was that exhibited by Nancy. She relied primarily on pre-existing 

studies in order to gather the information needed to answer each question posed. She 

briefly mentioned interviewing people to determine whether or not the governor would be 

re-elected in the next election, but the idea was not developed. She made use of pre-

existing information and studies in books, periodicals, and the internet in order to answer 

each of the other questions in the tasks. For example, when asked to determine the 

success of a law that raised the minimum driving age from 16 to 18, she stated, “Well, it 

seems like I’m relying on the internet a lot, but that’s basically how I would. I guess 

you’d have to look up the accident claims from insurance companies and see if the claims 
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were higher or lower or whatever after the law was passed.” While she recognized that 

empirical data would be useful for answering the questions of interest, she relied on 

others to gather the data for her rather than developing her own data gathering 

techniques.  

       In the next pattern identified, students recognized the need for empirical data and 

also began to develop their own ideas for gathering the data. However, they discussed 

their data gathering techniques without expressing concern that the data they would 

gather would be representative of the population from which it was drawn. Brooke, for 

example, proposed the following plan for predicting whether or not the governor would 

be re-elected in the election in fall: 

In response to the election question, I think I would do some kind of poll that 

people could answer on the internet or, like, by responding to a phone number in 

the newspaper. And you also would send door to door scouts out, that ask people 

if they vote, are they planning on voting for the governor. Then I would probably 

just display that by a percentage of people that we polled. 

Although she discussed a number of data gathering techniques, none of them attempt to 

ensure that the sample drawn would be representative of the overall population. In fact, 

the data gathering techniques proposed by students whose responses reflected this pattern 

were quite likely to produce non-representative samples. 

       In the next pattern, students proposed data gathering techniques and recognized the 

importance of obtaining representative samples in sampling situations. Jeff, for example, 

recognized that it would be important to obtain data for the governor’s re-election from 
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“a wide range of the population from various backgrounds.” In response to the same 

question, Lisa felt it was important to “make sure that there’s all types of people, and that 

there is no economic bias” within a surveyed sample. However, she did not offer a 

strategy for obtaining such a representative sample. Therefore, the students responding 

within this pattern not only proposed data gathering techniques, but also at some point 

articulated that it was important for the data gathered to be representative of the larger 

population. 

       Students giving responses reflecting a more sophisticated pattern proposed formal 

methods to attempt to ensure that the sample drawn in sampling situations would be 

representative of the population of interest. In this pattern of response, students 

incorporated either simple random sampling or stratified sampling in order to attempt to 

gain a representative sample. Bill, for example, suggested using stratified sampling when 

asked to expand the department store survey to the entire United States (task 3.7), saying, 

“You could take a direct approach, call each department store, that’s just crazy. Or like 

the census bureau does, you don’t have to go to every single house. You could go to, I 

mean, you could research department store wages in a couple of states, north, east, south, 

west, all around, and then get an average of that.” Daniel suggested a random sampling 

strategy in response to the same question, saying, “He could pick some cities at random, 

and pick one man and one woman from a department store from that city chosen at 

random.” Responses reflecting this pattern incorporated one formal strategy to attempt to 

obtain a representative sample.  
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       In the most sophisticated pattern of response identified within the subprocess, 

students incorporated both random and stratified sampling in the design of some studies. 

Paul’s response to the question of determining the typical income of adults in the state of 

Florida (task 1.1a) illustrates: 

OK, um, there’s a couple of ways, I guess, you could do this.  One would be to do 

a census, you know, and take information from everyone. You’d have to find 

ways to get to everyone, so they’d have to mail it back, and make sure 

people…send people out to go find them…that’s one way.  Another way would 

be to do a simple random sample, I might stratify the districts, or the counties, I 

guess.  So, you’d have the same amount if there’s urban, rural, suburban areas.  

Then take the same amount…or even it out that way.  Then I guess you’d just find 

the mean salary for each of the adult households.   

While students giving responses reflecting this pattern showed evidence of more complex 

thinking than students giving responses reflecting the previous pattern, responses 

reflecting this pattern did lack components that one would expect in more sophisticated 

responses. Stratification and randomization strategies were both used in some cases, but 

some of the important mechanics and logistics of the strategies were not discussed.  

       The five patterns of thinking identified for designing a non-experimental study 

become increasingly more sophisticated along the dimension of obtaining representative 

data. Students’ thinking about representativeness has emerged as an important component 

of statistical thinking in other studies as well (e.g., Watson & Moritz, 2000a; Zawojewski 

& Shaugnessy, 2000). At the climax of the first three patterns, students expressed concern 
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about the representativeness of at least some of the samples drawn. In the fourth pattern, 

they incorporated one formal method, either stratified or random sampling, in order to 

obtain a representative sample in some cases. At the fifth, there were able to use both 

strategies together in one study design. A more sophisticated pattern of thinking would 

presumably involve discussion of the mechanics of random and stratified sampling. 

Subprocess 2: Designing an Experimental Study 

       NCTM (2000) recommended that high school students understand experimental 

studies and be able to conduct them in order to answer quantifiable questions of interest. 

Researchers have begun to investigate how to design instruction in order to help students 

learn the principles of experimental design (e.g., Derry, Levin, Osana, Jones, & Peterson, 

2000). In order to supplement the current research efforts underway in this area, a task 

was included on the interview protocol (task 1.1d) that elicited students’ thinking about 

experimental design. In the task, students were asked to evaluate the effectiveness of a 

hypothetical drug that had just been developed. Five different patterns were identified in 

the responses to the task. They are summarized in figure 20. 
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Pattern descriptor Students whose responses reflected 
the pattern 

Recognizes the possibility of conducting an 
experiment when applicable and discusses two or 
more formal controls to be put on experiment in 
order to obtain valid results. 

Julie, Paul 

Recognizes the possibility of conducting an 
experiment when applicable and discusses a 
control to be put on the experiment in order to 
obtain valid results. 

Crystal, Lisa 

Recognizes the possibility for an experiment when 
applicable.  

Bill, Luke, Daniel, Kristen 

Uses data gathering method other than an 
experiment when an experiment would be 
applicable. No mention of the possibility of using 
an experimental design. 

Hillary, Laura, Jeff,  Jessica, Rick, 
Brooke 

Relies solely upon pre-existing studies. Nancy 
 
Figure 20. Designing an experimental study 

 

       Nancy’s response to the task was indicative of the least sophisticated pattern of 

response evident. When asked how she would evaluate the effectiveness of the new drug 

that had been developed, she stated, “Well, I guess you’d have to go to like a direct 

source from…I mean if you couldn’t get the answers in a book or a periodical or online 

or something…If you could actually find someone who had actually encountered the 

virus and was working on a drug for it…if you had that kind of access.” Hence, she relied 

solely upon pre-existing empirical studies in order to answer the given question. 

       In responses reflecting the next pattern, students proposed their own methods for 

gathering data in order to answer the question. However, they did not mention conducting 

an experiment as a possible study design. Jessica, for example, proposed gathering 

information about success and failure from people who had used the drug, stating, “I 
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would speak to doctors, see what their opinion is. But, probably more importantly, talk to 

people who have contracted the disease and have taken the drug to see how they felt, 

have their symptoms got better, and how it worked out for them.” While several data 

gathering techniques were discussed in responses reflecting this pattern, none of them 

were experimental in nature. 

       Students whose responses reflected the next pattern recognized that it would be 

possible to conduct an experiment in order to obtain the needed information. Bill 

suggested testing the drug on animals. Daniel suggested finding some people who had the 

virus and testing the drug on them. Kristen and Bill both suggested analyzing the results 

of clinical tests without naming specific experimental subjects. Each response reflecting 

this pattern indicated the recognition of the possibility of carrying out an experiment in 

order to answer the question of interest. 

       In the next pattern, students not only recognized the possibility of conducting an 

experiment to answer the question of interest, but they also proposed a control to be put 

on the experiment in order to help ensure that the experiment would produce valid 

results. Crystal proposed, “For this one, I would take a group of people who actually have 

the West Nile virus, and I would make sure that they are all in the same stage, so that 

some aren’t worse off than others. Then I would give part of the people a fake-type drug, 

and one the real drug, and see how the differences in their improvement turn out.” Lisa 

recommended using animals as test subjects rather than humans, but she also 

incorporated the use of a placebo in her experimental design. The transition to this 
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pattern, therefore, was marked by the students’ abilities to begin to discuss components 

of the design of an experiment they would use in order to answer the question of interest. 

       The responses of two students formed an even more sophisticated pattern, because 

they discussed experimental designs with more than one control that could be used in 

order to determine the effectiveness of the drug. Julie, for example, stated, “OK, well you 

would have to do some sort of experiment where you have the actual drug, and then, like 

a placebo. Two groups are chosen at random and put into random groups. Um, and it 

would help if it was double blind. And, just have one group taking the new drug and one 

group taking the placebo.” Her design incorporated double blinding and a placebo. Paul’s 

response was similar, and it mentioned the use of the same two controls. Presumably, 

responses reflecting an even more sophisticated pattern would include full discussions of 

the benefits and drawbacks of controls such as placeboes and double blinding within 

experimental design. 

       In summary, five patterns of response were evident within the subprocess of 

designing an experiment. The first three patterns climaxed with students recognizing the 

applicability of experimental methods in the given situation. Responses reflecting the 

fourth pattern were marked by the ability to discuss the design of a hypothetical 

experiment for the situation in detail. The last two patterns identified reflected 

increasingly more complex experimental designs. Responses reflecting the fifth pattern 

identified included more detailed descriptions of quality controls that would be put on the 

experiment than those reflecting the previous pattern. 
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Subprocess 3: Critiquing a Study 

       NCTM (2000) emphasized that it is important for high school students to “know the 

characteristics of well-designed studies” (p. 324). Watson and Moritz (2000a, 2000b) 

have described some of students’ notions that impact their abilities to critique samples 

that are gathered for studies. I sought to extend this line of investigation in this study by 

investigating high school students’ abilities to critique a study given some information 

about the sampling design used for it. In task 1.2, students were asked to critique a study 

conducted by someone else. They were given several bits of information about the study, 

including the time at which it was conducted, its location, and the questions asked. There 

were three patterns of response evident. Descriptors were formed for each of the three 

patterns in order to characterize thinking within the subprocess of critiquing a study. This 

information is summarized in figure 21. 

 

Pattern descriptor Students whose responses reflected 
the pattern 

Critiques study on the basis of some, but not all, of 
the following: sample size, data gathering 
instruments, or data gathering procedure. 

Laura, Kristen, Paul, Brooke, Rick 

Critiques study on the basis of participants 
included or instruments used to gather data. 

Bill, Jeff, Daniel, Julie, Crystal, 
Lisa, Hillary, Jessica 

Critiques study on the basis of perceived 
importance of the questions under investigation. 

Luke, Nancy 

 
Figure 21. Critiquing a study 

 

       In the least sophisticated pattern of response evident within the subprocess of 

critiquing a study, students simply critiqued the study on the basis of the perceived 
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importance of the questions under investigation. Luke, for example, went through each 

individual question that was asked in the study and discussed whether or not it would 

yield pertinent information about people who lived in Florida. Nancy made a similar 

critique. Each of the students giving responses reflecting this pattern made critiques 

similar in nature about each of the questions under investigation. Students giving 

responses reflecting this pattern made this type of critique consistently across all of the 

questions.  

       At the next evident pattern of thinking, students critiqued the study on the basis of 

one aspect of the study design. Bill, for example, questioned whether or not the person 

conducting the poll would be able to obtain accurate results from simply asking interview 

questions of people. Jeff pointed out that the people interviewed during the early morning 

at the mall would not be the same as those who would shop later on during the day. This 

pattern of thinking was considered more advanced than the previous one because it 

actually addressed questions related to study design rather than just perceived importance 

of the topics of the study.  Each of the responses reflecting this pattern included one valid 

concern about study design. 

       Students whose responses reflected the most sophisticated pattern identified within 

the subprocess critiqued the study on the basis of more than one relevant study design 

aspect. Each of the students giving responses reflecting this pattern critiqued the study on 

the basis of some, but not all, of the following: participants included, sample size, data 

gathering instruments, or data gathering procedure. Paul’s response is illustrative of this 

pattern: 
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His method of collecting is biased to a voluntary response.  Those people willing 

to take the poll, an opinion kind of thing…um…they’re gonna take, uh do the 

interview…kind of…run away from those kind of people at the mall.  The data 

wouldn’t be that useful because it is only certain people that are willing to do the 

survey.  Plus, I would think that at a mall, you’re going to have more younger 

people doing this than older people, so it seems a little biased toward age. 

His response discussed some, but not nearly all, of the relevant points upon which the 

study presented in the task could be criticized. Presumably, a student giving a response 

reflecting a more sophisticated pattern would comment upon most all of the relevant 

aspects upon which the study could be criticized. 

       The three patterns of response identified within the subprocess of critiquing a study 

begin with students paying attention only to the perceived interest of the questions under 

investigation. While this is certainly a valid dimension along which one can critique any 

given study, it is far from being all that can be said. At more complex patterns of 

response, students began to mention aspects of study design that could have been done 

differently. The second pattern identified was marked by attention to one of the aspects of 

study design that could be critiqued, while the third pattern identified was marked by 

critiques of several aspects of study design.  

