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CHAPTER ONE 

Introduction 

 

 The purpose of this study is to research elementary preservice teachers’ 

conceptions of variation.  After defining variation in the introductory section, this 

chapter discusses four components which motivate the study.  The first component is 

the primacy of variation to statistics and probability (which are together sometimes 

referred to as stochastics), and the second is the dearth of research in understanding 

variation.  The third component is the inclusion of stochastics in school curricula, and 

the fourth is the importance of teachers’ subject matter knowledge.  Taken together, 

these four components build a case for why elementary preservice teachers’ 

conceptions of variation are a relevant and significant area to investigate in the overall 

picture of mathematics education.  The chapter culminates with a presentation of the 

objectives of the study and statement of the research questions. 

 Variation is a term with several related forms and uses.  The Oxford Dictionary 

of Current English says that variation refers to a “departure from the normal kind, 

amount, a standard, etc” (Thompson, 1998, p. 1018).  Related in Latin to other terms 

like vary, variability, and various, variation implies diversity.  A light rail system may 

promote its trains as arriving at any given stop every ten minutes, but the actual time 

between arrivals varies.  The interval of time is not uniformly ten minutes, and the 

absence of uniformity indicates the presence of variability.  Variation can also refer to 

the amount of diversity.  One way to measure variation in a set of numeric data is to 

compute the range, which gives the spread of the data from the maximum to the 
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minimum.  Another way of measuring variation is to calculate the variance and 

standard deviation of the data set, which quantify the spread of the data about the 

arithmetic mean.  The key element to any discussion of variation is that there are 

differences in the set under study, because without differences there is no variation.  

Primacy of Variation 

 Moore (1990), in a treatise on the nature of statistical thinking, lists five core 

elements: 

 1. The omnipresence of variation in processes,  
 2. The need for data about processes,  
 3. The design of data production with variation in mind,  
 4. The quantification of variation,  
 5. The explanation of variation (p. 135). 
 
Notice that variation is mentioned in four of the five core elements listed by Moore.  A 

report of the joint curriculum committee of the American Statistical Association 

(ASA) and the Mathematical Association of America (MAA) supports not only the 

omnipresence of variation as one of their elements of statistical thinking, but also the 

elements of “measuring and modeling variation” (p. 127).  The “omnipresence of 

variability” was cited as giving rise to the very need for the discipline of statistics 

(Cobb & Moore, 1997, p. 801, italics in original).   

 The idea that variability is everywhere makes sense when thinking about the 

world in which we live.  Not only do people and their environments vary, but even 

repeated measurements on the same person or thing can vary (Wild & Pfannkuch, 

1999).  Also, “natural variation appears in the heights, reading scores, or incomes of a 

group of people” (Moore, 1990, p. 98).  There is also a chance variation component to 

our world.  Moore (1990) points out that one use of probability instruction is to lead 
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students to the understanding that chance variation, as opposed to deterministic causes, 

explains most outcomes in our world. He writes: 

 It is perhaps surprising that patterns in careful measurements or in data on  
 many individuals can be described by the same mathematics that describes the  
 outcomes of chance devices.  Experience with variation is a first step toward  
 recognizing the connection between statistics and probability (p. 99). 
 
Philosophically, living in a stochasticized world implies an existence beset by 

variation on all sides (Davis & Hersch, 1986); mathematically, “statistics provides 

means for dealing with data that take into account the omnipresence of variability” 

(Cobb & Moore, 1997, p. 801). 

 In addition to the more academic examples cited above, professional 

statisticians also see the centrality of variation in their work, and others have framed a 

model of statistical thinking in which variation is the core element (Pfannkuch, 1997; 

Pfannkuch & Wild, 1998; Wild & Pfannkuch, 1999; Pfannkuch & Wild, 2001). In an 

investigation of the nature of statistical thinking from the practitioner’s perspective, 

the first component to emerge was that “statistical thinking involves ‘noticing’, 

understanding, critically evaluating and distinguishing the types of variation” 

(Pfannkuch, 1997, p. 407).  The theme of variation is pervasive throughout the process 

of any statistical enquiry.  Wild and Pfannkuch (1998) interviewed professional 

statisticians to capture the stories their subjects wanted to tell. One subject expressed 

that “basically what distinguishes statistical thinking from anything else is that you 

accept that variation exists,” while another succinctly states that “statistics is the 

science of variation” (Wild & Pfannkuch, 1998, p. 6).  The authors posit that “this 

very basic element of statistical thinking, ‘noticing variation and wondering why’, is 
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actually at the root of much, if not most, scientific research” (p. 7).  The mindset of 

noticing variation and wondering why, when coupled with the sense that variability 

inheres in every facet of life, makes for a rich context in which to embed all other 

elements of a statistical enquiry. The  mandate not only to expect variation, notice 

variation, but also account for the causes of variation, make up key features of Wild 

and Pfannkuch’s (1999) model of statistical thinking.  

  The above examples lend credence to the tenet that variation is indeed the 

central feature behind statistics, and offer support for why others agree that 

“statisticians consider variation to be the foundation of statistical thinking, the very 

reason for the existence of their discipline” (Shaughnessy & Ciancetta, 2001).  

Understanding Variation: A Paucity of Research 

 Although variation is central to stochastics, there is relatively little research on 

people’s understanding of this concept.  This is not surprising, since as of the late 

1980s a review of the literature showed that far more research had been done in the 

area of probability than in statistics (Garfield & Ahlgren, 1988).  Several researchers 

had attempted to describe stages in the development of probabilistic thinking (Piaget, 

1975; Falk, 1983; Fischbein & Gazit, 1983; Green, 1983). Others had focused on 

intuitive reasoning about probability, revealing not only the kinds of misjudgments 

people make but also suggesting explanations for these errors (Kahneman & Tversky, 

1982; Konold, 1983).  Only recently has the attention of researchers turned directly to 

concept of variation.   

 In delivering a keynote address to the Mathematics Education Research Group 

of Australasia (MERGA), Shaughnessy (1997) noted that “although there have been 



 

 5

investigations into students’ concepts and beliefs about ‘averages’, there does not 

seem to be a similar tradition of research into students’ ideas about variability or 

spread” (p. 5).  That address may well have served as a catalyst for researchers to 

uncover the specific ways in which people thought about variation in different 

contexts, or at the very least it gave a voice to what other researchers had been 

noticing as well.   

 Since that MERGA address, research specifically about conceptions of 

variation has been slowly emerging, amidst other calls for more research in this area.  

In a study about data distributions, Mellissinos (1999) comments that “student notions 

of variability is considered a needed area of research” (p. 1).  Concepts of variation, 

graphicacy, and centers are all factors relating to the research of Watson and Moritz 

(1999), who remark that “very little research has explored children’s strategies 

involved in comparing data sets” (p. 146).  Similarly, Watson and Moritz (2000a) note 

that little research has been done on students’ cognition of sampling situations, for 

which variation is an integral component.  These researchers have consistently called 

for more research on the understanding of variability in the context of comparing data 

sets and sampling.  The current situation is summarized nicely by Torok and Watson 

(2000), who wrote that “an appreciation of variation is central to statistical thinking, 

but very little research has focused directly on students’ understanding of variation” 

(p. 147). 

 The research which does exist on the concept of variation was mostly aimed at 

students in grades 3-12.  Reading and Shaughnessy (2001) used subjects from grades 

4-12, and Watson et. al. (2002) used subjects from grades 3, 5, 7, and 9.  However, 
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while needed research has only recently been and is still being conducted on school 

students’ understanding of variation, research has provided few exploratory results on 

the conceptions of variation held by teachers.  As others have noted, research on 

understanding variation is still in its nascency (Watson, Kelly, Callingham, 

Shaughnessy, 2002; Torok & Watson, 2000; Jones et. al., 2000). 

Curricular Inclusion of Stochastics: A Brief History 

 Stochastics has not always been a vital part of the school curriculum in the 

U.S.  In fact, up until the last decade or so it could safely be said that calls for 

including stochastics in the American school curriculum had fallen on deaf ears.  

Despite the encouragement of the 1923 report The Reorganization of Mathematics in 

Secondary Education to include some stochastics among the usual fare of algebra, 

geometry, and trigonometry, subsequent papers such as the 1938 report Mathematics 

in General Education  and the 1940 report The Place of Mathematics in Secondary 

Education placed less emphasis on the importance of stochastics (Bidwell & Clason, 

1970).  By the era of New Math, the secondary curriculum piloted by the University of 

Illinois in 1958 comprised eleven units, none of which specifically addressed 

stochastics (NCTM, 1970).  It is therefore no wonder that in 1959, when the College 

Entrance Examination Board proposed curriculum including a unit introducing 

probability with statistical applications, they were able to applaud themselves for "one 

of the more novel suggestions of the Commission" (Bidwell & Clason, 1970, p. 703).  

Later, the 1963 Cambridge report Goals for School Mathematics emphasized an 

"elementary feeling for probability and statistics" (Cambridge Conference on School 

Mathematics, 1963, p. 9), but by the time this emphasis was reiterated in the 1975 
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NACOME report, the actual representation of stochastics in the curriculum was still 

meager (Gawronski & McLeod, 1980). This brief historical review helps bolster the 

claim of "the traditional complete absence of stochastics from the school curriculum" 

(Shaughnessy, 1992, p. 467), and lets us more fully appreciate this situation. 

 The National Council of Teachers of Mathematics called for increased 

teaching and learning in stochastics in their 1980 publication An Agenda for Action, 

but it was the NCTM Standards of 1989 which gave stature to the place of stochastics 

among other curricular strands in the United States. (NCTM, 1980; NCTM, 1989). 

This place has been affirmed in the subsequent release of the Principles and Standards 

for School Mathematics (NCTM, 2000).  Also helping drive up interest in stochastics 

has been the 1997 addition of statistics to the list of Advanced Placement exams.  The 

syllabus for this exam includes data exploration, study design, probability distributions 

through simulation, and inference.  The growth of participation in this exam has been 

steep.  For example, while about 7,600 high school students around the world took the 

first AP Statistics exam in 1997, that number had risen to over 65,000 by 2004. 

 However, the rise to prominence of stochastics in the school curriculum is not 

constrained to the United States alone.  Not long before the release of the 1989 

Standards, Garfield and Ahlgren (1988) cited promising new curricular materials 

being developed not only in America, but also in the United Kingdom.  Furthermore, 

in reference to developing mathematically literate world citizens, these authors noted 

the “vigorously growing movement to introduce elements of statistics and probability 

into the secondary school curriculum, and even the elementary school curriculum” (p. 

44).  Others affirm the international trend, and point to examples in Spain, Australia, 
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and New Zealand, in addition to America and the United Kingdom (Batanero, Godino, 

Valecillos, Green, & Holmes, 1994; Shaughnessy, Garfield, & Greer, 1996; 

Mellissinos, Ford, & McLeod, 1997; Watson & Moritz, 2000a).  In England and 

Wales, for example, the recommendation for stochastics includes “collecting, 

representing, and interpreting data” (Department for Education, 1995, p. 10).  The 

curriculum in New Zealand calls for “statistical investigations within a range of 

meaningful contexts” (Ministry of Education, 1992, p. 186).  In reference to notions of 

sampling and making inferences, A National Statement on Mathematics for Australian 

Schools suggests that “the groundwork should be laid in the early years of schooling in 

the context of data handling and chance activities” (Australian Education Council, 

1991, p. 64).  It does indeed seem clear that “topics in data handling have begun to 

play a more prominent role in the mathematics curricula in many countries” 

(Shaughnessy et. al., 1996, p. 205).  

 Looking closer at the PSSM (NCTM, 2000), the following recommendations 

are made in its Data Analysis and Probability strand: 

 Instructional programs from prekindergarten through grade 12 should enable  
 all students to – 

• Formulate questions that can be addressed with data and collect, organize, 
and display relevant data to answer them; 

• Select and use appropriate statistical methods to analyze data; 
• Develop and evaluate inferences and predictions that are based 

 on data; 
• Understand and apply basic concepts of probability (p.48). 

 
It is worth noting that both aspects of stochastics – probability and statistics – are 

intertwined in the same curricular strand, and this illustrates the way in which 

concepts of chance are considered integral to a holistic perspective of data handling. 
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While some may suggest that data analysis take place in an environment wholly 

separate from probability, the position taken in this study and by the NCTM advocates 

the synthesis of concepts of data and chance in the school curriculum.  Under this 

position, “in the context of data analysis, or statistics, probability can be thought of as 

the study of potential patterns in outcomes that have not yet been observed” 

(Scheaffer, 2002, p. 6).  That the full meaning of data analysis should incorporate both 

aspects of statistics and probability is a perspective shared by many others as well 

(Jones, Thornton, Langrall, Mooney, Perry, & Putt, 2000; Torok & Watson, 2000; 

Shaughnessy et. al., 1996).   

Importance of Teachers’ Knowledge 

 Since stochastics continues to be emphasized in the school curricula, and since 

variation is a vital element of stochastics, it makes sense to wonder what teachers 

know about variation.  Quinn (1997) identified stochastics as one of the three 

“problematic areas of preservice elementary education” (p. 112),  along with geometry 

and rational numbers. Lajoie and Romberg (1998) agree that stochastics may be as 

new a topic for teachers as for children, and that “teachers must be provided with 

appropriate preservice and inservice training that will give them the knowledge base 

they need to feel comfortable teaching about data and chance” (p. xv).    

 Implicit in stressing the importance of teachers’ knowledge is the belief that 

teachers themselves are important to the enterprise of learning.  While this may seem 

intuitive, it depends on what we mean by “knowledge.”  The claim of the 1966 

Coleman Report was that “teachers, or more accurately variations among teachers, do 

not make a difference in school achievement” (Shulman, 1988, p. 10).  The process - 
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product research program showed that “teachers did make a difference” (p. 10), but 

the focus of that program was more on teachers’ classroom behavior, not on their 

knowledge.  Much of the past research “showed little or no statistical relationship 

between teacher knowledge and student achievement” (Grossman, Wilson, & 

Shulman, 1989, p. 25).  One reason for these results is that teachers’ knowledge was 

measured in very limited ways, by looking at the number of classes taken or a 

teacher’s grade point average.  This impoverished view suggested that teacher 

knowledge wasn’t vital to student learning, even though this connection may appear to 

be a matter of common sense (Lockwood, 1998; Fennema & Franke, 1992).  In more 

recent times, a report by the National Commission on Teaching and America’s Future 

cited growing research that “what teachers know and do is one of the most important 

influences in what students learn” (Darling-Hammond, 1998, p. 6).   

 Certainly there are many dimensions to the enterprise of teaching, such as 

teachers’ beliefs, knowledge, attitudes, skills, and classroom behavior (Shulman, 

1988; Borko et. al., 1992).  While teachers may make modifications to their practice 

along these dimensions throughout their careers, for many of them the initial 

experience of teacher training provides groundwork in these areas.  Foremost among 

the goals for a teacher education program is that preservice teachers begin to gain the 

components of knowledge which research suggests are important for teaching 

(Cooney, 1994).  Perhaps because teacher knowledge is an incredibly complex issue 

(Lehrer & Franke, 1992), it has been studied in terms of different types or components 

of knowledge. Two components which research has begun to delineate are subject 

matter knowledge and pedagogical content knowledge.   
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 Shulman (1988) gave a definition of subject matter knowledge as “that 

comprehension of the subject appropriate to a content specialist in that domain” 

(p.26), a comprehension which includes “the key facts, concepts, principles, and 

explanatory framework of a discipline” (Borko et. al., 1992, p.195).  The importance 

of subject matter knowledge is echoed in the Professional Standards for Teaching 

Mathematics (NCTM, 1991), which includes a section addressing the professional 

development of teachers. The professional development section, Standard 2 entitled 

“Knowing Mathematics and School Mathematics”, states that “teachers of 

mathematics should develop their knowledge of the content and discourse of 

mathematics, including mathematical concepts, procedures, and the connections 

among them...” (p. 132).  This description seems very much in line with the idea that 

subject matter knowledge is about knowledge of mathematics  and knowledge about 

mathematics (Simon, 1993).  Standard 4, “Knowing Mathematics Pedagogy,” speaks 

about “teachers’ knowledge and ability to use and evaluate...ways to represent 

mathematics concepts and procedures...” (NCTM, 1991, p. 151), and this relates to 

pedagogical content knowledge. This idea of representing mathematics is mentioned 

by Shulman (1986), who includes in his definition of pedagogical content knowledge 

the use of analogies, examples, illustrations, and demonstrations, "in a word, the ways 

of representing and formulating the subject that make it comprehensible to others" (p. 

9).  Knowing how to accomplish this representation – how to select appropriate tasks, 

ask good questions, and assess what students understand – is seen as the heart of 

pedagogical content knowledge (McDiarmid, Ball, & Anderson, 1989; Borko et. al., 

1992; Tirosh, 2000).    
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  My study is primarily concerned with the subject matter knowledge of teachers 

regarding the topic of statistical variation. While pedagogical content knowledge is 

also important, the research on how children learn about variation is still sparse. 

Hence, it is difficult to know just how to help teachers work with their pupils when 

research is still painting the picture of how students think about this topic.  It is also 

seems problematic to address pedagogical content knowledge when even the teachers’ 

own subject matter knowledge is unclear. In the case of elementary preservice 

teachers, it is unknown what conceptions of variation they have. 

 Concerning the recommendations of the PSSM (NCTM, 2000) for the Data 

Analysis and Probability strand for grades 3-5, expectations include: The design of 

investigations; the consideration of the effects of different methods of data collection; 

the comparisons of data distributions; and the proposal and justification of predictions 

and conclusions based on data.  Variation is an inherent concept within each of these 

expectations in probability and statistics, at the elementary level.  The research on 

student thinking, presented in the next chapter, is beginning to inform us of what 

elementary students can understand about variation. The big question is: What about 

the subject matter knowledge of the prospective teachers of these schoolchildren?  Do 

preservice teachers participate in experiences where they themselves can develop an 

understanding and appreciation of variation?  If teachers are expected to gain some 

requisite knowledge at their training institutions, then the colleges and universities 

should be a place teachers can learn about variation.  More than just traditional math 

courses are called for, and Simon (1993) suggests that “ in order to break the cycle of 

teachers with weak conceptual backgrounds providing conceptually impoverished 
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instruction,  preservice mathematics courses will need to prepare prospective teachers 

more adequately” (p. 252).  

Objectives of the Study 

 Within stochastics variation is the dominant characteristic of statistical 

thinking.  While research on probability and statistics has produced findings in a 

number of areas which I’ll bring up during the literature review in the next chapter, 

research specific to the concept of variation has only recently surfaced.  Moreover, the 

research on variation which has come to light has predominantly been conducted with 

precollege students. Missing from the literature is an idea of how preservice or 

inservice elementary teachers reason about variation.   

 Thus, one objective of this study is to develop a framework to characterize the 

conceptions about variation held by elementary preservice teachers (EPSTs).  A 

second objective is to compare EPTS’ conceptions of variation before and after an 

instructional intervention focusing on variation.  A third objective is to investigate 

types of tasks that might be useful to uncover EPSTs’ thinking about variation.  My 

research questions directly reflect these objectives of the study: 

1. What are the components of a conceptual framework that help characterize  
 

EPSTs’ thinking about variation? 
 

2. How do EPSTs’ conceptions of variation before an instructional 
 

intervention compare to those conceptions after the intervention? 
 

3. What tasks are useful for examining EPSTs’ conceptions of variation in the  
 

contexts of sampling, data & graphs, and probability? 
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 The next four chapters show how this study unfolded to address the above 

research questions. Chapter Two includes a description of the previous research on 

conceptions of variation that has been done in the following three contexts: Variation 

in data sets, variation in sampling, and variation in chance situations. Also, Chapter 

Two discusses an initial conceptual framework that was inspired by prior research and 

a pilot study. Chapter Three provides the methodology used to gather and analyze the 

data, and also contains a detailed description of how the initial conceptual framework 

developed into a richer, evolving framework.  The meaning of each element in the 

evolving framework is discussed as part of the results in Chapter Four. Also in 

Chapter Four, the evolving framework is used to compare EPSTs’ conceptions on 

various tasks from both before and after the instructional interventions. A summary of 

results is given in Chapter Five, as are implications for teaching and recommendations 

for future research. 
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CHAPTER TWO 

Literature Review and Initial Conceptual Framework 

 

 The first purpose of this chapter is to present a selected review of the research 

on stochastical teaching and learning that is germane to the study of variation.  By 

situating the study within the field of stochastics education, we can see how previous 

research in probability and statistics relates to the specific issue of knowledge about 

variation.  The second purpose of this chapter is to articulate an initial conceptual 

framework that comprises three aspects of expecting, displaying, and interpreting 

variation.  These three aspects were hypothesized as a useful lens for looking at 

EPSTs’ conceptions of variation, and provided an organizational structure for the rest 

of the study. 

Literature Review 

 In structuring this literature review, first some studies that look at foundational 

aspects of probabilistic thinking are discussed.  Next, examples of research on 

judgment heuristics, biases, and other stochastical intuitions and misconceptions are 

provided.  Then, some findings on graphicacy and averages that focus on data 

handling are explicated.  I included the above areas because of their connections to 

reasoning about variation.  Lastly, some emergent research on students’ concepts of 

variation in data sets and in sampling and probability contexts is presented.  Although 

this literature review focuses directly on issues of variation, connections are drawn 

throughout the chapter on how other research relates to and informs the present study.   
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 Some of the research has more of a probabilistic flavor and other research 

more statistical, but is in some sense an artificial division which separates these twin 

domains of stochastics.  Both domains enhance and influence one another.  The 

philosophical approach of this study is aligned with “forging connections between the 

study of data analysis and probability concepts” (Shaughnessy, Garfield, and Greer, 

1996, p. 206).   

Foundational Aspects of Probabilistic Thinking 

 In choosing this topic for launching the literature review, my main motive is to 

focus on people’s appreciation of random phenomena.  The ability to discriminate 

between the deterministic and the random lies at the heart of stochastics.  In particular, 

the lack of appreciation for randomness can hinder one’s ability to deal appropriately 

with variation.   

 Piaget and Inhelder (1975) indicated that the age threshold for appreciating the 

unpredictability of random phenomena is seven years, but Kuzmak and Gelman’s 

(1986) evidence suggested “an earlier understanding of random phenomena than 

previously has been reported” (p. 565).  Fischbein, Pampu, and Minzat (1975) 

provided evidence that children as young as five have some sensitivity to uncertainty.  

Kuzmak and Gelman (1986) used both a random device and a deterministic device in 

an experiment with young children.  The deterministic device consisted of a 

transparent tube which dispensed colored balls one at a time.  The color of the next 

ball could readily be seen.  The random device was a rotating wire cage full of colored 

balls which could dispense these balls one at a time through an attached cup. Children 

who used these devices were asked whether or they not they knew for sure which 
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color they were going to obtain.  The researchers found that children between the ages 

of four and seven were able to understand that one cannot say for certain what will be 

the outcome when dealing with random events.  The lack of certainty for individual 

outcomes is the essential feature of randomness which distinguishes it from 

determinism.   

 Research has found that the inclination to cling to a deterministic outlook even 

in the face of a random process is tenacious.  Working with second-graders, Horvath 

and Lehrer (1998) discuss how some of the children initially “did not think of rolling 

dice as completely random”, but that “beliefs about lucky numbers and partial 

telekinesis usually did not endure long after the children’s first opportunities to collect 

data” (p. 126).  In a questionnaire item administered to 1014 students from grades 3, 6, 

and 9, 113 responses affirmed some kind of belief in lucky numbers, as exemplified 

by the student who wrote: “I don’t think many numbers are lucky.  But I think 4, 7, 

and 9 are, so I guess I’d agree in a way you can have lucky numbers” (Watson, Collis, 

and Moritz, 1995, p. 553).  This attitude, similarly exemplified by the student cited by 

Horvath and Lehrer (1998) who said “I usually roll 6s” (p. 137), begs for an 

examination of what is really involved in a random event. 

 An appreciation for randomness cannot be overemphasized as an important 

facet for understanding variation, and represents something “fundamental to reasoning 

within the domain of statistics and probability” (Metz, 1998, p. 156).  Determinism 

thwarts randomness, and thus stifles an appreciation of variation.  Moreover, it would  
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be an erroneous assumption to assume that by the time people reach a certain age, they 

have completely abandoned deterministic notions and embraced the truth of living in a 

stochasticized world.   

   Heuristics, Biases, Intuitions and Misconceptions 

 A host of misconceptions related to probabilistic and statistical thinking have 

been researched, and psychologists in particular have characterized many examples of 

faulty human intuition in the face of uncertainty.  The use of the term misconception in 

this area of research refers primarily to erroneous thinking which contrasts with 

“correct”, normative responses predicted by statistical theory.  This section illustrates 

some of the key findings that research on intuitive stochastical thinking has produced.  

Because this domain of research is so robust and stable, it suggests that when subjects 

reason about variation, they will also bring with them strong intuitions that influence 

their thinking. 

 Psychologists Daniel Kahneman and Amos Tversky found that people come to 

the table of stochastical learning with a host of their own intuitions about the subject, 

and that these intuitions often serve them quite poorly.  As they wrote early on, “We 

submit that people view a sample randomly drawn from a population as highly 

representative, that is, similar to the population in all essential characteristics” 

(Kahneman & Tversky, 1971, p. 105).  Some examples will illustrate the key features 

of this judgment heuristic, which is known as representativeness.   

 For the first example, in considering the gender of six children in a family, 

many people consider the sequence of GGBGBB to be more likely to occur than 

BBBBBG.  Many people think that any sample drawn from the population should 
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reflect a near 50-50 distribution of boys and girls (Kahneman & Tversky, 1972; 

Shaughnessy, 1977).  Kahneman and Tversky also identified what they called the “law 

of small numbers, which asserts that the law of large numbers applies to small 

numbers as well” (1971, p. 106).  Shrage (1983) also observed this in his tertiary 

students.  Using a population mixture of 50% white balls and 50% black balls, he 

found that students believed the chances of getting 7 white balls in 10 draws and the 

chances of getting 70 white balls in 100 draws were the same.  People often intuitively 

rely on the law of small numbers when playing games of chance.   

 If the results of a sequence stray too far from the population proportion, a 

“corrective bias in the other direction is expected” (Kahneman & Tversky, 1971, p. 

106).  This helps explain why a person who sees flips of a fair coin result in five heads 

in a row will intuitively think there is a higher likelihood of a tails on the sixth flip, a 

psychological phenomena known as the Gambler’s Fallacy.   

 The representativeness heuristic also suggests that any uncertain event must 

“also reflect the properties of the uncertain process by which it is generated” 

(Kahneman & Tversky, 1972, p. 434).  For example, when flipping a coin, the 

representativeness heuristic implies that any sequence of flips should appear random.  

Thus, people do not consider sequences such as THTHTHTHTH or TTTTTHHHHH 

to be representative, although both have a 50-50 mix of Hs and Ts.  These sequences 

appear to be too ordered.  They do not appear to be random, and thus do not “represent 

the fairness of the coin” (Tversky & Kahneman, 1974, p. 1125).   
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 A second judgment heuristic, called availability, is used when people ascribe 

likelihoods to situations based on how readily they bring similar examples to mind 

(Tversky & Kahneman, 1974).  An example of this bias occurs when people are asked 

if it is easier to choose committees of two or committees of eight from a group of ten.  

Those operating with an availability heuristic will find it easier to think of examples of 

committees of two, and hence they fail to recognize the equivalent nature of the 

problem (Shaughnessy, 1993).  Similarly, people erroneously tend to think there are 

more words beginning with “r” than there are words with “r” as the third letter, 

because words starting with “r” are easier to recall (Tversky & Kahneman, 1974).  

Reliance on the availability heuristic leads people to depend on what they can recall or 

mentally construct most readily. 

 Another facet of intuitive thinking discovered in research is the outcome 

approach, which colors a person’s fundamental understanding of the goal of 

probability.  People who operate under the outcome approach interpret probability 

questions as “predicting the results of a single trial” (Konold, Pollatsek, Well, 

Lohmeier, & Lipson, 1993, p. 394).  For example, consider a six-sided die with five 

black sides and one white side.  One student reasoned that since a single toss would 

"almost certainly" result in black, then by extension six tosses would result in six 

blacks (Konold, 1989, p. 83).  Another component of the outcome approach includes 

the way in which probabilities are judged as right or wrong after each outcome.  For 

example, Konold (1989) found that, if a weather forecaster predicts a 70% chance of 

rain for tomorrow, and then it doesn’t rain, some subjects evaluate the 70% prediction  
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as erroneous.  That is, the forecaster’s prediction is judged wrong because the 

predicted outcome didn’t occur.  Outcome approach thinking can also result in an 

emphasis on causal features rather than frequency data.  Some people in Konold's 

(1989) study inspected the features of a seven-sided irregular polyhedron, or the way 

in which it was rolled, to predict outcomes, and these people discounted the actual 

results of 1,000 previous rolls.  A view towards an equiprobable interpretation may 

interact with outcome approach thinking.  A person may view all outcomes of an event 

as equally likely, and deem the goal of probability questions as simply a matter of 

choosing any outcome which could occur (Shaughnessy & Ciancetta, 2001; 

Shaughnessy & Bergman, 1993; Shaughnessy, 2001).   

 These three types of intuitive stochastical thinking (representativeness, 

availability, and the outcome approach ) are examples of cognitive strategies which 

may influence a person’s reasoning in situations where attention to variation is critical.  

For instance, representativeness leads to a person’s insensitivity to the effects of 

sample size.  This is readily illustrated in the results shown for what is known as the 

Hospital Problem (Tversky & Kahneman, 1974), which is summarized as follows: 

 A certain town has two hospitals.  In the larger hospital, about  45 babies are  
 born each day, and in the smaller hospital about 15 babies are born each day.   
 For a period of 1 year, each hospital recorded the days on which more than  
 60% of the births were boys.  Which hospital do you think recorded more such 
 days? 
 
The researchers noted that 53% of undergraduate students thought that the two 

hospitals would have recorded about the same number of such days.  The subjects did 

not recognize that the larger hospital would be less likely to deviate from the expected 

50-50 gender mix, and “This fundamental notion of statistics is evidently not part of 
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people’s repertoire of intuitions” (1974, p. 1125).  Availability may lead a person to 

attach inflated significance to an event which has personal meaning.  Such an event 

becomes more than just another data point, and can bias statistical thinking.  

Shaughnessy (1992) offers this example, “If several of your friends have recently 

divorced their spouses, you may be led to believe that the local incidence of divorce is 

on the rise, when in fact it has not changed” (p. 472).  In this sense, availability can 

reduce the perception of variation.  If a child recalls a game of chance in which she 

rolled many sixes, then it may make sense for her to think that six is a lucky number.  