Summary 

       Several different patterns of response were identified in the analysis of interview 

transcripts. The patterns range from the very simple to the very sophisticated. Since the 

patterns of response identified vary in this manner, they provide a portrait of a spectrum 
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of performance. This spectrum provides a means for identifying various levels of 

response in the area of high school statistics. In the next main section of this chapter, I 

will discuss the relationship between the spectrum of patterns of response identified and 

the cognitive levels described by Biggs and Collis (1982, 1991). 

Relationship to the Theoretical Perspective 

Overview

       The patterns of response to the statistical thinking interview items can be 

characterized in terms of modes and levels within the Biggs and Collis (1982, 1991) 

cognitive model. Responses given by students during the clinical interview sessions 

seemed to be characteristic of two different modes of development: concrete symbolic 

and formal. Levels of response within each of these two modes were apparent in the 

patterns identified. The levels can generally be identified with unistructural-

multistructural-relational (UMR) cycles. A UMR cycle begins with the unistructural 

level, at which students focus on one relevant aspect needed to complete a task. At the 

next level, multistructural, students focus upon several relevant aspects, but they do not 

integrate them to form a coherent whole. The climax of a UMR cycle is the relational 

level, in which the relevant aspects are integrated to produce a coherent structure and 

meaning. Some researchers maintain that there can exist several UMR cycles within any 

given mode (e.g., Pegg & Davey, 1998; Watson, Collis, Callingham, & Moritz, 1995). 

For example, one complete UMR cycle in the concrete symbolic mode could be followed 

by another cycle that involves the consolidation and application of a concept developed 

in the first cycle. 
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       In this section, I will begin by discussing the characteristics of both the concrete 

symbolic and formal modes and how I separated concrete symbolic patterns of response 

from formal ones. I recognize that there is a great deal of room for disagreement about 

what qualifies a response as characteristic of the formal mode of development as opposed 

to the concrete symbolic mode. Experienced researchers have been hesitant to place the 

formal mode label on observed patterns of statistical thinking. For example, Watson and 

Moritz (2000c) identified two levels of thinking in regard to students’ understanding of 

average outside of a UMR cycle they had identified within the concrete symbolic mode. 

Rather than making the claim that the levels reflected the formal mode, they simply 

labeled the two levels “application of average in one complex task” (A1) and “application 

of average in two complex tasks” (A2). Hence, the following discussion is not meant to 

be the final word on the characteristics of formal mode statistical thinking. Instead, it is 

intended to be a catalyst for further discussion of characteristics of statistical thinking 

within the formal mode of development.  

       Similarly, my matching of patterns of thinking with levels within modes is not meant 

to provide the final word on the matter. Instead, I have provided plausible matches 

between the patterns of thinking observed and the levels within the Biggs and Collis 

(1982, 1991) model. Data from a larger sample of students could modify some of the 

descriptors I have formed for the various patterns of thinking observed during this study. 

This may change the matching of levels to patterns of response. There are also some 

cases where one might argue that alternative level assignments could be made to patterns 

of thinking. I have pointed out some of these cases in what follows, but the reader is 
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encouraged to attempt to identify more such cases in the following discussion. The 

following discussion should be viewed as the beginning of further discussion in regard to 

connections between the levels in the theoretical perspective incorporated and observed 

patterns of response in statistical thinking.  

Concrete Symbolic and Formal Modes 

The Concrete Symbolic Mode and Statistical Thinking 

       Biggs and Collis (1991) discussed the nature of the concrete symbolic mode. During 

this mode, students master the application of second order symbol systems to experiential 

reality. Tools such as written language, mathematical symbols, and maps can be applied 

to describe and make sense of concrete referents. In essence, “there is logic and order 

both between the symbols themselves, and between the symbol system and the world” 

(Biggs & Collis, 1991, p. 63) for students who function at the highest level within the 

concrete symbolic mode. While coherence within symbol systems and coherent 

applications of symbol systems to reality both occur during the concrete symbolic mode, 

students do not develop the ability to think more abstractly and theoretically until the 

formal mode of development.  

       Several of the patterns of thinking displayed by students during the clinical 

interviews were concrete symbolic in nature. In some of the subprocesses identified, 

patterns of response gradually became more sophisticated until students viewed data sets 

as aggregates. Viewing data sets as aggregates is an essential part of mastering the 

application of statistical symbol systems to reality. It is also an essential part of 

perceiving statistical data sets themselves as coherent wholes (McClain & Cobb, 2001). 
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Patterns within other subprocesses climaxed within the concrete symbolic mode with 

students exhibiting a high degree of competency dealing with statistical graphs and their 

application to the representation of data sets. In still other subprocesses, patterns of 

response became more sophisticated until students used and integrated all relevant cues 

embedded in the tasks in the production of answers. While a high degree of fit was 

obtained between the response and the task setting in these cases, such responses were 

still concrete symbolic because they did not transcend the given task setting to 

incorporate theoretical aspects.  

The Formal Mode and Statistical Thinking 

       The formal mode of development was also described by Biggs and Collis (1991). 

Thinking in the formal mode incorporates theories and general principles not used within 

the concrete symbolic mode. Formal mode thinkers are able to use the underlying 

principles of a discipline in order to solve problems. The ability to reason about abstract 

underlying principles represents a significant jump from the concrete symbolic mode in 

the capacity for abstract thought. Pegg and Davey (1998) summarized the Biggs and 

Collis (1991) conception of the formal mode, saying, “The individual can consider more 

abstract concepts and work in terms of ‘principles’ and ‘theories.’ The individual is no 

longer restricted to a concrete referent” (p. 117).  

       Responses that could be considered characteristic of the formal mode of thinking 

were given by some students in the present study. Responses characteristic of formal 

mode thinking were evident in two main ways. The first way was in the application of 

formal theoretical statistical tools to problem situations. The second way was in the 



 

 152

application of formal statistical principles of data collection and data analysis to problem 

situations. Of course, there is not always a clear separation between statistical tools and 

statistical principles. In the following discussion, I have adopted the convention of calling 

theoretical objects such as best fit lines and measures of center statistical tools. Methods 

of experimental and non-experimental design and formal theories have been called 

statistical principles. Responses characteristic of formal mode thinking incorporated the 

application of either formal statistical tools or statistical principles at some point. 

Levels and Modes within Patterns of Response 

Describing Data 

       The three patterns of response observed within describing data can be characterized 

as a UMR cycle within the concrete symbolic mode that climaxes with a high level of 

competence in reading statistical graphs (figure 22). The least sophisticated pattern is 

characteristic of the unistructural level, since the one relevant aspect students incorporate 

in responses is the conveying of information about one of the variables that is represented 

by any given data point. The next pattern in the subprocess is multistructural in nature, 

since the relevant abilities to describe information about both one and two variable points 

both come into play. At the most sophisticated pattern of response within the subprocess, 

the ability to describe information contained by points representing both one and two 

variables is coordinated with a correct description of the display conventions of graphs. 

Since the various relevant abilities are coordinated in this last response pattern, it is 

relational in nature. None of the responses given to the describing data tasks were 

considered examples of formal mode thinking since none of the students went outside the 
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contexts of the given problems to discuss statistical principles of graph reading in 

general.  

 
 
Level and Mode Describing Data: Describing Statistical Graphs 
Relational/Concrete 
Symbolic (R-CS) 

Relates information about the appropriate number of variables 
when discussing meanings of points on both one and two 
variable statistical graphs. Correctly relates information about 
display conventions of a variety of graphs. 

Multistructural/Concrete 
Symbolic (M-CS) 

Relates information about the appropriate number of variables 
when discussing meanings of points on both one and two 
variable statistical graphs. 

Unistructural/Concrete 
Symbolic (U-CS) 

Relates information about only one variable when discussing 
meanings of points on both one and two variable statistical 
graphs. 

 
Figure 22. Relationship between the theoretical model and patterns of response for  
 
describing data 
 
 

Organizing and Reducing Data 

       The patterns of response evident within the process of organizing and reducing data 

were characteristic of thinking within both the concrete symbolic and formal modes of 

development. One pattern of response characteristic of a level in the formal mode (FO) 

was identified in regard to the subprocess of using measures of center. Each of the other 

patterns of thinking identified within organizing and reducing data were characteristic of 

levels within the concrete symbolic mode. The relationship between levels and modes 

and the patterns of thinking identified is summarized in figure 23 and discussed in detail 

below. 
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      Subprocess 1: Using measures of center. Increasing attention to important task factors 

marks the differences between the patterns identified for subprocess 1 of organizing and 

reducing data (using measures of center). The lowest three patterns within the subprocess 

can be conceptualized as one complete UMR cycle within the concrete symbolic mode. 

The least sophisticated pattern is unistructural in nature because only one strategy, a 

primitive visual one that does not necessarily fit the context, is used in order to describe 

the centers of data sets. The next pattern identified is multistructural in nature because 

both formal and visual approaches are incorporated. Still, only some of the approaches 

produce results reasonable for describing the centers of the data sets given. Relational 

level responses are exemplified by the most sophisticated pattern of thinking, which is 

characterized by a good fit between the data set and the approaches, either formal or 

visual, used to describe the centers of the sets of data. 

       The most sophisticated pattern of response within subprocess 1 of organizing and 

reducing data (using measures of center) seems to qualify as a level of thinking within the 

formal mode. Responses reflecting this pattern break completely from the use of visual 

measures of center in favor of exclusive formal methods that are well-suited to the data at 

hand. The switch to the exclusive use of formal methods is significant, since the centers 

of the data sets can then be objectively communicated to others who are familiar with the 

same statistical tools for finding measures of center. Just one level of thinking was 

apparent within the formal mode for the subprocess, since just one formal statistical tool 

for finding center was used in each of the problem situations that were presented. The use 

of only one formal statistical tool for finding center could indicate that the pattern of 
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thinking is unistructural in nature. Presumably, higher levels of thinking within the 

formal mode would include the discussion of several different formal measures of center 

that could be used in each given situation. 

       One might also argue that the most sophisticated pattern of thinking identified within 

the subprocess of using measures of center marks the beginning of another cycle within 

the concrete symbolic mode. Following this line of argument, one might say that the use 

of formal measures of center in different contexts does not qualify as a big enough leap in 

abstraction to place such thinking within the formal mode. It could be argued that the 

pattern is unistructural in nature, since just one formal measure of center is incorporated 

for each data set. Hence, others may characterize the most sophisticated pattern of 

thinking within the subprocess of using measures of center simply as the unistructural 

level of a new concrete symbolic UMR cycle.  

       Subprocess 2: Using measures of spread. The three patterns of response for 

subprocess 2 of organizing and reducing data (using measures of spread) seem to 

comprise a UMR cycle within the concrete symbolic mode that climaxes with a good fit 

between the data set and the approaches used to describe its spread. The first pattern of 

thinking appears to be unistructural, since students use just one primitive strategy to 

describe spread. Only verbal descriptions are used, and quantifications are notably absent. 

In the next pattern of response, verbal descriptions and quantifications are incorporated. 

However, not all of them are well-suited to the data, since some of them do not take 

clusters within the data set into account. Responses within the pattern therefore could be 

characterized as multistructural. The most sophisticated pattern of response within the 
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subprocess is relational, since the quantifications and descriptions for spread are well 

suited to the data set, and clusters and skewness are taken into account. Taking clusters 

and skewness into account is seen as indicative of more sophisticated and integrated 

thinking since such issues must be taken into account when one begins to work 

exclusively with formal measures of spread. Standard deviation, for example, does not 

work as well as interquartile range to describe spread for skewed data sets. 

       Subprocess 3: Data transformation effect on center and spread. Subprocess 3 within 

organizing and reducing data (data transformation impact on center and spread) contains 

three patterns of varying degrees of sophistication. The least sophisticated pattern was 

that at which students recognized the impact of data transformation upon just one of the 

relevant measures: either the center or the spread. The mastery of just one of the relevant 

aspects is indicative of unistructural thinking. At the next pattern in the subprocess, 

students recognize the direction of the impact upon both a measure of center and a 

measure of spread. However, while the impact is described qualitatively, it is not 

quantified. Since one more relevant aspect is incorporated, but the important aspect of 

quantification of impact is not, the second pattern of response could be considered 

multistructural. Responses reflecting the most sophisticated pattern within the subprocess 

did bring the important aspect of quantification of impact into play, so they could be 

considered relational in nature. Hence, the three levels within the subprocess seem to 

comprise one full UMR cycle in the concrete symbolic mode.  

       Subprocess 4: Organizing raw sets of data. The three patterns of thinking identified 

for subprocess 4 of organizing and reducing data (organizing raw sets of data) also seem 
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to comprise one complete UMR cycle in the concrete symbolic mode. The least 

sophisticated pattern of response was that at which students only incorporated linear 

orderings in their organization of data sets. The incorporation of one relevant 

organization strategy makes this pattern resemble a unistructural level of thought. The 

next pattern of response was that at which the idea of grouping was incorporated along 

with linear orderings. However, only one of two grouping strategies suggested by the 

context of the data set was used. Since the incorporation of one more relevant aspect took 

place, but an important strategy was left out, the responses reflecting this pattern are 

characteristic of multistructural thinking. At the most sophisticated pattern of response 

within the subprocess, students used linear orderings along with both types of relevant 

grouping strategies suggested by the context of the data set. Since the integration of all of 

the relevant aspects occurred in this pattern, it is relational in nature. 