The outcome approach also can diminish the perception of variation, as demonstrated 

by the subjects in Konold’s (1989) study who predicted all blacks in the tosses of the 

die with five black faces and one white face.   

 To summarize, when considering conceptions of variation it is important to 

remember the types of judgments that people are susceptible to, and that people 

“already have their own built-in heuristics, biases, and beliefs about probability and 

statistics” (Shaughnessy, 1992, p. 472).  It is also important to attend to a person’s 

fundamental understanding of randomness.  The next two sections discuss research on 

graphicacy and averages, two aspects of data handling which both influence 

conceptions of variation.  For instance, graphs summarize data and reveal or disguise 

variation in the data set depending on the type of graph used.  An average might be 

representative of the data set, but variation can address how the data clusters or 

spreads out around the average.   
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Aspects of Data Handling: Graphicacy 

 Graphicacy is a term first introduced by Balchin and Coleman in 1965, and has 

evolved in definition until Wainer narrowed it to mean “the ability to read graphs, 

defining it as proficiency in understanding quantitative phenomena that are presented 

in a graphical way” (Friel & Bright, 1996, p. 1).  The facility to construct and interpret 

graphs begs the question of what exactly constitutes a graph.  For the purposes of this 

study it seems natural to consider the standard sorts of graphs and plots of “univariate 

data that dominate the school curriculum, that is, line plots, bar graphs, stem-and-leaf 

plots, and histograms” (p.1).  Also, the kinds of pictographs commonly found in the 

media are of interest in this study, as are rudimentary presentations of bivariate data 

such as scatter plots or line graphs.  This study adopts the position that “the use of 

graphs and other kinds of representations needs to be viewed as part of the process of 

statistical investigation and not as an end in itself” (Friel, Bright, Frierson, & Kader, 

1997, p. 62).  Graphs can be viewed as an important part of data handling, whose chief 

role lies in data reduction. 

 Curcio (1987) conducted a study of 204 fourth-grade and 185 seventh-grade 

subjects.  Students were given a test which used twelve graphs equally distributed 

among the following four types: bar graphs, circle graphs, line graphs, and 

pictographs.  Curcio was able to identify three levels of difficulty in making sense of 

graphs.  The first level is simply reading the data, in which the subjects could attend 

to the basic facts stated in the graph, including numerical values shown, titles, and axis 

labels.  For example, in a bar chart showing the heights of four children (see Figure 1),  

 



 

a question invoking a simple reading of the data would be to ask, “How tall is Mark?” 

The second level of comprehension is reading between the data, which necessitates 

“comparisons and the use of mathematical concepts and skills” (Curcio, 1987, p. 384).  

A question for this level would be, for example, “How much taller is Dan than Mark?” 

The third level is reading beyond the data, which requires “extension, prediction, or 

inference” (p. 384).  To establish the level of statistical literacy essential to functioning 

in a modern society constantly assailed by data, people need to move up through these 

hierarchical levels of difficulty of graphical comprehension (Moritz & Watson, 1997; 

Curcio, 1987).    
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Figure 1 – Height of Four Children 

 In 1994, Friel and Bright (1996) studied graphicacy among students in grades 

6, 7, and 8.  They researched the levels of graph comprehension outlined earlier by 

Curcio (1987).  For example, they showed students a line plot depicting the quantity of 

raisins in half-ounce boxes (see Figure 2).  Rather than initially ask students questions 

about reading the data, Friel and Bright started with the following questions aimed at 

reading between the data: “Are there the same number of raisins in each box? How 

can you tell?” (Friel & Bright, 1996, p. 4).   
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Figure 2 – Number of Raisins in a Box 
 
Results showed that although many students were able to answer the first question 

correctly in the negative, in their subsequent explanations it became clear that they 

were looking at the graph in ways that did not support their answer.  For example, one 

student said “No, because they weigh the boxes until they equal ½ ounce.  They don’t 

count the raisins” (p. 5).   

 Bright and Friel (1998) also tested students before and after an instructional 

unit which was designed to “highlight connections between pairs of graphs” (p. 68).  

For each pair of graphs, the same set of data was used.  Two pairs of graphical types 

were stem-and-leaf plots versus histograms and line plots versus bar graphs.  A third 

pair was bar graphs for grouped versus ungrouped data (see Figure 3).  The graph at 

the top of Figure 3 represents ungrouped data (raw data), and students can simply 

point to a particular bar to identify their own data value.  The graph at the bottom of 

Figure 3 represents grouped data (reduced data), and specific data values are not 

obtainable for any individual student.  Bright and Friel wanted students to determine 

“not only what information is presented in each representation but also whether 

identical information could be extracted from the different representations” (1998, p. 
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69).  The researchers found that students had difficulty in making the translation from 

graphs of ungrouped to grouped data. 
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Figure 3 – Ungrouped & Grouped Data 

 As one student commented when looking at a graph for grouped data, “I don’t 

know how you add this thing up” (p. 74).  The central theme propounded by Bright 

and Friel is that “establishing connections or translations among representations is 

critical for developing understanding” (p. 82).  While their analysis of results does 

discuss aspects of mode, median, and mean in the students’ search for centers, Bright 

and Friel paid less attention to the ways in which variation reveals itself in the various 

graphical representations.  The lack of attention to subjects’ conceptions of variation is 

noteworthy because many of the researchers’ graphs, as well as questions about what 
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is typical for the data set, seem to provide a natural context in which to look at 

variability in data presented visually. 

 In summary, research indicates that there are different levels of graphical 

understanding held by students, and that the type of graph makes a difference on what 

people comprehend.  It may well be that the research on graphicacy represents a 

missed opportunity to look at variation in the context of visual data displays 

(Shaughnessy, 1997), but it can now be seen that a study about variation, if 

incorporating aspects of graphicacy, can benefit from consideration of what a person 

can comprehend from graphs.   

Aspects of Data Handling: Averages 

 The concept of average is fundamental to statistical thinking.  (Davis & Hersh, 

1986).  Watson and Moritz (2000c) point out that for a long time the school 

curriculum focused almost exclusively on the arithmetic mean as being synonymous 

with finding an average.  The notion of average as representative of the data, including 

the use of measures such as mean, median, and mode, has only been emphasized in the 

American school curriculum in the past decade.  Note that when talking about 

measures of central tendency, the term representativeness is used not as it was in the 

judgment heuristics discussed earlier.  Kahneman and Tversky used the term as a label 

for a type of erroneous intuitive thinking, while in the context of this section the word 

has a positive connotation for statistical thinking.  Representativeness as it will be 

used in this context refers to a way of describing how well an average summarizes a 

set of data.   
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 Work done in a study by Mokros and Russell (1995) of fourth, sixth, and 

eighth-graders showed that “students’ notions of representativeness or typicality grow 

out of their everyday experiences and have a strong flavor of reasonableness and 

practicality” (p. 21).  Students showed what they knew about averages by constructing 

different data sets that could reflect a given average.  Some of these construction 

problems were made richer through added constraints, such as the prohibition of using 

the actual average in the data set, or the mandatory use of preexisting data values.   

 For example, in the “Potato Chips” problem, the task was to put price tags on 9 

bags of chips so that the typical, or average, price would turn out to be $ 1.38.  An 

added constraint to extend the problem was to disallow any price tag from actually 

being $ 1.38.  In the “Allowance Construction” problem, the aim was to construct a 

distribution of allowances which, taken together, had an average of $1.50.  An 

extension was to specify that 2 allowances had to be 75 cents, and 3 had to be one 

dollar.  Thus, “the student’s task was to create a large frequency distribution where 

some data was already placed” (Mokros, Russell, Weinberg, & Goldsmith, 1990, p. 4).  

Other problems asked students to interpret what was “typical” from graphs.  In the 

“Allowance Interpretation” problem, a skewed, bimodal graph showing a number of 

students’ allowances was presented.  The task was to “use the data to determine the 

typical allowance as well as the highest amount that could be argued for” (Mokros & 

Russell, 1995, p. 24).  A third type of problem involved understanding a weighted 

average.  The “Elevator Problem” essentially aimed at asking for the average weight 

of a group of ten people, comprising six men whose average weight was 180 pounds, 

 



 

 29

and four women whose average weight was 125 pounds (Mokros et.  al., 1990;  

Mokros & Russell, 1995).   

  Of the five predominant approaches to average identified by Mokros and 

Russell, two approaches - average as mode, and average as algorithm - were not 

associated with the notion of representativeness.  Modal thinkers were easily able to 

construct data sets, since they saw average as the value occurring most frequently.   

However, “when they were not allowed to use the average value as part of their 

distributions, real difficulties were encountered” (Mokros et.  al., 1990, p. 7).  In 

general, students found it much harder to work from the average to the data than vice 

versa.  The standard algorithm for finding an average doesn’t go far in helping to solve 

construction problems, as is exemplified by one student whose first attempt at solving 

the “Potato Chip” problem was to take the desired average of $ 1.38, multiply that by 

9, and then divide by 9. 

 When the interviewer asked if there’s any way she could put some prices on  
 the chip bags, she replied that she knew how to get an average, but had not yet  
 learned how to find the “numbers that go into an average” (p.15). 
 
The other three approaches - average as reasonable, or as midpoint, or as a point of 

balance - exemplified a sounder understanding of what it means for an average to 

represent a set of data.  Average as “reasonable” was considered by Mokros and 

Russell to be significant for a more robust understanding about the concept.   

 When considering a data set, two fourth graders and two sixth graders 

demonstrated the key features of what the researchers mean about the notion of 

average as reasonable.  First, the students relied on values that made sense in the  

 



 

context of the problem, in line with their own understanding of prices, allowances, or  

weights.  Second, the students had some regard for the idea of average as roughly 

centered rather than precisely in the middle of the data, and that in some sense “high 

values must be countered by low values” (p. 9).  Another important aspect of the 

research was the finding of how strong an attraction symmetry had for some students, 

particularly those who gravitated towards a midpoint strategy (Mokros & Russell, 

1995).  The researchers concluded that premature introduction of the algorithm for 

finding the mean may in fact be impede a students’ overall understanding of the ways 

in which the mean is or is not representative of the data.    

 To broaden children’s’ narrow view of average, Mokros and Russell suggested 

it is important to “focus on describing and comparing data sets” (1995, p. 37).  This 

suggestion was central to a study of eighty-eight students in grades 3 to 9 on the 

emergent ideas of statistical inference by Watson and Moritz (1999), as was the notion 

of average as a representative measure.   

 

 
 
 
 
 
 
 
 
 
 

Yellow Class 

    5     

    5     

    5     

   4 5 6    

   4 5 6    

1 2 3 4 5 6 7 8 9 

   
  N

um
be

r o
f S

tu
de

nt
s 

Number Correct 

Brown Class 

         

         

    5     

   4 5 6    

  3 4 5 6 7   

1 2 3 4 5 6 7 8 9 

   
  N

um
be

r o
f S

tu
de

nt
s 

Number Correct 

Figure 4 – Yellow Class & Brown Class 
 

The researchers asked students to compare the performances of the two classes whose  
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test scores were shown in frequency graphs (see Figure  4).  Students were asked 

which class did “better”.  The researchers classified student responses according to 

two strategies (numerical or visual) which were used either singly or together.  For 

example, some students using a numerical strategy saw the graphs as a way to obtain 

the actual scores to calculate totals and means for comparing the two classes.  Students 

using visual strategies commented on aspects like the symmetry or spread of the 

graphs.  Some students “commented on both visual and numerical strategies, but 

expressed conflict between them rather than viewing them as complementary related 

strategies” (Watson & Moritz, 1999, p. 155).   

 In the example shown in Figure 4, the two classes were of equal size.  Another 

similar example used classes of unequal size, with the result that proportional 

reasoning became increasingly important in analyzing the problem.  The researchers 

concluded that students need more experience with a variety of data sets, and with 

tasks that allow for the representation of data graphically, and more experience with 

summarizing data with measures of central tendency. 

 As we turn to look at some studies which synthesize different notions of 

statistical thinking, it becomes clear that a study on variation cannot properly be 

divorced from other key ideas such as average and graphicacy.  A person’s facility 

with graphs, measures of center, and concept of distribution all may influence how one 

thinks about variation.  In the next section, shades of these different but related notions 

can be seen, as attention is now focused on research which highlights the contexts in 

which variation was explicitly revealed or explored.  The research on variation now  
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unfolds in three broad contexts: data sets, sampling, and probability situations.  Much 

of the research which follows exhibits a blend of statistical concepts, such as 

graphicacy, averages, or distributions.  In a way, many of these studies drew on 

statistical skills, concepts, and intuitions related to those discussed earlier.  The main 

difference is that in many cases variation was the focus of the investigation itself. 

Variation in Data Sets 

 Jones et al. (2000) claim that “for students to exhibit statistical thinking, there 

is a need for them to understand data-handling concepts that are multi-faceted and 

develop over time” (p. 271).  Data handling incorporates “organizing, describing, 

representing, and analysing data, with a heavy reliance on visual displays such as 

diagrams, graphs, charts, and plots” (Shaughnessy, Garfield, & Greer, 1996, p. 205).  

The kind of thinking implied by these statements includes attention not only to 

graphicacy and averages, but to spread, or variation, as well.  Data handling implies 

finding ways to reduce the data while retaining the key features of the data set. 

 Friel et. al. (1997) mention the process of data reduction and the structure of 

graphs as factors influencing graph knowledge.  They note that “data reduction is an 

essential part of analysis of the data; different graphs emphasize different degrees of 

data reduction” (p. 62).  In assessing the components of data reduction, they used a 

problem that involved a stem-and-leaf plot (see Figure 5) of minutes taken by middle 

grade students to get to school.  The accompanying question was, “What is the typical 

time it takes for students to travel to school?” (Friel & Bright, 1996, p.6).  The 

researchers concluded that “students were less likely to compute measures of center as  

 



 

part of their responses” (Friel et.  al., 1997, p. 60).   
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Figure 5 – Minutes to Travel to School 
 

 Evaluating the different responses, the researchers seem to validate the idea 

that attention to variation was an important part of an overall analysis of the question.  

They note that only a few students chose to use the mean or median in their responses.  

Instead, results showed that students responded in terms of clusters of typical times, or 

in terms of a range of numbers that occurred more often, or in terms of the mode.  

They rhetorically ask of the various methods, 

 Is one ‘more appropriate’ than another; do we want students to move 
 beyond the use of the mode as a tool in this case to using clusters of  
 data as a way of describing what’s typical? If so, what is a ‘good sized’  
 cluster to be highlighting? (p. 60). 
 
Thus, in the context of the graphical aspects of data reduction, students need an 

awareness of the importance of both measures of central tendency and the spread of 

the data.     

 Another approach to looking at students’ statistical thinking focused on the 

concept of distribution.  Mellissinos, Ford, and McLeod (1997) noted that although 

previous studies identified some ideas on how students reasoned about the concept of 

average, “they have revealed little about how students make sense of an average in the  
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context of the distribution that it represents or summarizes” (p. 176).  Using the 

“Potato Chip” problem of Mokros and Russell (1995) described earlier, Mellissinos et.  

al.  interviewed a middle-school student.  Their results supported the findings by 

Mokros and Russell (1995), in which the subject did not understand what it meant for 

an average to be representative of a set of data.  What distinguishes the work of 

Mellissinos et.  al.  (1997) is their focus on an understanding of distribution.  They 

write, “One reason for the student difficulties may be that students have not learned to 

think about the mean as a representative measure of a distribution” (p. 179).  Mokros 

and Russell’s notion of average as a representative measure involves capturing a range 

and distribution of a set of data, but Mellissinos et. al. caution that an understanding of 

the distinction between the terms “distribution” and “data set” is necessary to establish 

and interpret representativeness.  According to Mellissinos et.  al.  (1997),  

 A data set is a collection of measurements of one or more 
  characteristics (of objects or people).  A distribution is an attribute of a  
 data set that communicates how measurements in a data set are  
 distributed across its range of values (p. 179). 
 
Mellissinos et. al. conclude that “without a clear idea about distribution, it is difficult 

to make inferences about student notions of representativeness” (1997, p. 179).   

 Mellissinos also researched how the notions of a distribution’s shape, center, 

and spread interact (Mellissinos-Lernhardt, 1999).  This time she used the “Potato 

Chip” problem with college students and another task that involved the pulse rates of a 

set of 30 people in the same age group. One task used both a table and a histogram to 

present the 30 pulse rates.  After first being told that the typical pulse rate for the given  
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age group was around 65 to 69 beats per minute, students were asked if they thought 

that the pulse rates for a given set of people were typical.  Results showed that, for 

some students, the ability to interpret a mean did require some concept of the range of 

possible values.  In the Potato Chip task, one student expected variability in the prices 

for bags of chips, but did not “have a sense of how much variability would be possible 

for the situation” (Mellissinos-Lernhardt, 1999, p. 6).  In the Pulse Rate task, the same 

student  “relies too heavily on the mean to decide whether the group is typical.  She 

does not take into consideration how spread out the pulse rates are, how the data 

cluster and whether there are any outliers” (p.7). 

 It thus did seem that some students had some awareness that only looking at 

the center does not capture the whole picture.  Mellissinos reiterates that while many 

educators promote the mean as representative of a distribution “the concept of 

distribution relies heavily on the notion of variability, or spread” (p. 1).  Certainly the 

characteristics of a distribution can rely on representing data through summary 

statistics, but graphs also provide a representation. Hence, Mellissinos’ research 

highlights the connections in statistical thinking between conceptions of graphicacy, 

centers, and variation, through the common unifying theme of distribution. 

 Shaughnessy (1997) discusses the work of middle school students on data sets 

stemming from the weather pages of a local newspaper.  Students were gathered in 

groups of four to five, and each student was given a days’ weather page so that their 

small group had a small set of consecutive days’ worth of data on the weather.  He 

observed and noted the types of questions that students came up with, and the 

approaches they took in analyzing their own questions.  In their analysis students 
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became aware of the kinds of variation inherent in weather data.  For example, 

Shaughnessy wrote that “quite a discussion ensued as to why there was such 

variability for the coldest time of day” (1997, p. 12).  The theme of weather was also 

used by Torok and Watson (2000), who explored concepts of variation with sixteen 

students, four each from grades 4, 6, 8, and 10.  The two researchers framed their 

weather task using the concept of average.  Students were told that the average 

maximum daily temperature for Hobart, Australia, over the year was 17 degrees 

Celsius.  Questions included whether or not students thought all the days of the year 

had that maximum temperature of 17 degrees, and what the maximum temperature 

might be for 6 different days of the year.  They also asked students for likely ranges of 

temperatures, such as what the highest and lowest maximum daily temperature might 

be for the month of January, July, or over the course of the year.  The researchers 

found that older students had, in general, a higher level of understanding of variation 

than the younger students. 

 Shaughnessy and Pfannkuch (2002) have found that the data sets for the Old 

Faithful geyser provide an excellent context for highlighting the role of variation in 

statistical analysis.  They describe a classroom exploration in which students were first 

given one day’s worth of data for the number of minutes between successive eruptions 

of the geyser.  The question which threaded through this investigation was about how 

long one should expect to wait between eruptions of Old Faithful.  Students were then 

told to represent this data in a graph of their choice.  Then they were given several 

more days’ worth of data and asked to graph it as well.  Some of the students used  
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boxplots, which do demonstrate the range of the data but which mask the nature of 

variation which can be seen when the data is plotted over time.  Other students used 

histograms, which reveal the underlying distribution.  At first, many students just 

make an initial prediction based on measures of central tendency (such as the mean or 

median), which also disregard the variability in the distribution.  Shaughnessy and 

Pfannkuch (2002) point out that  

 Students who attend to the variability in the data are much more likely  
 to predict a range of outcomes or an interval for the wait time for Old  
 Faithful, such as “Most of the time you’ll wait between 50 to 90 minutes,”  
 rather than a single value of 70 minutes (p. 5). 
 
Also, when students first look at one day’s data, and then look at several days’ data, 

they may see the variation across days as well as the variation within a day.  This 

extends Curcio’s (1987) analysis to what these researchers call looking “behind the 

data” (p. 6). 

 The point of the research in this section is that questions about data sets can 

indeed be shaped to explore student understanding of variation.  The trend in the 

research discussed so far is to recognize the importance of blending of variation with 

several other statistical concepts such as graphicacy, distributions, and averages.  In 

addition to the contexts of data sets, students’ conceptions of variation can also be 

studied within the context of sampling, which is next discussed. 

Variation in Sampling Situations 

 As mentioned in the previous chapter, the term variation and its different 

linguistic forms come with many related meanings.  In sampling situations, variation 

appears in the differences among repeated samples drawn from the same population.  
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Samples also vary in the degree to which they represent their parent population.  For 

example, if the population is all students at a high school, using the same opinion poll 

on two different groups of students is likely to produce two different poll results.  

Thus, sampling situations can invoke many levels of meaning when we consider 

variation. 

 Within the context of sampling, “as sample size increases, the statistics of a 

sample become less variable and more closely estimate the corresponding parameters 

of the population from which the sample was selected” (Well, Pollatsek, & Boyce, 

1990, p. 289).  This is due to the Law of Large Numbers, yet Kahneman and Tversky 

(1972) found, through tasks like the Hospital Problem mentioned earlier, that many 

people are unaware of how sample size influences variability.  Well et.  al.  (1990) 

point out the objections of other researchers, who criticized some of Kahneman and 

Tversky’s problems as being too difficult for subjects to fully comprehend.   

 Some research has shown that people can be correctly influenced by sample 

size.  For example, in a question that asked which of two samples of different sizes 

would better estimate some characteristic of a population, Bar-Hillel (1982) found that 

over 80% of subjects correctly chose the bigger sample.  To gain further insight into 

how well people understood the effects of sample size on the variability of the mean of 

the sampling distribution, Well et.  al.  (1990) posed a series of questions to 

undergraduates, 

 in some cases asking subjects to judge which of two samples was  
 more likely to fall closer to the population mean and in others, asking  
 them to judge which of two samples was likely to deviate more from the  
 population mean (p. 292).   
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One context used by Well et. al. was the average height of American males.  Students 

were told that the national average height of 18-year-old males is 5 feet, 9 inches.  

They were also told that at Post Office A, 25 men registered for the draft each day for 

a year, while the number of men registering at Post Office B was 100 men per day for 

a year.  At each Post Office, the average heights of men per day was computed.  As an 

example of a question pertaining to the tails of the distribution, students were asked 

which Post Office would have recorded more days on which the average height was 6 

feet or more.  The corresponding question pertaining to center of the distribution was 

identical, except that “6 feet or more” was replaced by “between 5 feet 6 inches and 6 

feet” (Well et.  al., 1990, p. 297).  Results indicated that people used information on 

sample size more accurately when dealing with centers of distributions rather than the 

tails.  However, even when the subjects had received instruction on sampling 

distribution, “many of them still did not understand how sample size influenced the 

variability of the sample mean” (p. 310).  This research does highlight the importance 

of understanding a distribution, a point also brought out in the research of Mellissinos 

(1999). 

 Some of the questions used by Well et. al. are similar in spirit to the Hospital 

Problem and to a question adopted by Watson, Collis, and Moritz (1995).  These latter 

researchers interviewed a subset of twelve students from 171 girl subjects from grades 

3, 5, 7, and 9.  They intended to explore the general notion that small samples are 

more likely to have extreme results than large samples, with this question: “The 

researchers took a random sample from each school: 50 children from the city school,  
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20 children from the country school.  One of these samples was unusual: it had more 

than 80% boys” (p. 6).  Students were then asked whether the unusual sample was 

more likely to have come from the city or country school.  Not one of the twelve 

students was able to give a suitable justification for their response.  The same question 

was also used by Watson and Moritz (2000b), who asked 41 students from grades 3, 6, 

and 9.  They found that only six students could give an adequate explanation that 

connected unusual results to the smaller sample.  Many of the other responses made it 

seem as though the choice of large or small sample was almost a random decision, 

“with the reasons given for choosing the small samples also being given for choosing 

the large one” (Watson, 2000a, p. 122).  The original Hospital Problem can be 

theoretically modeled by a binomial distribution, while this modified version above 

involves a hypergeometric distribution (since children are chosen without 

replacement).  In either case, many students do not recognize that “the smaller sample 

is more likely to give an extreme or biased result” (Watson & Moritz, 2000b, p. 66). 

 Fischbein and Schnarch (1997) included the original Hospital Problem in their 

study on the evolution of probabilistic, intuitively based misconceptions.  Of eighty 

students in grades 5, 7, 9, and 11, plus 18 prospective teachers, only one ninth grader 

suggested that the smaller hospital would have the more extreme result.  In addition, 

the percentage of respondents who thought the results would be about the same for 

both hospitals actually increased with age, from 10% of the fifth graders all the way 

up to 89% of the prospective teachers.  Related to the heuristic of representativeness 

mentioned earlier, the basic misconception here is that sample size doesn’t affect  
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variation.  The researchers note that “this misconception developed with age in a 

surprisingly regular manner” (Fischbein & Schnarch, 1997, p. 101), meaning that 

more people committed the misjudgment as the age of the subjects increased.   

 Watson (2000a) gave 33 preservice secondary mathematics teachers the 

Hospital Problem, and categorized her results by whether the respondents based their 

solutions solely on intuition, on a mathematical argument, or on a mixture of 

approaches.  She found the success rate of 55%, while not surprising in comparison to 

results of Kahneman and Tversky’s (1972) study of tertiary students, was not related 

to her subjects’ prior formal mathematics experience.  Moreover, she notes that “it is 

disappointing that so few naturally mixed intuition with an attempted mathematical 

justification in solving the hospital problem” (Watson, 2000a, p. 134).   

 The Hospital Problem and similar questions not only illustrate the kinds of 

intuitions and use of heuristics shown by Kahneman and Tversky (1971, 1972), but 

also allow researchers to investigate students’ understanding of the relationship of a 

sample to its underlying population.  As Watson and Moritz put it, such questions 

allow researchers to “investigate students’ understanding of the effect of increased 

sample size in increasing the reliability with which the sample represents the 

populations” (2000b, p. 50).  Watson and Moritz (2000a) wished to determine if 

“students recognize the tension between efficiency of small sample sizes, and the 

reliability of larger sample sizes” (p. 6).  They asked 2040 students from grades 3 

through 11 whether someone should choose to buy one car in favor of another based 

on the opinions of a few friends, on the results from a statistical report on 400 cars of  
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each type, or whether both sources of information were equally valid.  More students 

chose the response that both sources were equally valid over any other response, 

although the older students more successfully identified the greater reliability inherent 

in the larger sample.  The researchers (Watson & Moritz, 2000a) noted that “some 

students believe that any sample however small is representative while others believe 

that ‘larger’ is always ‘better’ to achieve representativeness, without regard to 

increasing difficulty and cost of data collection” (p. 31) .  This tension is further 

revealed in some of the subsequent research on sampling which was undertaken in the 

context of conducting surveys, or polls. 

 Jacobs (1997) conducted a study using fourth- and fifth-grade subjects, in 

which childrens’ informal understandings about sampling issues were investigated.  

Specifically, Jacobs was concerned about students’ perceptions of sampling methods, 

and in students’ distinctions between those methods that led to representative samples 

versus those that led to unrepresentative samples.  Some of Jacobs’ questions were in 

the context of taking a survey to predict how many schoolchildren will purchase a 

ticket for the school raffle.  Other questions were in the context of taking a survey to 

determine how many of the city’s schools were recycling.  In each context, subjects 

were presented with a variety of sampling methods to evaluate in conducting the 

survey, such as simple and stratified random sampling methods, self-selected methods, 

and restricted methods (which used select groups of the population who would be 

more likely to skew the results in a certain direction).   

 Jacobs found that children evaluated these sampling methods by focusing on  
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the potential for bias, fairness, practical issues, or the results produced by the method.  

For example, “some children…were able to identify potential bias with restricted and 

self-selected sampling methods and to recognize a lack of potential bias with random 

sampling methods” (Jacobs, 1997, p. 12).  In focusing on fairness, however, some 

students were not impressed by the simple random methods which ensured that 

everyone had the same chance of participating in the survey.  They were “not thinking 

of fair in the probabilistic sense but rather in the affective sense of how the 

participants (or non-participants) felt about having the opportunity to participate in the 

survey” (p.12).  This interpretation of fairness led subjects to want members from all 

types of subgroups in the sample, which meant that stratified random sampling was a 

favored method for these subjects.  Some of Jacobs’ subjects also focused on the 

possibility of extreme outcomes, even though the chance of those outcomes occurring 

was low.  Other researchers have claimed that the focus on extreme outcome is 

suggestive of the outcome approach (Shaughnessy, Watson, Moritz, & Reading, 

1999), because even though an outcome might have a small probability, the outcome 

still could occur.  Lastly, students assumed a correspondence between the results 

produced by the sampling method and the results expected prior to sampling.  That is, 

“if the results corresponded with what was expected, then it was an appropriate 

sampling method because it got the ‘right results’ “ (Jacobs, 1997, p. 14).  The 

converse also held, so that sampling methods which produced different results from 

what was expected are judged to be incorrect methods. 

 Statistical inference involves using the data at hand to make predictions about  
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the population from which those data were taken.  Jacobs rightly notes that “statistical 

inference is almost by definition imperfect – all sampling introduces some error” 

(1997, p. 2).  The context of media polls has been used to research how students 

expect, notice, and understand the variation inherent in sampling (Watson, Collis, & 

Moritz, 1995; Watson, 1997; Watson, 1998; Watson & Moritz, 2000a; Watson & 

Moritz, 2000b).  Polls invite people to consider the effect of sample size on variation, 

as well as the variation naturally arising from polling different sample of the same 

size.  One task, involving polls on handgun use, generalized from a sample of 2508 

Chicago high school students to make a claim about all high school students in 

America.  Another poll involved listeners who phoned a youth radio station to voice 

opinions on drug use.  The research tasks asked whether or not the samples for these 

polls offered a reliable way of finding out public opinion throughout the country.  

Watson and Moritz (2000b) hypothesized a model of student development of concepts 

of sampling which suggests that 

 As students begin to acknowledge variation in the population, they  
 recognize the importance of sample selection, at first attempting to 
 ensure representation by predetermined selection but subsequently by 
 realizing that adequate sample size coupled with random or stratified 
 selection is a valid method to obtain samples representing the whole 
 population (p. 63). 
 
The concepts of variation and representation are intrinsic to the task of making 

inferences about populations from sample data, and the tension between these two 

concepts “always exists in a sampling situation” (Shaughnessy et.  al., 1999, p. 7). 

 Rubin, Bruce, and Tenney (1991) agree that a key to mastering statistical 

inference is to balance sample representativeness (the way in which a sample often has 
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characteristics that are identical to the parent population) with sample variability (the 

idea that different samples from a single population are often not identical).  To 

investigate these concepts, Rubin et.  al.  (1991) interviewed a dozen high school 

seniors who had never taken any statistics courses.  The researchers used a question in 

which the population was known, and repeated samples could be drawn.  In the 

Gummy Bears problems, students were told that packets of candy were filled with 6 

Gummy Bears per packet.  These candies were packaged after being drawn from a 

large vat containing two million green and one million red candies.  Students were 

first asked about the number of green candies they thought would be in their own 

packet; then they estimated how many packets out of 100 would have that same 

number of green candies.  “Finally, we asked them to specify the entire distribution by 

answering the questions, ‘How many kids out of 100 had N green gummy bears in 

their packet?’ for N = 0 through 6” (Rubin et.  al., 1991, p. 5).  This is an excellent 

question to get at variability in repeated samples of a fixed size.  For the first question, 

all twelve subjects said that they would expect 4 out of the 6 candies in their own 

packet to be green, and their explanations indicated that they were using a ratio 

approach to this question.  However, “when asked if every kid’s packet would contain 

4 green Gummy Bears, all of the students knew that there would be variation among 

samples” (p. 5).  Some students felt a need to determine a cause for this variation, 

suggesting that the candies might have gotten stuck together; others clearly felt that 

any number other than four, while possible, was an example of a flaw in the sample.  

In looking at the distribution of 100 packets, students consistently overestimated the 

frequencies near the middle of the distribution, and underestimated the frequencies 
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near the tails.  “No student’s distribution contained a peak at a point other than 4G, 

2R, and…only two students allowed the possibility of a category being empty” (p. 7), 

the researchers noticed.  For this task, students seemed overwhelmingly influenced by 

the notion of sample representativeness. 

 Rubin et. al. (1991) took the same subjects and asked them another question 

that involved the underlying binomial structure in the Gummy Bears problem.  The 

subjects were asked to imagine that there were only enough lockers at a school for half 

the children.  In order to determine who would or would not receive a locker, the 

school principal put slips of paper into a bowl.  Half of the slips permitted the holder 

to a locker, and half denied the holder a locker.  On the first day of the drawing, three 

friends pulled three slips and they all got lockers, but on the next day three more 

friends pulled three slips and all were denied a locker.  Rubin et. al.’s subjects were 

then asked what kind of evidence should be gathered to determine whether or not the 

slips were properly mixed in the bowl.   

 Students’ responses for estimates of needed sample size ranged from 50 to 500.  

For example, one student suggested that if the evidence showed 90 Yes Lockers and 5 

No Lockers the first day, combined with 5 Yes Lockers and 90 No Lockers the second 

day, that would be good evidence of unfair mixing.  The researchers comment that 

“students consistently chose samples that were extremely unlikely, i.e.  likely to occur 

much less often than 1 out of 1000 times” (Rubin et. al., 1991, p. 9).  Students were 

reasoning in this case as though “sample variability were the most relevant fact about  
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sampling” (p. 11).  These students insisted on a very convincing sample before 

inferring anything about the population.  Thus, in two different contexts, Rubin et.  al.  

were able to powerfully illustrate the twin ends of the continuum between sample 

representativeness and sample variability.  On one end, sample representativeness is 

the idea that a sample may have characteristics that are identical to the parent 

population.  On the other end, sample variability is the idea that different samples 

from the same population are not all identical and therefore do not exactly match the 

population.  They conclude by noting that students “lack experience thinking in terms 

of a distribution of samples generated from a particular population” (1991, p. 12, 

italics added). 

 Shaughnessy (1997) shares anecdotes about a task in which repeated samples 

of M&M candies, each of size 20, were drawn from a population known to contain 

40% brown candies.  He notes that “no one has yet said ‘you will get 8 browns every 

time” (p. 7).  His point is that the idea of a range of likely values is accessible to 

students.  Moreover, questions about the likely spread of values in a data set, or about 

the likelihood of a certain spread reoccurring by repeating the experiment, are good 

ways to get at the variability inherent in a resampling situation (Shaughnessy et.  al., 

1999; Shaughnessy, 1997).   

 The Gumball Task on the 1996 NAEP was a missed opportunity to look at 

student responses to questions about variation (Shaughnessy et. al., 1999).  In the 

NAEP Gumball Task, students were shown a picture of a gumball machine and 

informed that the mix of 100 gumballs inside comprised 20 Yellow, 30 Blue, and 50 

Red.  The question asked students to predict the number of red gumballs that would 
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occur in a sample of size 10.  The percentage of student responses that fell in the top 

level of the scoring rubric for this question was a quite low 8% (Zawojewski & 

Shaughnessy, 2000).  A troubling aspect of this task is that the question “tries to tap 

children’s understanding of centers but does so in a context which more naturally 

deals with spreads” (Shaughnessy et.  al., 1999, p. 8).  Notice for instance, that while 

the NAEP question is much akin to the first question asked by Rubin et.  al.  (1991) in 

the Gummy Bear problem related earlier, Rubin et.  al.  extended the line of 

questioning to get at the variability of results of repeated samples.   

 Researchers have explored ways of expanding the Gumball Task so that it 

offered respondents a chance to demonstrate what they knew about variation (Torok & 

Watson, 2000; Reading & Shaughnessy, 2000; Shaughnessy, 1999; Shaughnessy & 

Ciancetta, 2001).  In the amendments to the original 1996 NAEP gumball item (later 

called the Candy Task for research in America and the Lolly Task in Australia) several 

different ways of framing the task were created for a study involving 324 subjects 

from grades 4, 5, 6, 9, and 12 (Shaughnessy et. al., 1999).  The situation was changed 

to a repeated sampling problem in which five samples, or pulls, of size ten were drawn 

(with replacement).  The RANGE version of the question, asked for the lowest and 

highest number of reds that would result from the five pulls.  The CHOICE version 

provided five preselected lists of possibilities for consideration, and the LIST version 

allowed the respondents to simply write down the five estimates for the number of 

reds in each pull.  The subjects were randomly assigned to one of the three versions of 

the task.  Results were categorized on the basis of how the students’ answers reflected  
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their sense of center as well as their sense of spread.   

 A subset of the younger students in the study was given the Candy Task both 

before and after they did the actual experiment in the classroom.  Students took turns 

making the various pulls, recording the results, and then remixing the contents of the 

container.  The researchers found that there was “considerable improvement in the 

students’ responses after they actually did the experiment” (Shaughnessy et.  al., 1999, 

p. 15), meaning that more students properly incorporated centers and spread into their 

responses. 

 Reading and Shaughnessy (2000) extended the Candy Task, altering either the 

number of pulls or the sample size.  For example, they asked students for the numbers 

of reds if six people each pulled out samples of size 50 with replacement.  This 

allowed for an exploration of responses for an increased sample size.  They also asked 

students to describe the results of 40 pulls, each of sample size 10, and then asked 

students to graph the results for 40 pulls.  Finally, they altered the candy mixture itself 

from 50R, 20Y, 30B to 70R, 20Y, and 10B.  Six elementary and six secondary 

students were interviewed on these tasks.  In all cases the students were asked to 

provide an explanation for their responses.  Results showed that students were better at 

describing reasons for their responses when talking about centers than when talking 

about variation.  Also the researchers found that “the LIST form of the question 

appears to give more information about variability than the CHOICE or RANGE 

versions,” and that “it may be hard for students to describe variation with only six 

handfuls” (Reading & Shaughnessy, 2000, p. 7).  Another finding was that the  
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different mix of colors did not seem to affect student ability in predicting outcomes, 

although “it appears to be more difficult for students to justify their responses with the 

70% mix” (p. 8).  The researchers revised their protocol and asked students to imagine 

pulling 100 samples of size 10, and to draw a histogram for the frequency of reds in 

each sample.  Reading and Shaughnessy suggest that a computer simulation would be 

useful to display to students.  Researchers could then investigate whether students 

would want to revise their own suggested histogram after seeing simulation results.    

 It seems fair to wonder what role graphicacy plays in the Candy Task.  Torok 

and Watson (2000) expressed surprise at the general lack of facility of students in 

generating graphs to show the outcomes of 40 draws of 10 candies each.  Shaughnessy 

and Ciancetta (2001) asked 31 secondary mathematics students to graph the expected 

outcomes of 100 draws of 10 candies each.  Shaughnessy and Ciancetta note that “in 

general, constructing a bar graph to represent the results proved a difficult task for 

these students” (2001, p. 13).  Torok and Watson (2000) propose an amendment to the 

Candy Task protocol which would ask students to fill in a partially completed bar 

graph, suggesting that “this would be likely to reveal more about students’ conceptions 

about the clustering of results around their expected values” (p. 164). 

 The Candy Task seems well-suited for investigating not only the effects of 

sample size, but also the effects of increasing the number of samples of a fixed size.  

Moreover, the kinds of questions which have been asked require facility in reasoning 

about centers, spreads, and also graphs.  There are also ways in which the subjects’ 

sense of distribution can be tapped.  Saldanha and Thompson (2001) had groups of  

 



 

 51

students draw random samples from populations whose composition was not revealed 

to the students.  After noting that the variability among samples made it difficult to 

make claims about the population composition, the students wanted to look at 

collections of samples.  Thus, “each group drew 10 samples of equal size from a 

population of objects and the class investigated how these collections, as a whole, 

were distributed” (Saldanha & Thompson, 2001, p. 2).    

 By incorporating so many different aspects of statistical thinking, namely 

centers, spread, and graph sense, the sampling items presented thus far seem very 

versatile as a way to investigate students’ thinking about variation.  Research shows 

that sampling environments provide opportunities to look at the effect of sample size 

on variation, as well as the way that samples of the same size differ from one another 

and provide different pictures of the underlying population.  A last context for looking 

at conceptions of variation is in probability situations, and this context is described in 

the next section. 

Variation in Probability Situations 

 Much of the previous research on sampling is colored by probabilistic 

thinking.  One can imagine being asked for the probability of getting a certain number 

of red candies in a sample, or the chance of being selected to participate in a survey.  

For example, I chose to separate Truran’s (1994) research on children’s understanding 

of variance from the body of literature discussed so far in this paper, because his study 

was framed in terms of “one probabilistic situation” (p. 2).  Truran used colored balls 

in an urn, much akin to the Candy Task, but he only had two greens and one blue in  
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the urn.  His subjects, four girls and four boys in each of grades 4, 6, 8, and 10, drew 

one ball at a time with replacement.  Truran based a series of questions on this format, 

“If we did this again m times would you be surprised if you got n greens / blues?” (p. 

3).  This is similar to the Candy Task, except that here the sample size is one.  This 

distinction makes the probability aspects of this task more transparent than the 

sampling aspects.  Still, in asking first about 9 draws and then about 50 draws, 

Truran’s aim was to find out about students’ conceptions of variation, and in particular 

to see what range of results the students would consider normal.  It is interesting to 

note that while the protocol asked for students to provide a specific number they 

would find surprising, in fact some students explicitly talked about ranges of 

surprising values without being prompted.  Truran notes that almost all of the subjects 

“had some awareness that extreme numbers would be surprising,” and seven of them 

“distinguished ‘surprising’ from ‘very surprising’” (1994, p. 7).  He also noted some 

reliance on the availability heuristic, and claimed that the students’ naïve 

understanding of variance depended on their number sense and their facility in 

computation. 

 Shaughnessy (1997) mentions that when students are given a probability 

question that involves the likelihood of a single event, some students may try to 

superimpose the idea of a sample on the problem when none exists.  For instance, a 

question was posed to middle school teachers in which a fair coin was flipped five 

times.  Teachers were asked what is more likely to occur, A) HTTHT, or B) HHHHH.  

Some of the teachers responded that “’In a small sample anything is possible’ and “the  
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long term results gravitate towards A),’ as if there were an ongoing sample” 

(Shaughnessy, 1997, p. 3).  In fact, there is no sample at all in this question.  There is a 

sample space in the probabilistic sense, but no actual sample from a population is 

being drawn (Shaughnessy et.  al., 1999).  Questions like these lead subjects to “focus 

on single outcomes, rather than a range of possible outcomes” (Shaughnessy, 1997, p. 

3).  Konold (1995) used simulations to look at many trials of five flips, where the 

number of trials corresponded with what he called the sample size.  He found that 

students could see the kind of variability among repeated samples of the same size.  

Thus, the outcomes in one distribution of 1000 samples (with each sample comprised 

of five flips) will vary from those in another distribution 1000 samples.  Konold 

claimed that “the different outcomes of each repetition reveal the variability inherent 

in the sampling process and give some sense of the magnitude of that variability for 

the given sample size” (1995, p. 209), referring to the variability within and across a 

distribution. 

 Shaughnessy and Ciancetta (2001, 2002) used a pair of spinners with 31 

secondary mathematics students.  Each spinner was half black and half white as in a 

1996 NAEP task.  First the students were asked a pure probability question: “A player 

wins a prize only when both arrows land on black after each spinner has been spun 

once.  Jeff thinks he has a 50-50 chance of winning.  Do you agree?” (Shaughnessy & 

Ciancetta, 2002, p. 2).  Then, students were asked to predict the number of times out 

of ten spins that both spinners would result in black.  After predictions were made,  

students gathered data in sets of ten spins each.  After each successive set of ten spins,  
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students were given an opportunity to revise their predictions.  This same protocol was 

also repeated with a pair of spinners in which the first spinner again was half black 

and half white, while the second spinner was one quarter black and three quarters 

white.  For some students, there was conflict “in trying to resolve what their ‘theories’ 

would predict, and the variability in their sample data” (Shaughnessy & Ciancetta, 

2001, p. 12).  Prior to gathering data, very few subjects actually listed a sample space 

for these problems.  However, actually performing the experiment, gathering the data, 

and “seeing the variation in repeated samples of ten trials, led a number of our 

students to construct the sample space for the spinner problem” (Shaughnessy & 

Ciancetta, 2002, p. 5).  These interview results support the connection between the two 

concepts of the sample space in probability and the expected variation in values of a 

random variable.  They note that  

 The conceptual root of the pedagogical power that we gain from having 
 students conduct simulations is the connection that they can make 
  between the observed variation in data in repeated trials of an  
 experiment, and the outcomes that they expect based on a knowledge  
 of the underlying sample space or probability distribution (p. 6). 
 
Thus, probability experiments offer promise as a viable context for gathering data on 

people’s conceptions of variability.  Repeated trials of a probability experiment can 

focus attention on the variation inherent in the outcomes, rather than just on the 

expected value for any particular outcome. 

Initial Conceptual Framework 

 Just as variation is at the heart of a statistical investigation, so too is the  

 

 



 

understanding of variation at the heart of this study.  My primary research question 

concerns the components of a conceptual framework that can help characterize 

EPSTs’ thinking about variation.  At the outset of the study, before designing the tasks 

and class interventions discussed in the next chapter, I developed a rudimentary initial 

conceptual framework that I’ll describe in this section .  Subsequent chapters will 

show how I used the data from this study to revise and extend this initial framework 

into what I call an “evolving framework”, a richer structure with added depth that 

addresses my primary research question more fully.   

  The initial conceptual framework is a synthesis of the ideas promoted by other 

studies that have looked at variation along with my own ideas based on past 

experiences studying and teaching stochastics.  There are three different “aspects” of 

understanding variation in my initial framework (see Figure 6): expecting, displaying, 

and interpreting variation.  

Initial Conceptual Framework

[1] Expecting Variation       
 A] Describing What is Expected     
 B] Describing Why (Reasons for Expectations) 
   
[2] Displaying Variation       
 A] Producing Graphs  
 B] Comparing Graphs 
 C] Making Conclusions about Graphs    
 
[3] Interpreting Variation       
 A]  Defining Variation 
 B] Causes of Variation       
 C] Effects of Variation       
      D]  Influencing Expectations and Variation 
 

Figure 6 – Initial Conceptual Framework 
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Each of the three aspects has what I am calling different “dimensions” that help define 

the respective aspect.  For example, expecting variation has two dimensions: 

describing what is expected and  describing why it is expected.   

 Taken together, the aspects and dimensions are a working hypothesis for a 

framework that might broadly characterize student responses.  I conducted a pilot 

study to test the validity of this framework, and I’ll use some examples from that pilot 

study to briefly describe my original thinking about the aspects and dimensions in the 

framework. 

Expecting Variation 

  I had originally thought of the expectation of variation as a way for students to 

demonstrate their intuitive, experientially or mathematically based reasoning in 

situations for which variation is inherent.  Two dimensions that are a part of this 

aspect include describing what is expected and describing why it might be expected. 

  Describing What:  To illustrate, when drawing repeated samples of the same 

size from a population it is useful to think ahead of time about what variation is 

reasonable to expect.  Particularly illuminating are the ends of the spectrum.  On one 

end, a person may expect their samples to look very much alike due to a small amount 

of variation from sample to sample.  On the other end, a person may expect huge 

disparities between samples owing to large amounts of expected variation.  In the pilot 

for this study, a class of elementary preservice teachers investigated sampling 

variation using bags of M&Ms.  I brought in enough bags of M&Ms so that every pair 

of students could share one bag.  The bags were the 1.69-ounce size which are usually  
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sold individually in stores, and which tend to have between 50 and 60 pieces of candy 

in a mix of colors.  The question posed to the students was, “What’s inside a typical 

bag of M&Ms, both in terms of total candies and in terms of color distribution?”  

Some students, who had no knowledge of the nature of the way these candies are 

packaged, anticipated no variation.  They felt the bags should not only have the same 

number of candies, but the same color distribution.  Other students expected that the 

totals and color distributions in each bag would be different, but were unsure of the 

amount of variation.  The work of Rubin, Tenney, and Bruce (1991) supported my 

consideration of the M&M task as useful in addressing what variation is expected.   

  Describing Why:  A separate but related line of questioning concerns reasons 

for expectations.  Thus, a second dimension in the expecting aspect is describing why.  

For example, consider a chance situation whereby the data is a compilation of the 

outcomes of repeated events.  The expectation of variation in such a situation can be 

tied to the research on probabilistic thinking.  Reliance on the outcome approach or on 

proportional reasoning could result in minimal attention to variation because subjects 

might focus on a single number to represent their best guess.  A spinner which is 

three-fourths black and only one-fourth white might be expected to produce mostly 

black outcomes, but what variation would students expect, and why?  That is, in 20 

spins would students expect all the outcomes to be black, and why or why not?  

Shaughnessy and Ciancetta (2001) considered similar questions with school students.   

  Expecting variation to occur is fundamental to an overall understanding of the 

concept, and  it is one aspect that was researched in my study.  Before conducting any  
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experiments or attempting a task, and prior to looking at data relevant to the situation, 

it should be asked,  “What variation is expected?”, and also it should be asked: 

“Why?” 

Displaying Variation 

  The three dimensions within this aspect all relate to graphs: Producing graphs, 

evaluating and comparing graphs, and making conclusions about graphs. 

  Producing Graphs:  Concerning the first of the three dimensions, although I did 

not find many references in the literature, it seemed to me that producing (making) 

graphs affords students another way of showing what kind of variation they either see 

or expect to see in the data.  My interest was in the variation the students did or did not 

reveal in their graphs, and yet I suspected that the students’ graph sense would be a 

major factor in this dimension.  That is, there are many types of graphs, and they 

reveal or obscure variation within the data to different degrees.  The kinds of graphs 

students produce depends on how fluent students are with different graphs types to 

begin with, but I still was curious about what the student-generated graphs might 

suggest as far as an understanding of variation.  In another example taken from a pilot 

for this study, students were asked to gather data on the amount of money in coins that 

we had each brought to class.  Only two people out of thirty-two total had exactly the 

same amount of money, while the range went from zero to over ten dollars in change.  

In graphing how much change students had brought to class, I asked groups of 

students decide for themselves how to graph the data.  Most groups chose histograms,  

 



 

but the groups used different interval widths.  Figure 7 shows a computer version of 

what we had in class.  
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compared graphs with respect to variation (the second dimension within the displaying 

aspect).  The M&M investigation from the pilot study offered a good example of this 

second dimension.  Students each prepared a bar chart showing the color distribution 

of their bag (as a percentage of the total candies in the bag), and all the bar charts were 

lined up on the chalkboard.  The distributions were quite varied.  For example, some 

bags had 20 % red candies and some had 35 % red.  Some students didn’t seem to 

notice the variation among bags, and instead seemed intent on trying to find out which 

color was most dominant across all bags.  Other students clearly indicated they could 

see that the percentages were jumping up and down all across the chalkboard, and that 

the bags were quite different from one another.  The point was that students compared 

graphs using different strategies, and variation factored into their explanation in 

different ways.   

  In another example, as students looked at the results from the data on the 

amount of change (Figure 7), I was curious to see what comments would emerge 

regarding the spread of the data.  I taught two sections of the course, and later in the 

week I was able to bring together the results of both sections for comparison purposes.  

Some students noticed not only that the means of the two data sets were different, but 

also that the spreads of the data from the means were also markedly different. 

   Since some graphical displays obscure variation within data more than others,  

I also wanted to know if students could discriminate between graphs which highlight 

and graphs which minimize variation.  For instance, boxplots do a good job of  

 



 

showing the range and the interquartile range, but do not show variation of the data 

within the quartiles.  In the pilot study, the class looked at a boxplot representing the 

percentages obtained for red candies in each bag taken from the M&M investigation, 

and we had also graphed the same data in a dot plot (see Figure 8). 

 

 
 
 
 
 
 
 
 
     n= 16 bags of M&Ms 

 

20 22 24 26 28 30 32 34 36
PercentRed

M&Ms Box Plot

20 22 24 26 28 30 32 34 36
PercentRed

M&Ms Dot Plot

Figure 8 – Percentage of Red M&Ms 
 
 

The graphs in Figure 8 represent actual data, and made for a good discussion about 

what gets obscured or emphasized in different types of presentation.  The boxplot 

readily shows the median (25.5) and identifies the middle 50% of the data as falling 

between 24 and 27.5, neither of which is as quickly obtainable from the dot plot.  In 

the dot plot some counting and calculation must be done to figure out where the 

quartiles are.  Also, the mode is apparent in the dot plot, and the mean can be 

calculated from information in the graph, but both mode and mean are not obtainable 

from the boxplot.  The range is quickly seen in both graphs, however, the actual 

distribution of the data – the way values are spread out and vary from one another – is 

obscured in the boxplot but not in the dot plot.  One cannot tell from the boxplot 
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where the gaps are (such as no values of 21, 22, 29, etcetera), nor can one tell the 

frequency for each value.   

  Making Conclusions:  I thought of the third dimension in this aspect, making 

conclusions about graphs, as a natural extension of EPST’s reasoning as they 

evaluated and compared graphs.  One type of conclusion I envisioned had to do with 

questions such as “Which graph shows more variation?” Another way in which I had 

thought they might make conclusions had to do with which types of graphs were more 

useful in different situations.  As we’ve seen, research on graphicacy and distributions 

suggests different graphs provide different degrees of information about centers and 

spreads. 

Interpreting Variation 

  There are four dimensions within this aspect: Defining variation, causes of  

variation, effects of variation, and influencing expectations and variation.   

  Defining Variation:  At the core of defining variation is simply trying to find 

out what variation means to the students.  I wondered how they would describe 

variation, and originally I was expecting both quantitative and qualitative descriptions.  

Quantitative descriptions of variation that I had seen students use included measures 

of range, interquartile range, and standard deviation.  For example, in the pilot study 

when comparing two contrived data sets with 25 test scores in each set (see Figure 9), 

some students commented that the sets had identical ranges.  The two data sets also 

had identical means, medians and interquartile ranges.  Although the standard 

deviations (which are different) were provided to students, not many students 

commented on this statistic. 
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        n = 25 scores 
 
        range = 40 
 
        standard deviation = 10   
  
        interquartile range = 10  
 
        mean = median = 75  
 
 
 
 
        Class B 
         
        n = 25 scores 
 
        range = 40 
 
          standard deviation = 6.8   
  
        interquartile range = 10   
 
             mean = median = 75      
         
 
 
 

Figure 9 – Class A & Class B 
 

Based on others’ research, I believe that EPSTs can have meaningful conceptions of 

variation independent of any understanding of the standard deviation.  Torok and 

Watson (2000) conducted a study of conceptions of variation with sixteen students 

(four each from grades 4, 6, 8, and 10).  The students responded to questions about 

sampling and weather data in terms of what they thought was reasonable.  Torok and 

Watson comment that “this study successfully explored students’ understanding of 

variation without ever employing the phrase ‘standard deviation’” (200, p. 166).  

Qualitative descriptions attend to the language that students use as they talk or write 
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about the data.  For example, students may say that the data for Class A in Figure 9 is 

spread more evenly, or that the data for Class B is clumped together near the center.   

  Causes of Variation:  By asking students about the causes of variation (the 

second dimension for this aspect), students conjecture and reason about the source of 

the variation.  For example, in the M&M investigation during the pilot study, the 

students discussed not only why the bags were so different from one another, but also 

why so few of the bags were representative of the true color proportions that the 

company claimed to produce.  Is there variation among the samples because the 

company only cares about the weight of the package and not the color mix of each 

bag? Is there more variation when looking at “fun-size” bags (n= about 24) than 

“regular” bags (n= about 55) because of the smaller sample size? When conducting a 

statistical investigation, and in looking at data, it seems useful to wonder about where 

the variation is coming from and why it is present (Wild & Pfannkuch, 1999).  

Another interesting line of questioning about causes of variation came from a 

probability experiment in the pilot to this study.  Students repeatedly threw two dice 

and computed the sums of the numbers facing upward.  Theoretically, the probability 

of obtaining a sum of seven is 1/6.  Different groups of students threw dice many 

times (between 30 and 60), but for each group the percentage of their total throws 

which yielded a sum of seven strayed either above or below the expected 16.7 %.  

Students offered reasons for why the experimental percentages did not match the 

theoretically expected percentage, which included the idea that the dice were 

uncontrollable, or that luck was not on their side.  There was also some class 

awareness that the variation in this experiment was due to randomness. 
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  Effects of Variation:  Thinking about the causes of variation can lead to 

questions about the third dimension, effects of variation.  After doing probability 

experiments with my class in the pilot study, discussion turned to what the class would 

predict if some new student joined the class and threw the dice 30 times.  Although the 

probability of obtaining a sum of seven is 1/6, many students argued that 30 throws 

would not yield exactly 5 sums of seven.  Questions of confidence, such as asking 

“How confident are you that 30 throws would have at least 3 sums of seven?”, are 

questions that probe students’ thinking about the effects of variation.  If there is 

already known to be a considerable amount of variation in the situation, as there can 

be when looking at “fun-size” bags of M&Ms, then extreme results (such as having no 

Red candies in the bag) seem less surprising.  The presence of variation has an effect 

on inference and confidence, and I was curious how students perceived such effects. 

  Influences on Expectation and Variation:  Finally, the dimension of influencing  
 
expectation and variation is something that I first thought of as I considered the  
 
Hospital Problem  mentioned earlier.  In the Hospital Problem, relative size is an issue  
 
in the predicted variation.  I wondered if EPSTs would think in terms of relative sizes 
 
as influencing their expectations of results, or the variation in a set of results, coming  
 
from a sampling situation.  Also, I wondered if the number of trials performed might  
 
be seen by EPSTs as being connected to variation in sampling and probability  
 
situations. 
 

Contexts for Understanding Variation 

  This initial conceptual framework was situated within three contexts for my  

study of variation: variation in sampling, variation in data sets, and variation in chance  
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situations. These three contexts arose out of the literature review, and some 

examples from the pilot study will further clarify the distinctions among these 

contexts. 

  Variation in Sampling: The M&M investigation is a good example of how 

samples vary in the way they reflect the population from which they were drawn.  

Opening many (smaller) “fun-size” bags shows the effect of taking repeated samples 

of approximately the same size.  Even though the population of M&M candies is 

reported to be 20% red, a sample of size ten may not have exactly two red.  The 

proportion of reds in the sample may vary widely, but increasing the sample size 

reduces this variation.  For example, ten samples of size twenty have red percentages 

that vary more than ten samples of size two thousand. 

  For students who have not done the M&M investigation in a previous class, the 

population color proportions are unknown.   Thus, the sample data is the only 

information through which an inference about the population can be made.  By 

aggregating data from the individual bags, the effect of an increased sample size on 

variation between samples can be seen.  For instance, four samples of 100 M&Ms 

usually look more similar to each other than sixteen samples of 25 M&Ms.   

  Variation in Data Sets:  In this context, data could be gathered or provided 

without explicit ties to either sampling or probability situations.  The focus was more 

on where the data came from, what it meant, and how best to describe the data.  For 

example, when the class investigated how much money in coins we each had brought, 

the initial point of the exercise was to gather and display data.  We did similar 

exercises by gathering data on body measurements, such as arm span and wrist 
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circumferences.  Once the data was available, then we displayed it and discussed 

notions of center and spread.   

  Later in class, instead of gathering data, I provided data sets which were either 

real or contrived, with the purpose of exploring students’ interpretation of the data.  

Data similar to that shown in Figure 4 and Figure 9  was used to talk about whether 

one class did better on a test than the other class.  In addition to comparing different 

data sets, I explored different displays for the same data set, using displays which 

mask or highlight the variability in the data. 

  Variation in Chance Situations: The probability experiment involving the sum 

of two dice is an example of this context.  The data gathered is completely governed 

by chance.  With the dice experiment, many students knew that the chance of 

obtaining a sum of seven is 1/6.  What is interesting in this context is to provide 

opportunities for students to move away from answers that rely on an expected value 

for one outcome, and to move towards the anticipated results of many outcomes in 

which random variation is sure to play a part.  How extreme would the data from 

tossing the dice have to be before students questioned the fairness of the dice or the 

legitimacy of the data?  

  Another in-class probability experiment was done for which none of the 

students knew the theoretical probability.  The task was to write down how many spins 

of a five-spinner (a disk partitioned into five sectors of equal area) it took until the 

pointer landed on each of the five numbered sectors at least once.  Each student 

repeated the experiment fifteen times.  Since they did not know the expected value for 
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the number of spins, students could only use their experimental data in making a 

prediction.  The outcomes of only fifteen experimental trials tend to be quite varied.   

Summary 

 Statistical thinking about variability is influenced by a host of different factors.  

Some of the research deemed most salient to a study of conceptions of variation has 

been discussed in this chapter, and includes research on randomness, intuitive 

stochastical thinking, graphicacy, and averages.  A lack of appreciation for 

randomness appears to translate into an inadequate view of variation, and to diminish 

the promise of statistical inference.  Naïve and intuitive views of uncertainty can result 

in misjudging probabilistic and stochastical situations, including those situations 

where reasoning about variation is crucial.  Graphs are a powerful tool for reducing 

data, and different graphs convey different degrees of information about center and 

spread.  Also important for data handling are measures of central tendency.  All of 

these ideas relate to conceptions of variation.  For example, if students have difficulty 

reading graphs, then they will likely be unable to notice variation as it is revealed 

graphically.  If they are unable to find a representative measure for a data set, then 

they will be unable to talk about variation as a spread around the center of a 

distribution.   