Representing Data 

       While the levels of thinking associated with describing data reflect increasing 

competence in extracting information from graphs, the levels associated with 

representing data reflect increasing sophistication in constructing graphs to display 

information. The four levels of response associated with the subprocess do not seem to 

comprise one UMR cycle, as was the case with describing data. Rather, the lowest level 

seems to comprise the end of one UMR cycle, and the last three levels seem to comprise 

a full UMR cycle (figure 24). None of the levels seem to go beyond the concrete 

symbolic mode, since, as with describing data, students did not go outside of the context 

given for the tasks to discuss principles of statistical graph construction in general.  
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Level and Mode Representing Data 
Relational – Concrete 
symbolic, cycle 2 

Conceptualizes multiple valid representations in both 
univariate and bivariate situations. 

Multistructural – Concrete 
symbolic, cycle 2 

Conceptualizes graphs in both univariate and bivariate 
situations, incorporating multiple representations in some 
bivariate situations. 

Unistructural – Concrete 
symbolic, cycle 2 

Conceptualizes multiple graphs for bivariate situations 
only or conceptualizes one valid graph for each univariate 
and bivariate situation. 

Relational – Concrete 
symbolic, cycle 1 

Conceptualizes one graph for bivariate situations.  

 
Figure 24. Relationship between the theoretical model and patterns of response for  
 
representing data 
 

 
       The least sophisticated pattern of response for representing data was that at which 

students were able to produce one valid graphical representation for each of the bivariate 

data sets given. These responses seem to be relational in nature, since presumably levels 

of response in the cycle leading up to it would involve students being unable to produce 

graphs for some of the given bivariate situations. The next evident pattern of response is 

more structurally complex because of the incorporation of one more relevant aspect than 

what was included in responses at the previous level. Students begin to conceptualize 

multiple graphs for bivariate situations, or else conceptualize a valid graph in both 

univariate and bivariate situations. Since this pattern encapsulates the previous one and 

adds just one more of these relevant aspects, it seems characteristic of unistructural 

thinking. The third pattern within the subprocess incorporates yet another relevant aspect. 

Multiple representations for bivariate graphs are incorporated along with the 

conceptualization of graphs for both univariate and bivariate data sets. Since an 
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additional relevant aspect is included in this pattern of response, it can be considered 

multistructural. Finally, at the most sophisticated pattern of response evident, students 

incorporate multiple representations across both univariate and bivariate situations. Since 

responses reflecting this pattern integrate all of the relevant aspects introduced in the 

previous two, the responses are characteristic of the relational level. 

       Alternatively, one could argue that the two least sophisticated patterns of response 

could be merged into one. This line of thinking would assert that a student who can 

construct multiple graphs for a bivariate situation is not exhibiting more structurally 

complex thinking than one who can construct just one graph for the same situation. 

Following this line of thinking to its logical conclusion would result in the collapsing of 

the two lowest levels within the subprocess. This would mean that there would be just 

one UMR cycle in the concrete symbolic mode evident in the responses. In making the 

choice to consider the construction of multiple representations indicative of a higher level 

of thinking, however, I have kept the two least sophisticated patterns of thinking distinct.  

Analyzing Data 

       Some of the patterns of response for the analyzing data tasks appear to be concrete 

symbolic in nature, while others are characteristic of the formal mode. The level and 

mode that matches each pattern of response for analyzing data is displayed in figure 25. 

In figure 25, the subprocesses relating to identifying atypical points (subprocesses 3 and 

5) have been merged together. The subprocesses relating to interpolation and 

extrapolation (subprocesses 6 and 7) have also been merged. The rationale for combining 

these subprocesses is explained below along with a detailed description of the 
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connections between all of the patterns of response and the Biggs and Collis (1982, 1991) 

cognitive model for levels of thinking. 
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Level and 
Mode 

Subprocess 1: Comparing 
Univariate Data Sets 

Subprocess 2: 
Analyzing Sample 
Means 

Subprocesses 3 and 
5: Identifying 
Atypical Points 

R-FO Not observed. Not observed. Not observed. 
M-FO Not observed. Not observed. Not observed. 
U-FO Not observed. Not observed. Formal tool used to 

help identify 
atypical points. 

R-CS Compares sets of data by 
using multiple relevant 
attributes of the aggregates. 

Recognizes that the 
larger the random 
sample, the more 
likely its mean will 
be close to the 
population mean; 
and that smaller 
samples are more 
likely to produce 
extreme results. 

Distance from main 
cluster of points or 
distance from the 
center of the data set 
is discussed in the 
identification of 
atypical points. 

M-CS Compares sets of data by 
using one relevant attribute of 
the aggregate sets such as 
shape, center, or spread. The 
comparisons made are often 
supplemented by point-by-
point comparisons or 
irrelevant features of the data 
sets. 

Recognizes that the 
larger the random 
sample, the more 
likely its mean will 
be close to the 
population mean. 

Distances between 
individual data 
points are discussed 
in the identification 
of atypical points. 

U-CS Compares sets of data by 
using a point-by-point 
strategy. 

Recognizes that 
different size 
samples can be 
drawn from a 
population, but does 
not recognize the 
impact of changing 
sample size upon 
the sample mean.  

Contextual criteria 
alone are used to 
identify atypical 
points. No 
quantitative 
comparisons are 
made between 
points in the data 
set. 

Figure 25. Relationship between the theoretical model and patterns of response for  
 
analyzing data 
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Level and 
Mode 

Subprocess 4: Making 
Multiplicative 
Comparisons 

Subprocesses 6 and 7: 
Making predictions 
from Bivariate 
Measurement Data 

Subprocess 8: Analyzing 
Bivariate Relationships 

R-FO Not observed. Formally determined 
best fit line is used in 
order to make 
predictions. 

Not observed. 

M-FO Not observed. Visual/algebraic best 
fit line is used in order 
to make predictions. 

Not observed.  

U-FO Not observed. Visual line of best fit 
is used in order to 
make predictions. 

Goes beyond discussing 
the direction of the 
quantitative relationship 
between the two variables 
displayed. Identifies 
intervening variable 
beyond the two variables 
shown in the data set. 

R-CS Makes only 
multiplicative 
comparisons when 
only multiplicative 
comparisons are 
warranted. 

Trend/direction of the 
data is used in order to 
make predictions. 

Describes direction of the 
relationship between the 
two variables involved 
and uses that relationship 
and quantitative 
anomalies to argue for or 
against a causal 
relationship between the 
two variables. 

M-CS Makes additive and 
multiplicative 
comparisons when 
only multiplicative 
comparisons are 
warranted. 

Data in the immediate 
vicinity are used in 
order to make 
predictions. 

Describes direction of the 
relationship between the 
two variables involved 
and uses that relationship 
to help argue for a causal 
relationship between the 
two variables. 

U-CS Makes additive 
comparisons when 
multiplicative ones are 
warranted. 

Context/personal 
theories are used in 
order to make 
predictions. 

Describes direction of the 
relationship between the 
two variables involved. 
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       Subprocess 1: Comparing univariate data sets. The patterns of response for 

subprocess 1 of analyzing data (comparing univariate data sets) can be characterized as 

one UMR cycle within the concrete symbolic mode. The cycle progressively builds to the 

point that it becomes evident that students perceive each of the data sets being compared 

as aggregates. The least sophisticated pattern of response can be considered unistructural 

because only one primitive strategy is used for comparing the data sets. Point-by-point 

strategies are the only ones incorporated. In the second pattern, responses incorporate the 

use of one of the characteristics of data sets such as shape, center, or spread. Hence, these 

responses show a progression toward the view of the data sets as aggregates. However, 

the second pattern of response can at best be considered multistructural, since the 

responses frequently incorporate the use of point-by-point comparisons or irrelevant 

features of data sets. The third pattern of response for the subprocess is characteristic of 

the relational level, since only multiple relevant characteristics of the aggregate data sets 

are taken into account in drawing comparisons. 

       Subprocess 2: Analyzing sample means. The three patterns of response associated 

with subprocess 2 of analyzing data (analyzing sample means) can be characterized as a 

complete UMR cycle within the concrete symbolic mode that is marked by an increasing 

awareness and integration of contextual factors. In the least sophisticated pattern of 

response evident, students seem to be aware only of what it means to draw a sample from 

a population. Since the one relevant idea of sampling is incorporated in responses, the 

first pattern is unistructural in nature. Another relevant element is incorporated in 

responses reflecting the next pattern. Students grasp the fact that larger samples are more 
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likely to produce sample means close to the population mean. However, they do not 

demonstrate an understanding of the fact that means of smaller samples are more likely to 

produce extreme results than those of larger samples. The more complex, yet incomplete, 

nature of responses reflecting this pattern suggests that the pattern is indicative of the 

multistructural level. An integrated understanding of both facts is demonstrated in 

responses in the highest pattern of response, so it can be considered indicative of the 

relational level. Since none of the students interviewed invoked statistical theory to 

explain the variability of sample means, none of the patterns of response exhibited were 

characteristic of the formal mode of development. 

       Subprocesses 3 and 5: Identifying atypical points. Subprocesses 3 and 5 under 

analyzing data (identifying atypical points) have patterns of response that mirror each 

other. The first three patterns of response within each subprocess make up a UMR cycle 

within the concrete symbolic mode that climaxes with the acquisition of the view of a 

data set as an aggregate. The least sophisticated pattern within each subprocess was that 

at which students used qualitative criteria alone to identify atypical points, and did not 

incorporate any quantitative comparisons among data points. The incorporation of the 

one relevant strategy of incorporating contextual factors makes the response unistructural 

in nature. In the next pattern within each subprocess, quantitative criteria begin to be 

incorporated, but the quantitative criteria are primitive in that they generally involve the 

consideration of jumps between individual data values. Responses reflecting this pattern 

are multistructural since they are more structurally complex, yet also lack the connected 

nature relational responses. In the third pattern within each subprocess, a relational level 
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of response, the distances from central clusters within the aggregate data set are used in 

order to identify atypical points. While formal methods are not used at the relational level 

to identify atypical points, the strategy of identifying such points by considering their 

distances from the center of the data set is precisely the strategy encapsulated in formal 

procedures for finding outliers. 

        The most sophisticated patterns of response for subprocesses 3 and 5 (identifying 

atypical points) appear to fall within the formal mode. In responses reflecting each of the 

patterns, a formal statistical tool was used in order to search for atypical points within a 

data set. The student giving the most sophisticated response within subprocess 3 (the 

tabular situation) examined a calculator-produced boxplot in order to see if there were 

any outliers present in the given set of data. The students giving the most sophisticated 

responses within subprocess 5 (the graphical situation) used the criterion of distance from 

a best fit line to identify atypical points. The use of these formal tools marks a significant 

leap in abstraction from students at the previous levels, who used the distance from 

subjectively perceived clusters in order to determine whether or not points were 

atypically high or low. Since just one formal statistical tool was incorporated in the 

responses reflecting the most sophisticated pattern of thinking for each subprocess, the 

pattern of response could be characterized as unistructural in nature within the formal 

mode. Higher levels of response within the mode might involve either a more detailed 

discussion of the formal statistical tool used or perhaps the incorporation of several 

different statistical tools for finding outliers.  
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       Of course, one could argue that the incorporation of a best fit line or a boxplot does 

not mark a transition to the formal mode. It seems to be clear that the examination or 

description of a best fit line or a boxplot given along with a problem would not qualify as 

formal mode thinking. However, in each situation in which these formal statistical tools 

were used by students, they were suggested by the students themselves. They did not 

appear within the context of the problem. According to Watson, Collis, Callingham, and 

Moritz (1995), a defining characteristic of the formal mode is “deductive reasoning with 

abstract concepts and rules” (p. 249). Best fit lines and boxplots seem to qualify as 

abstract concepts, and the students introduced these abstract concepts as reasoning tools. 

Hence, in this subprocess and in some others that follow, the introduction of a best fit line 

or a boxplot to a problem situation to aid reasoning was considered to mark a transition to 

the formal mode.  

       Subprocess 4: Making multiplicative comparisons. The three patterns of response 

identified for subprocess 4 in analyzing data (making multiplicative comparisons) can be 

characterized as one complete UMR cycle within the concrete symbolic mode. The least 

sophisticated pattern of response could be considered unistructural, since additive 

comparison is the one relevant (although weak) strategy that is incorporated. The second 

pattern is multistructural in nature. Responses reflecting the pattern incorporate the use of 

both additive and multiplicative strategies, but no choice is made between the two 

strategies. It is not acknowledged that multiplicative comparisons are more powerful for 

the given data set because the number of fish caught by the second fisherman is slightly 

greater than the number of fish caught by the first. The third pattern within the subprocess 
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can be considered relational because the responses express a clear preference for 

multiplicative reasoning in the given situation. Perceiving the data sets as aggregates is 

essential in choosing to use multiplicative reasoning to compare the numbers of fish 

caught by the two fishermen. 

       Subprocesses 6 and 7: Interpolation and extrapolation. The three least sophisticated 

patterns of response for subprocess 7 can be characterized as one UMR cycle in the 

concrete symbolic mode that climaxes with a view of the data set as an aggregate. The 

least sophisticated pattern within the subprocess is unistructural in nature, since the use of 

non-quantitative contextual criteria is the only relevant aspect of the task that comes into 

play in the response. The second pattern can be described as multistructural, since 

quantitative criteria are incorporated, but still only parts of the data set are attended to. 

The third pattern within the subprocess can be considered relational, since the trend of the 

aggregate data set is taken into account in making an extrapolation. In this pattern, 

indicative of the relational level, the relevant quantitative aspects are integrated in order 

to produce the response.  