 In recent years it has become clear that studies crafted specifically to elicit 

responses on variation can be embedded in contexts which include (although certainly 

not limited to) sampling, data sets, and probability situations.  Although some research 

has been conducted on students’ conceptions of variation in these three contexts, one 

of the larger gaps in the literature concerns research specifically looking at what 
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teachers know about variation.  Shaughnessy (2002) writes that “we are not aware of 

any research studies that have dealt specifically with teachers’ conceptions of 

variability” (p. 2), and this paucity of research also holds true for preservice teachers.   

 Motivated by previous studies and my own experience in teaching probability 

and statistics, I developed an initial conceptual framework consisting of three aspects 

of understanding variation (expecting, displaying, and interpreting variation), along 

with their corresponding dimensions. The entire framework was situated within the 

contexts of sampling, data sets, and probability situations. Together, the initial 

conceptual framework and the contexts for exploring variation provided an 

organizational structure for the methodology and a coarse lens for the initial look at 

the data.  In the next chapter, I’ll describe the methodology for the research and also 

the process by which the initial conceptual framework became refined. 
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CHAPTER THREE 

Methodology 

 

 This chapter discusses the procedures for gathering and analyzing the 

data. The first section tells who the data was collected from, providing a more general  

description of the research design as well a rationale for why methodological 

components were chosen.  The second section offers more detail about the data 

gathering, including what data was collected and how. The third section illustrates the 

specific way that data was analyzed to create a richer framework for understanding 

EPSTs’ conceptions of variation. 

Research Design 

 Subjects were chosen from a section of a course I’ll refer to as Mathematics for 

Elementary Teachers 2 (MET 2).  The course was the second of a two-course 

sequence at a University located in a metropolitan area of the Pacific Northwest.  

Intended for prospective teachers, the two math courses (MET 1 and 2) are required 

for those wanting to enroll in the Graduate Teacher Education Program (GTEP).  

Completion of GTEP leads to issuance of an Initial Teaching License.  To give a sense 

of the environment common to the subjects, a general overview of the content and 

pedagogy for the typical MET 2 course is next described.  Within the context of the 

typical MET 2 course, specific features of the particular section used for my research 

are articulated.   
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Content and Pedagogy of MET 2 

 The content for MET 2 includes geometry, probability, and statistics.  

Instructors usually divide the ten-week course into two parts of roughly equal length, 

with one part dealing with geometry and the other part dealing with stochastics. The 

probability component includes single-stage and multistage experiments, and students 

investigate both theoretical and experimental probabilities.  Theoretical probabilities 

are obtained by deriving the sample space and considering the possible outcomes of a 

specific event, while experimental probabilities are obtained by simulation. Students 

consider disjoint events as well as independent and dependent events. The statistics 

component includes descriptive measures of central tendency (mean, median, and 

mode) and spread (range, interquartile range, and standard deviation).  Students also 

analyze data using a variety of graphs, such as boxplots, line plots, bar charts, 

histograms, pie graphs, and scatterplots.  Themes of sampling, such as random 

sampling, stratified sampling, and making predictions based on sampling, are also a 

part of the statistics component.  

 The pedagogy for MET 2 varies with the instructor, but there are some 

common pedagogical themes. One theme is that students participate in activities, both 

as a class and in smaller groups.  The MET 2 classroom is arranged so that students sit 

in groups, which can be as large as six students per group.  Once a problem has been 

posed, or an activity given, students typically will work singly, then together in their 

groups, and finally share ideas with each other in a class-wide discussion.  The sharing 

of ideas points to a second common theme, which is communication.  Students are 

expected to communicate what they are thinking about and to ask questions of one 
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another so as to understand each other’s reasoning.  A third common theme is that the 

teacher acts more as an inquiring guide than as a lecturer.  Ideally, the teacher 

facilitates discussion by asking questions, encouraging other students to ask questions, 

and generally guiding the class to consensus where possible.   

 Multiple sections of MET 2 are typically offered during any given quarter. 

During the Winter Quarter when my research took place, classes were held two days a 

week for ten weeks. Each class session was scheduled to last two hours and fifty 

minutes. The section I chose to use for my research was led by Steve, an experienced 

instructor for MET 1, 2 and other courses for teachers and preservice teachers of 

mathematics.  Steve’s plan for the curriculum reflected the components described 

earlier,  but he modified his previous practice of doing all the geometry in the first part 

of the course, and all the stochastics in the second part.  Instead, he devoted the first 

four weeks to geometry, and then gave the next four weeks to stochastics, followed by 

a last installment of geometry. The modified schedule was done to help accommodate 

my research plan. 

 One reason I chose Steve’s section is because of Steve’s skill in modeling the 

pedagogical themes mentioned earlier. He lectures less and he poses problems, guides 

activities, and facilitates discussions.  A second reason for choosing his section is 

because Steve and I had worked well together as colleagues for more than four years, 

and our philosophies of teaching and learning were similar.  The familiarity with each 

other’s styles and congruence of philosophies helped make working together easy, 

particularly when we were co-teaching some of the lessons.  A third reason is because 

Steve was willing to modify the sequence of geometry and probability and statistics so 
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that my out-of-class interviews could take place before and after the stochastics 

portion of the class sessions. 

Student Characteristics 

 The urban setting of the University fosters a wide range of student 

backgrounds, and it is difficult to describe typical demographic characteristics of the 

students who take MET 2.  Past students in my classes have ranged in age from the 

early twenties to the middle fifties. Some are undergraduates and some are graduate 

students. Some want to become teachers and occasionally some are just filling a 

University math requirement. 

 The majority of MET 2 students have taken MET 1 at the University, a course 

taught in a similar style to MET 2.  The content of MET 1 includes whole-number 

arithmetic, number theory, fractions, decimals, and ratios.  Other than MET 1, most 

students have taken few, if any, post-secondary math classes.  It may have been as 

many as twenty or more years since they have had any mathematics class.  At the 

outset of MET 1 students often write a “mathography,” which entails a description of 

their past math classes and their feelings about past math experiences.  Most students 

describe themselves as not having been very good at math in the past, and most MET 

2 students share negative memories of precollege mathematics.  Some students say 

they feared or hated their math classes, and others say they were bored. The attitude of 

most beginning MET 1 students is that mathematics is a rule-oriented discipline. The 

role of the teacher is to reveal the rules, and the role of the students is to memorize and 

apply the rules.   



 

 The MET 1 experience helps to give most students a new and different vision 

of what “doing mathematics” entails.  Because the pedagogy in MET 1 is similar to 

that in MET 2, most students come to expect a learning environment in MET 2 where 

they will be active participants and where their thinking strategies are validated.  They 

have been enculturated to the process of problem-solving and communicating their 

reasoning.  Although not all MET 2 students are comfortable with the learning 

environment, those who have come through MET 1 at least know what to expect. 

 A total of thirty students completed Steve’s section of the MET 2 course. A  

profile of the background for these students is offered with respect to the following 

attributes: Class level at the university, gender, when and where the students had taken 

MET 1, and any prior probability or statistics courses taken. These attributes are 

summarized in Table 1. 

 

Table 1. MET 2 Class Profile 

Attribute Categories of Attribute Number of 
Students 

Total 
Students 

Undergraduate 9 [1] Class Level 
      at the University Graduate 21 

30 

Male 6 [2] Gender of the 
      Student Female 24 

30 

At PSU 26 [3] Where MET 1 
      was Taken Not at PSU 4 

30 

Within Last Year 24 [4] When MET 1  
      was Taken More Than a Year Ago 3 

27 

Yes 12 [5] Any Prior Probability 
      or Statistics Courses No or Unsure 15 

27 
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The student total in Table 1 is not always thirty because not all data could be gathered 

for every student. For example, information on the first three attributes was gleaned 

from the  university’s information system, and the last two attributes were informed by 

the PreSurvey which was completed by 27 students during the first week of the course.  

Appendix B shows the entire PreSurvey instrument. 

 Almost two-thirds of the class (19 out of 30 students) were continuing on with 

the same instructor, Steve, for consecutive quarters. This fact is noteworthy because it 

helps explain the general disposition of the class with respect to their attitudes about 

studying mathematics.  Of the twelve students who could recall having had prior 

formal education in probability or statistics, eight expressed favourable attitudes on 

the PreSurvey when asked “How did you feel about Probability and Statistics at that 

time?” For example, one student wrote that it had been an “interesting class, while 

another commented that it had been “fairly easy to understand.” The four other 

students with prior formal exposure expressed unfavourable attitudes, such as: “It was 

my least favorite class in all of college.” 

 When asked how they felt about learning probability and statistics now, only 5 

of the 27 respondents expressed explicitly negative thoughts, such as LT, who wrote: 

“I feel very scared. It makes me nervous.” Sixteen students put something that was 

explicitly positive, such as 

  DM: “Very excited, looking forward to it.” 
  CS: “Pretty comfortable, ready and excited” 
  EM: “I’m interested to learn more” 
 
The remaining 6 students had responses that were somewhat neutral in character, as  
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the comments by GP illustrate: “I’m open to it, but not really excited.” It seems 

reasonable to assume that, since 19 students did have Steve during the previous 

quarter, there would be some influence on the students’ attitudes and expectations. As 

one such student, MM, put it, “I’m excited about this class because I enjoyed [MET 

1].”   

Overview of Research Design 

 The two main sources of data for my study were written instruments given to 

everyone in Steve’s class and individual interviews conducted with six students 

selected from the class as my case studies.  A third source of information was class 

observations and videotapes made during the stochastics portion of the MET 2 course 

to help record the learning environment that the students experienced.  

   Table 2 summarizes the overall research design, the type of information 

gathered, who it was gathered from, and when it was gathered during the 10-week 

quarter.  The table also shows the contexts (sampling, probability, or data and graphs) 

emphasized by each instrument or activity.  

 Prior to doing any class activities in stochastics, during the first week of the 

academic quarter, baseline information was collected from the MET 2 students in 

Steve’s section.  The information was collected via a written survey that addressed 

prior mathematical experience and contained a range of questions about probability 

and statistics.  Over the next couple of weeks, while Steve taught the geometry portion 

of the MET 2 course, I interviewed six students outside of regular class time. The 

interviews were videotaped and lasted about 45 minutes on average. The initial survey 



 

and interview were named PreSurvey and PreInterview because they occurred prior to 

the stochastics portion of the MET 2 course.    

 

Table 2. Overall Research Design 
 
When What Contexts Type of Data Who  
1st  week PreSurvey  

      
 

All 
 

Written  
     (In class) 

Classwide  
   (n=27) 

2nd  &  
3rd   week 

PreInterview  
      
 

All 
 

Videotaped  
    (Out of class) 

Six cases   
   (n=6) 

5th  & 
6th  week 

Class Intervention #1   
     (Four Questions & 
      Body Measurements)      

Data & Graphs 
& Sampling 

Videotaped  
     (In class) 

Classwide   
  (Varied) 

6th  week PostSurvey #1  
      
 

Data & Graphs 
 

Written  
     (Out of class) 

Classwide 
   (n=28) 

7th  week Class Intervention #2  
     (Known & Unknown 
      Mixtures) 

Sampling & 
Graphs 

Videotaped 
     (In class) 

Classwide 
  (Varied) 

7th  week PostSurvey #2 
      
 

Sampling & 
Graphs 

Written 
     (Out of class) 

Classwide 
   (n=30) 

6th  & 
8th  week 

Class Intervention #3  
     (Cereal Boxes & 
      River Crossing Game) 

Probability & 
Graphs 

Videotaped 
     (In class) 

Classwide 
  (Varied) 

8th  week PostSurvey #3 
      
 

Probability 
& Graphs 
 

Written 
     (Out of class) 

Classwide 
   (n=29) 

9th   & 
10th week 

PostInterview 
      
 

All Videotaped 
     (Out of class) 

Six  cases 
   (n=6) 

 In the 5th week of the course, Steve made the transition from geometry to 

statistics and probability, and I began attending each class session.  In addition to 

making observations, I also videotaped portions of class activities and discussions.  

Of the many class activities that took place over weeks 5 through 8, six activities were 

designed as interventions about variation. There were two activities in each of three 

interventions, with one intervention focused on each of the contexts, data and graphs, 
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sampling, and probability.  The three class interventions are listed in Table 2, and are 

further described later in this chapter.    

 After each one of the three interventions had been conducted in class, a  take-

home assignment was given, which I have called PostSurveys because they occurred 

after the entire intervention for that context had been completed. The PostSurveys are 

differentiated according to their context:  For instance, the first PostSurvey 

corresponded to the context of data and graphs. 

 After the last intervention had happened in class, and the PostSurvey 

(Probability) had been administered, a second interview was conducted with the same 

six students as those interviewed for the PreInterview. The second interview was 

called a PostInterview because it took place after the interventions occurred in class. 

Like the PreInterviews, the PostInterviews were videotaped and lasted about 45 

minutes on average. All PostInterviews occurred in the last two weeks of the quarter. 

 I used all the data collected to help inform my research questions. The written 

documents, observations, and interviews formed a corpus of data that I analyzed with 

grounded theory techniques to describe components of a conceptual framework 

characterizing EPSTs’ thinking about variation.  I also used the entire corpus of data to 

consider comparisons of EPST’s thinking before and after the instructional 

interventions and to consider which tasks were most useful in examining conceptions 

of variation.  In presenting my results, I used a case study format to profile the 

thinking of the six cases who participated in the interviews. 
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Rationale for Design 

 This is a qualitative study that combines two traditions of qualitative inquiry:  

grounded theory and case studies.  I’ll justify the choice of these two traditions by 

describing how they helped answer my research questions, and then articulate the 

three types of data collected: written documents, observations, and interviews.   

 Grounded Theory:  Strauss and Corbin (1994) said that “grounded theory is a 

general methodology for developing theory that is grounded in data systematically 

gathered and analyzed” (p. 273, italics in original).  I used three techniques from 

grounded theory - open coding, axial coding, and constant comparison – to theorize an  

“evolving framework” for characterizing EPSTs’ thinking about variation.  This 

evolving framework, which addresses my first research question about finding 

components of a conceptual framework, is described in the next chapter.  I’ll next  

offer a brief description of the techniques and terminology of grounded theory.   

 Grounded theory begins with open coding, a process of describing and 

building categories of similar phenomena, the dimensions of which are defined by 

their conceptual properties.  Adding to the power of open coding is axial coding, 

defined as “the process of relating categories to their subcategories [or properties], 

termed ‘axial’ because coding occurs around the axis of the category, linking 

categories at the level of properties and dimensions” (Strauss & Corbin, 1998, p. 123).   

Microanalysis is the combined approach of open and axial coding, often using a line-

by-line analysis, to “generate initial categories (with their properties and dimensions) 

and to suggest relationships among categories” (p. 57).  Emergent tentative hypotheses 

suggest links between categories and properties (Patton, 2001; Merriam, 1998).  As 
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data are iteratively compared to the emerging categories, the categories themselves are 

refined in light of reviewing the data (Strauss & Corbin, 1994).  “This process of 

taking information from data collection and comparing it to emerging categories is 

called the constant comparative method of data analysis” (Creswell, 1998, p. 57, 

italics in original). Patton (2001) calls this comparative analysis “a central feature of 

grounded theory development” (p. 490).  Later in this chapter, I’ll demonstrate how I 

used the techniques of grounded theory to derive the evolving framework. 

 Case Studies:  Case studies are often associated with ethnographies, grounded  

theories, or exploratory research.  Creswell (1998) defines “a case study [as] an 

exploration of a ‘bounded system’ or case (or multiple cases) over time through 

detailed, in-depth data collection involving multiple sources of information rich in 

context” (p. 61).  Stake (1994) agrees that a case study should represent “a specific, 

unique, bounded system” (p. 237), and the boundaries can be defined by time and 

place.  The MET 2 course, conducted in the same location over ten weeks with the 

same students and instructor, represented the kind of bounded system needed to 

conduct a case study.  I chose six students from the class to serve as my cases (how I 

chose them is described in the next section), and I used the evolving framework to 

compare their conceptions of variation from before to after the instructional 

interventions.  Thus, case studies helped me address my second research question 

about comparing EPST’s conceptions over the duration of the research. 

 There are two specific reasons why case studies worked well together with a 

grounded theory approach for the purposes of answering my research questions. One 

reason is because case studies, like grounded theory, allow theory to be generated via 
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descriptive data.  Case studies encourage the use of descriptive data “to develop 

conceptual categories or to illustrate, support, or challenge theoretical assumptions 

held prior to the data gathering” (Merriam, 1998, p. 38).  McMillan and Schumacher 

(1997) wrote that “case studies are appropriate for exploratory and discovery-oriented 

research” (p. 395).  A second reason is because both case studies and grounded theory 

encourage the use of multiple sources of data (Stake, 1995; Strauss & Corbin, 1998).  

The use of different data sources is referred to as triangulation, which serves to 

“clarify meaning by identifying different ways the phenomenon is being seen” (Stake, 

1994, p. 241).  Triangulation strengthened my research by letting me get information 

in several forms and at different times, so that my findings were “consistent with the 

data collected” (Merriam, 1998, p. 206).  My study was triangulated by three methods 

of data gathering: written documents to review (via the surveys), classroom 

observations during the instructional interventions, and individual interviews with my 

cases.   

 Written Documents:  The use of written documents as a method for collecting 

data in a case study is well regarded (Stake, 1995; Merriam, 1998; Patton, 2001). 

Written documents can supplement observational data, and  “quite often, documents 

serve as substitutes for records of activity that the researcher could not observe 

directly” (Stake, 1995 p. 68).  In my study, there were two main types of written 

documents I collected: pre-activity documents (the PreSurvey) and post-activity 

documents (the PostSurveys for Sampling, Data & Graphs, and Probability).  All of 

the survey instruments are listed in Appendix B.  I also collected in-class work that 

came out of the three interventions.  For example, when we began the class 
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intervention on sampling, students wrote about what they thought a “sample” was, 

who they thought used samples, and why they thought taking samples might be useful. 

Students also wrote down initial predictions for what they thought would result from 

thirty samples each of size ten taken from the Known Mixture.  Small groups of 

students produced posters for actual results from the Known and Unknown Mixture 

activities, and I saved or photographed all the posters. 

 Observations:  The purpose of using observations as a data collection method 

was to record the overall class contexts in which the activities occurred.  I wanted not 

only to capture the contributions of my six cases, but also to hear what the ideas the 

rest of the class shared within their small groups and in classwide discussions as they 

engaged in the activities.   

 Observations are a common data collection technique in case studies (Stake, 

1995; Merriam, 1998). Best and Kahn (1998) write that “when observation is used in 

qualitative research, it usually consists of detailed notation of behaviors, events, and 

the contexts surrounding the events and behaviors” (p. 253, italics in original).  Patton 

(2001) includes the following three dimensions of concern when conducting 

observations: the role of the observer, the disclosure of observation, and the recording 

procedures.    

 In my research, I had roles as both participant and observer.  I was a participant 

by virtue of co-directing some of the MET 2 activities, and an observer by virtue of 

recording the class activities.  Patton claims that  “the participant observer employs 

multiple and overlapping data collection strategies, being fully engaged in 

experiencing the setting (participation) while at the same time observing and talking 
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with other participants about whatever is happening” (pp. 265, 266). Regarding 

disclosure, the participant observation is what Fraenkel and Wallen (2000) called 

overt, because the researcher will be identified and the cases will know they are being 

observed.  For recording procedures, I videotaped the three class interventions with 

the help of a colleague, Matt.  I also videotaped parts of all the other class sessions 

having to do with probability and statistics, and took notes after each session ended.  

To “minimize the errors resulting from faulty memory,” caution Best and Kahn 

(1998), “simultaneous recording of observations is recommended” (p. 295). 

Videorecording of the classroom during the activities showed the context of the 

learning environment, the overall flow of the class, and the specific contributions of 

my cases to the class discussion. At multiple times during the three class interventions, 

the specific tables where my cases sat were videotaped, so that I could capture what 

they were saying to each other in small-group discussions during the activities.   

 Notes from my observations were added to the corpus of data that was used to 

help shape the evolving framework, compare EPSTs’ conceptions before and after the 

interventions, and inform which tasks were useful in examining EPSTs conceptions of 

variation. Thus, observational data helped supplement my thinking about all three  

research questions. 

 Interviews:  A semi-structured, task-based interview format was the third 

method used for gathering data.  Interviewing is a common and powerful method of 

trying to understand how other people think (Fontana & Frey, 1994).  Best and Kahn 

(1995) note that  “interviews are used to gather information regarding an individual’s 

experience and knowledge” (p. 255), and  Patton (2001) says that the purpose of 
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interviewing “is to allow us to enter into the other person’s perspective. Qualitative 

interviewing begins with the assumption that the perspective of others is meaningful, 

knowable, and able to be made explicit” (p. 341).  By semi-structured, I mean that the 

interviews were scripted at the outset, but my protocol allowed for a variety of probes 

depending on the responses of the responses of the interviewees. By task-based, I 

mean that the subjects were not interacting merely with me as an interviewer,  but 

“with the task environments” (Goldin, 2000, p. 519).   

 Goldin (2000) goes on to mention the value in task-based interviews, noting 

that the tasks can be adjusted in wording and content according to the results of 

previous research. He adds,  “Interview contingencies can be decided explicitly and 

modified when appropriate. In comparison with paper-and-pencil test-based methods, 

task-based interviews make it possible to focus research attention more directly on the 

subjects’ processes of addressing mathematical tasks” (p. 520). 

 I conducted the first round of interviews, the PreInterviews, after the 

PreSurveys had been collected and reviewed but before any of the class sessions in 

stochastics had begun.  The second round of interviews, the PostInterviews, took place 

during the last two weeks of class, after the three interventions had taken place.  For 

each round of interviews, there were some tasks given which were identical or to tasks 

given on the survey instruments.  Also, the tasks for the PostInterview reflected 

themes that had been explored in the class sessions.  The interviews were all 

videotaped so that the subjects’ explanations and nonverbal communication was 

recorded. Some of the cases wrote on their copies of the interview scripts, and their 

written notes were collected when relevant. Their written notes and observations that I 
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made during the interviews became a part of the overall data for the study, along with 

the transcriptions of the interviews.  

 In summary, this research was designed to gather data from multiple sources.  

All of the data was used to build my evolving framework using grounded theory 

techniques.  The entire framework is explicated as the first part of my results in 

Chapter Four.  Although I did use all the data in comparing EPSTs’ conceptions, I 

focused on data from six cases to exemplify some comparisons of EPST’s 

conceptions.  I present comparisons of the six cases as the second part of my results in 

the next chapter, further organizing the presentation around the tasks that were most 

illustrative for the research.  In the next section, I’ll describe specific details of the 

data gathering. 

Data Gathering 

 This section is organized chronologically.  The PreSurvey was administered 

before the PreInterviews were conducted. Then, each of the three class interventions 

was followed by a corresponding PostSurvey as shown earlier in Table 2.  Finally,  

PostInterviews were conducted. All the instruments are found in Appendix B 

PreSurvey 

 The PreSurvey was given during the second class session of the first week of  

the quarter, and was completed by 27 students.  The students had known that a survey 

was to be administered, because I had visited the first class session and told them.  

Also during the first class session, I described the research project and their 

opportunity to be involved, and distributed the informed consent forms found in 

Appendix A. All students were willing to have their written work included as part of 



 

 86

the collected data, and all eventually gave consent to be videotaped during the class 

sessions. I also had eleven students volunteer to be interviewed outside of class, so I 

used the PreSurvey responses to help determine who would make up my final six 

cases (described further in the next chapter).  The average time for completion of the 

PreSurvey was about 45 minutes. The structure of the nine-page PreSurvey had two 

parts: The first part was the first page, containing background questions to determine 

the attributes shared earlier in Table 1, such as what prior experiences in probability 

and statistics they could recall having. Also on the first page were  questions about the 

meaning of the terms “random” and “variation.”  The second part of the PreSurvey  

(comprising the other eight pages) held a total of nine questions, many of which had 

multiple parts.  The specific questions and classwide responses for the PreSurvey are 

summarized in the next chapter, but the contexts for the questions in second part of the 

PreSurvey are given in Table 3. 

 Aside from the background questions, all the rest of the questions on the  

PreSurvey were either identical to or very similar to questions asked by other  

researchers of middle and high school students.  In particular, a NSF-funded project 

(Shaughnessy, 2003) used written surveys with 12 different classes of middle and high 

school students, and many questions on the PreSurvey came from the NSF surveys, 

which in turn had been motivated by prior research.  For example, on the PreSurvey 

and the NSF high school survey, two questions asked students for a description of 

what the terms “random” and “variation” meant to them, and those questions were 

similar to the ones used by other researchers (e.g., Watson, et. al., 2002). 



 

Table 3. Contexts for PreSurvey (Part Two) Questions 
 

Question Brief Description Contexts 
1 Results are predicted for drawing one, several, and six samples of 

10 candies from a jar (60 Red & 40 Yellow) 
Sampling 

2 Ranges are predicted for  drawing six and then thirty samples of 
candies  

Sampling 

3 Results are predicted for drawing fifty samples of candies 
 

Sampling 

4 A graph is made to show what the results of fifty samples might 
look like 

Sampling  
& Graphs 

5 Test scores are shown for two different classes. The question 
addresses the two classes’ relative performance 

Data & Graphs 

6 Two graphs, showing the student heights at two different school, 
are compared to see which shows more variability 

Data & Graphs 

7 Results are predicted for performing one, two, and six trials of 50 
flips of a fair coin. 

Probability 

8 Chances of winning a game involving two 50-50 (Black-White) 
spinners are addressed. 

Probability 

9 Chances of winning a game involving a 50-50 and a 25-75 (Black-
White) spinner are addressed. 

Probability 

 

A question involving the comparison of graphs used in the PreSurvey (Question #5) 

also was used by Watson and Moritz (1999).  Question #1, using samples of candies 

from a jar (akin to the Candy Task mentioned in Chapter 2),  was used on the NSF 

surveys as well as in other research (Torok & Watson, 2000; Reading & Shaughnessy, 

2000; Shaughnessy et. al., 1999; Shaughnessy & Ciancetta, 2001).  Thus, for the 

PreSurvey, I chose to use questions that have been used by other researchers to obtain 

an overview of middle and secondary students’ thinking about variation. 

PreInterview 

 After the class in which the PreSurvey was completed, I read through all the 

responses to get a general sense of how much the students had written and what they 

had to say. I paid particular attention to the surveys from the eleven students who had 

said they were willing to be interviewed. Of these eleven students, I selected six who I 

 87



 

 88

predicted would make good cases because I thought their responses on the PreSurvey 

were representative of the whole class in the sense that their responses were similar to 

those of other students in the class. Also, my six cases provided enough written detail 

to convince me that they would have no problem sharing their thoughts in an interview 

situation.  

 Having a total of six cases is largely a pragmatic decision, determined by the 

resources available in conducting my research.  Qualitative inquiry generally involves 

relatively small samples, and the key in purposeful sampling is to select “information-

rich cases whose study will illuminate the questions under study” (Patton, 2002, p. 

230).  Creswell (1998) discusses the value in purposeful sampling, saying that cases 

can be chosen to provide different perspectives on the phenomena under study.   

 Because my research design required pairs of Pre and PostInterviews for the 

same subjects, I conducted the PreInterview of all eleven of the volunteers over the 

second and third weeks of the quarter.  I interviewed all eleven because although I was 

planning on six cases, I could not guarantee that those six would still be enrolled or be 

available at the end of the quarter for the PostInterview, nor could I guarantee that the 

quality of their information in the interview setting would be as rich as I had expected 

it to be.  It turned out that the six cases I initially had in mind from reading their 

PreSurveys were in fact very useful for informing my framework and helping me 

understand their conceptions of variation, and they did complete the postinterviews as 

well.  The other five of the eleven volunteers also completed postinterviews, which I 

conducted because I had the resources and figured that their contributions gave me 

additional data with which to work on future research.   
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 The PreInterview subjects met with me outside of the regular classtime. A 

videocamera was set up to record the interview, and a separate tape recorder also was 

present because the audio cassettes were useful in transcribing the dialogue.  I had a 

copy of the interview script (see Appendix B) and also gave a copy to the subject, who 

was encouraged to write on the script as desired. The PreInterview contained 13 multi-

part questions. The contexts for the questions are given in Table 4. More details of the 

PreInterview questions and sample responses are provided in the next chapter.  

 The first question on the PreInterview was identical to the first question on the 

PreSurvey (akin to the Candy Task) for two reasons. First, I wanted to see how their 

verbal responses compared with what they had written, and to  see if they had 

anything more to add to their earlier explanations. Second, I wanted a familiar context 

to ease them into the interviewing mode. The smoothness of the transitions from 

question to question were important because experience has shown me that sometimes 

the scenario described in a question can be confusing to students who had never 

actually done such activities. For example, telling someone to imagine drawing 6 

handfuls of 10 candies each, with replacement, from a jar containing 100 candies in it  

(40 of which are yellow and 60 of which are red), can seem like an overwhelming 

amount of different numbers to keep track of for one question. 

 



 

Because the PreInterview took place before the stochastics portion of MET 2, I did not 

want to assume that the questions would automatically make sense to the subjects. 

Therefore, just as the PreSurvey was scaffolded to include one sample, then several, 

then six, so too was the PreInterview modeled to move gradually to ever larger 

numbers of samples.  

Table 4.  Contexts for PreInterview Questions 
 

Question Brief Description Contexts 
1 Results are predicted for drawing one, several, and six samples of 10 

candies from a jar.  
Sampling 

2 Lists are shown for different outcomes of six trials. Subjects 
are asked to comment on the likelihood of each list occurring. 

Sampling 

3 The supposed results of 30 samples are shown. Subjects are asked 
about the likelihood of the results being real or fake. 

Sampling 
& Graphs 

4 The supposed results of 300 samples are shown. Subjects are asked 
about the likelihood of the results being real or fake. 

Sampling 
& Graphs 

5 Three graphs show different ways of portraying the same data set. 
Subjects are asked how the graphs differ. 

Data &  
Graphs 

6 A set of 21 measurements for the duration of a train ride is given. 
Subjects are asked for reasons why the results are not identical. 

Data & 
Graphs 

7 The 21 measurements from Q6 are graphed in two different ways. 
Subjects are asked to compare the two graphs. 

Data & 
Graphs 

8 Two different graphs are shown: Wait-times for eastbound and 
westbound trains. Subjects are asked to compare the graphs. 

Data &  
Graphs 

9 Results are predicted for one sample of sixty tosses of a fair die.. Probability 

10 Supposed results are shown for four samples with the die, and  
subjects are asked which results seem real or fake. 

Probability 

11 
 

Results from repeated samples with the die are predicted. 
 

Probability 

12 A 2:1 (White:Black) spinner is used, and results are discussed 
in terms of what seems surprising to the subjects. 

Probability 

13 For the spinner in Q12, one sample is defined as sixty spins. Two 
graphs showing supposed results from 20 samples are compared 

Probability 
& Graphs 

 The PreInterview script contained specific questions that I used with each 

subject, but the protocol also allowed me flexibility to follow the subjects’ train of 

thought.  Thus, each interview contained common questions as well as unique input 

from the different cases. 
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Class Intervention #1 
 
 All of the class interventions are described in greater detail in Appendix C, so 

in this chapter they are only briefly discussed. The two activities comprising the Class 

Intervention for the context of data and graphs were called “Four Questions” and 

“Body Measurements”.  

 The “Four Questions” activity was chosen for two reasons. One reason is 

because Steve and I had each used versions of the activity with other MET 2 classes, 

and were therefore experienced in how it went and what it offered.  The second reason 

is that it offered a good opportunity to discuss both average and spread in data sets.  

Steve therefore started the class exploration of statistics in the fifth week by having the 

entire class gather data from one another in response to four questions: 

 How many pets do you have?   
 How many years have you lived in Portland (to nearest half-year) ? 
 How many people are in your household? 
 How much change (in coins) do you have today? 
 
After graphing the data in different ways, the class had a discussion about 
 
levels of detail provided by each type of graph and about what were “typical”  
 
values for a MET 2 student or for the whole class. The tension between 
 
centers and spread of data was one theme to emerge from the discussion  
 
over graphs from the “Four Questions” activity. 
 
 The second activity in the class intervention that focused on the context of  

data and graphs was “Body Measurements”, which was also selected because it was a  
 
well-rehearsed activity for Steve and me. More importantly, a similar activity was to  
 
be used for the NSF-sponsored project  with middle and high school classes, and  
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comparisons could be made between EPST’s and precollege students in the future.  As 

in “Four Questions”, we gathered class data for “Body Measurements”: Everyone’s 

own armspan, height, handspan, head circumference, and pulse rate per minute were 

recorded.  Also, all students in class measured Matt’s armspan, to gather data from a 

repeated-measurements experiment.  Again, we had a class discussion about the data 

and graphs for the body measurements, this time focusing more on causes of variation. 

Data & Graphs PostSurvey 
 
 The Data & Graphs PostSurvey, a take-home assignment, was given at 
 
the end of the final class session of week 6, and collected the following week.  
 
Students had from Thursday to Tuesday to work on the PostSurvey, and they  
 
were encouraged to work together on the assignment.  I can’t be certain who did 
 
or did not work in teams outside of class, but traditionally groups of MET 1 and  
 
MET 2 students do spend time before or after class working together.  The  
 
PostSurveys were graded by Steve only as “done” or “not done”, similar to other  
 
writing assignments given in class.  Table 5 summarizes the questions asked on the  
 
Data & Graphs PostSurvey. 
 
 In creating the Data & Graphs PostSurvey questions,  I wanted to examine 

students’ reasoning as they compared or evaluated different graphs. For example, 

would students refer more to centers or to spreads?  Also, I wanted see what kinds of 

causes for variation they could come up with on their own.  In Q1c, I was curious 

about their ability to reason from the given average of 4 inches of rain to generate a 

reasonable graph showing appropriate variation for the rainfall during a typical June in 

Columbus. 



 

Table 5.  Summary of Data & Graphs PostSurvey  Questions 

Question Brief Description 
1a Bar charts are given showing the 30-year average monthly rainfall for Portland and 

Columbus. Students discuss differences and causes in the rainfall patterns. 
1b Boxplots are given for the same data sets used in Q1a. Again students discuss 

differences, and also are asked which city they think is rainier, and why. 
1c Assuming that the average June rainfall in Columbus is 4 inches, students are 

asked to draw a graph showing what each day’s rainfall in June might look like. 
2a Dotplots and boxplots are given showing annual traffic death rates for two regions in 

America, the South and Northeast. Students are asked to compare the rates. 
2d Students are asked to think of factors that might explain the differences in rates 

between the two regions. 

 
Finally, for my six cases, and the others who would be interviewed a second time, I 

wanted additional evidence in their reasoning about variation in histograms, dotplots, 

and boxplots. 

Class Intervention #2 
 

 In the seventh week of class, the two activities “Known Mixture” and 

“Unknown Mixture” were done with Steve’s students. Matt and I had done this 

activity at six schools as a part of the NSF-sponsored project. We had seen how 

effective the activities could be in drawing attention to variation.  For example, middle 

and high school students always commented on the different ranges of the graphs 

depicting actual results of the sampling activities. 

 Prior to the Known Mixture, we started with a general discussion of what 

samples were, who uses samples, and what samples were good for. Then the scenario 

in Figure 10 was given as a part of a handout.  The class discussed initial expectations 

for this scenario, especially focusing on what would happen if the random draw of 10 

names were to be repeated thirty times. 
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  The band at Johnson Middle School has 100 members, 70 females 
  and 30 males. To plan this year’s field trip, the band wants to put  
  together a committee of 10 band members. To be fair, they decide to 
  choose the committee members by putting the names of all the band 
  members in a hat and then they randomly draw out 10 names 
    

Figure 10 – Known Mixture Activity 
 
After students talked about predictions for drawing thirty samples each of size ten, we 

simulated this activity using chips in a jar. Actual data was gathered and graphed. 

Then we had a discussion about how the graphs of the predicted data compared to one 

another, how the graphs of the actual data compared to one another, and also how the 

predicted graphs compared to the actual graphs. 

 We then made a transition into the second activity in this intervention, 

the Unknown Mixture.  It was made clear that even though we had known what was in 

the earlier jars, samples still had varied. Now we had larger jars, each containing 1000 

chips of yellow and green with the same mixture.  However,  the exact mixture was 

not known to the class (it was actually 550 yellows and 450 greens). The students 

were asked to decide in their groups what sample size they wanted to use (we imposed 

an upper limit of size twenty for all groups) and how many samples they wanted to 

draw. Then they were to carry out their plans, do the sampling, graph the results, and 

make some conjectures about the true mixture in the jar.  After the simulation was 

carried out, we had a class discussion about the different choices made in sampling, 

the class results, and we tried to forge a class consensus about what the true mixture 

was. 
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Sampling PostSurvey 

 The Sampling PostSurvey take-home assignment was given at the end of the  
 
final class session of week 7, and collected the following week.  Table 6 summarizes  
 
the questions asked on the PostSurvey. 
 
 

Table 6.  Summary of Sampling PostSurvey Questions 

Question Brief Description 
1a A boxplot shows the results of 20 samples of size 10 drawn from the smaller 

candy jar (60 Red & 40 Yellow). Individual sample results are then inferred. 
1b Since the minimum result on Q1a shows 3 Reds in a handful of 10, the number 

of trials needed to get a 0 or 1 Red are predicted. 
2 Results are predicted for drawing one, several, and six samples of 100 candies from a 

larger jar (600 Red & 400 Yellow) 
3 Ranges are predicted for  drawing thirty and then three hundred samples of 100 

candies  
4 Results are predicted for drawing fifty samples of 100 candies 

 

 
 
 I asked Q1a because it got at the idea explored in class about how boxplots can 
 
obscure variation. I was also curious to investigate their ability to work with boxplots,  
 
especially working backwards and predicting what the underlying distribution might  
 
be which led to that boxplot (as opposed to taking the data and creating the boxplot as  
 
is typically done).  Q1b was added to draw on our class experience with the ProbSim  
 
software and the numbers of samples needed to get extreme results.  Questions 2, 3, 

and 4 all were parallel to questions previously asked in the PreSurvey and 

PreInterview for the Small Jar (60 Red & 40 Yellow), only now the sampling was 

done from the Large Jar (600 Red & 400 Yellow).  I was curious to see how answers 

for the Large Jar compared to what students had put for the Small Jar, and I also 



 

 96

wanted to have my six cases thinking about the Large Jar because I built additional 

questions on that sampling scenario into the PostInterview. 

Class Intervention#3 
 
 There were two activities that made up this intervention, “Cereal Boxes”  
 
and “The River Crossing Game”.  These were chosen specifically because of the 

probability aspects involved in the activities.  Cereal Boxes relies on the use of 

spinners and River Crossing on the use of dice as random generators, and these two 

activities were the main ones done in MET 2 involving random devices. 

 Cereal Boxes actually took place in the first class session of week 2,  
 
just before we gathered data for Body Measurements.  As explained earlier,  
 
there was considerable overlap in the three contexts, and Cereal Boxes is a good  
 
example of this overlap.  Cereal Boxes is sample-until scenario, assuming that  
 
any of five different stickers can be obtained within each box of cereal, and that the  

five stickers have equal chances of being obtained.  The question is, about how many  

boxes would need to be opened to obtain all five stickers.  The situation can be  

simulated by using an equal-area five-region spinner.  Cereal Boxes brings together  

probability, sampling, and data and graphs in a way that highlights variation. 

 The second activity for this intervention, the River Crossing Game, involved 

finding the sum of two dice. Both the Cereal Boxes activity and River Crossing Game 

are part of the Math and the Mind’s Eye curriculum (Shaughnessy & Arcidiacono, 

1993).  

 

 



 

 
 
 
 
 
 
 
 
 

 

 

Figure 11 – River Crossing Game 

Initial Arrangement 
 
  * Player A has 12 chips on top 
  * Player B has 12 chips on bottom

10 11 
9 8 7 

6 
5 

4 3 2 
12 1 

10 11 

River 

9 8 7 
6 

5 
4 3 2 

12 1 

Using two players, each player receives 12 chips to place on their side of a “river”, 

along spaces marked 1 through 12. After configuring their chips in an initial 

arrangement  (see Figure 11 for an example of two players’ initial arrangements), 

players took turns tossing a pair of dice. If either player had any chips on the space 

showing the total for the dice, one chip could “cross the river” and be removed from 

the board. The winning player was the first one to remove all the chips on his or her 

side.  For instance, in Figure 11, if the dice resulted in a sum of 10, Player A on top 

could remove one chip. If the dice showed 8, Player A and B could each remove one 

chip.  As with Cereal Boxes, in the River Crossing Game we made predictions, 

gathered and graphed data, and discussed results. 

Probability  PostSurvey 
 

 The Probability PostSurvey take-home assignment was given at the  
 
end of the final class session of week 8, and collected the following week.   
 
Table 7 summarizes the questions asked on the Probability PostSurvey. 
 
 

 97



 

 98

Table 7.  Summary of Probability PostSurvey  Questions 

Question Brief Description 
1 The number of blacks resulting from 50 spins at a ½ -white & ½ -black spinner 

make up a single sample. Results are predicted for doing one, two, and six samples 
of 50 spins. 

2 Ranges are predicted for doing thirty and then three hundred samples with the 
spinner. 

3 A graph is made to show what the results of fifty samples (each of 50 spins) of the 
spinner might look like 

 
 
Question 1 was crafted to be similar to the sampling questions on the PreSurvey, the  
 
PreInterview, and the Sampling PostSurvey, only this time the focus was on  
 
probability. Instead of grabbing handfuls of candies, the students were asked to  
 
consider samples of fifty spins of a 50:50 (White:Black) spinner.  Also, Question 1  
 
was similar to the PreSurvey question on probability that used a sample of 50 flips of a 

fair coin.  Question 2 was similar to what was asked on the PreSurvey and Sampling 

PostSurvey, and the graph of fifty samples for question 3 was similar to what was 

asked for fifty samples of the Small Jar in the PreSurvey.  I was curious to see how the 

probability questions with the flips of  a coin (in the PreSurvey) compared to the  

spinner environment (in the PostSurvey), and also how the responses for the 

probability context compared with those responses for the sampling context.  Finally, 

for my six  cases I wanted added familiarity with the spinner scenario, since I based  

several additional questions in the PostInterview on repeated samples of spinners. 
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PostInterview 
  
 The PostInterviews took place during the 9th and 10th weeks of the quarter, 

after Steve had gone back to teaching geometry.  I followed a very similar protocol 

with the PostInterviews as I had with the PreInterviews, videotaping each interview as 

well as making a separate audiorecording for the transcribing process.  The 

PostInterview contained 13 multi-part questions, and the contexts for the questions are 

given in Table 8. More details of the PostInterview questions and sample responses 

are provided in the next chapter. 

 As in the PreInterview, I chose the very first question on the PostInterview to 

be identical to a question the subjects had already seen (it had been asked in the 

Sampling PostSurvey.  Also, the first four questions were isomorphic to those on the 

PreInterview, maintaining the population proportion of 60% Red, except that they 

used the Large Jar (600 Red & 400 Yellow) as opposed to the Small Jar (60 Red & 40 

Yellow).  Question 5 involved both the Small and the Large jars, the only question in 

any of the instruments to do so directly. Questions 6, 7, and 9 were asked in part 

because of their similarity to the MAX train ride questions on the PreInterview.  

Lastly, question 10 was identical to the first question on the Probability PostSurvey, 

and set the subjects up for a transition to the last few questions that also involved 

spinners.   

 

 

 



 

 

Table 8.  Contexts for PostInterview Questions 
 

Question Brief Description Contexts 
1 Results are predicted for drawing one, several, and six samples of 100 

candies from a large jar. 
Sampling 

2 Lists are shown for different outcomes of six samples. Subjects 
are asked to comment on the likelihood of each list occurring. 

Sampling 

3 The supposed results of 30 samples are shown. Subjects are asked 
about the likelihood of the results being real or fake. 

Sampling 
& Graphs 

4 The supposed results of 300 samples are shown. Subjects are asked 
about the likelihood of the results being real or fake. 

Sampling 
& Graphs 

5 Two graphs show supposed results of forty samples at the small and 
also at the large jar. Subjects are asked if graphs are real or fake. 

Sampling 
& Graphs 

6 A set of 20 measurements for the weight of a muffin is given. 
Subjects are asked for reasons why the results are not identical. 

Data & 
Graphs 

7 The 20 measurements from Q6 are graphed in two different ways. 
Subjects are asked to compare the two graphs. 

Data & 
Graphs 

8 35 different muffins from the West End bakery are shown. Subjects are 
asked how much their (36th) muffin might weigh. 

Data &  
Graphs 

9 Two different graphs are shown: Muffin weights for East and 
West End bakeries. Subjects are asked to compare the graphs. 

Data & 
Graphs 

10 Results are predicted for doing one, two, and six samples of 50 spins at 
the 50:50 spinner.  

Probability 

11 
 

Lists are shown for different outcomes of six samples. Subjects 
are asked to comment on the likelihood of each list occurring. 

Probability 

12 A graph shows the supposed results of twenty samples. Arguments 
from other people about the results are discussed by subjects. 

Probability 
& Graphs 

13 Two graphs show supposed results of two classes doing thirty samples 
at the spinner. Subjects are asked if graphs are real or fake. 

Probability 
& Graphs 

 It was mentioned earlier how the activities in the interventions were designed 

to get at variation.  As can be seen in Table 8, the activities in the interventions had 

direct ties to the tasks on the PostInterview questions.  For instance, the intervention 

on data and graphs included different types of graphs and the amounts of variation 

they showed.  Body Measurements got at the ideas behind repeated measurements, as 

did the muffin weight questions on the PostInterview.  The Known and Unknown 

mixtures had students actually draw chips from a container to experience drawing 

candies from Large and Small Jars.  Cereal Boxes and the River Crossing Game had 

students use traditional random generators such as spinners and dice to get a sense of 
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what was likely in a probability context.  There is one big difference on the 

PostInterview compared to the PreInterview: PostInterview questions 8, 9, and 12 all 

included boxplots as well as either dotplots or histograms, but boxplots were not 

covered on the PreInterview.  Thus, several of the tasks involving graphs had two 

types of graphs, again relying on the experience gained in the class interventions.  

Data Analysis 
 
 In this section, I’ll illustrate the process of using grounded theory techniques to  
 
develop what I call my evolving framework, which addresses my primary research 

question. The framework in its entirety is presented in the next chapter, which focuses 

on results of the study.  The method by which the framework was derived is described 

in this chapter.  The process of deriving a framework is laborious and quite detailed, 

so I’ll just use one piece of the framework to provide an example of how I applied the 

three techniques of grounded theory: open coding, axial coding, and constant 

comparison.  Before launching into my illustrative example, a last methodological 

component to be discussed is the role of computer software in my data analysis.   

Role of Computer Software 

 The creative yet systematic process of theory building, which in my study took 

the form of fleshing out a conceptual framework about variation, was aided 

enormously by the NUD•IST software.  

 Grounded theory techniques allow for the inclusion of a wide scope of data, 

such as the written responses, transcribed interviews, and observational notes. As the 

process of theory development moves through cycles of constant comparison, memos 

suggesting the continual conjecturing and refinement of categories and concepts also 
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become a part of the data. Thus, data management becomes a crucial issue in using 

grounded theory. Richards (1994) boldly states that “all researchers working in the 

qualitative mode will clearly be helped by some computer software” (p. 105).  The use 

of qualitative data analysis software facilitates not only the management of data, but 

“it can offer leaps in productivity for those adept at it” (Patton, 2001, p. 447).  

 The software used in this study was NUD•IST (Non-numerical Unstructured 

Data Indexing, Searching, and Theorizing), a theory-building program that aids in data 

storage, coding, retrieval, and category comparisons and linking (Richards and 

Richards, 1994; Richards, 1994; Patton, 2001).  NUD•IST is well-suited for the 

analysis techniques of grounded theory, although it cannot be emphasized enough that 

software only assists in the process – software does not analyze data for the researcher 

(Patton, 2001; Creswell, 1998).  The flexibility in coding, categorizing, and revising 

made the development of theory a dynamic and reflexive process. The single biggest 

obstacle was in learning what NUD•IST could do for the analysis, and how to get the 

program to do what I wanted. Once the various ways of categorizing, indexing, and 

coding were learned – the logistics of the program as well as the potential – NUD•IST 

became an invaluable tool. 

Developing the Evolving Framework 

 As a tradition of qualitative inquiry, grounded theory allows analysis to begin 

even in the absence of any initial structure or preconceived ideas of what the data 

might hold.  For my research, I did start with an initial conceptual framework, which 

was based on previous research as well as my own experience.  However, the initial 

conceptual framework was a rough structure that offered little in the way of specifics; 
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it was mainly used as an overarching guide for designing my tasks.  Recall that the 

initial framework had three aspects: expecting, displaying, and interpreting variation.  

Each aspect had different dimensions.  For example, expecting had the two dimensions 

of what was expected and also why it was expected.  Grounded theory offered a way to 

expand on the dimensions of the initial conceptual framework.  I’ll show how this 

expansion happened with the dimension of what was expected.    

 I’ll start with the process of open coding, whereby I gathered all responses 

having to do with what was expected and looked for what I called broad common 

“themes” within the responses. Open coding led to the emergence of three themes for 

the dimension of what was expected: responses concerning the expected value, 

responses about repeated values, and responses about a range or extreme values.  I 

then used axial coding to focus on these three themes in turn to describe them in terms 

of what I called “characteristics” of the theme.  The process of constant comparison 

meant that I iteratively went back and forth from the data to the emerging themes and 

characteristics, looking for confirming and disconfirming evidence from all my data 

sources to help me conceptualize the evolving framework as it was being built. 

 Open Coding:  All my observation notes, memos, interviews, and survey data 

had been transcribed and imported into NUD•IST as text files.  I chose to set a line 

of text as the smallest unit which could be coded (other choices included setting a 

paragraph or section or the entire document as the unit of analysis).  I then went 

through all the data and coded all the occurrences where I found references to what 

was expected.  In NUD•IST the process of coding means highlighting the lines of text 
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and selecting a “node” to code the text at.  Every node has a title, and on this first pass 

at coding I simply titled my node “Describing What is Expected”.  

 The examples I’ll use in this section are responses taken from my six cases 

from Question 10 on the PostInterview.  The process I’ll be describing was applied to 

all of my data, but in order to illustrate the depth of analysis that led to the framework, 

I need to limit the example.  Question 10 had three parts (Q10a, Q10b, and Q10c), and 

imagined a man getting a sample of 50 spins of a half-black and half-white spinner. 

The question in Q10a was “How many times do you think the arrow might land on 

black? Why?”  Table 9 shows some sample responses that I coded at “Describing 

What is Expected” for Q10a. 

 Each line of text is coded at the level of my dimension (“Describing What is 

Expected”), but a closer examination of the responses shows different themes within 

the responses.  A review of my memos showed that the first thing I noticed was how 

both DS and EM used the words “close to 50%”, and JM used the parallel 

“approximately 50%”. Comparison of other data for these cases showed me that they 

did know 50% of the 50 spins in this situation was 25 blacks, so when they referred to 

“50%” it was isomorphic to saying the expected value. That got me thinking that a 

theme to look for in their responses had to do with what they said about the expected 

value. 

 

 

 



 

Table 9. How many times might the arrow land on black? Why? 

Subject Response 
DS Like, just close to 50%, but not exactly! Yeah, within 2 or 3. 
EM I think it will land there somewhere close to 50% of the time, I 

don’t  think it will always be 50% of the time, I think it will be 
probably between 40 and 60% of the time.  So, 25...between 20 and 
30 spins. 

JM JM Well, approximately 50%, but it will be , you know, plus or 
minus, maybe, 20% of that number – Somewhere in there. 

RL Oh, how about… Somewhere between 21 and 29… I don’t say, you 
know, 18 to 29… I’m going afar from 25 in either direction.  It’s 
probably within that [21 to 29] range. 

SP Yeah, so it expect it , like, up from 25, maybe like 30, and 20 … 
between 20 and 30 

 

I then coded the responses of DS and EM and JM as “Concerning Expected Value”, 

since that was a theme I was hypothesizing. A strength of NUD•IST is that one can 

code text at as many nodes as one wishes. Now, for example, DS’s response has two 

codes: one code at the dimensional level “Describing What is Expected” and also at 

the thematic level “Concerning Expected Value.”  At this point, I wouldn’t know 

much about the characteristics of the theme “Concerning Expected Value” until I’d 

done axial coding.  Something else I noticed in the responses was a focus on range, 

such as when DS mentioned “within 2 or 3”, or EM said “between 20 and 30 spins”. 

Notice how RL gives both a range he is comfortable with (21 to 29) and a range he 

thinks is too wide (18 to 29). At this point, I created a node for the theme I was 

hypothesizing, and titled it “Concerning Range or Extremes”.  JM’s response also 

reflected the theme concerning range (“...plus or minus, maybe, 20% of that number”) 

as does SP’s response (“between 20 and 30”).  Lastly, I noticed how EM said “I don’t 

think it will always be 50% of the time,” and that made me wonder about a possible 
 105
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theme concerning repeated values. That is, I thought maybe I should be on the lookout 

for responses that specifically mentioned if results would be the same or different from 

one sample to the next.  I had a tentative theme “Concerning Repeated Values” which 

I carried into the next set of responses with my other themes.   

 This illustrative example omits many of the other memos and conjectures I had 

in the first pass at open coding, and makes the process appear more streamlined than it 

was. The point of microanalysis (open coding combined with axial coding and the 

method of constant comparison) is that you can begin with broad and multiple 

categories and properties and then winnow them down, collapsing and combining as 

you continually re-conceptualize your data. Thus, there are many other themes that 

had occurred to me in my first pass at looking at the data, but I am only presenting the 

final ones here. 

 Axial Coding:  After I applied open coding to all my data, axial coding 

encouraged me to focus on the themes, explicitly looking at the various characteristics 

of each themes.  In Table 10 I show some responses to Q10b, which asked how the 

results of a second sample of 50 spins would compare to the first sample results from 

Q10a.  I’ve presented the lines of text along with the coded themes. 

 The main difference between what I did in open coding and what I did in axial 

coding comes down to focus.  In open coding, I collected all responses that had some 

information “Describing What was Expected”. At the same time, I had many memos 

and tentative themes that I thought might be emerging. 



 

Table 10.  How do you think his results on the second set of 50 spins will  
      compare with the results of his first set? 

Themes Subject Response 
Expected 
Value 

Repeated  
Values 

Range or 
Extremes 

I think it’d be close to it, but different.  ● ●  
So, maybe if he got 28 the first time,    ● 

DS 
 

he’d get 24 the second time, or 23...   ● 
EM Somewhere near 50%, right ●   

Yeah, I think [it’d be] fairly close in  ●   
the sense that it’s gonna be  ●   
around the... 25 blacks, ●   

JM 
 
 

plus or minus that 10% or so.   ● 
I think that it’s likely to fall in a   ● RL 

 same range, similar range.   ● 
I think the range would still be    ● 
somewhere very similar to that one.    ● 
There’d be – just different numbers,   ●  

SP 
 
 
 but still somewhere in that range.   ● 

 

In axial coding, I went back through the data and specifically focused on potential 

themes. For instance, in Table 10, I looked for and coded responses as “Concerning 

Expected Value”  I noticed how DS mentioned that the second sample would “...be 

close to it”, and a comparison of what she had said earlier showed me that what she 

was suggesting was a result that would be close to the expected value (of 25 blacks).   

EM and JM also have responses coded at the theme “Concerning Expected Value”, 

with their expression of results being “near 50%” and “around the ...25 blacks”.  Then, 

I went back through the data and looked specifically for responses “Concerning 

Repeated Values”. In Table 10, DS and SP specifically mentioned that they expected 

different results.  Similarly, for the theme “Concerning Range or Extremes”, JM, RL, 

and SP explicitly used the term “range”, while DS suggested possibilities that range 

from 23 blacks to 28 blacks.   
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 In the axial coding process, I made many memos to record my own thinking 

about the data.  For example, I noticed when DS mentioned possibilities ranging from 

23 to 28 blacks that those were reasonable choices and she didn’t seem to expect 

unlikely extreme values such as 5 or 45 blacks.  When RL mentioned range, he first 

said “same range” but then immediately amended this by saying “similar range”.  By 

doing a comparison of other places where RL talks about results being “similar”, I was 

able to find out that in his case and also in the case of most of the students, “similar” 

seemed to imply “similar but different.”  By thinking deeply about the themes, I 

initially recorded my thinking as tentative links between the characteristics of the 

themes, and the links either became stronger with the addition of more and more data 

or were discarded. 

 Constant Comparison:  This method lets me take new data and compare it to  

the themes and characteristics even as those themes and characteristics are emerging. 

Constant comparison is an ongoing process that can occur alongside and after both 

open and axial coding.  In my previous illustrations of open and axial coding, many 

instances of constant comparison took place as I referred to other similar survey or 

interview responses for the different subjects.  I also made references to class 

observations. For instance, in Table 9, JM referred to expecting approximately 50% 

blacks “plus or minus...20% of that number”.  Then, in Table 10, he mentioned 25 

blacks “plus or minus...10%”.  By looking at what his group did in class on the posters 

for the Unknown Mixture, and by referring to my notes on class observations, I could 

see that a 10% margin of error had been discussed.  Thus, JM may have been 

influenced to think in terms of “plus or minus 10%” even though 20% of 25 is an 
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easier number to work with.  Notice how in Table 9 EM and SP gave ranges of 20 to 

30 blacks, which corresponds to 25 blacks plus or minus 20% (of 25).  Also, EM had 

said “40 to 60% of the time” which could be thought of as 50% plus or minus 10%.   

Constant comparisons let me draw from many data sources as I made different 

connections about my themes and their characteristics. 

 Constant comparisons also let me see when I had saturated my dimensions, 

themes, and characteristics.  Saturation in this example referred to the point where new 

data is not adding anything new to the themes I had initially envisioned.  Table 11 

shows the results for Q10c, which asked for a list of what might happen in six samples 

of 50 spins each, and why.  The same three themes as in Table 10 are again shown in 

Table 11, which helped confirm that these were themes that I could characterize and 

look for in other data from other questions.  I also was able to compare the subjects’ 

lists for their six samples to the responses they had given earlier. For example, DS had 

said in Table 9 “within 2 or 3” (of 25 blacks), yet her list reflects 25 plus or minus 4. 

Notice too how EM had earlier suggested a range of 20 to 30 blacks, but in her own 

list she went a little wider than that on both sides. JM did a bit of self-reflecting as he 

considers his range of 21 to 29 and thinks about what he had said about “plus or minus 

10%”.  RL confirmed my ideas about his earlier response when he explicitly stated 

“similar, but not identical.”  

 Saturation does not imply that one stops thinking of new connections that can 

be made among the themes and characteristics. 

 



 

Table 11.  Write a list to describe what might happen in six sets of 50 spins.     
                Why did you choose those numbers? 

Themes Subject Response 
Expected 
Value 

Repeated  
Values 

Range or 
Extremes 

[28, 23, 25, 29, 21, 26] I have a few scattered  ●   
close to 25, but not 25.  So that...probably on ● ●  

 DS 
 

average it’ll be close to 25. ●   
[20, 23, 28, 32, 18, 24] For the most part, it was   ● 
generally concentrated between – give or take...   ● 
50% of the time, somewhere near there…But...   ● 
occasionally it would be even lower than that,   ● 

EM 

so I... threw the18 in there...And the 32, yeah.   ● 
GP [21, 23, 24, 25, 27, 28] They’re around the 25. ●   

[21, 23, 25, 26, 27, 29] Well, they’re close to ●   
that 50 percentile, that we’re looking for , plus ●  ● 
or minus – I’m thinking – 10% or so. Actually,   ● 

JM 

 I’m a little high aren’t I, with the 29? But still...    
[21, 23, 22, 27, 28, 29] I did a pair, each equally   ● 
far out from the mean in either direction. And... ●  ● 
there’s no repeats, but they’re all sim[ilar] …  ●  

RL 

They’re similar, but not identical  ●  
[20, 23, 24, 26, 28, 29] Just fall within that   ● 
range of 20 to 30, that you would expect. Yeah,  ● ● 
they could repeat, but I just did a range acro[ss]    ● ● 

SP 

from 20 to 30, just to choose.   ● 
 

There are so many different layers of meaning that can be found in a grounded theory 

approach to qualitative analysis that one could continually return to the data and find 

something new.  Thus, being guided by my principle research question to come up 

with a more descriptive framework for understanding EPSTs’ conceptions of 

variation, I concentrated on describing the characteristics of the dominant themes I 

saw rising out of the data.   

 This section provides a taste of what characterizes the three themes for 

“Describing What is Expected”.  Concerning the expected value, Tables 9 through 11 
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show how results are thought of as being “close to”, “somewhere near”, or “around” 

that value. Results may or may not include the expected value.  For example, in Table 

11 when picking six hypothetical results, three of the cases did include 25 blacks in 

their list, and the other three cases did not.  Concerning repeated values, although 

multiple samples could repeat, they shouldn’t all be identical. Results might be 

“similar, but not identical.” Again looking at Table 11, notice how every one of the six 

cases gave lists that were composed of distinct entries. There is not a single repeated 

value in any given list.  Concerning range or extreme values, subjects sometimes 

stated explicit numerical ranges which gave clues to the numbers they were 

comfortable with. In the example of Q10, a range of about 20 to 30 meant that 21 to 

29 was considered reasonable, but so too was 18 to 32. Thus, even when stated 

explicitly, ranges tended to be flexible.  