       The two least sophisticated patterns of response within subprocess 6 (interpolation) 

parallel the multistructural and relational levels within subprocess 7 (extrapolation). The 

least sophisticated pattern of response within subprocess 6 parallels the multistructural 

level in subprocess 7, since only part of the data set is taken into consideration in making 

an interpolation. The second pattern of response within subprocess 6 parallels the 

relational level within subprocess 7, since the trend of the aggregate data set is taken into 

account in making a prediction. The two least sophisticated patterns associated with 
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interpolating from bivariate data, therefore, can be characterized as comprising the last 

two levels of a UMR cycle within the concrete symbolic mode. 

       In subprocess 7 of analyzing data (extrapolation), formal mode responses were 

evident because of the incorporation of a theoretical best fit line. A theoretical best fit line 

formally encapsulates using the trend of bivariate measurement data in order to make 

predictions. The last three patterns for subprocess 7 seem to comprise a UMR cycle 

within the formal mode in which students’ use of best fit lines becomes more and more 

sophisticated. In the first pattern of response, the idea of a best fit line is incorporated to 

aid extrapolation, but none of the algebraic or other theoretical characteristics of such a 

line are incorporated. Hence, the response is characteristic of unistructural thinking. (The 

most sophisticated pattern of response for subprocess 6 also falls here, since it has the 

same characteristics). In the next pattern of response an algebraic equation was written 

for a visually placed best fit line. The fact that the best fit line was visually placed makes 

predictions more subjective than they need to be. Hence, this pattern can be considered 

multistructural in nature. A more relational response is achieved in the most sophisticated 

pattern, where a procedure is executed that results in a best fit line that can be objectively 

replicated by anyone following the same procedure.  

       Subprocess 8: Analyzing bivariate relationships. The first three patterns of response 

in subprocess 8 (analyzing bivariate relationships) seem to comprise a UMR cycle within 

the concrete symbolic mode marked by increasing attention to relevant quantitative 

factors. The first pattern of response within the subprocess is that at which a simple 

directional description of the relationship between two variables is given. Since the 
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simple directional description comprises the entire substance of the responses reflecting 

this pattern, they are unistructural in nature. Multistructural responses, displayed in the 

second pattern identified, take some of the relevant features of the data set into account 

when asked to determine whether or not one variable causes another. They do not, 

however, take all of the relevant quantitative features of the data set into account. This 

does not happen until the third pattern of response, which can be characterized as 

relational because of the attention to all relevant quantitative features that are given in the 

data set in determining causation. 

       The most sophisticated pattern of response identified for subprocess 8 (analyzing 

bivariate relationships) appears to fall within the formal mode of development. The 

student whose response reflected this pattern applied the statistical principle that 

intervening, unseen variables can impact the bivariate relationship that is displayed. Since 

just one possible intervening variable was identified, the response could be characterized 

as unistructural. Presumably, higher levels of response would involve the identification 

and synthesis of a number of possible intervening variables.  

Collecting Data 

       Responses characteristic of both formal and concrete symbolic mode thinking were 

obtained from the items dealing with data collection. Examples of formal mode responses 

were obtained for each of the subprocesses within collecting data. The alignment between 

the patterns of thinking observed in each subprocess and the theoretical model for this 

study are summarized in figure 26.  
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       Subprocess 1: Designing a non-experimental study. The first three patterns of 

response within subprocess 1 of collecting data (designing a non-experimental study) can 

be characterized as one complete UMR cycle in the concrete symbolic mode. At the least 

sophisticated pattern of response, students predominantly use just one mode of inquiry in 

order to answer the questions. Since pre-existing studies alone form the essence of 

response reflecting this pattern, it has a unistructural nature. In the second pattern of 

response, more modes of inquiry are mentioned. However, the need for the important 

component of sample representativeness is not recognized. Since the second pattern is 

more complex, yet does not integrate an important component, it is multistructural in 

nature. Finally, in the third pattern within the subprocess, the need for representativeness 

is articulated. Since this important aspect is finally integrated, the third level can be 

considered relational in nature.  

       The last two patterns identified in subprocess 1 for collecting data appear to fall 

within the formal mode. Students whose responses reflected the last two patterns applied 

statistical principles that would help in obtaining a representative sample from the 

population. In the first of the two patterns, students showed the ability to apply just one 

statistical principle that would help in this way. At some point, they made use of either 

random sampling or stratified sampling. Since the application of just one of these formal 

strategies was evident, the responses could be considered unistructural within the formal 

mode. A more sophisticated pattern of response was also evident, at which students made 

use of both stratified and random sampling in the attempt to gain representative samples 

from populations. Since another relevant strategy was incorporated in responses 
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reflecting this pattern, they could be considered multistructural. Although no higher 

levels of response were evident, relational level responses might involve more detailed 

discussions of both stratified and random sampling strategies, perhaps including 

discussions of the mechanical aspects necessary to carry out each type of sampling 

strategy.  

       Subprocess 2: Designing an experimental study. The first three patterns of response 

within subprocess 2 of collecting data (designing an experimental study) are similar to 

the first three described for subprocess 1 (designing a non-experimental study). Just as in 

subprocess 1, the least sophisticated pattern of thinking within subprocess 2 is 

characterized by the incorporation of just one mode of inquiry, the use of pre-existing 

studies. Therefore, the pattern is unistructural in nature. The second pattern of response is 

that in which a mode of inquiry other than a pre-existing study is introduced. However, 

experimental methods are not mentioned. Since the second pattern is more complex than 

the first, yet lacks the important aspect of the recognition of the possibility of 

experimental design, the pattern can be characterized as multistructural. In the third 

pattern, the important idea of the possibility of experimental design is finally 

incorporated. The incorporation of this key idea makes the response relational in nature. 

       Alternatively, one might argue that the two least sophisticated patterns of response 

for designing an experimental study are both unistructural in nature. One following this 

line of argument might assert that the use of non-experimental data gathering methods is 

no more structurally complex than relying upon pre-existing studies. The logical 

conclusion of this line of argument would be that both of the two least sophisticated 
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patterns exemplify unistructural thinking within the concrete symbolic mode. Since I 

consider the use of data gathering methods a more complex pattern of thinking than 

simply looking up results from studies that have already been conducted, I opted to keep 

a separation between the complexity of the two patterns of thinking. 

       Subprocess 2 of collecting data (designing an experimental study) also elicited two 

patterns of thinking that seem to have their place within the formal mode of development. 

At the fourth pattern of sophistication identified, students discussed designing an 

experiment and putting a formal control on it in order to ensure the validity of the results 

obtained. Since just one formal control was introduced in responses reflecting this 

pattern, it could be considered unistructural in nature. In the most sophisticated pattern 

identified, more than one formal control was imposed upon the experimental design. 

Hence, the pattern of response could be considered multistructural. Relational level 

responses, although not evident among those given, might include more detailed 

discussions about the formal controls used and the benefits and drawbacks of each (e.g., 

ethical issues may be involved in testing a drug on humans or in giving one group a 

placebo and the other the actual drug).  

       Subprocess 3: Critiquing a study. The least sophisticated pattern of response for the 

subprocess of critiquing a study appears to be unistructural in nature. Students whose 

responses reflected this pattern simply critiqued the study based upon how important they 

considered its subject matter to be. This is a relevant dimension along which to critique 

any given study, but there are certainly many other dimensions along which one can 

critique studies. Students whose responses reflected the next two patterns of thinking 
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incorporated some of those dimensions in their critiques. In seeking a fit between the 

theoretical model and the patterns of thinking identified for critiquing a study, I merged 

the two most complex patterns of thinking observed into one, since both appear to be 

multistructural in nature. Students in each of the two most complex patterns of thinking 

critiqued the study according to some, but not all, possible relevant dimensions. None of 

the responses in the two most complex patterns incorporated critiques of all of the 

dimensions along which the study could be evaluated. Hence, none of the patterns of 

response seemed to reflect the coherence characteristic of relational level thinking.  

Summary 

       Several patterns of statistical thinking characteristic of the concrete symbolic mode 

have been described in this chapter. Students develop the ability to read both one and two 

variable statistical graphs within this mode. They develop the ability to choose ways to 

describe center and spread that are suitable for a given data set, and develop the ability to 

quantify the effect data transformation has upon the center and spread of a data set. 

Students develop the ability to organize raw sets of data along several relevant 

dimensions. In regard to representing data, they develop the ability to construct 

representations for different types of data, and at a higher level of thought construct 

multiple representations for different types of data. They develop sound conceptions 

about sampling, while beginning to view data sets as aggregates rather than discrete sets 

of points. Data collection concepts begin to develop within the mode as well, as students 

begin to recognize the need to conduct experiments, begin to think about the importance 

of representative samples, and begin to critique studies along concrete dimensions. 
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       The transition to the formal mode of thinking is marked by significant leaps in 

abstract and hypothetical thought. Some glimpses of formal mode statistical thinking 

appear to have been provided by this study. Within the process of organizing and 

reducing data, some students were able to apply abstract and valid formal methods for 

finding centers of skewed sets of data across different contexts. Within the process of 

analyzing data, some students used abstract formal procedures to identify atypical points 

within different data sets. Some used a hypothetical line of best fit in order to aid in the 

process of interpolating and extrapolating from bivariate data. Some also were able to 

hypothesize about unstated intervening variables that would influence the relationship 

between two variables displayed in a scatterplot. Within the process of collecting data, 

some were able to make strides towards incorporating relevant formal procedures in the 

design of surveys and experiments. While glimpses of formal mode statistical thinking 

were obtained in this study, much work remains for future researchers to continue to 

identify and characterize statistical thinking within this mode of development. Some 

directions for further research in this area, as well as some of the other implications of 

this study, are discussed in the next chapter.      
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CHAPTER V 

REFLECTIONS ON THE STUDY 

        The goal of the present study was to answer two research questions:  (i) What are the 

defining characteristics of different patterns of high school students’ statistical thinking 

within the processes of describing, organizing and reducing, representing, analyzing, and 

collecting data? (ii) What levels of statistical thinking can be associated with each of the 

patterns? In the last chapter, I provided detailed answers to both of these research 

questions. In this chapter, I will summarize the study, provide a critique of it, and discuss 

its significance for researchers and teachers.  

Summary of the Study 

       The current study gives a broad picture of high school students’ statistical thinking. 

Taking into account current recommendations for the content of high school statistics 

(NCTM, 2000; College Board, 2001b; Schaeffer, Watkins, & Landwehr, 1998), an 

interview protocol was designed to provide a portrait of students’ thinking across the 

processes of describing, organizing and reducing, representing, analyzing, and collecting 

data. Through the analysis of responses given by 15 students during clinical interview 

sessions, several patterns of response were identified and described within each of the 

five statistical thinking processes of interest. The patterns of response identified were 

then matched with levels of sophistication within the Biggs and Collis (1982, 1991) 

cognitive model. Taken together, the levels of sophistication identified form a framework 
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that describes statistical thinking across a variety of processes. In this section, I will 

summarize the patterns of thinking that were evident within each process, their 

connections to the theoretical model, and how the findings within each process relate to 

other statistical thinking research. 

Describing Data 

       Three different patterns of response were identified within responses to tasks 

concerning the process of describing data. The least sophisticated pattern of response was 

that in which students related information about only one of the relevant variables in 

statistical graphs. In the next discernible pattern of response, students related information 

about the appropriate number of variables in displays. Responses fitting the most 

sophisticated pattern related information about the appropriate number of variables and 

included accurate descriptions of display conventions of graphs. As argued in the 

previous chapter, the three patterns of response seem to comprise one complete 

unistructural-multistructural-relational (UMR) cycle within the concrete symbolic mode.  

       The findings about students’ thinking within the process of describing data confirm 

and supplement those of previous research. The fact that several levels of thinking were 

discerned within the process helps support the contention of Friel, Curcio, and Bright 

(2001) that making sense of graphs is a complex endeavor rather than a simple one. The 

study also shows that high school students may experience some of the same difficulties 

reading graphs as middle school students. According to Mooney (2002), lower levels of 

thinking for middle school students within describing data are partially marked by an 

inability to decipher some of the display features of graphs. The findings of the present 
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study suggest that the same is true for lower levels of high school students’ thinking. 

Additionally, lower levels of thinking for high school students in the present study were 

marked by lack of attention to one of the variables displayed in some graphs. The lack of 

attention to variables being displayed in graphs and the inability to interpret display 

features and conventions may help explain why many students experience difficulty in 

reading various types of statistical graphs (Zawojewski & Shaughnessy, 2000).  

Organizing and Reducing Data 

       The present study documented students’ thinking in regard to using measures of 

center and spread. The least sophisticated pattern of thinking within each of the 

subprocesses of using measures of center and using measures of spread was that in which 

highly subjective and hence sometimes inaccurate descriptions of center and spread were 

given. In the next pattern of response for each subprocess, students included the use of 

objective formal tools along with subjective descriptions in describing center and spread. 

However, some of their descriptions of center and spread were not well suited to the data. 

In the third pattern of response for each, objective formal tools and subjective 

descriptions were both still incorporated in describing center and spread, but those tools 

and descriptions were always well suited to the data. There was then a fourth pattern of 

thinking only within the subprocess of using measures of center, in which students used 

only formal methods to describe center, and those formal tools were always well-suited to 

the data. In the previous chapter, it was argued that the first three patterns of thinking in 

each of the subprocesses of using measures of center and using measures of spread each 

comprise a UMR cycle within the concrete symbolic mode. It was also argued that the 
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fourth pattern of response in regard to using measures of center was characteristic of a 

unistructural level of thinking within the formal mode.  

       The findings of the present study describe students’ thinking in regard to applying 

measures of center and spread in different contexts rather than their understandings of the 

characteristics of specific tools for finding center and spread. Some early research studies 

in this area had the latter focus, specifically describing students understanding of the 

arithmetic mean (Pollatsek, Lima, & Well, 1981; Strauss & Bichler, 1988; Cai, 2000) and 

variance (Mevarech, 1983). The present study gives evidence that the levels of thinking 

evident among high school students as they apply measures of center and spread to 

different data sets are similar to those evident among middle school students. Mooney’s 

(2002) study suggests that lower levels of thinking for middle school students are 

characterized by a poor fit between the methods used to describe center or spread, while 

higher levels are characterized by a good fit. The same was true for the students 

interviewed for the present study. Groth’s (2002b) study suggests that there are also 

higher levels of thinking in regard to using measures of center among high school 

students than those documented during the present study. Groth (2002b) found that some 

high school students have the ability to draw upon several formal tools in order to 

describe centers of data sets.  

      The present study also documented students’ thinking about how data transformation 

effects measures of center and spread. The least sophisticated pattern of thought 

identified was that in which students demonstrated an understanding of the impact of a 

transformation on only one of the two measures. In a more sophisticated pattern of 
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response, students demonstrated an understanding of the impact of the transformation on 

both measures, but did not quantify it. Students giving responses reflecting the most 

sophisticated pattern did quantify the impact. In the previous chapter I argued that the 

three patterns of thinking identified could be characterized as a UMR cycle in the 

concrete symbolic mode. Even though recognizing the effect of data transformation is an 

important part of high school statistics (NCTM, 2000), there is not a rich body of 

research describing students’ thinking about it. Hence, the levels of thinking described by 

the present study help to fill a void in the research literature. 

       The final subprocess investigated by the present study concerned students’ thinking 

while organizing raw sets of data. The least sophisticated pattern of response to interview 

tasks was that at which the only strategy students used for organizing data was to group 

values of a measurement variable from least to greatest. The next pattern of response was 

marked by the strategy of using either clusters within values of a measurement variable to 

organize data or else the use of pre-existing categorical variables to group the data. The 

most sophisticated responses were those which incorporated both strategies for grouping 

the data. I argued that the three patterns of response identified can be characterized as a 

UMR cycle in the concrete symbolic mode.  

       The findings about students’ levels of thinking in regard to organizing data 

supplement previous findings. First of all, the levels of thinking for organizing data 

identified by the present study somewhat resemble those described by Mooney, Langrall, 

Hofbauer, & Johnson (2001) for middle school students. In their study and in the present 

one, progressively higher levels of sophistication are marked by students’ clustering of 
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values within a given variable. The present study also addresses a direction for further 

research in the area identified by Mooney, Langrall, Hofbauer, and Johnson (2001). In 

the discussion of their study, they pointed out that they assessed students’ thinking in 

regard to categorical data only, and stated that tasks involving numerical data might 

reveal additional patterns of thinking. The patterns of thinking identified during the 

present study detail students’ organization of a data set containing both numerical and 

categorical variables. 

Representing Data 

       The present study also gives insight about high school students’ abilities to represent 

data. Students giving the least sophisticated patterns of response for the process were able 

to conceptualize just one graphical representation for each given bivariate situation, while 

those responding at higher levels were able to conceptualize multiple graphs for both 

univariate and bivariate situations. In the previous chapter, I argued that the patterns of 

thinking evident for representing data could be characterized as either a complete UMR 

cycle in the concrete symbolic mode or else the end of one UMR cycle in the concrete 

symbolic mode and the beginning of another in the same mode.  

       The representing data portion of the framework details students’ abilities to 

conceptualize data displays for various situations (as in Mevarech & Kramarsky, 1997) 

rather than their abilities to construct different parts of a given display (as in Padilla, 

McKenzie, & Shaw, 1986; Berg & Phillips, 1994). This focus fit well within the overall 

spirit of the framework, since the other parts of the framework also describe students’ 

application of statistical tools to problem situations rather than their understandings of the 
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components of specific statistical tools. The study reflects one of Mevarech and 

Kramarsky’s (1997) findings in that many students expressed a preference for line graphs 

to express data whenever possible. However, in the present study, unlike in Mevarech 

and Kramarsky (1997), all students were prompted to produce multiple graphical 

representations for a given set of data. When prompted, some students were able to 

display the data correctly using other types of displays. Hence, the present study 

illustrates that even though students may initially express a preference for using a certain 

type of graph to represent data in a given situation, it does not necessarily mean that they 

are so tied to that representation that they are incapable of conceptualizing alternative 

valid representations for the given set of data.  

Analyzing Data 

       Of all the statistical thinking processes investigated, the most information was gained 

about the process of analyzing data. It was found that students exhibiting more 

sophisticated thinking pay attention to progressively more relevant features when asked 

to compare univariate data sets. Responses within the subprocess of comparing univariate 

data sets ranged from those indicative of students who conceptualized data sets as 

discrete points to those who viewed data sets as aggregates and made comparisons based 

upon multiple relevant characteristics of the aggregates. I argued in the previous chapter 

that the three patterns of thinking evident for the subprocess could be characterized as a 

complete UMR cycle within the concrete symbolic mode.  

       The levels of thinking that emerged in regard to comparing two data sets indicate that 

not all students at the high school level naturally see data sets as aggregates when asked 
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to make comparisons between them. The same seems to be true for students at the middle 

school level, since some students interviewed by Mooney, Langrall, Hofbauer, and 

Johnson (2001) did not take all of the given data into account when asked to make 

comparisons between two sets. The work of McClain and Cobb (2001) shows that 

properly designed instruction can help middle school students begin to see data sets as 

aggregates and make comparisons between data sets based upon multiple relevant 

attributes of the aggregates. Presumably, some of the high school students interviewed for 

the present study had not experienced instruction which would help them begin to 

develop this type of thinking. 

       Insight was also gained about students’ understandings about the foundations of 

formal inference. Three different levels of thinking were evident in the subprocess of 

analyzing sample means. At the highest level of thinking, students had an intuitive grasp 

of how sample size impacts the variability of sample means. Students not responding at 

the highest level demonstrated incomplete conceptions about the relationship between 

population means and sample means similar to those documented by Konold, Well, 

Lohmeier, and Pollatsek (1993). For example, students responding at the pattern of 

thinking I characterized as multistructural understood that the larger the sample that is 

drawn, the closer its mean is likely to be to the population mean, but did not fully realize 

that smaller samples were more likely to exhibit greater variability. These types of 

incomplete understandings impair a student’s ability to gain a complete conceptual 

understanding of the law of large numbers, which is foundational to statistical inference. 

No students actually invoked a formal statistical principle such as the law of large 
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numbers during the interview sessions, so the three patterns of response that were 

identified for the subprocess seem to comprise one UMR cycle within the concrete 

symbolic mode. 

       Students’ abilities to identify atypical points within a data set were also illuminated 

as a result of this study. Responses given by students in the present study ranged from 

incorporating relatively unsophisticated contextual and/or qualitative criteria for the 

identification of such points to using a formal tool to identify such points quantitatively. 

At the most sophisticated pattern of thinking observed within the subprocess of 

identifying atypical points in a tabular display, one student used a boxplot as a tool for 

identifying atypical points. At the most sophisticated pattern of thinking observed in 

regard to identifying atypical points in a scatterplot, students used the criterion of 

distance from a line of best fit in order to classify points as atypical. In the previous 

chapter, I argued that the first three patterns for each of the subprocesses concerned with 

identifying atypical points could each be considered a UMR cycle within the concrete 

symbolic mode, while the fourth pattern observed for each subprocess seemed to indicate 

formal mode thinking.  

       Although the identification of atypical points, or “outliers,” is considered an 

important part of high school statistics (NCTM, 2000; College Board, 2001a), up to this 

point there has not been a great deal of research about it. Friel (1998) has done some wok 

in this area, discussing middle school students’ abilities to identify outliers in boxplot 

displays. However, the present study can be viewed as the beginning of another direction 

for research about students’ thinking while identifying outliers. Unlike Friel’s (1998) 
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study, in this study I did not suggest that students use a specific tool in order to identify 

outliers. I presented sets of data and asked them to use whatever means they saw fit to 

identify atypical points within the sets. Some chose to use rather primitive methods, 

while others incorporated formal statistical tools to aid their thinking.  

       Students’ thinking while making multiplicative comparisons within data presented in 

the form of a two-way table was also examined. In the least complex pattern of 

sophistication, students made only additive comparisons when multiplicative ones would 

have been appropriate. In the next pattern, responses incorporated both additive and 

multiplicative comparisons without expressing a clear preference for one or the other. 

The most sophisticated pattern of response was that in which responses clearly expressed 

a preference for multiplicative comparisons. In the previous chapter I argued that the 

three patterns of thinking could be characterized as a complete UMR cycle in the 

concrete symbolic mode.  

       The findings regarding students’ use of multiplicative comparisons within the 

context of a two-way table point out several issues. First of all, just as students do not 

automatically see data sets as aggregates, the present study and others (Watson & Moritz, 

1999a; McClain & Cobb, 2001; Mooney, Langrall, Hofbauer, & Johnson, 2001) suggest 

that students also do not automatically make multiplicative comparisons in situations 

where they are appropriate. Students tend first to make additive comparisons, and then 

later on shift to making multiplicative ones. The findings of the present study also 

suggest that analyzing a two-way table is far from a trivial task. Batenero, Estepa, 

Godino, and Green (1996) illustrated this fact by describing students’ cognitive 
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difficulties coming to grips with issues of association between two variables in reading 

these types of tables. The present study illustrates another dimension of complexity in 

reading such tables, specifically, recognizing when it is necessary to make multiplicative 

rather than additive comparisons among parts of the data displayed in the tables. 

       A fair amount was learned about students’ analysis of bivariate data. Responses 

classified as characteristic of thinking within the formal mode incorporated best fit lines 

as tools to identify atypical points within bivariate data, while those in the concrete 

symbolic mode used more subjective means. The use of a best fit line also seems to 

separate formal mode thinkers from concrete symbolic thinkers within the subprocesses 

of interpolating and extrapolating data. Notably, different levels of response were given 

by students in response to interpolation and extrapolation tasks, even though the two 

tasks appeared to be quite similar on the surface. Extrapolation tasks seemed to elicit 

more formal mode thinking than interpolation tasks. Formal mode thinking was also 

evident when students were asked to analyze bivariate relationships, with one student 

identifying variables not in the data set which could influence the ones displayed.  

       Responses characteristic of formal mode thinking seemed to be most abundant in 

regard to bivariate data analysis. As noted in chapters 2 and 4, little statistical thinking 

research exists that purports to describe statistical thinking within the formal mode. In the 

present study, I claim to have encountered a number of examples of formal mode 

thinking in the area of bivariate data analysis. Hence, the findings of the present study in 

regard to bivariate data analysis seem to provide a springboard for future researchers 

concerned with investigating thinking within the formal mode of development. The 
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findings in regard to bivariate data analysis could be used to provoke the research 

community to work on further describing and investigating the characteristics of formal 

mode statistical thinking.  

Collecting Data 

       Information was also obtained about students’ data collection abilities. The 

subprocesses detailed within collecting data also confirmed previous findings that 

students at higher levels of thinking tend to recognize the importance of representative 

samples (Watson & Moritz, 2000a), and that students at higher levels of thinking also 

recognize bias within study design (Watson & Moritz, 2000b). Finally, it was found that 

within the process of collecting data, some students do not recognize situations in which 

experiments would be useful, while students at higher levels of thinking recognize when 

they would be useful, and can begin to describe experimental design in some detail. In 

the previous chapter, I argued that the ability to incorporate formal principles and 

methods in applicable situations in collecting data marked the transition from concrete 

symbolic to formal mode thinking.  

Critique of the Study 

       I noted at the close of chapter 1 that no statistical thinking framework can ever really 

be considered “complete.” There will always be room for further investigation and 

refinement of any given framework. While this study has helped provide a broad picture 

of high school students’ statistical thinking that organizes and supplements some past 

statistical thinking research, and hence can be used to advise teaching and research, it can 

also be critiqued along a number of dimensions. In this section, I will provide my own 
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critique of the study. Specifically, I discuss the need for further investigation and 

description of formal mode statistical thinking and critique the interview protocol. 

       In this study, no hints of thinking within the formal mode of development were 

evident in students’ responses to tasks within the processes of describing data and 

representing data. It could be that this can be attributed to a “ceiling effect” inherent in 

some of the tasks in the interview protocol. That is, it may be that the students 

interviewed felt that concrete symbolic responses were sufficient for the tasks posed, 

even though they would have given responses characteristic of formal mode thinking if 

given the appropriate tasks. Future studies need to explore the issue of formal mode 

thinking within the processes of describing and representing data in more detail. A 

resource base of tasks that tend to elicit formal mode thinking within these two processes 

would be of use to teachers and researchers alike.  

       Another type of task that needs to be formulated is one that tends to elicit thinking 

about formal statistical inference. Even though hints of formal mode thinking seemed to 

be evident in responses given to data analysis tasks posed during the study, none of the 

students at any time used techniques of formal inference to analyze data. This is puzzling 

in light of the fact that two tasks (task 3 and task 5) were set in contexts designed to elicit 

thinking about techniques of formal inference. At least some of the students involved in 

the study had been exposed to the concept of formal inference, since this is a prominent 

topic on the AP Statistics course syllabus. None of the tasks posed, however, seemed to 

connect with their background knowledge of formal inference. It is an open question 
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whether or not tasks posed in a different manner would have prompted the students to 

think about the use of techniques of formal inference.  