 Even with the detailed illustration given within this section, the themes for 

“Describing What is Expected” (Concerning Expected Value, Repeated Values, and 

Range or Extreme Values) have not been completely fleshed out just by responses to 

PostInterview Q10.  I have only profiled the six subjects’ responses to this question.  

My purpose in this section has been to show how I used the grounded theory 

techniques to do a microanalysis of the data. The complete analysis encompassed six 

cases’ responses to the interview questions as well as classwide responses to the 

survey questions.  The illustration of microanalysis in this section relied on less than 

50 lines of text comprising subjects’ responses in Tables 9 through 11, while the entire  

research project covered literally thousands of lines of text.  Thus, NUD•IST was  

extremely helpful in managing the codes as they emerged, especially since a key  
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feature of NUD•IST is the ability assign multiple codes to lines of text. As many of 

the responses in this section showed, a subject could give a sentence or fragments of 

sentences that contain several distinct meanings. DS gave a succinct example in Table 

9, when she expected results “...close to 50%, but not exactly! Yeah, within 2 or 3”.  

She appeals to the expected value, and also gives a range.  In the next chapter I’ll 

summarize each theme for each dimension within the aspects comprising my evolving 

framework.   

Summary 
 

 Subjects were chosen from the MET 2 class, where the pedagogical style in the 

class and in its prerequisite, MET 1, encourages students to communicate their 

thinking both verbally and in writing.  Subjects were familiar with and able to openly 

share their thinking, a necessary condition for this study.  The overall design for the 

research incorporated elements of both grounded theory and case study traditions. 

In addition to interview data gathered from six cases, classwide data was gathered via 

a set of written documents (surveys), and the study was also augmented by in-class 

observations. 

 The three data gathering methods, observation, document review, and 

interviews, all were connected to the three class interventions. The three interventions 

(made up of two activities each) corresponded to the three contexts for looking at 

conceptions of variation: variation in data sets, variation in sampling, and variation in 

probability situations. After administering a PreSurvey to the whole class, 

PreInterviews were held outside of class time. Then, after each class intervention was 
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conducted, a take-home PostSurvey was distributed. Finally, PostInterviews were 

completed.    

  To analyze the data, the use of grounded theory techniques allowed for the 

characterization of the subjects’ understanding to naturally emerge within the 

conceptual framework in the shape of distinct but linked themes.  The rudimentary 

structure posited as an initial conceptual framework was validated and extended by 

doing a microanalysis of all the data collected.  The data analysis was facilitated by 

the use of the NUD•IST computer software.  The final result was a rich description 

and overall characterization of the conceptions of variation held by elementary 

preservice teachers, given by the evolving framework in the next chapter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER FOUR 

Results and Analysis 

 

 This chapter has two main sections. In the first section, I present the evolving 

framework and describe the defining characteristics for the themes within the 

framework.  In the second section, I use the evolving framework to compare the 

conceptions of variation of six cases from before to after the instructional 

interventions. The first section addresses my first research question, and the second 

section addresses my second research question.  Both sections highlight tasks that 

were illustrative in looking at EPSTs conceptions of variation, thereby addressing my 

third research question.  

Evolving Framework 

 The initial conceptual framework of Chapter Two is organized around three 

aspects of understanding variation (expecting, displaying, and interpreting variation).  

    Initial Conceptual Framework
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 [1] Expecting Variation       
 A] Describing What is Expected     
 B] Describing Why (Reasons for  
       Expectations)    
[2] Displaying Variation       
 A] Producing Graphs  
 B] Comparing Graphs 
 C] Making Conclusions about Graphs 
 
[3] Interpreting Variation       
 A]  Defining Variation 
 B] Causes of Variation       
 C] Effects of Variation       

D]  Influencing Expectations and Variation 
 

Aspect 

Dimensions 

Figure 12 – Initial Conceptual Framework 



 

Each of the three aspects has corresponding dimensions, and the aspects and  
 
dimensions are illustrated in Figure 12.  The last section of Chapter Three showed how 

the techniques of grounded theory were used to expand the dimensions of the initial 

conceptual framework into constituent themes.   

Evolving Framework
 

[1] Expecting Variation  
 A] Describing What is Expected  
  i)    Concerning Expected Value 
  ii)   Concerning Repeated Values 
  iii)  Concerning Range or Extremes 
 B] Describing Why (Reasons for Expe
  i)    Involves Possibility or Likelihood 
  ii)   Involves Experiential Reasoning  
  iii)  Involves Proportional Reasoning 
  iv)  Involves Distributional Reasoning 

  
[2] Displaying Variation  
 A] Producing Graphs 
  i)    Technical Details 
  ii)   Characteristics of the Distribution 
 B] Evaluating & Comparing Graphs 
  i)    Focus on Average  
  ii)   Focus on Range or Extremes  
  iii)  Focus on Shape 
  iv)  Focus on Spread 
 C] Making Conclusions about Graphs 
  i)    Emphasizing Decisions in Context 
  ii)   Emphasizing Consistency or Reliab
  iii)  Emphasizing Level of Detail & Us
   
[3] Interpreting Variation   
 A] Defining Variation 
  i)   Definitions & Descriptions 
  ii)  Examples 
 B] Causes of Variation  
  i)   Naturally Occurring Causes 
  ii)  Physically Induced Causes  
 C] Effects of Variation  
  i)   Effects on Perception 
  ii)  Effects on Decisions 

D] Influencing Expectations and Variati
  i)   Quantities in Sampling 
   ii)  Number of Samples 
 

s 

Figure 13 – Evolving Framework 
Theme
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The themes expanded the initial conceptual framework into an evolving framework for 

characterizing EPSTs’ thinking about variation (see Figure 13). The previous chapter 

also showed the method by which a theme was defined by its own characteristics.  

The purpose of this section is to define all of the themes in the evolving framework by 

describing some of the key characteristics that arose from the data.  In keeping with 

the tradition of a grounded theory approach, the descriptions within this section will be 

a compilation of my own analytic thoughts stemming from a cumulative consideration 

of the data, combined with exemplars taken from student responses.  

 [1] Expecting Variation 

 A] Describing What is Expected:  The three themes within this dimension 

concern the expected value, repeated values, and the range or extreme values.  

Although these themes were profiled in the last chapter using data in response to 

PostInterview Q10, I’ll be using data from different questions (mainly from the 

PreSurvey and PostSurveys which are included in Appendix B) to summarize the 

themes in this section.  

 i) Concerning Expected Value – One characteristic of this theme was whether  
 
or not results should actually be the expected value. A second characteristic was how  
 
results should be close to the expected value, as should the average of results (for 

example, the average of results from six samples should be close to the expected value 

for a single sample).  A  third characteristic was how results should be on both sides of  

the expected value.  I’ll illustrate these characteristics next. 

 Often responses included an explicit or implicit reference to the expected value  
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for a given situation.  For instance, the expected value for the number of heads in a  

sample of 50 flips of a fair coin in PreSurvey Q7a is 25 heads.  An explicit reference 

to “25” or “25 times” was made by most of the respondents to Q7a in predicting the 

results for a single sample.  An example of an implicit reference is  “½  of the time”, 

and further inference may be needed to determine if the subject actually knows what 

the expected value is.  If the response does not include an explicit or implicit reference 

to the expected value, it is still possible for that response to inform what the subject 

thinks about the expected value.  For example, in Q7a one student put “28” and 

another student put “24”.  An interpretation of these results is that these two students 

knew what the expected value was and yet they chose to put different value.  That is, 

they thought results would not be right at the expected value. 

 Many subjects thought results should be close to the expected value. 

Responses included several different words to convey the same basic idea.  For 

example, in Sampling PostSurvey Q2a,  the expected value for the number of red 

candies when drawing a sample of size 100 from a mixture of 600 red and 400 yellow 

candies is 60 red.  Here is what some students wrote for what they expected in their 

sample: 

 BP: Around 60 
 JM: Very close to 60%  
 MA: Near 60 
 SC: Close to 60 
 
Other words or phrases that were used in other questions were “approximately”,  
 
“about”, “relatively close”, and “somewhere around”.  What I learned from responses 

suggesting results should be close to the expected value is that subjects did have some 
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sense of variability.  A person who puts “Around 60” instead of just “60” is tacitly 

admitting that he or she would be comfortable with a result that is not the expected 

value, as long as the result is close.  As far as learning how close is reasonable for a 

subject, more information is usually needed.  

 The responses shared so far for the theme concerning expected value all had to  
 
do with predictions for a single result (PreSurvey Q7a and Sampling PostSurvey Q2a).   
 
In looking at predictions for multiple results, I found that some subjects also thought  
 
the average of their predictions should either be or be close to the expected value.  In 

Sampling PostSurvey Q2c, subjects were asked what they thought the results for six 

samples of size 100 pulled from a population of 600 red and 400 yellow would be.  

Here is what four students gave for their six predicted results and accompanying 

explanation: 

 BP: [56, 60, 60, 60, 61, 63]  I chose these numbers because they have a  
  mean, median, and mode of 60. All three are 60. 
 RL: [50, 60, 60, 65, 70, 75] The mean of the above data is 60 
 SC: [40, 55, 58, 62, 65, 80] Because they reflect a mean of 60 or 6:4 which  
  is the actual ratio of red to yellow in the container.  
 SP: [48, 52, 55, 57, 63, 68] If I expect the average to be about 60, then I  
  would guess that the amount chosen would vary above and below 60 &  
  pretty close to 60. 
 
Although RL’s choices did not actually average 60, on the basis of his other responses  
 
I believe he meant to put numbers averaging 60 and that he was capable of doing so.    
 
Predicting multiple results is a good way of getting a sense of what seems reasonable  
 
to a subject, and of providing some idea of “how close” to the expected value they  
 
really think results should be. 
 
 Notice how BP and RL actually included the expected value of 60 in their lists,  
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while SC and SP did not.  However, a commonality in all four lists is that results are  
 
given on both sides of the expected value.  Having multiple results that are both higher  
 
and lower than the expected value was a feature of many of responses.  In other words,  
 
responses seldom suggested that results be only on one side of the expected value.   
 
Subjects sometimes explicitly explained their choices by stating how the chosen  
 
numbers were on both sides of the expected value.  In Probability PostSurvey Q1c  
 
(with an expected value of 25 blacks for a sample of 50 spins of the fair white-and- 
 
black spinner), here are three responses that predict the results of six samples: 
 
 DS: [18, 21, 24, 26, 28, 31] None of the #’s are too high or too low (far  
  from the 25) which would be hard to hit based on the 50% odds 
 EM:  [20, 22, 24, 26, 28, 30] Because they are all near to the 50% of the time 
  landing on black. Sometimes above and sometimes below. 
 SP: [22, 23, 24, 25, 26, 27] They are a bit higher, & a bit lower, or are 25... 
  Which is the expected ratio? 
 
The above three subjects specifically called attention to results on both sides of the  
 
expected value. 
 
 There were other characteristics for this theme (such as how often the expected  
 
value might repeat, or how far away from the expected value results might be), and  
 
I’ve only chosen to illustrate a few of the dominant characteristics.  The chief  
 
commonality was that in order for a response to reflect this theme,  the response must  
 
tell the reader something about what the subject thinks in relation to the expected  
 
value.   
 
 ii) Concerning Repeated Values –  This theme was reflected in responses to  
 
questions involving multiple samples.  The main characteristics of this theme shared  
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the common concern of whether or not results from multiple samples should repeat,  
 
and if so then how much repetition was reasonable to expect.   
 
 A characteristic on one end of the spectrum was that multiple results should all 

be the same. That is, repetitions were seen as likely.  For example, in PreSurvey Q1b, 

RL said “Yes” when asked if he thought the same result would occur for several 

samples.  In PreSurvey Q1c, when asked to predict the results for six samples, two of 

the 25 students’ responses were “6, 6, 6, 6, 6, 6”, which told me that those two 

subjects expected homogeneous results for the six samples. 

 At the other end of the spectrum, some subjects thought a list of results should  
 
hold no repetitions.  Again citing an example from PreSurvey Q1c, two responses  
 
showing the characteristic of no repetitions were “3, 4, 5, 6, 7, 8” and “2, 3, 4, 6, 8, 9”.   
 
The responses of DS, EM, and SP for Probability PostSurvey Q1c also reflect the 

characteristic of having no repetitions. Some students wrote explanations about how 

results should be different every time, such as SZ in response to Sampling PostSurvey 

Q2b: “Lots of possibilities. Won’t get same number each time. Random selection.”  

Another student, SR, wrote for Q2b that “every pick is different.” 

 In between the ends of the spectrum, most responses for this theme had the  
 
characteristic of allowing for some repetition and some differences among multiple  
 
results.  In their explanations, subjects tended to either emphasize how results would  
 
be similar to or different from one another, but sometimes responses conflated both  
 
similarities and differences.  I’ll cite some examples from PreSurvey Q7b, which  
 
asked subjects to predict how results from a second sample would compare to the first. 
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 BP:  I think results will be close, but not exactly the same 
 JX: Similar, though probably a little different 
 SP: Could be similar, could be completely different 
 SX: They will be similar but not the same 
 TO: May vary a little, but not much 
 
Notice how TO used the word “vary” to imply that there will be differences in  
 
repeated results, but she qualified her prediction and suggested that results will not  
 
differ by much.   
 
 Thus, responses for this theme all address how much or little multiple results  

should repeat.  The following three responses nicely illustrate the characteristics of all 

results repeating, all results being different, and some results repeating.  The examples 

are taken from the Sampling PostSurvey Q2c: 

 RB: [60, 60, 60, 60, 60, 60] I chose 60 for each classmate because  
  theoretically you should always get 60 red and 40 yellow. This would  
  be the most educated guess at the 6 outcomes 
 SX: [50, 58, 60, 61, 62, 66] They are all numbers close to 60 but all  
  different to account for variation. 
 LW: [52, 58, 59, 60, 60, 62] I still believe 60 would be pulled most often. If  
  not sixty then a number close to that. 
 
Each of the above responses reflected a different perspective on the theme concerning  
 
repeated values, and each response said something about how the corresponding  
 
subject viewed variation in the context of the problem.  RB saw no variation as “the  
 
most educated guess”, but in fact his response demonstrated a naive view of the  
 
variation that would likely result.  For SX, the presence of variation means that all six  
 
samples should be different, which is not an unreasonable expectation for this  
 
problem.  Lastly, LW’s response appealed to the valid idea that 60 is the mode for the  
 
underlying distribution, but for any set of six samples it is not very likely that the  
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expected value would occur twice. 
  
 iii) Concerning Range or Extreme Values – Responses for this theme  
 
expressed what was expected in terms of a range.  Sometimes subjects stated an 

explicit range (using numbers), and sometime they just referred to expecting a “range” 

of results.  I also phrased this theme in terms of extreme values because occasionally a 

response seemed to focus on only one end of the range or the other.  In illustrating 

some characteristics of this theme, I’m including examples only from questions that 

did not explicitly ask for a range answer.  That is, I’m choosing questions for which 

the subjects volunteered range answers or comments about the extremes on their own 

accord. 

 The Sampling PostSurvey Q2b elicited some responses showing a vague form 

of range expectation  in the sense that a range is implied or stated, but we don’t see 

exactly what range the subject might expect or allow.  Some sample responses are as 

follows: 

 MG: It will be relatively close to 60, but the number will vary, sometimes  
  you’ll get more red and some less 
 SA: I think that the mean would be around 60 (for reds), but there would  
  also be other numbers higher and lower than 60 
 RL: Taking samples, I expect to see a RANGE of data, not specific  
  values. 
 SP: If you repeated this many, many times, the average would come out to 
  somewhere around 60, but there would be a range of # of reds because  
  you are choosing randomly. 
 
MG and SA’s responses both implied that those two subjects would be comfortable  
 
with results being within a range, and RL and SP specifically mentioned the word  
 
“range.”  More explicit range responses for Q2b include BP’s comment that “there is a  
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CHANCE to pull out anywhere from 0 to 100 reds”. BP’s range is unreasonable but 

numerically explicit.  JL also gave an explicit numeric range, which was fairly 

reasonable: “I believe if you pull and remix, you will get 58-64 reds every time, give 

or take 60% reds.”  I was unclear about what the “give or take 60% reds” meant to her, 

but I thought JL’s expectation of a range from 58 to 64 reds was quite appropriate to 

the situation.  It was more common to get numeric ranges as responses in the 

Probability PostSurvey, suggesting an increased appreciation for how results vary.  In 

Q1b subjects were asked to predict how results from a second sample would compare 

to  the first.  Here are a few sample responses: 

 GP: It could be 28 or 20 or 16 
 MA: This will give him a score between 24 and 27 black. 
 MM: Maybe a little different but still somewhere around 20-30 
 SC: Maybe a little wider range 18 – 32 
 
 All of the examples for this theme so far appeal to both sides of the range  
 
without much emphasis on one side over the other.  Sometimes responses explicitly  

contained information that told more about what the subject expected regarding one 

end of the distribution.  In Sampling PostSurvey Q4a, subjects were asked to predict 

50 results for pulling samples of size 100 from a population 600 Red/ 400 Yellow 

candies.  The subjects assigned frequencies to bins of 0-10 reds, 11-20 reds, on up 

through 91-100 reds.  To explain their choices on Q4b, here is what two subjects 

wrote: 

 CS: Still going for the odds of 60 / 40. Most I think would be between  
  40-80. The 81-90 I chose three. 
 JX: Because the highest single amount would be 60 reds, since the ratio 
  is 600/400. Then the next higher amounts would be on either side of  
  that, and decreasing out both ways with just a few at the lower #s. 
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Notice how CS emphasized the upper extremes, with a few results in the 81-90 bin  
 
(such results would actually be fairly unlikely in the context of the question). JX, on 
 
the other hand, emphasized the lower extremes, and she had listed one result in the 
 
11-20 bin, which also is unlikely.  The point is that these subjects gave additional  
 
information about only one end of the range. 
 
 Another way in which subjects commented on extreme values was when they 
 
judged graphs as real or made-up.  To illustrate, I’ll use PostInterview Q5, which 
 
included two graphs purportedly showing results from two different classes. Class A 
 
made 40 samples of size 10 from a population of 60 Red / 40 Yellow, and Class B  
 
made 40 samples if size 100 from a population of 600 Red / 400 Yellow.  In  
 
expressing her doubts about Class A’s results being real, EM said: “Well, you know,  
 
with 40 pulls it seems a little less likely that you would have some on the lower end ,  
 
you know...”. Talking next about Class B, she went on to say: 
 
 EM:  And, actually, I would say the same thing for Class B, 40 pulls but 100  
  pieces, I would expect between 50 and 80 to be pulls but 100 pieces, I  
  would expect between 50 and 80 to be where it is here, and then 81 and  
  90, I would definitely think  that , that seems alright to me, but there’s  
  two or three that  pulled between 21 and 30, and that seems a little  
  low... 
 
For both Class A and Class B, EM felt that there were too many low extremes. 
 
 B] Describing Why (Reasons for Expectation):  Responses for this dimension 
 
addressed any of four themes involving possibilities and likelihood, proportional  
 
reasoning, experiential reasoning, and distributional reasoning. 
 
 i) Involving Possibilities and Likelihood – With this theme, what subjects 

expected often came alongside a reason for why.  For example, some subjects expected 
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to see a sample result of 60 reds from the Large Jar (containing 600 Red / 400 Yellow) 

because 60 reds was the most likely result on any given trial. Repeated results were 

unexpected because they were seen as unlikely. Extreme values were often described 

as unlikely but possible.  Included in this theme were responses characterized by 

similarly vague language such as what might or could happen. Subjects also used 

probabilistic language in a general way, talking for instance of how the chances for 

events were seen as high or low. The subjectivity for the class of responses within this 

theme could be also seen by the way students often would stress their impressions of 

outcomes, using phrases such as “highly unlikely” or “very possible.” 

 In PreSurvey Q7a, RL predicted “25” heads for the result of 50 flips of a fair  
 
coin.  SX predicted “24”.  Both subjects used the language of likelihoods in explaining  
 
their respective choices: 
 
 RL: [25] It’s the most likely scenario; there’s no reason to believe (i.e. no  
  external force) that either of the two outcomes will appear more often. 
 SX: [24] It will be close to 25 (1/2 of 50 = 20 x 2 sides) but the likelihood 
  that it lands on 25 is small. 
 
What is interesting is that RL sees the expected value of 25 as “most likely” while SX 
 
see the likelihood of attaining that value as small, and both perspectives are reasonable  
 
for the context of the problem.   
 
 As is typical for responses within this theme, there are no quantitative clues in 

the above responses for just how likely or unlikely the outcome is perceived by 

subjects to be.  Similarly, in PreSurvey Q1a, DS claimed that for one sample of size 10 

“I MIGHT get 6 red”.  Then she added, “Although it’s possible to get 10 yellow.”  I 

didn’t get a sense of just how possible 10 yellows seemed to DS, and a this lack of 
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clarity was echoed by other responses about what could happen. Consider the 

following responses for PreSurvey Q1b about comparing several sample results: 

 CM: One might return with different combinations 
 SP: Each session could produce different results 
 JL:  The likelihood that every grab yields 60% reds is just not there 
 SC: It can’t possibly always be the same 
 
Notice how the first two responses are phrased in terms of what is possible, while the 
 
the last responses are cast in terms of what is not possible.   
 
 I found that Sampling PostSurvey Q1b was very helpful in gaining data on  
 
how likely an extreme outcome was perceived to be.  The language in the responses 

still contained a great deal of language along the theme of possibilities and 

likelihoods, but a part of the question required a numeric prediction that helped me 

better understand their explanation.  Q1b asked how many samples of size 10 would 

need to be drawn from the Small Jar (60 Red / 40 Yellow) in order to achieve a result 

of 0 red or 1 red.  Two subjects explicitly concluded that such results were not 

possible: 

 RB: There is no amount of [samples] that will guarantee no or one red 
  candy in a sample 
 SA: It’s impossible to get zero red. It would take hundreds of tries to get 
  just one red. 
 
Here are two other responses that talk in terms of likelihoods, but for this question I  
 
was able to refer back to the number of samples they had predicted (which I have  
 
listed below in parentheses): 
 
 LW: [500 samples] The odds are very unlikely that someone will pull 0 or 
  1 red candy 
 SX: [Thousands] Because the likelihood is so small that only 0 or 1 red  
  candy would be pulled. 
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For LW, the 0 or 1 result was “unlikely”, which translated into needing 500 samples  
 
before such a result occurred.  SX equated “small” likelihood in the situation with a 
 
need for thousands of samples, but she didn’t say how many thousands. The actual  
 
expected value in the context of the problem is close to 10,000 samples.  
 
 This theme encompasses all the responses that included subjective language  
 
about what was possible or likely, and what could or might happen.  I found that every 

subject did at some point use language reflecting this theme, and I think the reason is 

because subjective probabilistic language is part of our natural way of speaking. In an 

interview setting, I found it useful to ask for examples when a subject started using 

unclear probabilistic language. For example, if someone said an outcome had a “high 

probability” then I would ask how high.  In a written survey context, questions that ask 

for specific examples help define what a person means when they use language of 

possibilities and likelihoods.  However, saying that an outcome is impossible or could 

not happen is clear enough.  

 ii) Involves Experiential Reasoning – The two characteristics for this theme are 
 
informal and formal experience, with the commonality that both characteristics appeal  
 
to having previously seen or done or heard about a similar situation.  Informal  
 
experience includes time spent playing games at home, for example, whereas doing a  
 
class activity involving game playing is classified as formal experience.  Responses  
 
like “I usually roll 6’s” in reference to dice expectations are classified as informal  
 
experience.  A response such as “From what we did in class, I know that 6’s don’t  
 
happen that often” would be based on formal experience.  I made the distinction  
 
between informal and formal experience as a way to group the responses I found for  
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this theme. 
 
 To give some examples of informal experience, I’ll use a Q1bii from the Data  
 
& Graphs PostSurvey. Q1bii asked whether subjects thought Portland (Oregon) or  
 
Columbus (Ohio) was rainier, and why.  The question came on the heels of earlier  
 
questions showing graphs of 30-year averages for monthly rainfall in the two cities.  
 
Here are three responses: 
 
 MM: I think Portland is rainier from personal experience and general 
  knowledge of Columbus Ohio. 
 SR: I have spent time in both places and Portland is rainier. 
 SA: Portland because I live here and it rains all of the time. 
 
All three of the above subjects have phrased their responses so that personal opinion  
 
dominates their reasoning.  The responses reflect informal experience in the sense that 
 
the subjects merely stated what their sense of the situation was, absent of any formal 
 
data analysis.   
 
 Regarding formal experience, I thought mainly of information gleaned from 

structured classroom activities.  For my research, I was interested in hearing if the  

subjects would mention the impact of the interventions done in class.  With the  

Sampling PostSurvey Q1b that concerned how many samples were needed to get an  

extreme result of  0 or 1 red candy, many subjects commented on the classroom  

intervention we had done on sampling.  A particular impression was made by the 

computer simulation using ProbSim that we did as a class, whereby we had a class 

discussion even as Matt continually ran the simulation with more and more samples.  

Here were some of the reasons offered by subjects for their predictions on the 

Sampling PostSurvey: 
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 DP: When we did over 5000 tests via the software program, we STILL 
  didn’t get the lower #.  Chances are very SLIM 
 EM:  After seeing the simulations in class on the computer, it seemed  
  almost impossible to get a zero. 
 MG: When we did a similar exercise in class, we were only able to do it 
  with a huge number of attempts.  
 SA: I know this because we saw it on the computer program in class. 
 SL: I based it on the activities we have done in class w/ computer program  
  as well as hands-on activities where we never got 0 or 1 
 SP: I was thinking about the simulation in class and how many trials we 
  had to enter in the computer until we got a 1 
 
I’ve included more than a few sample responses for Q1b to emphasize the impression 

that formal experience made on the subjects.  The main effect on the subjects seemed 

to be more in their reasoning than in their actual predictions.  For example, DP 

remembered that it really did take “over 5000” samples to get the extreme results of  0 

or 1 red.  However, most of the other subjects couldn’t recall if the numbers were in 

the hundreds or thousands, just that it took (as MG put it) “a huge number of 

attempts.”  To help subjects make more realistic expectations for what might occur, I 

recommend more use of class activities and computer simulation. As far as influencing 

subjects’ reasoning why, it was clear that even the twenty minutes computer 

simulation that we had done in class (which followed an activity of hand-drawing the 

samples) made a lasting impression on the subjects. 

 iii) Involves Proportional Reasoning – Proportional reasoning was a part of 

almost every student’s explanation at some point in their individual responses. The 

variety of ways they collectively had to explain included ratios, decimals, odds, and 

fractions. Since MET 1 was a prerequisite for MET 2, and proportional reasoning 

receives a fairly in-depth treatment in MET 1, I had expected the students to be able to 

reason proportionally.  Some sample responses from PreSurvey Q1a (reasons for the 
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predicted results for one sample of size 10) show the diversity that subjects had in 

expressing their proportional reasoning: 

 DS: Because 60% are red so odds are I’d get 6 
 DM: Because the ratio is 60 Red: 40 Yellow out of 100, so when you grab 
  10, the likelihood of the ratio being 6:4 is high 
 BP: Because 3/5 of the candies are red, and 3/5 of 10 is 6 
 SA: Because is you have 100 candies and 60 are red, when you have 1/10 of 
  that, 1/10 will still be red 
 SC: Because it is the most probable amount since the ratio 6:4 exists  
  throughout the container 
 
 Proportional reasoning was fairly easy to identify in subjects’ reasoning, and  
 
for some subjects such reasoning was a dominant strategy.  An interesting example of 

non-proportional reasoning came on the PreSurvey Q5b, which asked for a 

comparison between two classes’ test results (the two class sizes were different, but 

they had taken identical tests).  Most of the subjects misidentified the class that had 

better test results, and one student wrote that a comparison  “cannot be determined 

since the classes held different numbers of students.”  I found it curious that my 

subjects, almost all of whom could reason proportionally on questions about sampling 

and probability, were not as quick to apply ratio thinking in PreSurvey Q5b.  I think 

one reason is because of most students’ poor ability to reason with data and graphs. 

  However, most student responses involved proportional reasoning to different  
 
degrees on different tasks having to do with sampling and probability, and typically  
 
the why of proportional reasoning went together with an average for what was  
 
expected. 
 
 iv) Involves Distributional Reasoning – Of all themes involving reasons for 
 
expectations, the theme involving distributional reasoning is what best encompasses a 
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richer appreciation of variation.  Reasoning about possibilities and likelihoods, or  
 
arguing on the basis of experience, or using proportional reasoning can all contribute 

to a better understanding of variation, but distributional reasoning really lies at the 

heart of this research.  I’ll describe what I mean by distributional reasoning, and then 

present some examples focusing on the characteristics that I looked for in this theme.  

 Distributional reasoning involves a consideration of the distribution of a set of 

data, or the distribution underlying a situation.  For example, in predicting the results 

for a single sample of size ten from the Small Jar  (as in PreSurvey Q1), it is helpful to 

consider what the sampling distribution for many samples might look like.  Features of 

a distribution include the center, or average, but distributional reasoning goes further 

than just a consideration of center.  Other important features of a distribution include 

the range,  shape, and spread of the distribution (Shaughnessy, Ciancetta, Best, & 

Canada, 2004).    

 Each of the features of center, range, shape, and spread are themselves multi- 

faceted.  Centers can be thought of in terms of mean, median, and mode.  Ranges 

might be considered as the maximal minus the minimal values, or a trimmed mean 

might be of interest.  Shapes are often described in terms of their visual characteristics, 

such as flat, bell, skewed, or bimodal.  I distinguish spread from range to emphasize 

the way that data clusters close to a center, or spread from the mean, or is concentrated 

at various intervals within the range.  