       It is also an open question in some cases how the levels of thinking observed in this 

study were tied to the tasks used to assess a subprocess. For example, some students’ 

inability to conceptualize a graph for the univariate situation (graphing ice cream 

consumption in task 4.8) in the interview protocol may come from the fact that the 

variable of interest was originally part of a bivariate data set (ice cream consumption vs. 

temperature). It is possible that students may have had more success with a variable not 

originally included in a bivariate set. The reason why all students were able to produce 

graphs for the bivariate situations may be because the variables for those tasks were not 

originally part of another set of data.  

       Similarly, students’ thinking while analyzing data may have been tied tightly to some 

of the task contexts. This is especially problematic for the process of analyzing data, 

since students’ thinking within some of the subprocesses was evaluated by only one 

interview question. For example, in regard to analyzing bivariate relationships, it is an 

open question whether or not any students would have discussed causality if not 

explicitly asked to do so in task 4.10 (students were asked if they thought higher 

temperatures caused ice cream consumption to increase). Also, in regard to analyzing 

sample means, it is possible that a task other than the one used (2.8, involving the 

analysis of two different size randomly drawn samples of test scores) would have been 

more effective in eliciting students’ intuitive notions about sampling distributions. Using 
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only one task to assess students’ thinking within a subprocess limits the information that 

can be gained about the subprocess.   

       Finally, it should be noted that some of the responses given by students who 

participated in the current study do not necessarily reflect their true levels of 

understanding. It is possible that tasks set in different contexts would have elicited 

different responses in some instances. Gathering individual students’ responses to several 

different tasks would allow one to more accurately approximate their true levels of 

understanding. The current study merely provides the basis of a framework for further 

investigations of students’ thinking.  

       The current study can be critiqued along several dimensions, some of which I have 

touched upon in this section. Some of the interview tasks may have had a “ceiling” which 

limited the highest level of response that could be given by students. While it appears as 

if thinking that could be considered characteristic of the formal mode of development 

was evident in the study, there is still a great amount of work left to be done in further 

describing and investigating this mode. More data need to be gathered in order to 

continue to describe the more sophisticated levels of students’ thinking. This data could 

come from both interviewing a larger sample of students and from adding interview 

questions to assess some of the subprocesses that were assessed by only one task in the 

current study.  

Implications 

       The current study has implications for professionals concerned with improving high 

school statistics education. The study has identified several starting points for further 
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research. It has also served to identify important issues for teachers. In this section, I will 

summarize some of the ways in which the study serves to advise the practice of both 

researchers and teachers. 

Implications for Researchers 

       I contend that the study serves to provide glimpses at levels of formal mode thinking 

within the context of the application of the Biggs and Collis (1982, 1991) model to the 

discipline of statistics. Some formal mode thinking was evident within each of the 

processes of organizing and reducing, analyzing, and collecting data. As discussed in 

chapter 2, formal mode thinking had previously been largely untouched by empirical 

research, since most studies using the Biggs and Collis model in the area of statistical 

thinking had focused upon the concrete symbolic and ikonic modes. These glimpses of 

formal mode thinking should prove useful as researchers continue to explore thinking 

within the mode. For researchers who do not completely agree with the manner in which 

I placed some of the patterns of response with the formal mode, the study can serve as a 

catalyst for further investigation of thinking within the mode.  

       Students were asked to deal with a number of different contexts for each of the 

processes investigated in this study. Cobb and McClain (2001) and Jones et al. (2001) are 

among those who have noted that context plays a great role in determining students’ 

levels of response to statistical thinking tasks. An interesting issue remaining for 

investigation, therefore, is how different contexts influence the responses that are given to 

tasks. The goal is not to somehow eliminate all context confusion issues from statistical 

thinking tasks, since interpreting a context is an essential statistical thinking skill. No 
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authentic statistics problems are context free. Instead, I see the goal in this area as 

obtaining a greater understanding of how different types of contexts elicit different types 

of response from the same individual. This type of investigation might help researchers 

tailor tasks to individuals in order to obtain a more complete picture of how the 

individual they are interviewing thinks within different statistical processes. 

       Another direction for further investigation in the area of high school statistical 

thinking would be to add to the framework formed as a result of this study by 

investigating statistical subprocesses left out of this framework. One subprocess that 

would warrant investigation under the broad process of analyzing data would be using 

simulations to answer statistical questions. Even though some of the tasks included in the 

interview protocol for this study attempted to elicit students’ thinking about the use of 

Monte Carlo simulations to answer statistical questions (5.3, 5.4, 5.5), no students used 

simulations to complete them. Therefore, there seem to be at least two directions for 

further research within subprocesses involving simulation usage. One direction would be 

to devise questions that more effectively elicit students’ thinking about simulations and 

use them to elicit levels of response that could be merged with the framework formulated 

by the present study. Recent research on high school students’ understanding of 

simulations (Zimmerman, 2002) could help inform such a line of inquiry. A second 

direction for inquiry would be to take tasks 5.3, 5.4, and 5.5 from this study and 

administer them to a student population more likely to use simulations to answer the 

questions. Such a population may be found in classrooms where teachers frequently 

encourage students to construct and carry out simulations. In any event, a description of 
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students’ levels of thinking in regard to constructing simulations would be a valuable 

addition to the overall framework, since simulations provide a conceptual bridge between 

the fields of probability and statistics.  

       The framework constructed as a result of this study may also be profitably used by 

researchers in order to inform teaching experiments. Jones et al. (2001) illustrated how a 

statistical thinking framework grounded in Biggs and Collis’ (1982, 1991) cognitive 

theory could be used for such a purpose. The group of researchers used the elementary 

school statistical thinking framework (Jones et al., 2000) to form the hypothetical 

learning trajectory at the beginning of the teaching experiment. The hypothetical learning 

trajectory was essentially a prediction about the levels of thinking through which students 

would progress as they developed their understanding of statistics. By the end of the 

teaching experiment, the researchers had succeeded in helping almost all of the students 

in the study progress beyond the lowest level of thinking in the framework. This result 

suggests that a teaching experiment advised by a research-based framework may also 

prove to be profitable at the high school level.  

       As another thought for further research directions, studies administering the 

interview protocol constructed for this study to a larger population could be carried out.  

This may result in additions to the framework and refinements of descriptors for levels of 

thinking. If the interview script were administered to a larger population, it may elicit 

levels of thinking not displayed by the students who participated in this study. If new 

levels of thinking were displayed in response to some of the tasks, they could be merged 

into the overall framework constructed as a result of this study. This could be a promising 
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direction for further research, since it might help complete some of the incomplete cycles 

of thinking observed during this study. The completion of some of the cycles might also 

result in the refinement of some of the descriptors formulated during this study, since 

some descriptors were formed without the benefit of being able to observe a complete 

cycle of thinking within a given mode.   

       Finally, it is imperative that the research community concerned with investigating 

high school students’ statistical thinking continue to work on describing the 

characteristics of formal mode statistical thinking. I have forwarded some preliminary 

thoughts on the characteristics of formal mode statistical thinking in the present study. I 

have also pointed out that the patterns of thinking I characterized as examples of formal 

mode statistical thinking may be characterized by others as beginning levels of new 

cycles still within the concrete symbolic mode. Still others may avoid putting labels 

associated with modes on such patterns of thinking (there is precedent for this approach, 

as Watson and Moritz (1999c) chose to call two levels of thinking outside of a cycle in 

the concrete symbolic mode simply “application of average in one complex task” and 

“application of average in two complex tasks”). In order to make the Biggs and Collis 

(1982, 1991) model more useful for investigating advanced levels of statistical thinking, 

the nature of statistical thinking within the formal mode needs to be further investigated 

and clarified.   

Implications for Teachers 

       The interview protocol used in this study could be used by practicing teachers in 

order to help assess students’ levels of statistical thinking. Teachers could administer all 
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or parts of the protocol to students and then compare the responses received to the 

framework constructed as a result of this study in order to assess students. Teachers with 

knowledge of where a student’s thinking fits in with other levels of thinking observed in 

this study would then have an idea of the levels of thinking through which the student 

may need to progress in order to attain the desired level. Knowledge of students’ levels of 

thinking can be used in order to design appropriate and effective instruction (Fennema & 

Franke, 1992).  

       It was also observed during this study that age and experience in school are not 

always accurate predictors of the levels of sophistication at which students will approach 

statistical thinking tasks. In some cases, students who had not taken a statistics course in 

high school responded to interview tasks at a higher level of sophistication than those 

students who had experienced an entire high school statistics course. Likewise, the 

younger students in the study were able to respond to tasks at higher levels of 

sophistication than their older counterparts in some instances. While experience may be 

necessary for progressing to increasingly more sophisticated levels of thinking, it does 

not automatically lead to more sophisticated levels of thinking. Teachers need to bear this 

in mind as they design instruction.  

       The study also alerts teachers that students who have experienced one semester, or 

even one year, of high school statistics do not automatically construct powerful and 

versatile meanings for statistical tools and statistical principles. This is evidenced in the 

failure of the former AP Statistics students interviewed to consider the use of tools and 

principles of formal inference, even when they had the opportunity to do so. These same 
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students also failed to incorporate formal tools such as best fit lines in some cases where 

they would have been applicable. They also did not invoke principles of experimental and 

survey design in some instances where they would have been helpful. Teachers need to 

be aware that students who successfully pass a high school statistics course do not 

necessarily apply formal statistical principles and statistical tools in cases where they 

would be useful.  

       Finally, teachers need to note that students who have had exposure to software that 

can be used for the purpose of statistical data analysis do not automatically use that 

software in situations where it would be appropriate. Several of the students I interviewed 

for the present study indicated that they were familiar with graphing calculators and 

computer software programs for statistical data analysis. However, just as in Biehler’s 

(2001) study, few of the students I interviewed made good use of the available computer 

software and graphing calculator to execute statistical data analysis. Teachers need to be 

aware that time spent instructing students on the use of technology for statistical data 

analysis does not automatically translate to the use of the technology outside of 

classroom tasks.   

Closing Remarks 

       This study has the potential to contribute to the field of statistics education in several 

ways. The first way is by informing the practices of researchers and teachers. As a result 

of this study, there is now more information available focusing upon high school 

students’ statistical thinking. This is important to researchers seeking to compare and 

contrast statistical thinking at the high school level to statistical thinking at other levels, 
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and to those wishing to further investigate high school students’ statistical thinking. The 

study is also important to high school teachers because it provides a base for assessing 

students’ statistical thinking within several subprocesses, and hence also a starting point 

for effective statistics instructional design. Another way that this study contributes to the 

field of statistics education is that is has raised a number of questions for further 

investigation. Much work remains to be done in investigating statistical thinking within 

the formal mode and in adding to and refining the framework constructed as a result of 

this study. By providing the answers to some questions and raising important new 

questions in several areas, it is hoped that this study will be a catalyst for both researchers 

and teachers to continue to do substantial and productive work in the area of high school 

statistics. 
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APPENDIX A 

BACKGROUND DESCRIPTIONS AND ANECDOTAL INFORMATION FOR 

STUDY PARTICIPANTS 

Category 1: Students who had recently completed a semester-long high school statistics 

course 

       Lisa, one of the college freshmen interviewed, had completed a semester-long 

probability and statistics course during her junior year in high school. She indicated that 

she was not familiar with any technology for doing statistics beyond a simple pocket 

calculator. She ranked her own statistical ability as a 3 out of 5, stating, “I took the course 

two years ago. It was a semester course but I feel I still remember most concepts.” At the 

time she was interviewed, Lisa was engaged in the first month of study of a semester-

long data and chance course, which she described as a “math course for art majors.” 

Topics included in the description for the course are data representations, curve fitting, 

interpretation of polls and experiments, central tendency, statistical reasoning, and 

applications of probability.  

       Kristen, another of the participants in this category, was also in her first month of 

study in the same semester-long data and chance course. She had taken a semester-long 

probability and statistics course during her senior year in high school. She indicated that 

the high school course had incorporated the use of the TI-83 calculator and the Excel 

software program. She ranked her own statistical ability as 3 out of 5, stating, “Math is 
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not my best subject. However, since statistics are different I understand it more. Statistics 

make a little more sense to me then [sic] regular math courses.” 

        The last of the interview participants in this category was Laura. Laura had taken a 

one-semester probability and statistics course during her senior year in high school. She 

indicated that she was familiar with the TI-83 calculator. She ranked her own statistical 

ability as 2 out of 5, stating, “I forgot a lot of the information taught. I remember some of 

the important things.” At the time Laura was interviewed, she was engaged in her first 

month of study in a pre-calculus course. Topics in the description for the course included 

polynomial, absolute value, rational, exponential, logarithmic, and trigonometric 

functions and their graphs; properties of trigonometric and inverse trigonometric 

functions and their applications; conics, translation, and rotation of axes. 