 Distributional reasoning can therefore encompass several different 

characteristics, and some subjects incorporated elements of distributional reasoning 

into their responses to varying degrees.  I’ll discuss some of the better responses 
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exemplifying this important theme, choosing examples from the PreSurvey and each 

of the PostSurveys.  In PreSurvey Q2, students were asked to predict a range for six 

samples, then a range for thirty samples, and then to offer an explanation. MA listed a 

range of 3 to 9 for both six and for thirty samples, and wrote 

 MA: I chose a wide range of red candies to begin with. I feel it is more likely  
  that this range will happen when more people do the experiment.  
  However, there will be a greater grouping near the six red candies than  
  any other number 
 
What I liked in MA’s answer was the language about a “greater grouping near the six  
 
red,” which I felt demonstrated an understanding of the spread in this situation.  In  
 
explaining her choices for predicting 50 samples on Q3 of the PreSurvey, DS  
 
rationalized that 
 
 DS: Most people would be close to the 60% of total # of reds. Fewer people  
  would be at the far ends of the curve (a lot higher or a lot lower than  
  60%) 
 
Notice how DS incorporated both a sense of clustering around the average as well as a 
 
sense of  paucity of data at the extremes.  In Q5a, there were graphs portraying the test  
 
results of two classes of equal sizes.  The graphs were both symmetric and had the  
 
same means but different ranges.  SC wrote a very detailed response in evaluating the  
 
two classes: 
 SC: The two classes taken as a whole did equally well on the test, with an  
  average score of 5, but individually there was a student who scored  
  lower in the Brown class – But this was offset by the higher score 
  in the same class for another student. I could see it was the same by  
  see the symmetrical arrangements of the shaded boxes – Both with 
  5 being the “highest” on the graph – Simply restacking the boxes –  
  putting on either side (3 & 7) – Turns the yellow class into the  
  equivalent of the Brown class. 
 
SC wrote about the average and how data was distributed about that value.  She also 
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mentioned the shapes of the distributions, and in describing her “restacking” she  
 
exhibited a powerful sense of distributional reasoning for this question. 
 
 In the Data & Graphs PostSurvey, Q2a presented graphs for rates of traffic  
 
fatalities between the South and the Northeast regions of America.  Here are three  
 
responses that I offer because of the distributional language that they contain: 
 
 EM:  The highest concentration of data for the North is clustered at the  
  “lower” end around 1.5 deaths, while the concentration of data in the  
  south is decidedly clustered to the high end above 2.5 deaths  
 MA: The median deaths for the South = 2.6 , for the Northeast = 1.6, the  
  mean for the South = 2.46 where for the Northeast it’s only 1.79. Also  
  the concentration of deaths is more compact around the interquartile  
  [range] for the Northeast.  
 SC: It seems like there are more traffic deaths in the South than the  
  Northeast from the data I see on the dot plot and boxplot. The median is  
  higher and the concentration higher for the South 
 
The three subjects above all conveyed a sense of distribution through terms like  
 
“concentration” and “clustered” in reference to the spread of the data.  Other terms  
 
like “grouped” or “clumped” or “bunched” can help describe how data gets  
 
distributed. 
 
 When justifying predictions for 50 samples of size 100 taken from the Large  

Jar on Sampling PostSurvey Q4b, again we see distributional reasoning in the  

following four responses: 

 JB: The highest number of people draw from 51-60. If graphed, the graph  
  would be symmetrical. 
 MM: Seems like there would be a concentration here [in subrange 41-70] 
  and then the others would be the outliers or less likely pulls 
 SC: Because they create a “picture” of data that peaks around 60 and  
  clusters around that mark, diminishing as it moves to the extremes  
  of 100 and 0.  
 SA: Because 51-70 is closest to the mean, so those will happen the most 
  times. As the numbers get farther away from the mean, they will 
  happen less.  
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Recall that the bin widths (such as 00-10, 11-20, etc.) were given in the problem  
 
statement and did not originate within the subjects.  However, notice how all the  
 
above four responses indicated a clustering of data near the mean, and the last three  
 
specifically implied less data farther away from the mean. 
 
 As a final set of examples to illustrate the theme of distributional reasoning, 
 
consider these reasons that subjects gave for their predictions of six samples of the fair  
 
spinner on Probability PostSurvey Q1c: 
 
 RB: I would expect the outcomes to fall into a bell-shaped curve much like 
  this: [He has drawn a bell curve centered at 25] 
 RL: These numbers represent a distribution across a range of likely results 
 SL: The spins would probably be concentrated in the central to upper 75%  
  range since that seems to me the way the data usually goes, but the  
  numbers were random. 
 
In SL’s response, note how she called attention to a subrange within which she  
 
expected data to be “concentrated”.   
 
 I gave more examples for this theme than for previous themes because of its 
 
importance in revealing thinking about variation.  The individual characteristics within  
 
the theme – centers, range, shape, and spread – are at least as important as the mix of  
 
these characteristics within a response and the language that subjects use.  Many of the  
 
examples given for this theme are lengthier precisely because some subjects were 
 
relating different elements of the distribution together.  Subjects also may lack  
 
conventional terms such as “standard deviation”, but they are still capable of  
 
conveying a sense of reasoning about the distribution of data. 
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 [2] Displaying Variation 

 A] Producing Graphs:  This dimension addresses the questions that asked 

students to draw their own graphs to predict outcomes for situations in sampling, data-

driven, and probability situations.  The two themes which stood out to me in the kinds 

of responses were technical details of the graphs and also the characteristics of the 

distribution shown in the graphs.   

 i) Technical Details –  This theme has to do with a subject’s graph sense. 

Characteristics of this theme included the type of graph the subjects used and also the 

appropriateness of the scales and labels along the axes.  To achieve the goal of getting 

students to illustrate in their graphs the kind of variation they expect in a situation, the 

students need to have command over the type of graph chosen and also a sense of how 

choices of scale along the axes can affect the appearance of variability.   

 Types of graphs that subjects used included smooth curves, bar charts, dot  

plots, scatterplots, pictographs, and straight lines.  Sometimes they labeled their axes 

and put appropriate scales and sometimes they did not.  To illustrate some of the 

different types of graphs, first consider PreSurvey Q4, which asked for a graph 

showing predicted results of 50 samples of size 10 taken from the Small Jar.  GP drew 

the skewed bell shown in Figure 14.  I had provided labeled axes on the PreSurvey, 

and placed a scale on the horizontal axis.  In GP’s case and several other subjects, no 

scale was given for the vertical axis, making it hard to tell how plausible his graph 

was. 
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GP’s Graph: 50 Samples of Size 10 

Figure 14 – GP’s Response to PreSurvey Q4 
 

  I also found it curious that so many subjects used continuous curves for 

PreSurvey Q4, since the sampling experiment had only 11 possible outcomes (0 Reds 

through 10 Reds).  By the end of the research there were many more types of graphs 

used.  I think the reason so many people used smooth bell-shaped curves in the 

PreSurvey is because some previous class experience has impressed upon them the 

significance of such curves.  I suspect that the probabilistic heuristic of availability has 

a counterpart in statistics, and when it comes to graphing predicted outcomes older 

students (such as my research subjects) automatically think of a smooth bell curve. 

 By the time of the PostSurveys, we had practiced making several different 

types of graphs in class. I’ll next share a response to Data & Graphs PostSurvey Q1c. 

The question asked for a graph showing how many inches of rain Columbus, Ohio 

might get for each day in June, assuming that the average monthly rainfall for June 



 

was 4 inches.  Figure 15 shows BP’s graph.  Again, I had pre-labeled both axes, and I 

also had subdivided the horizontal axis to show marks for each day. 
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BP’s Graph: Daily Rainfall in June 

Figure 15 – BP’s Response to Data & Graphs PostSurvey Q1c 
 

In BP’s bar chart, she showed an incorrect vertical scale.  The idea that 4 inches is the 

average monthly rainfall for June means that a daily average could be thought of as (4 

inches) / (30 days) = 0.13 inches per day, with variation.  BP’s graph erroneously 

implied a daily average of 4 inches, not a monthly average.   

 On Probability PostSurvey Q3, subjects were asked to graph predicted results 

for 40 samples of size 50 from the fair spinner.  I had labeled both axes, but only 

scaled the horizontal axis by five. JL’s graph is shown in Figure 16. 

 

 

 

 

 



 

 JL’s Graph: 40 Samples of Size 50 

 

 

 

 

 

 

 
Figure 16 – JL’s Response to Probability PostSurvey Q3 

 
Using a pictograph, JL didn’t need a scale on the vertical axis, but did need a legend 
 
(which she provides).  Along the horizontal axis, it isn’t quite clear what value each of 
 
her columns of stickmen are aligned at, but I did count and see that she drew every  
 
one of the 40 required stickmen for her graph. 
 
 It seems clear that the way in which students produce graphs to show expected  
 
variation depends not only on their own sense of variation but also on their repertoire  
 
of different graph types and their skill in conveying  necessary information on the  
 
graph (via proper use of axes, for example), in other words, technical details. 
 
 ii) Characteristics of the Distribution -  When the technical details of a graph  
 
are plausible or at least understandable, the characteristics of the distribution can be  
 
assessed.  The four characteristics that I found most salient to understanding variation 

in EPST’s graphs corresponded to the same four characteristics for the theme of 

distributional reasoning.  Those four characteristics concerned the center, range, 

shape, and spread of the distribution.  For example, the center (or average) may be too 
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high or low, or the range may be too narrow or too wide.  Shapes of distributions can 

vary, particularly in sampling or probability situations involving small amounts of 

data.  Spreads may be too tight or too scattered, or the data may look as if it is 

unnaturally distributed. 

 I’ll give some new examples from the same three questions that I profiled in 

the previous theme, since those questions were the only ones from the Surveys in 

which subjects were asked to produce graphs.  In PreSurvey Q4, GP’s graph (Fig. 14) 

had the shape of a skewed bell.  SP’s graph for the same question is shown in Figure 

17.  Note how SP included a scale on her vertical axis, and she had also placed some 

points on the graph to show the frequency for each outcome.    

  

 

 

 

 

 

 

 

Figure 17 – SP
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’s Response to PreSurvey Q4 
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SW’s Graph: 50 Samples of Size 10  

 

 

 

 

 

 

 
Figure 18 – SW’s Response to PreSurvey Q4 

In contrast to SP’s graph, SW used a bar chart which had a more realistic center and 

range, and which showed a reasonable shape but a wide spread (see Figure 18).  

 The average rainfall graph asked for in Data & Graphs PostSurvey Q1c elicited 

some interesting interpretations of what subjects thought might be a reasonable shape 

for the distribution. Some subjects had the inches of rain going up and down every 

other day, while others had no rain for several days followed by some rain for a few 

days.  In BP’s graph shown earlier (Figure 15), aside from the incorrect center around 

4 inches of rain  per day, she also had it raining every single day in June.  In contrast, 

MA’s line graph showed most days as having no rain (see Figure 19). Although MA’s 

scale on the vertical axis is coarse, it is easy to guess that her chosen values for days 

with rain are (from left to right): 0.5”, 0.5”, 1.5”, 0.5”, and 1.0”.  Her range is realistic, 

going from 0” to 1.5”, and her graph implies an average of 0.13 Inches Per Day = (4 

Inches)/(30 Days) , as expected.  Choosing convenient numbers that easily  

add up to 4” was common for many students who obtained the correct average.   
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MA’s Graph: Daily Rainfall in June  

 

 

 

 

 

 

 
Figure 19 – MA’s Response to Data & Graphs PostSurvey Q1c 

 
 
 Some students, however, had a correct daily average of 0.13 Inches but  
 
somehow missed the point of variation in weather patterns.  RB gave a good example  
 
of uniform distribution in Figure 20.   
 
 RB’s Graph: Daily Rainfall in June  
 
 

 

 

 

 

 

Figure 20 – RB’s Response to Data & Graphs PostSurvey Q1c 

RB’s horizontal line conveyed the notion of absolutely no variation, and a steady flow  
 

 141



 

of rain all through the month of June.  Another subject, RL, also used a straight line  
 
but had the line increasing from left to right, saying that the “graph is inclined because  
 
[the] average for July is greater than 4”.  Most subjects showed some day-to-day  
 
variation in their rainfall distributions, even though most did not correctly determine  
 
the daily average.   
 
 As a final example, consider BP’s graph for Probability PostSurvey Q3 shown 

in Figure 21.  Whereas JL used a pictograph for this question (shown earlier in Figure 

17), BP decided to use a bar chart.   

 BP’s Graph: 40 Samples of Size 50 

 

 

 

 

 

 

Figure 21 – BP’s Response to Probability PostSurvey Q3 

BP’s center was reasonable, but her range went a bit too high. She had a reasonable  

clustering near the expected value of 25 blacks, and also had uneven staggering of the 

bar heights.  By uneven staggering, I mean that frequencies are not uniformly 

increasing or uniformly decreasing on either side of the mode.  JL’s graph (Figure 16) 

also showed an uneven distribution, which contrasted with graphs that tapered off  

from the mode on both sides. 
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 Thus, in assessing graphs that subjects produced, I considered both themes 

concerning technical details and characteristics of the distribution.  Whereas on the 

PreSurvey I mostly saw smooth bell-shaped curves, as the class progressed the 

subjects gained more fluency with different graph types and they improved in their 

attention to technical details in making graphs. Also, on the whole I saw more graphs 

towards the end of the research which displayed reasonable centers, ranges, shapes 

and spread of the data. 

 B] Evaluating and Comparing Graphs:  The four themes that I included for this 

dimension corresponded to the four characteristics of distributional reasoning 

described earlier.  One way to look at this dimension is that I have amplified my 

attention to the four characteristics, considering responses in terms of how they 

focused on the average, range or extremes, shape, and spread of data as shown in 

graphs.  Distributional reasoning is an important theme in reasoning about expectation, 

and characteristics of the distribution are therefore important when subjects produce 

their own graphs.  I wanted to see if they attended to these same characteristics of the 

distribution when evaluating and comparing graphs.  What follows next are specific 

examples of how subjects referred to averages, range or extremes, shape, and spread 

of data when they were evaluating or comparing graphs. 

 i) Focus on Average – On many of the tasks, a box of summary statistics was  

provided, listing the mean, median and mode for the data.  The box was usually put in  

close proximity to the graphs, and some subjects were so influenced by those numbers  

that they admitted to not even paying much attention to the graphs. All they needed to 

know was what the measures of center were.  
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 On the PreSurvey, I did not provide any of these summary statistics, but 

subjects often calculated or tried to calculate a mean. For example, on PreSurvey Q5a 

(comparing the test results for the Yellow class and Brown class), here are some 

comments focusing on average: 

 JB: Yellow class did better overall. I saw that they have more scores in the 
  median or midrange. 
 SP: As a class the Brown class did better because their average score was  
  higher @ 5 compared to the Yellow class @ about 4.5 
 BP: Both classes have 9 students. The Yellow class had a total of 45 and  
  an average score of 5. The mode and median also 5. Brown class: 
  Total = 45, Average = 5, Mode = 5, Median = 5. The two classes did  
  equally well. 
 
When JB referred to the “midrange”, he did not mean a range of numbers but a value  
 
that is (Range)/2 , and in the context of the question is the same as the mean, median,  
 
and mode.  JB was saying that the Yellow class has a higher frequency of scores at the  
 
mode.  SP did not calculate Yellow’s mean correctly, while BP correctly stated the  
 
mean, median and mode for both classes.  
 
 Another set of examples for this theme comes from Data & Graphs PostSurvey 

Q1bii, which asked for which city subjects thought was rainier: 

 CS: Columbus: The mean and median are higher than Portland. 
 RB: Columbus could be rainier because both the average and the median 
  are higher than Portland’s. 
 
For this question, boxplots and bar charts were provided to show the sets of data for 

the two cities, and summary statistics were also provided.  From the boxplots, subjects 

could see that Columbus’ median was higher than Portland’s, but to compare the 

means the subjects referred to the box of summary statistics.   
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 As a final demonstration of measures of center captured the attention of some 

subjects, consider PostInterview Q8. The question showed weights for 35 different 

muffins from the same bakery, and asked what subjects thought their own (36th) 

muffin might weigh.  The set of data for the 35 muffin weights were shown in a 

boxplot (median =113.5 grams) and in a histogram (mode = 113.0 grams), and the 

mean was given as 113.79 grams.  All the subjects below expected their muffins to 

weigh between 113 and 114 grams: 

 DS: Because... here [On the boxplot]... your median is right at, like, 113 and  
  a half, so … And here [On the histogram] your mode is at 113 
 GP: Well, the median [He points to summary statistics] is 113.5 grams. 
 RL: Well, I’m looking at the mean, [He points to summary statistics] and  
  I’m looking at the mode, in this case, which really stands out... 
 JM: Well, I look at the median as it’s written out [In the summary box], and  
  I also look at the amount of muffins at 113 [On the histogram], which  
  is… you know, the mode is actually 113 too, and here [On the boxplot]  
  it’s also the median …  
 
JM seems to have misread the median on the boxplot as 113 instead of 113.5, but the 
 
main point in the two responses above is that they show a focus on the average in  
 
comparing graphs. 
 
 ii) Focus on Range or Extreme Values -  PreSurvey Q6 invited a comparison of  
 
student heights at two different schools, and the question elicited many responses that  
 
focused on  range.  For the two bar charts shown in Q6, School A had a wider range of  
 
student heights than School B.  However, in School B, the heights of the adjacent bars  
 
varied up  and down more frequently than the smooth rise and fall of the bars in  
 
School A.  Some subjects discussed ranges without using numerical descriptions,  
 
making it difficult at times to tell if the subjects were referring to the range of bar  
 
heights or to the range of student heights: 
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 JX:  Because there is a wider range of difference in the heights recorded 
  in [School] B than [School] A. 
 LW: School A shows a broader range of heights.  
 MA: The range of heights from shortest to tallest is greater in School 
  A than School B.  
 MG: Because they have more students of different heights or a greater 
  range of heights 
 
Other students explicitly used a numerical description in mentioning the range of  
 
student heights: 
 
 JB: [School] A has more variability in height of students, ranging from  
  145-165. School B ranges from 148 to 162 
 MM: School A has a broader range. Because the heights vary from 145-165  
  in Graph A whereas in School B only 148-162.  
 SW: The question was which graph shows more variability. If you look at  
  School A, the heights range from 145 to 165 with only 147 not  
  included. School B has a range from 148 t0 162 with 161 missing.  
  School B does not vary as much in height. 
 
In each of the three responses just given, the subjects made a connection between  
 
variation and the range shown in the distributions of data.  The connection they made  
 
is that more variation is synonymous with a wider range.  I found that this connection  
 
was typical for many subjects.  Often in an interview setting when I asked subjects  
 
what they meant by “more variation”, one of their first reactions was to point to the  
 
range. 
 
 On PostInterview Q5, subjects had to compare graphs between Class A (50  
 
samples of size 10 from the Small Jar) and Class B (50 samples of size 100 from the  
 
Large Jar),  and some of their responses showed an attention to the ends of the ranges: 
 
 DS: Because they have fewer on the ends [She points to the ends on Class  
  A] 
 SP: These lower numbers are a little surprising, for both of them. 
 EM: In my opinion, you might get a few more 9s, and maybe a 10.  
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 GP: Well, I think it’s pretty hard to get these 2 and 9s… I mean, really hard.  
  See, the thing is, this  [Class A: Small Jar] is a wider range, it seems  
  like, than this [Class B: Large Jar]  
 
DS and SP focused on the lower extremes, while the EM attended to the upper  
 
extremes. GP talked about both lower and upper extremes for Class A. 
 
 iii) Focus on Shape – The key to this theme is that responses needed to include 
 
descriptors of the shape of the distribution, and I allowed for both verbal and  
 
nonverbal communication of these descriptors.  Nonverbal communication included 

the written responses on the surveys, of course, but also included gestures made during 

the interviews.  By gesture, I mean that subjects were using their hands to convey an 

idea (such as the shape or spread of a graph) that was not always accompanied by 

words. Drawing a horizontal line in the air with one’s hand, for example, could be a 

physical way of communicating a uniform distribution.  There were many examples of 

subjects using gesture in the way I have described, to tell me how they saw or wanted 

the data distributed.  More typical were the written or stated descriptors of how a 

graph looked skewed or symmetrical, or should look like a bell.   

 In PreSurvey Q3, subjects predicted results for 50 samples of size 10 

from the Small Jar and then in Q4 they graphed the predicted results.  Some subjects 
 
explicitly mentioned a shape for their graphs: 
 
 GP: Top of the pyramid is 6 or the most probable and it just cascades down. 
 MA: I see the result as a bell curve, since there is greater chance of getting  
  more red than yellow, but getting ALL red is not likely either. 
 MG: Because in random sampling, shouldn’t they fall into a bell curve? 
 RL: A bell curve represents the most likely scenario – the extremes aren’t 
  seen often, the average is seen the most often.  
 
In class, I also heard other students echo GP’s use of “pyramid” to refer to an inverted- 
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“V” shape, which also connoted the idea of a bell curve to many.   
 
 In fact, as a gesture, holding one’s hands to illustrate an inverted-“V” was one  
 
way that subjects tried to signal the shape of a graph.  Consider the PreInterview Q5, 
 
which showed the same set of data graphed in three different line plots, with the  
 
difference being in the scaling along the horizontal axis.  GP’s comment below is 
 
about Graph 1, and the other comments are about Graph 3: 
 
 GP: [Graph 1] This one...you just see that 75, you see, kind of…Kinda  
  sloping up to 75 [Motions with his hands, makes inverted “V”] 
 JM: [Graph 3] It’s tight. [Shows hands coming together] And it has a nice  
  look to it [Shows hands in an inverted “V” shape>.  
 RL: [Graph 3] The graph 3 looks like a pretty good bell curve. It’s even  
  symmetrical! It’s great. 
 DS: [Graph 3] Because it has a bell curve.  
 
In GP’s case, his hand motions (what I am calling gesture here) go along with his  
 
sense of how the data rises on either side of the modal value of 75.  With JM, although  
 
he never referred to Graph 3 as a bell curve, he said it had a “nice look.”  His gestures  
 
seemed to indicate that what is “nice” to JM is the symmetry around a central peak.   
 
Other gestures that I saw for this question included the waving of hands to signify the  
 
way data fluctuated up and down across the graph. 
 
 Sometimes just certain elements of the shape stood out to subjects, such as the  
 
heights of the tallest columns in a bar chart or histogram. For example, on the Data &  
 
Graphs PostSurvey Q1, the graph for Portland’s normal monthly rainfall has tall bars  
 
for the winter months  and shorter bars for the summer months (denoting heavier and  
 
lighter rainfall).  Several students took note of the shape for the Portland data by  
 
emphasizing the dominant winter months: 
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 SL: Adam was noting the taller bars in Jan, Nov, Dec...They are the tallest 
  bars on the whole chart 
 DS: He is looking at the “peaks” of the bar graph to come to his conclusion 
 SC: He was probably looking at which city had the tallest bar...Actually,  
  Portland has the top THREE highest amounts of rain in December,  
  January, and November 
 LT: By just looking at the graph it seems that Oregon has very high peaks 
  of rain. 
 SP: Portland has the 3 highest bars of the graph, making it look as if  
  Portland has more rain 
 
The main reason I’ve included the above responses in the theme focusing on shape is  
 
because of the descriptive language, such as “taller” , “highest”, and “peaks”.   
 
Language showing how subjects attended to visual features of the graph convinced me  
 
that the shape of a distribution was a key theme in comparing and evaluating graphs. 
 
 iv) Focus on Spread – Originally I conflated shape and spread in the same  
 
theme, because I think the two characteristics of the distribution often go together.  

Spread has to do with the way that data clusters close to a center, or is spread out from 

the mean, or is concentrated at various intervals within the range.  I separated the 

themes of shape and spread because I noticed, particularly with questions having to do 

with boxplots, that some responses clearly focused more on the spread of the data and 

less on the visual aspects (or shape) of the distribution.   

 Of course, some subjects actually used the term “spread” in their responses, as 

the following comments from PreInterview Q5 show: 

 DS: Well, Graph 2 you can see that... it’s kind of  spread out, and it’s not as,  
  at a glance it’s not as, like, you kind of your eyes go “wooaahh” [She 
   dramatically waves hand from one side of table to the other] 
 EM: Graph 2, I don't know. Graph 2 to me is too spread out, so I'm... I like  
  seeing the Xs next to each other, so I can compare them easier, whereas 
   Graph 2 is kind of spread out and I can't really read. 
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  SP: I guess this one [Graph 3]... seems less spread out. And so , it’d be like  
  “Oh, look how close the graph is” This Graph 2 shows it more spread  
  out, and it’d be like “Wow! 68 all the way over here, to … 95” [Hands  
  moving across the range] 
 
The three subjects above didn’t offer much additional detail to suggest just what they  
 
meant by the term “spread”, although DS and SP’s gestures imply that the range might  

be influential to their thinking about spread.  When the PreInterview had been 

administered, we hadn’t yet introduced in class some different ways of talking about 

spread.   

 The rainfall graphs in the Data & Graphs PostSurvey elicited many responses 

about spread.  The following examples relate to Q1ai, when subjects were asked to 

write about possible causes for weather differences.  In addition to talking about 

causes (which will be discussed as a part of the aspect of Interpreting variation), 

subjects also noted differences in spread of rainfall: 

 SC: So no matter which way the wind blows, Ohio gets SOME rain – It’s  
  more evenly distributed over the entire year 
 RL: Portland gets quite a bit of rain in the months it gets ANY rain, and  
  very little in the summer. Columbus gets a more steady,  predictable  
  pattern of rainfall (less variation). 
 CM: Portland gets most of its rain from October through May, and very 
  little from June through September. Columbus gets most of its rain  
  March through September, but gets at least 2” per month for the rest of  
  the year. 
 
When CM wrote about when Columbus “gets most of its rain”, she is used a naive 

form of spread since she doesn’t mention how much is “most”.  Later in the research, 

subjects made references to percentages, such as the upper 75% of the data, to help 

quantify where they saw data clustered.   

 The Interquartile Range (IQR) on boxplots applies the middle 50% of the data, 
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and is one measure of spread.  In Data & Graphs PostSurvey Q1bii, subjects referred 

to the IQR in discussing which city was rainier, Columbus or Portland: 

 DM: Portland, because the IQ range is higher and we tend towards massive 
  rains in the winter and much less in the summer. Columbus is more  
  steady 
 LW: I believe Portland to be rainier, because the inner quartile range is  
  greater.  
 SZ: Portland, because of the interquartile range being more 
 
The IQR was still a fairly new concept for most subjects at the time they completed  
 
the Data & Graphs PostSurvey, and it wasn’t clear to me if the three subjects above 

were just thinking that a larger IQR translated into a rainier city.  I’ve listed the three 

subjects’ responses as examples to show how references to spread occurred in student 

reasoning. 

 More clarity in use of boxplots to comment on spread came in later in the  

research.  In discussing predictions for the 36th muffin on the basis of the data set 

shown in PostInterview Q8, DS said 

 DS: Um, well, this one [Boxplot] you can see more… I think it, real clearly 
  that 50 % are really clustered between 112 and a half and 115 and a  
  half, and so, you go “Oh, most of ‘em…you know, the middle 50% ,  
  have a very small range of weight”  
 
Her comment exemplified the theme of spread, as she made reference to data being  
 
“clustered” and also to the “small range” for the middle half of the data.  On the same  
 
question, EM and SP used both the histogram and the boxplot to comment on spread: 
 
 EM: Ummm, I’m gonna expect my muffin to weigh… I’m gonna go with  
  the boxplot answer, of somewhere in the 50% - middle 50% range –  
  I’m gonna expect it – and, plus, looking over here at the histogram, and  
  that it does seem within, like, 112 to 115.5, it seems like that seems to  
  be a concentration of data… I’m going to think that it’s probably going  
  to be in the interquartile range, of – um, like, 112.5 and 115.5 [Using  
  the boxplot] 
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 SP: Well… How much would I expect my muffin to weigh? Well, I’m  
  guessing that it could be anywhere in between, somewhere around 
  where the bulk of this data is, [Circling a central part of the histogram  
  and the boxplot> probably … So I would expect it to be somewhere  
  between, like, 112.5 or something to 115.5 [Corresponding to IQR] 
 
Note how EM talked about the “concentration” of the data while SP used the term  
 
“bulk”.  Both terms suggest to me a relative grouping, and both appeal to the theme of  
 
spread. 
 
 C] Making Conclusions about Graphs:  From the questions profiled so far in  
 
this aspect of Displaying variation, it is clear that opportunities were given to subjects  
 
to come to some sort of decision in the face of data presented graphically. Which class  
 
did better, what city is rainier, and which graph shows the data better – All are  
 
examples of situations that invite a conclusion.  So, too, are questions that I asked in  
 
the Interviews about whose class had real or fabricated data.  However, I wasn’t as  
 
interested in the actual conclusions that subjects made as much I was interested in the  
 
reasons they gave and the emphases they made which had to do with an understanding  
 
of variation.  For this dimension of making conclusions, I paid attention to three  
 
themes – How subjects emphasized making decisions in context, how they  
 
emphasized the consistency or reliability of the phenomena depicted by the data, and  
 
how they emphasized the level of detail or usefulness of different graphs.  I’ll explain  
 
these three themes next. 
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 i) Emphasizing Decisions in Context -  The key idea behind this theme is that, 
 
in considering graphs, subjects volunteered comments about the context of the data, 
 
suggesting that context was an important consideration in making a conclusion.  For  
 
example, in the PreSurvey Q6 when deciding whether School A or School B showed  
 
more variation in student heights, both JL and RL’s comments related to the context of  
 
student heights: 
 
 JL: It does not indicate the gender of the students. Girls tend to be shorter 
   than boys and there may be more girls at School A.  
 RL: School A may be more homogeneous with regard to ethnicity, which is  
  a big factor in determining height. 
 
While the above responses also suggest causes of variation, I have listed JL and RL’s  
 
comments here because they give a good example of emphasizing decisions in a  
 
context.  
 
 The context of PreInterview Q5 was a repeated-measurements experiment  
 
designed to test car brakes.  In making conclusions about which of three graphs the 
 
subjects thought best displayed the data, RL’s comment suggests that graphs can be 
 
used for different purposes: 
 

RL: Oh, I’d go with [Graph] 3, because the [Graph] 2, is too, it’s spaced   
 out...It’s hard to pull it together, it’s hard to say something about it, and  
 people generally make graphs so that they can justify what they have to  
 say. 

 
The idea he gets across is that the context for which the graph would be used has  
 
something to do with what the user wants to say.  For the same question, DS and SP  
 
shared a concern over the context of brake testing: 
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 DS: Well, I think I would say, I would go with graph 1, because it’s a little  
  more specific on the inches, which could be a life-saving difference.  
  And that having your, quite a few tests come up 82 or above could  
  mean that they’d want to go re-adjust brakes. Graph 3 would be good if  
  you were just kind of doing averages, but, I think that with brake  
  testing that you need something more detailed. 

 
 
 
SP: I dunno, with the ranges, it just seems like the range is pretty large [In  
 Graph 3] And so… What is it? 70 to 79, especially when you’re talking  
 about braking distance. It seems important that you know more 
  individually as opposed to clumping them together in 9 inches  
 [Intervals] 
 

I liked DS and SP’s comments because they attend to the importance of having good  
 
brakes, which creates a context link to the next theme emphasizing consistency and  
 
reliability. 
 
 ii) Emphasizing Consistency or Reliability – In the process of making  
 
conclusions about graphs, many subjects referred to the consistency or reliability of  
 
phenomena.  For example, they wrote about the consistent rainfall in Columbus or  

how car should brake consistently.  In the MAX wait-time scenario for PreInterview 

Q8, RL remarked: “Looks like the Eastbound is more reliable.”  With some of the 

responses, it seemed that consistency also may have been a term used in reference to 

the shape of the distribution. However, in the examples I’ve selected, the focus is on 

how subjects make declarative statements about consistency, as if they are concluding 

something about the phenomena under consideration. 