Category 2: Students who had recently completed a year-long high school statistics 

course 

       Jeff was a college freshmen who agreed to be interviewed for the study. He had 

completed an AP Statistics course during his senior year in high school. He indicated that 

the technology used during that course included TI-83 and TI-86 calculators, the Fathom 

software program, and the Minitab software program. When asked to rank his own 

statistical ability, he gave himself a ranking of 4 out of 5, stating, “I feel I know a lot 

about statistics, but I’m sure there’s more to know.” At the time he was interviewed, he 

was in the first month of a semester-long finite mathematics course at the university. The 

topics included in the course description were linear functions, matrices, systems of linear 

equations, sets and counting, probability, statistics, and mathematics of finance. 
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       Hillary, another of the interview participants, was a college freshman enrolled in the 

same finite mathematics class as Jeff. She also had completed an AP Statistics course 

during her senior year in high school. During that course, she indicated that the instructor 

had incorporated the use of the TI-83 calculator, the Excel software program, and the 

Minitab software program. When asked to rank her own statistical ability, she gave 

herself a 4 out of 5. She stated that she had consistently received a score of 3 out of 5 on 

AP Statistics practice examinations she had taken the previous year. At the time she was 

interviewed, Hillary was also engaged in the first month of study in the finite 

mathematics course.  

       Another interview participant in this category, Jonathon, was involved in his first 

month of study in the same course as Kristen and Lisa. He had completed an AP 

Statistics course during his senior year in high school. He indicated that the TI-83 

calculator had been used in his high school course. He ranked his own statistical ability as 

4 out of 5, stating, “I have taken a few statistics courses and I feel that I understand its 

many concepts and can put them into practice.”  

       The last of the interview participants in this category was Julie. At the time of the 

interview, she was in her first semester as a college freshman at a Midwestern university 

different from that of the previously described study participants. She had completed an 

AP Statistics course during her senior year in high school, and was enrolled in a 

semester-long non-calculus based statistics class at the university. Julie was 

recommended for participation in the study by her high school statistics teacher. She 

indicated familiarity with the TI-83, Excel, and Fathom. She ranked her own statistical 



 

 216

ability as a 3 out of 5, stating, “I’ve taken one stats class and am in the process of 

completing my second, so I feel I have a good start but I’m still learning.” 

Category 3: Students enrolled in high school at the time of the interview 

       Crystal, a high school senior who agreed to be interviewed, was enrolled in an AP 

Statistics course at the time of her interview. Her class had just completed the study of 

the first three chapters of a popular AP Statistics text (Yates, Moore, & McCabe, 1998). 

She was described by her AP Statistics teacher as being a student of average ability who 

had a strong work ethic. Crystal indicated that she was familiar with the TI-83 calculator, 

Excel, Fathom, and Data Desk. She ranked her own statistical ability as 3 out of 5. She 

supported her ranking with the statement, “I have just begun taking a stats course so I do 

not know everything yet. However, with all of my education and work experience I 

believe I have a good statistical ability.”  

       The next interview participant in this category, Bill, was a senior in the first semester 

of an AP Calculus course when his interview took place. He had not taken a statistics 

course while in high school. He indicated that he was familiar with the TI-89 calculator 

and Excel. He ranked his own statistical ability as 3 out of 5, stating, “I feel I can get by 

with my statistical skills.”  

       Luke, another student in this category, was a senior enrolled in the same AP Calculus 

class as Bill. He also had not taken a statistics course while in high school. Like Bill, he 

indicated familiarity with the TI-89 calculator and Excel. When asked to rank his own 

statistical ability, he gave himself a 4 out of 5. He supported his ranking by stating, “I 

have always been very strong in math and have a good grasp on mathematical concepts.”  
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       The fourth student in this category, Daniel, was a high school freshman enrolled in 

an honors geometry class at the same high school as Crystal, Daniel, and Luke. He 

indicated that he was familiar with scientific, non-graphing calculators. He ranked his 

statistical ability as only 1 out of 5, stating, “I haven’t done very much work with 

statistics.” 

       The fifth student, Rick, was a high school sophomore enrolled in an algebra class. 

The algebra class in which he was enrolled was the first year of a two-year sequence 

covering the topics traditionally included in an introductory one-year algebra course. 

Rick indicated familiarity with a number of graphing calculators, including the TI-82, TI-

83, TI-85, TI-86, and TI-89. He also indicated familiarity with Excel. He ranked his own 

statistical ability as only 2 out of 5, stating, “I know how to make statistics. I know how 

there [sic] used. I just don’t think I still know everything.”  

       The next student, Jessica, was a high school sophomore enrolled in a geometry class. 

She indicated familiarity with scientific, non-graphing calculators and Excel. She ranked 

her own statistical ability as only 1 out of 5, stating, “I’ve got no idea what I’m doing!” 

       The seventh student, Nancy, was a high school sophomore enrolled in a geometry 

class. She indicated familiarity with scientific, non-graphing calculators and Excel. She 

ranked her own statistical ability as 3 out of 5 because she had some spreadsheet 

experience. 

       The final student in the category, Brooke, was a high school sophomore enrolled in 

an algebra class. She indicated familiarity with the TI-82, TI-83, and Excel. She ranked 
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her own statistical ability as 2 out of 5, stating, “I’m just starting to work with statistical 

software and I need a little more time to develop my skills.” 
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APPENDIX B 
 

STATISTICAL THINKING TASKS 
 

Task 1: The State of Florida 
 
Suppose that the governor of Florida puts you in charge of finding answers to the 
following questions: 

a. What is the typical income of adults in the state? 
b. Will I be re-elected in the election this fall? 
c. What percentage of the state is computer-literate? 
d. Does the new drug for treating the West Nile virus actually work? 
e. How successful was the law which raised the minimum driving age 

from 16 to 18? 
1) Describe a plan for gathering the information you would need in order to 

answer each of the questions, and how you would carry out each plan and 
report the results to the governor (C). 

2) Joe went to a shopping mall in Florida from 8:00 a.m. until 9:00 a.m. on Feb. 
20 and stopped people for interviews. He asked each person he stopped, “May 
I please interview you for a study I am doing about people who live in 
Florida?”  He asked for the following information from all 20 people who 
agreed to do interviews: 

a. Age  
b.   Annual income 
c. Favorite color  
d. Political party affiliation  
e. Whether or not they considered themselves computer-literate 
f. How many hours per week each person sleeps. 

Comment on Joe’s method of collecting data.  How useful do you think the 
information is which he obtained? Why? (C). 

3) Here are Joe’s data. For each person interviewed, it shows, in order, the 
responses to each of these questions: “What is your age?”  (Age); “What is 
your annual income?”  (Income); “What is your favorite color?”  (Favorite 
color); “What is your political party affiliation?” (Political party); “Are you 
computer literate?”  (Computer lit.); “How many hours per week do you 
sleep?” (Sleep). Organize the data cards into different groups (a number of 
your choosing) in some logical manner that would make the information 
contained on them easier to read, and might help Joe see patterns in the data 
he has collected.  Explain why you grouped the cards as you did.  What are 
some other ways to organize the data cards? (O) 
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A 
Age: 18 
Annual income:  
$16,000 
Favorite color: Red 
Political party: D 
Computer lit.?: No 
Sleep:  22 
 

B 
Age: 58 
Annual income:  
$56,000 
Favorite color: 
Yellow 
Political party: R 
Computer lit.?: Yes 
Sleep:  61 

C 
Age: 72 
Annual income:  
$80,000 
Favorite color: 
Blue 
Political party: R 
Computer lit.?: No 
Sleep:  68 

D 
Age: 16 
Annual income:  
$5,000 
Favorite color: 
Yellow 
Political party: D 
Computer lit.?: Yes 
Sleep:  20 

E 
Age: 25 
Annual income:  
$25,000 
Favorite color: 
Blue 
Political party: D 
Computer lit.?: No 
Sleep:  28 

F 
Age: 44 
Annual income: 
$54,000 
Favorite color: 
Green 
Political party: D 
Computer lit.?: Yes 
Sleep:  42 

G 
Age: 25 
Annual income: 
$24,000 
Favorite color: Red 
Political party: R 
Computer lit.?: Yes 
Sleep:  27 

H 
Age: 65 
Annual income: 
$53,000 
Favorite color: 
Green 
Political party: I 
Computer lit.?: Yes 
Sleep:  49 

I 
Age: 30 
Annual income: 
$37,000 
Favorite color: 
Blue 
Political party: R 
Computer lit.?: Yes 
Sleep:  35 

J 
Age: 36 
Annual income:  
$45,000 
Favorite color: 
Yellow 
Political party: D 
Computer lit.?: Yes 
Sleep:  40 

K 
Age: 40 
Annual income: 
$110,000 
Favorite color: Red 
Political party: R 
Computer lit.?: Yes 
Sleep:  43 

L 
Age: 29 
Annual income: 
$38,000 
Favorite color: 
Blue 
Political party: D 
Computer lit.?: No 
Sleep:  34 

M 
Age: 52 
Annual income: 
$46,000 
Favorite color: Red 
Political party: R 
Computer lit.?: Yes 
Sleep:  50 

N 
Age: 50 
Annual income: 
$2,000,000 
Favorite color: 
Green 
Political party: R 
Computer lit.?: Yes 
Sleep: 54   

O 
Age: 21 
Annual income: 
$26,000 
Favorite color: 
Green 
Political party: I 
Computer lit.?: Yes 
Sleep:  25 

P 
Age: 45 
Annual income: 
$64,000 
Favorite color: Red 
Political party: R 
Computer lit.?: Yes 
Sleep:  49 

Q 
Age: 27 
Annual income: 
$28,000 
Favorite color: 
Green 
Political party: D 
Computer lit.?: No 

R 
Age: 38 
Annual income:  
$40,000 
Favorite color: Red 
Political party: I 
Computer lit.?: Yes 
Sleep:  42 

S 
Age: 23 
Annual income: 
$14,000 
Favorite color: 
Blue 
Political party: R 
Computer lit.?: No 

T 
Age: 47 
Annual income: 
$52,000 
Favorite color: 
Yellow 
Political party: R 
Computer lit.?: No 



 

Sleep:  32 Sleep:  27 Sleep:  53 
4) A) Assuming that people told the truth about their annual incomes, what is the 

typical annual income of people in Joe’s sample?  B) Assuming they told the 
truth about political party affiliation, what is the typical political party 
affiliation of people in Joe’s sample? (O). 

5) Show graphically how people with different favorite colors answered his 
question about income. What are some other graphs you could construct to 
display this information? Which graph do you prefer, and why?  (R) 

6) Show graphically how people considering themselves computer-literate 
answered the question about political party affiliation. What are some other 
types of graphs which might display this information?  Which graph do you 
prefer, and why?  (R) 

7) Show graphically how people of different ages answered the question about 
income.  What are some other types of graphs which might display this 
information?  Which graph do you prefer, and why?  (R)   

8) Joe constructed these graphs for the data in his set, but did not label some of 
them completely. Sort them into families so that each family has only graphs 
that could possibly contain the same data (R). Explain why they could 
possibly contain the same data.  Also provide labels for graphs that need them. 

 

graph 1 

graph 2 
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graph 3 

graph 4 

graph 5 
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graph 6 

graph 7 

graph 8 
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graph 9 

C
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4

x
10 20 30 40 50 60 70 80

Collection 1 Histogram

 graph 10 

x
10 20 30 40 50 60 70 80

Collection 1 Dot Plot

graph 11 
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y
20 30 40 50 60 70

Collection 1 Dot Plot

graph 12 
 
 

9) What are some of the strengths of each of the data displays in each family?  
What are some of the weaknesses of each?  If presenting your findings from 
this study in a newspaper, which display from each family would you pick? 
(R) 

10)  Ask them to identify what each of these represents, and give units:  
a. the leftmost point on the scatterplot 
b.  the highest horizontal bar on the boxplot  
c. the rightmost bar on each parallel boxplot  
d. the leftmost point on the dotplot 
e. the bar signifying the median on the boxplot (D).     

11)  Point to lines in line plot and ask them to identify what they represent. Point 
to whiskers of the boxplot and ask what they represent. Point to “collection” 
label and “max” and “min” labels and ask what they represent. Point to cursor 
on TI-graph and ask what it represents. (D) 
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Task 2: Test Scores 
 
We have the following information on test scores for three different classes in a 
school building that took the same 20 point test (Class B has two less students than 
Classes A and C): 
 
Class A 12 13 14 14 15 16 16 17 18 18 
Class B 7 9 13 14 15 19 19 20   
Class C 7 11 12 14 15 18 19 19 20 20 
 

1) Which two classes in the school do you think were the most similar in 
performance?  Why?  (A) 

2) In which class are the scores the most spread out?  How do you know? (O) 
3) What is the highest score of any student in the three classes?  What is the 

lowest score for a student in class A?  (D) 
4) Are there any unusually high or low test scores in any of the classes?  How 

can you tell?  (A) 
5) This same test was given to all the students in the state of Arkansas. A graph 

showing the distribution of scores for students in the state is shown below: 

Test Scores in Arkansas

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 
What is the highest score received by any student in Arkansas?  How do you 
know?  (D) 

 
6) What is the typical score for students in the state of Arkansas?  How do you    
       know?    (O) 

 
7) The same test was also given to all students in the state of Wisconsin. The 

graph showing the distribution of scores for students in the state is shown 
below:  

 226



 

Test Scores in Wisconsin

1 3 5 7 9 11 13 15 17 19

Test Score

 
How does the performance of students in the state of Wisconsin compare to 
the performance of students in the state of Arkansas?  Explain your reasoning 
(A) 

8) Suppose that teacher A takes a random sample of 5 students’ scores from the 
state of Arkansas and computes the average. Teacher B takes a random 
sample of 15 students’ scores from the state of Arkansas and computes the 
average. Do you think that there will be any difference between the averages 
they compute?  Why or why not? (A)  Do you think that one of the teachers is 
more likely to obtain an average greater than 17?  Why or why not?  (A) 

9) Joe took a random sample of 10 scores from the state of Iowa. Suppose the 
average score for the state of Iowa is 11. Which of these sets of scores could 
be Joe’s random sample? (possibility of more than one answer)  (A) 

a. 9, 11, 13, 6, 14, 8, 12, 21, 10, 9 
b. 4, 5, 6, 5, 5, 5, 7, 6, 7, 5 
c. 6, 11, 16, 14, 13, 8, 10, 7, 9, 16 
d. 11, 15, 17, 16, 15, 15, 15, 14, 16, 16 
e. 7, 16, 12, 12, 15, 14, 10, 7, 6, 11 

 
10) Go back to the very first table in the task and look at the data for class A. 

Suppose the teacher adds 15 points to each student’s score. How is the typical 
score for the class affected?  How is the spread of the scores affected? (O) 
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Task 3: Department Store Worker Salaries 
 
     Suppose that in 1999, a newspaper reporter took a random sample of 15 
department stores from the state of Illinois.  For each department store he sampled, he 
found out how much the highest paid man and the highest paid woman in the 
department store were paid per hour.  In the table are the results of his survey. 
 

Salaries (in dollars per hour) of the people in the reporter’s sample 
 

Department 
Store 

Women Men 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 

$18.50 
15.00 
17.00 
15.50 
8.50 
18.00 
9.00 
10.00 
10.00 
8.50 
12.00 
14.50 
10.50 
9.00 
16.00 

$17.50 
15.00 
20.00 
20.00 
20.00 
19.00 
20.00 
18.00 
5.50 
6.00 
10.00 
16.50 
12.50 
10.00 
7.00 
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1) Assuming that this is truly a random sample, how do you suppose the reporter 
went about collecting the data in the table above?  (C) 

2) Make a graphical display that could accompany a newspaper article about the 
reporter’s survey (R). Are there any other types of graphical displays you can 
think of that would be fitting?  (R). 

3) Are there any unusually high or low values in the column showing women’s 
salaries?  How can you tell?  Are there any unusually high or low values in the 
column showing men’s salaries?  How can you tell? (A) 

4) How spread out are the salaries in the men’s column? (O)  How spread out are 
the salaries in the women’s column?  (O)  In which column are the salaries 
more spread out: In the men’s column or in the women’s column?  

5) After doing this survey, the reporter wrote, “There is no difference between 
the average hourly salary of the highest-paid male employees of department 
stores in Illinois and the average salary of their female counterparts.”  How 
accurate do you believe this claim to be?  Explain.  (A) 

6) The reporter also wrote, “I didn’t find any department stores where the highest 
paid woman made $17.00 per hour.  However, if I had found such a 
department store, the highest paid man working there would have made 
$13.30 per hour.”  How accurate do you believe this claim to be?  Explain. 
(A) 

7) The reporter wants to repeat this survey again in 2005 and expand it to the 
population of the entire United States. Describe a plan he could use for getting 
the information needed for the survey. (C) 

8) Describe some of the difficulties which might arise while carrying out the 
2005 survey, and how those difficulties could be overcome. (C)    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
Task 4: Ice Cream 
     Below are a graph and a table showing the ice cream consumption of people in a city in Northern 
Canada on 30 randomly selected days during the 1990’s. 1

 
Temperature 

(in degrees Fahrenheit) 
Ice cream consumption 
(in pints per 100 people) 

41 .386 
56 .374 
63 .393 
68 .425 
69 .406 
65 .344 
61 .327 
47 .288 
32 .269 
24 .256 
28 .286 
26 .298 
32 .329 
40 .318 
55 .381 
63 .47 
72 .443 
72 .386 
67 .342 
60 .319 
44 .307 
40 .284 
32 .326 
27 .309 
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28 .359 
33 .376 
41 .416 
52 .437 
71 .549 
64 .4 

 
 
1. Data reprinted with permission from Econometrica. Copyright 1970, the 
Econometric Society. All rights reserved.
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1) (Circle the leftmost point)  What does this point represent in terms of this 
situation? (D) 

2) Describe as fully as you possibly can the relationship between ice cream 
consumption and the outside temperature. (A) 

3) Suppose an ice cream salesman asks you, “How much ice cream does this group 
consume if the temperature hits 50 degrees Fahrenheit?”  Give the best answer 
you possibly can, and explain your answer. (A) 

4) Suppose the same salesman asks, “How much ice cream does this group consume 
if the temperature hits 10 degrees Fahrenheit?”  Give the best answer you possibly 
can, and explain your answer. (A) 

5) Are there any unusual data points in the set?  Explain. (A)   
6) Where might unusual points in a data set like this come from?  (A, C)  How might 

unusual points change answers you have given to questions above?  (A) 
7) Do you think the graph would have looked different if we had taken a different 

random sample?  If so, how do you think it would have looked different?  If not, 
why do you think it would not have looked different?  (A)  

8) Suppose we get rid of the first column in the table above. Construct a graph to 
display the information in the second column (R). Discuss other types of graphs 
you might make in order to display the information in the second column. (R) 

9) What type of information do you easily get from your graph from #8 that you 
didn’t easily get from the scatter plot?  (R) 

10) Suppose you are the editor of a newspaper, and one of the reporters asks you to 
comment on the following headline for a story based on the data above: “Higher 
temperatures cause ice-cream consumption to increase” (A) 
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Task 5: Going Fishing 
     This table shows how many of each type of fish were in Lake Del Sol on May 1.  
Lake Del Sol is a catch-and-release lake, meaning that you must release each fish 
immediately after you catch it.  Game wardens are at the lake to enforce this rule. 

Type of fish Males Females 
Trout 20 40 
Bullhead 35 42 
Perch 14 10 
Sunfish 41 12 
1) Is catching a fish from Lake Del Sol the same thing as picking a fish from the lake at 

random?  Why or why not?  (C)   
 
2) Which of the four types of fish in Lake Del Sol is the most common?  How do you 

know?  Which of the five types of fish in Lake Del Sol is least common?  How do 
you know?  (D) 

 
3) If you went fishing at Lake Del Sol on May 1 and caught 10 fish, how many Perch 

would you expect to have caught?  Why?  (A) 
 
4) How likely do you think it would be that among the 10 fish you caught on May 1 at 

Lake Del Sol, there would be 2 or less perch?  Why?  (A) 
 
5) How likely do you think it would be that among the 10 fish you caught on May 1 at 

Lake Del Sol, there would be exactly 1 perch?  Why?  (A) 
 
6) Does this table give any statistical evidence that there is anything unusual or 

unexpected about the population of fish in Lake Del Sol?  Explain your answer.  (A) 
 
7) Suppose there is a new bait designed to help catch trout.  Last Friday, the fisherman 

in boat A did not use the new bait, while the fisherman in boat B did use it.  Here are 
the results from the day they spent fishing in Lake Del Sol:       

 Trout 
caught 

Non-trout 
caught 

Boat A 10 20 
Boat B 15 17 
 Do you think the new bait helps one to catch more trout?  Why or why not? 
 
8) The fisherman who caught the first fish in Boat A weighed the first fish he caught 7 

different times on the same scale.  Here are the measurements (in lbs.) that he came 
up with: 19.2, 21.5, 10.1, 23.1, 22.0, 20.3, 21.8.    (O) 

a. How spread out are the measurements he obtained? 
b. What do you think the true weight of the fish was?  Why? 
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APPENDIX C 
 

ALIGNMENT OF STATISTICAL THINKING TASKS WITH STATISTICAL  
 

THINKING PROCESSES 
 

Statistical thinking process and 
definition 

Task:subtask designed to assess thinking 
within this process 

Code 

Describing Data: The explicit 
reading of data presented in tables, 
charts, or graphs. 

1:10, 1:11, 2:3, 2:5, 4:1, 5:2 D 

Organizing and Reducing Data: 
Arranging, categorizing, or 
consolidating a given set of data into  
summary form. 

1:3, 1:4, 2:2, 2:6, 2:10, 3:4, 5:8 O 

Representing Data: Displaying a 
given set of data by using graphs. 

1:5, 1:6, 1:7, 1:8, 1:9, 3:2, 4:8, 4:9 R 

Analyzing Data: Identifying trends 
and making inferences or predictions 
from a data display or set, using  
formal inferential methods when 
appropriate. 

2:1, 2:4, 2:7, 2:8, 2:9, 3:3, 3:5, 3:6, 4:2, 
4:3, 4:4, 4:5, 4:6, 4:7, 4.10, 5:3, 5:6 

A 

Collecting Data: Planning, 
conducting, and critiquing surveys, 
experiments, and observational 
studies. 

1:1, 1:2, 3:1, 3:7, 3:8, 5:1 C 
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APPENDIX D 
 

ALIGNMENT OF STATISTICAL THINKING TASKS WITH NCTM PRINCIPLES  
 

AND STANDARDS FOR SCHOOL MATHEMATICS 
 

NCTM (2000) Data Analysis Content Standards (p. 324).1
 

Relevant task:subtask on 
interview script. 

Formulate questions that can be addressed with data and 
collect, organize, and display relevant data to answer them

 

-understand the differences among various kinds of studies 
and which types of inferences can legitimately be drawn from 
each. 

1:1, 1:2, 4.10 

-know the characteristics of well-designed studies, including 
the role of randomization in surveys and experiments. 

1:1, 3:1, 3:7, 3:8, 5:1 

-understand the meaning of measurement data and categorical 
data, of univariate and bivariate data, and of the term variable. 

1:3 

-understand histograms, boxplots, and scatterplots and use 
them to display data. 

1:5, 1:6, 1:7, 1:8, 1:9, 
1:10, 1:11, 3:2, 3:6, 4:1, 
4:8, 4:9 

-compute basic statistics and understand the distinction 
between a statistic and a parameter. 

1:1, 1:4, 2:8, 5:8 

Select and use appropriate statistical methods to analyze 
data 

 

-for univariate measurement data, be able to display the 
distribution, describe its shape, and select and calculate 
summary statistics. 

1:4, 2:1, 2:2, 2:4, 2:5, 
2:6, 2:7, 3:3, 3:4, 5:8 

-for bivariate measurement data, be able to display a 
scatterplot, describe its shape, and determine regression 
coefficients, regression equations, and correlation coefficients 
using technological tools. 

3:6, 4:2, 4:3, 4:4, 4:5, 
4:6 

-display and discuss bivariate data where at least one variable 
is categorical. 

1:5, 1:6 

-recognize how linear transformations of univariate data affect 
shape, center, and spread. 

2:10 

-identify trends in bivariate data and find functions that model 
the data or transform the data so that they can be modeled. 

3:6, 4:2, 4:3, 4:4 

Develop and evaluate inferences and predictions that are 
based on data 
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-use simulations to explore the variability of sample statistics 
from a known population and to construct sampling 
distributions. 

5:3, 5:4, 5:5 

-understand how sample statistics reflect the values of 
population parameters and use sampling distributions as the 
basis for informal inference. 

1:1, 2:8, 2:9, 5:8 

-evaluate published reports that are based on data by 
examining the design of the study, the appropriateness of the 
data analysis, and the validity of conclusions. 

1:2, 3:1, 3:5, 4.10 

-understand how basic statistical techniques are used to 
monitor process characteristics in the workplace. 

3:5, 5:8 

 
1. Reprinted with permission from Principles and Standards for School Mathematics. 
Copyright 2000 by the National Council of Teachers of Mathematics. All rights reserved.
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APPENDIX E 
 

TASKS DESIGNED TO ALLOW STUDENTS TO DEMONSTRATE  
 

KNOWLEDGE OF SOME OF THE TOPICS INCLUDED ON THE  
 

2001 AP STATISTICS SYLLABUS BUT NOT INCLUDED IN  
 

THE NCTM PRINCIPLES AND STANDARDS FOR 
 

 SCHOOL MATHEMATICS 
 

Task/subtask Relevant topic from the AP Statistics course syllabus (College Board, 
2001b) 

3:5 Two sample (independent and matched pairs) t procedures. 
4:7 Inference for the slope of least-squares regression line. 
5:2 Exploring categorical data: frequency tables 
5:3, 5:4, 5:5 Binomial probability distributions  
5:6, 5:7 Chi-square procedures 
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APPENDIX F 
 

STUDENT QUESTIONNAIRE 
 

Name_______________________ 
 
       Thank you for agreeing to participate in an interview!  Please take a few moments to 
complete this survey. 

 
1) Check off all of the following technology that you know how to use: 

a. TI-82 calculator_______ 
b. TI-83 calculator_______  
c. TI-85 calculator_______ 
d. TI-86 calculator_______ 
e. TI-89 calculator_______ 
f. TI-92 calculator_______ 
g. Other graphing calculator (please list)_____________________________ 
h. Scientific, non-graphing calculator__________ 
i. Simple pocket/handheld calculator__________ 
j. Excel software program_______ 
k. Fathom software program_______ 
l. Data Desk software program_______ 
m. Other software program that would help with statistics (Please 

list)__________________________________________________. 
n. Other technology, not listed here, which would help with statistics (please 

list)___________________________________________________. 
 

2) How would you rank your own statistical ability?  (Circle one: 1 = low, 5 = high). 
 

1  2  3  4  5 
 

3) Please briefly explain the ranking you gave yourself in question 3. 
 
 

 
4) Please list any questions or comments you have for me before the interview takes 

place: 