 I’ll start with examples from the car brakes situation on PreInterview Q5.  In 
 
the interview script, I introduced the term “consistent” as a part of a subquestion: “If 

the engineer wanted to suggest that the car was fairly consistent in its braking power, 
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which graph would you suggest she use, and why?”  Admittedly, this phrasing plants 

the word in the subjects’ minds, and therefore is no surprise that they repeated the 

term back to me. I felt justified in using the term mainly because past experience has 

shown me that, for adult college learners, “consistent” is a common term that made 

sense to most. Also, I needed subjects to think in terms of the goal of the engineer for 

the purpose of the question.  The instructive component for my research was not just 

that subjects talked or wrote about consistency or reliability, but in the way that they 

reasoned along this theme as a part of making conclusions.  Here is what some 

subjects said about the car brakes: 

 DS: And so, mostly, it does consistently brake between 70 and 89 inches. 
 JM: We look at something like this [Graph 2], it looks much more  
  inconsistent. 
 GP: Probably Graph 3, to show that it’s more consistent…But, you know, if 
  she showed them Graph 2, it would look like the car was really not  
  being very consistent in its braking 
 EM: Umm. Let's see. I think that Graph 3 actually tells me ... I get a better 
   sense of where that car is generally braking, or where it's consistently  
  braking. So I can see that , you know, four times between 70 and 79,  
  and four times between 80 and 89, and so... I get a sense of that , where  
  it's usually braking. 
 
In the last response, EM used three descriptors for braking, and they are (in order):  
 
generally, consistently, and usually.  She reasoned from the histogram, with 8 data  
 
points in the middle two bins (70-79 and 80-89) out of a total of 12 data points.  The  
 
central two-thirds of the data being within 70 to 89 inches told her about what the  
 
usual braking distance was. 
 
 In the rainfall comparisons of Data & Graphs PostSurvey Q1, I found many  
 
instances of the theme for consistency or reliability.  The examples I’ve chosen came 
 
from different subquestions of Q1, but the responses all convey a similar idea: 
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  RF: [Q1aii] Ohio is more consistent during the all year. 
  EM: [Q1bii] Columbus is more consistently rainy by looking at the boxplot.  
  It’s interquartile is smaller and reflects less change. 
  RF: [Q1bi] I think also that in Columbus it rains more throughout the year  
  because the graph shows that the number are more consistent it is why  
  looks more compact, pretty much is almost the same rain all year. 
 
EM and RF’s comments also reflected the theme focusing on spread in evaluating and 
 
comparing graphs, as evidenced by EM’s reference to the interquartile range and RF’s 
 
descriptor of the data as “compact”.  The main sense that I get from the above three  
 
responses is that a conclusion is being made, and the conclusion is that Columbus is 
 
a consistently rainy place (at least in comparison to Portland).  On the basis of the  
 
graphs, such a conclusion is reasonable. Subjects had other terms and phrases to  
 
suggest this theme: 
 
  JM: [Q1ai] Columbus has rainfall evenly dispersed throughout the year. 
 MM:  [Q1bi] It seems like Columbus has a constant concentration of rain  
 BP: [Q1bii] I personally think Columbus is rainier because the rainfall is  
  more constant. 
 
It seemed clear to me that an emphasis on consistency or reliability was a theme that 
 
came through in subject responses as they made conclusions about graphs.  
 
 iii) Emphasizing Level of Detail or Usefulness:  When I had subjects producing 
 
graphs, one of the themes within that dimension had to do with technical details: the  
 
type of graph used and also the attention to scales along the axes.  When students were  
 
evaluating comparing graphs, some of their responses emphasized the levels of detail 
 
offered by different graph types. Also, different graph types seemed more helpful to 
 
different students.  For example, in the rainfall comparisons of Data & Graphs 
 
PostSurvey Q1, some students were more influenced by the bar graphs, and some by 
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the boxplots.  In illustrating this theme emphasizing level of detail or usefulness, I’ll  
 
first be using responses to PreInterview Q5 (about the car brakes’ data shown in three  
 
different graphs).  Then I’ll share some responses from PostInterview Q8 (about the  
 
data for 35 muffin weights shown in both a boxplot and a histogram). 
 
 For the PreInterview Q5, Graph 1 was a line plot which only contained actual 
 
data points along the horizontal axis scale.  As RL commented, “Graph 1 is very  
 
factual. It reports only the [actual] values and it takes the literal value very seriously.”   
 
Since the axis was unevenly spaced, it was not surprise to me that several of the  
 
subjects did not find Graph 1 very helpful: 
 
 EM: And then, Graph 1 also could tell me that, except that, since it puts an  
  X for each particular number, I don't... The impact of where it's braking  
  is lessened for me 
 JM: Well, it [Graph 1] goes from 68 to 70, then 70 to 75, and 75 to 80, and  
  then 80 to 82… I don’t like that one, that’s a little confusing for me 
 SP: Well, the first graph, which doesn’t a ton of sense to me, but, she just  
  wrote just the distances that she got. She didn’t write anything in- 
  between, and so you’re just getting like, 68 jumping to 70, to 75… And  
  so it’s just sort of, doesn’t represent what would be in-between those 
 
The responses above do a good job of illustrating this theme, since they all attended to  
 
the detail (or lack thereof) in Graph 1, and the usefulness is also addressed.  DS,  
 
however, liked Graph 1: 
 
 DS: At a glance, it’s [Graph 1] easier to see, if something’s presented in a 
   concise, efficient manner, you can look at it and go, okay, most of the 
   times, it broke, you know, 68 to 75, but it did have these trials that were  
  higher [She shows extremes with her hands]. And it’s, you know, there 
   aren’t a lot of extra numbers in there [Graph 1], which is good, you just  
  have the numbers that it broke. That the brakes worked.  
 
I found DS’ response very interesting in that she gave a very clear reason why she  

found Graph 1 useful. She felt that Graph 1 presented the data without “a lot of extra  
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numbers”.   

 It didn’t seem that by the time of the PreInterview DS felt other graphs might 

do a better or worse job of presenting the variation in the data set.  Graph 2, for 

instance, was a line plot similar to Graph 1 except that Graph 2 had an evenly-spaced 

axis.  Most subjects found Graph 2 helpful in terms of the detail offered: 

 
 JM: So when we look at Graph 2, it goes inch by inch. So it really gives you  
  a good…Well, it shows us exactly where each [trial] landed…where it  
  actually happened, you know… 

GP: Graph 2 seems to be more, shows visually better, than the others...just  
 showing the variations that are in the distances that she, while she was  
 braking. You almost see, like, the distance... 
RL:  But it [Graph 1] doesn’t really show the relationship as well as  
 Graph 2, which says, okay, we’re going to make a very even graph,  
 and , so that when you look at it you get much more of a sense of  
 what were the facts on the ground. And so it’s [Graph 2] a more visual,  
 it’s more intuitive visually, more useful visually,  graph.  

 
While the above three subjects clearly express the usefulness of Graph 2, DS had the 
 
opposite opinion: 
 
 DS: Where this other one [Graph 2], that has too much going on, and you  
  go  [“Huh?” = She gives a confused look] 
 
Graph 2 showed more information about where the data points fell in relationship to  
 
one another, but such a relationship was either confusing or not relevant to DS.  For  
 
her, Graph 2 held too much detail.  However, the detail is important to give a visual  
 
sense of the variation.  For instance, when JM said that Graph 2 showed “where each  
 
[trial] landed” , the same could be said of Graph 1. Graph 1 also showed each data  
 
point.  What JM really meant is given away by the next part of his response, that  
 
Graph 2 showed what “actually happened”.  And what “actually happened” is not just  
 
that data fell at certain places (as in Graph 1), but that the data was scattered along the  
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axis (as in Graph 2). 
 
 Graph 3 was a sort of histogram with stacked “X”s instead of contiguous bars. 
 
JM and EM found Graph 3 useful, although JM qualified his endorsement: 
 
 JM: Graph 3, of course, groups up in ten-inch segments, and  groups them  
  up like that. Which is okay, but depending on how critical you have to  
  measure something, maybe ten inches is too much, if you’re measuring  
  in inches. 
 EM: Ok. Well, when I can see where the distances fell, [She points to Graph  
  3] and if they’re closer together, then it’s easier for me to see how they  
  compare, I guess you would say 
 
GP commented on the grouping in Graph 3, and suggested that it could be used to  
 
trick the reader: 
 

GP: With Graph 3, you don’t really get the feeling of that much of a 
 distance between the numbers.  Graph 3 really seems compact. Well,  
 they have the groups, they have ‘em grouped together, um, from 60 to  
 69, groups like that… I think it [Graph 3] would fool them more… 

 
I thought GP gave a very clear indication of how Graph 3 obscures detail, and RL  
 
expanded on the same idea: 
 

RL: Graph 3...uses such broad grouping categories...and so it suggests a 
  broader range has been included when, depending on your take, it could  
 also be considered a misrepresentation.  
I: Does this misrepresent the data? 
RL: It doesn’t misrepresent the data, but it does suggest more flexibility in  
 interpretation, I guess. 

 
RL’s comments gets at the very point of this theme, which is that different graphs  
 
impart different levels of information and are useful for different purposes.  In  
 
considering the general purpose of graphs, he noted that “maybe their fundamental  
 
purpose, if not a major purpose, is to visually express something usefully that does not  
 
take a lot of brainpower to derive.” 
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 While responses PreInterview Q5 gave a good illustration of the meaning of 

this theme, I also want to share responses on PostInterview Q8 in this section. One 

reason is because these responses further illustrate the theme emphasizing level of 

detail and usefulness, but they do so with a boxplot and a histogram.  Another reason 

is that, while PreInterview Q5 was based on a question used in previous research 

(Watson et. al., 2000), PostInterview Q8 was a new contribution of mine. I’m not 

aware of any other studies that have gathered data on EPSTs in comparing boxplots 

and histograms.  JM and RL were quick to note the visual power of the histogram, and 

how the mode of 113 grams attracted their attention: 

 JM: When you look at the histogram, right away, you know, it pops out:  
  Boom, 113. The histogram is really easy, graphic display for just about  
  anyone to see, it’s 113 is the one that shows up quite often. 

RL: This 113 mode is very salient [He points to histogram], it really leaps  
 out, whereas it’s not represented as such on the boxplot… 

 
RL rightly notes that mode is not visually present in the boxplot for Q8.  Subjects  
 
commented on how, in general, frequencies are not a component of boxplots: 
 
 SP:  This [Boxplot] is just showing where the center half of the data is, and  
  then, where it begins, where it ends…So you’re not really getting any  
  levels [Frequencies?] of how much is there, you’re just getting that  
  there WAS one there… 

RL: Well, we also see on the boxplot, what the range is, but I can’t look at  
 this [Boxplot] and find out if there were , you know, half the muffins  
 were 110! I just know that there was a 110-gram muffin, but I don’t  
 know how many, and vice versa on the other [Graph?]. So outside of  
 that middle 50%, there’s very little that I can glean from what’s going  
 on. 

 JM: Well, I can see from the boxplot that the low point is 109, it doesn’t tell  
  me how many, of course, that’s one thing. It just tells me the low and  
  the high number, and 50% of them fall within this range 
 
The common thread in the above three responses is that boxplots don’t usually tell  
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how much data is at any given value.  The histogram, on the other hand, provided  
 
frequencies: 
 
 JM: Whereas when I look at the histogram, I, you know, I can see every  
  muffin just about, and how much it weighed. And if I was really  
  concerned with each muffin, I’d know from that [Histogram] really  
  well. 
 EM: It [Histogram] actually graphs out each, each time that a certain weight  
  came up, and so I can see more variation there 
 DS: Well, because it [Histogram] has each thing detailed out, so you can see 
  how many are exactly which weight, where this [Boxplot] gives you  
  the general range for you know, the percentage of the numbers 
 SP: Well, I think this one [Histogram] shows you the greater variation… 
  Because you’re getting each individual number, along this line, 
 
RL had a nice way of summarizing the way he saw the differences between the two  
 
graphs: 

 
RL: Well, when, uh… I think the boxplot requires more interpretation. It’s  
 not quite as accessible. I look at this [Histogram] and it’s very easy to 
 compare one thing next to another, whereas here [Boxplot] – What this  
 is really giving me is a lot of information on SOME of the data. And  
 this [Histogram] is more complete, more thorough. 
 

It was clear that, given the opportunity, subjects had much to say about the level of  
 
detail and subsequent usefulness of different graphs. This theme, along with the  
 
themes emphasizing decisions in context and emphasizing consistency and reliability,  
 
comprised the dimension of making conclusions about graphs. 
 

 [3] Interpreting Variation 

 A] Defining Variation:  This dimension addresses what the term “variation”  
 
means to subjects, and it became clear through the research that variation had a  
 
multitude of different but related meanings.  For example, a review of the responses  
 
already shared in this chapter shows how subjects thought variation had to do with the  
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way data was clustered or spread out, similar or different.  In one situation variation 

was associated with the range, and in another situation variation was connected to the 

frequencies shown in a histogram.  As GP said in PostInterview Q8 about the 

histogram showing the muffin heights,  “Here [Histogram] you see more variation, 

‘cause of the ups and downs of the graph.”  What I found in the data was that 

responses fell into two distinct themes.  The first theme concerned definitions and  

descriptions, and the second theme concerned examples.  To illustrate the two themes, 

I’ll use responses from the two questions that explicitly asked for a definition and 

examples, and these questions were asked on the PreSurvey. 

 i) Definitions and Descriptions – In response to the question “What does the 

word ‘variation’ mean to you?”, most subjects’ response mentioned having differences 

or changes.  The key idea was that things were not the same: 

 TO: A difference of one object as opposed to the next 
 JM: There is variety or differences. 
 SP: The differences between things in a group. 
 DS: Changes over time 
 
The emphasis I saw in the above responses was on the simple presence of differences  

or changes, which fits well with the description of variation I gave in Chapter One.  

Some subjects also emphasized differences in connection with making choices, and 

they stressed having different options or alternatives. Other responses emphasized the 

degree of difference or change: 

 CM:  Degree to which something is different 
 JL: The degree by which a number can change, less or more 
 SC: It’s more like all the different things that can be slightly or greatly  
  different from what you are studying. 
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A last group of responses connected variation to math, similar to JL’s response above: 
 
 AL: I’m not sure, it has something to do with equations 
 BP: How far something deviates from the average 
 LW: The difference or distance from the norm 
 RL: A measure of how a given piece of data compares with the average of 
  similar data. 
 
The last three responses show previous experience with statistics.  I asked the question 
 
about the meaning of variation on the PreSurvey but did not ask the same question at 
 
 
the end of the research, and now I wish I had.  However, it was clear through their 
 
responses that a broad web of meaning for the term variation occurred throughout the  
 
research. Data were described as being clustered or scattered, concentrated or widely  
 
distributed.  Graphs were described as compact or spread out.   
 
 I had expected my subjects to have at least an everyday, common definition of  
 
the term “vary” and its linguistic forms (variation, variability, etc.).  In the process of  
 
predicting possible outcomes for different scenarios, they frequently used another  
 
common term, “random”.  Randomness, as pointed out in Chapter Two, is linked to  
 
variation in the fundamental sense that appreciation of one concept should accompany 
 
an appreciation of the other.  Therefore, I also asked on the PreSurvey what the term  
 
“random” meant to them, and one of the dominant characteristics I saw in responses  
 
was that randomness implied a lack of pattern: 
 
 BP:  Sporatic, having no pattern 
 DS: Not patterned 
 JX: With no pattern 
 LW: Without a given or set pattern.  
 
Another characteristics I saw in the description of randomness was the effect of  
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unpredictability.  That is, random events were seen as unpredictable.  LW said it well:  
 
“One cannot predict what will come next by previous experience.”   
 
 ii) Examples – In the PreSurvey, when I asked subjects to “give an example of 
 
something that varies”, the main characteristic of the examples I got in response had to  
 
do with the weather or other natural phenomena: 
 
 JM: The weather. The shapes of rocks. Snowflakes. 
 CS: The temperature varies every day. 
 DM: Sunshine in Oregon in January 
 GP: The weather changes it’s look. 
 MA: The amount of daylight we experience throughout the year 
 JB: Temperature in the Spring 
 RL: Sea level. 
 
Another characteristic concerned people or personal characteristics: 
 
 SP: Weight, height, hair color of a group of people. 
 MG: The height of students in a class. 
 JM: People’s attitudes.  
 MM: My mood sometimes. My music taste. 
 
The survey and interview questions all reflected many different examples of variation,  
 
and in the context of data and graphs I had examples such as weather, muffin weights,  
 
train wait-times, and car stopping distances.   
 
 Subjects’ responses to the related PreSurvey task “Give example of something  
 
that happens in a "random" way” suggested contexts of sampling and probability. For  
 
instance, SP wrote: “If I put a quarter in a gumball machine, the gumball I get is  
 
random.”  Her example related to the candy sampling tasks asked in the surveys and 
 
interviews. Other examples of random events suggested by subjects included: 
 
 SL: Powerball, maybe. Roll of dice, flipping a coin 
 MG: Pulling names out of a hat 
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 JL: Selecting a bouncing ping pong ball with a number listed on it from  
  a hot-air lottery spinner (for lack of a better word) 
 
Through the class activities and research tasks the subjects experienced many other  
 
examples of , but even at the beginning of the research project there were some  
 
reasonable definitions and examples of variation and randomness. 
 
 
 
 B] Causes of Variation:  Occasionally subjects speculated about causes of 
 
variation on their own accord, but there were also several questions in which I  
 
specifically asked for subjects’ conjectures about causes.  For example, during the 
 
class activities on sampling, I asked why they thought results were not all the same. 
 
Two themes that I delineated for responses about causes are naturally occurring causes 
 
and physically deliberate causes, which I’ll explain next. 
 
 i) Naturally Occurring Causes – This theme includes randomness as a reason  
 
for variation in sampling and probability situations. It also includes the reasons that  
 
subjects gave for weather differences between Columbus and Portland.  Every subject 
 
had at least one possible reason, and many subjects’ responses listed multiple reasons, 
 
such as: 
 
 SX: Geography of the two cities cause their different rainfall patterns.  
  Portland probably gets the higher rainfall in winter months because  
  weather systems from the Pacific get caught between the Cascades and  
  the Coastal Range. Maybe Columbus is too cold in the winter for  
  large quantities of rain. In the summer it rains more in Columbus  
  because moisture comes from the Great Lakes (I think?) 
 JM: Columbus gets more rainfall in the summer months. Thunderstorms  
  and low pressure accounts for this difference. Portland’s winters are  
  mild and wet, Columbus’ colder temperatures account for more winter  
  snow. The Pacific ocean has a very large effect on Portland’s climate. 
 
I was impressed at how well thought out some of the responses like JM and SX’s  
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were, and overall it seemed that writing about causes of variation came easily to the  
 
class as a whole in this context. 
 
 Similarly, in the traffic death rate question on the Data & Graphs PostSurvey,  
 
I included reasons such as different speed limits, drivers’ age requirements, or road  
 
conditions  in this theme because those are normal, routine reasons  which might  
 
account for variation in the data. Here are some sample responses for causes of  
 
variation in the traffic death rates between the South and the Northeast regions of  
 
America: 
 
 AL: Weather, speed limits, types of roads, age of drivers 
 DM: Older roads in the South , older vehicles, weather, more cars on the 
  road, as opposed to busses & trains. 
 JM: The legal age to operate a motor vehicle could be lower in the  
  South, contributing to the higher death rate. 
 LW: Rural roads versus urban areas. The age of drivers.  The years of  
  experiences driving.  Road conditions.  Drivers education  
  requirements. 
 
LW’s comment about rural roads versus urban areas was echoed by some other  
 
subjects, who expanded on the difference: 
 
 JL: More rural areas in the South with highways and faster speeds than 
  the NE. The faster speeds, the more likely the accident will result 
  in death. The hospitals may have better critical care facilities. 
 EM: In the South there are probably longer stretches of highway, more  
  space between destinations, more people falling asleep or not paying 
  attention on long drives – higher speeds 
 BP: Maybe because there are more flat, long, open roads in the South – 
  People have to drive farther to reach places and there is opportunity to  
  drive faster. The NorthEast has more Metropolis and things may be 
  closer, more freeway driving, not as much country road driving? 
 DS: I think people in Northern states, although rates are based on same #  
  miles, drive actual SHORTER distances each time they drive because  
  population would be more condensed. That would decrease chances of  
  death. Because less chance of accident on short drive than long drive. 
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Again, I was quite impressed at the depth of thought given to the above responses.  A  
 
number of subjects attributed the cause of variation to alcohol consumption, and I  
 
considered this as a cultural factor (or at least the subjects’ impression of a southern 
 
culture): 
 
 
 
 
 DS:  Maybe the people in the Southern states drive drunk more.  
 EM: Maybe even a correlation between education level and drunk driving?  
 GP:  Higher incidence of drinking and driving. 
 JM: Perhaps a higher incidence of drinking under the influence of alcohol in  
  the South. 
 LW: More alcohol consumed due to the heat causing more accidents.    
 
There were even more responses than those above listing the South in connection with 
 
alcohol consumption, and I was somewhat surprised at what seemed to be a bias  
 
coming through in student responses. SR plainly said: “ALCOHOL! From my own  
 
personal experience and biases, Southern people as a whole drink and drink more, and  
 
are more careless also, but that is my own experience.” 
 
   In addition to the causes for variation in weather patterns and traffic rate 

deaths, many reasons for different MAX wait-times – reasons such as the precision of 

the watches, or how the middle  schoolers may not have had their watches perfectly 

synchronized – seem a natural part  of the process of data gathering.  Similarly, on the 

repeated muffin-weighing question on the PostInterview, having crumbs fall off a  

muffin as it gets weighed seems a normal occurrence. 

 ii) Physically Induced Causes -  However, having crumbs fall off a muffin is 

different from taking a bite out of the muffin to deliberately introduce variation. 

Someone actually suggested the “bite” cause for the muffin repeated-measurement 
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scenario, an example of a physically deliberate cause.  The main characteristic of this 

theme is that someone or something acts in a purposeful way which introduces 

variation into a situation as a result of the act.  

 Several physically deliberate causes were volunteered by subjects in both 

sampling and probability contexts.  In sampling, several students addressed the nature 

of the candy mixing. While it may seem that “mixing” is an inherent and natural part 

of the sampling scenario, some responses emphasized the way that the hand might 

grab the candies, making the situation seem as if the person doing the sampling was 

causing the variation.  In PreSurvey Q1b, GP wrote that he thought a person would get 

different results when drawing samples from the small jar, “because you will probably 

grab differently and the candies are shifting to different places.”  One of GP’s 

emphases is on the person doing the drawing.  It seems from what GP wrote that if one 

did not grab differently, and tried to grab candies the same way each time, closer 

results would occur. GP’s response is a good example of stressing physical causes in a 

sampling environment.  Other responses emphasized the physical environment, such 

as the way “yellow candies could be bunched together in the jar”, or “how many red or 

yellow happen to be in the area you grab”.  The way the candies were mixed and 

subsequently chosen seemed to be concern to some subjects in the sampling situations. 

 In the probability contexts with the spinner, there was a strong perception from 

some students that a person doing the spinning can cause more or less variation by 

virtue of controlling or influencing the spinner. In fact, the spinner attracted more 

comments about physically deliberate causes than the other random devices such as 

the coin or the die.  Here are some spinner comments from PreSurvey Q8, which 
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asked if there was a 50% chance of winning a game involving two fair spinners (each 

spinner was half-black and half-white): 

 MM: Only if the spinner starts spinning in between both is it a 50-50  
  [Chance] 
 RF: I think a lot depends on how you spin 
 SW: I think it depends somewhat on where the spinner is started from 
 
SW above also had an idea about flipping a fair coin 50 times in PreSurvey Q7a. She 
 
thought that perhaps the coin would land heads-up “a little more than half ‘cause it  
 
started on heads”, although she qualified her response by saying “I have no idea  
 
really.” Other examples of physical causes will be brought out in the case study  
 
discussions, because some students changed their emphases on physical causes from  
 
before to after the class interventions, and I’ll be sharing some of these comparisons  
 
later in this chapter. 
 
 C] Effects of Variation –  In this dimension, my focus was on the effects of 
 
variation on the subjects.  Variability was inherent in the tasks used in this research,  
 
and subjects had different levels of understanding of what constituted reasonable  
 
expectations in the face of this variation.  I do not suggest that subjects themselves are  
 
necessarily aware of the effects variation has upon their responses, but I hypothesize  
 
the following two effects: The first is the effect on subjects’ perceptions, and the  
 
second is the effect on subjects’ decisions.   
 
 i) Effects on Perceptions – Variation inherent in situations can affect how  
 
subjects perceive those situations.  Two characteristics of responses within this theme  
 
suggested what students  “know” or “perceive”.  First, many students said they knew  
 
that reality was different from theory.  Second, when considering results from a  
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variable situation, many subjects said they knew that results could be anything.  
 
 In perceiving that reality is different from theory (the first characteristic of the  
 
effects on perception), subjects mostly commented about probability theory.  For  
 
example, when  considering a single sample of size ten from the Small Jar on  
 
PreSurvey Q1a, MG wrote: “If you take a random sampling of any population, you 

should get a proportional representation.”  MG therefore has a good sense of what 

probability suggests, and later in Q1c (“Six Trials”), MG put all sixes for his choices. 

But in Q2a (“Range 6”), he put “3 to 8” for his range, and later explained that “if they 

are being selected randomly, there shouldn’t be the same number coming out each 

time.”  It seems as though the reality of the situation, at some point, comes into focus 

for MG and contrasts with the expectations based on probability. Responses from 

other students on PreSurvey Q1 include: 

 DS: [Q1b] Because probably outcomes aren’t for sure outcomes 
 RL: [Q1b] Reality does not obey the estimates of probability 
 SR: [Q1c] You are dealing with chance, like gambling. In theory there is  
  probably an answer…a 6-4 chance each candy picked is red. But if you  
  do it for real, 100 times, the numbers change but the ratios do not. 
 
The key idea in the above responses was how probability says one thing, but what  
 
really happens is another.  While the above responses were from the sampling context,  
 
there were similar responses in the probability context. Here are two examples related  
 
to the coin-flipping scenario of PreSurvey Q7: 
 
 DM: [Q7b] In all likelihood it would probably be different, but statistics 
  say again it should be 25 
 RL: [Q7c] While 25 flips are likely to be heads, in reality some variation  
  is likely, so my numbers represent a range that averages 25 
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Notice how both DM and RL approached the same theme from opposite directions.  

DM has the theoretical side covered by what “statistics say,” and on the reality side 

she notes the likelihood of differences. RL talks about the likeliness of the theoretical 

(25 heads), and on the other side is the reality of variation.  Another term some  

subjects used for the theoretical expectation was the “perfect” result.  For example, in 

considering the expected value of 25 blacks for a sample of 50 spins of the fair 

spinner, DS said that “it’ll still be rare to get the perfect 50%”.  Similarly, SA knew 

that she wouldn’t get the expected value every time in drawing samples from the 

Small Jar, saying: “That would be too perfect.”  The idea seems to be that in a perfect 

world, results would match the theoretical prediction.  In the real world, variation 

happens. 

 The second characteristic for this theme was reflected by comments about how 

results could be anything.  I saw this second characteristic as an extension of the first, 

because if subjects perceive that the expected value won’t always occur, then 

sometimes they reasoned that any of the other outcomes in the sample space could 

occur.  Logically, an event is in the sample space can in fact occur, but the responses 

displaying this second characteristic seem to ignore relative likelihoods of events.  

Consider SP, who predicted the following six results for six samples of 50 flips each 

of a fair coin in PreSurvey Q1c: 2,3,10,16,22,25. Her predictions are low, and not on 

both sides of the expected value of 25 heads. Moreover, her lowest results of 2 and 3 

heads are extremely unlikely. Her reason for her choices was that she “just chose 

randomly – anything is possible.”  In the Sampling PostSurvey environment of  

drawing samples from the Large Jar, there were other responses similar to SP’s: 
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 SZ: [Q2c]  It is random selection, anything can happen. 
 SR: [Q3c] Even after the month of lessons on stat. & probability, I still feel  
  that it is luck and fate of what each turn will pull...anything is possible. 
 JM: [Q4b] Anything is possible. 
 
 
 
Granted, the subject perceptions described within this theme - about reality versus  
 
theory, and how results could be anything – relate just as well to randomness and  
 
uncertainty as variation.  Indeed, many of the responses for this theme echo traits of  
 
intuitive probabilistic thinking reported in earlier studies, most notably the Outcome 

Approach.  Semantics do come into play when talking about uncertainty, randomness, 

and variation. I linked subjects’ perceptions to variation, given the broad definition of 

variation introduced in Chapter One.  There will be differences (variation) in results, 

and subjects therefore perceive that reality is not the same as what theory predicts, in 

fact results could be anything. 

 ii) Effects on Decisions – While the previous theme focused on what subjects 
 
“knew” or “perceived”, this theme concerns the subjects’ decisions or ability to make  
 
decisions.  Some subjects claimed it was difficult to know what results would occur,  
 
and that they couldn’t predict  or decide.  Other subjects expressed a lack of  
 
confidence in making inferences.   
 
 An “I don’t know” type of answer was often given by subjects who were asked  
 
what might happen in sampling and probability situations.  Sometimes subjects also 

used the “I don’t know”  line of reasoning when explaining their answers.  Guessing 

was also listed in response to many different questions, such as the following  

examples from the PreSurvey: 
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 SP: [Q1c] I just made a guess – even though there is no way to  
  systematically prove my guesses   
 SL: [Q2c] Total guess. I have no background to predict from 
 CS: [Q3b] Guess. Have no idea 
 AL: [Q3b] I would be totally guessing if I wrote #’s down. I don’t know  
  how I would figure this out. 
 SL: [Q7b] Couldn’t hazard a guess, or could but it would be random 
 
An idea behind the “I don’t know” and “I’m guessing” types of responses is not  that  
 
subjects are not able to guess or predict, but that they cannot know ahead of time if 
 
their predictions are correct.  The following two responses from the PreSurvey  
 
directly address the difficulty in making predictions: 
 
 AL: [Q1b] You can make a prediction, but not a concrete answer as to what  
  color you will pick. 
 LT: [Q1b] Always getting six red candies is hard to predict. 
 
One of the uses of statistical reasoning is to make inferences.  For some  
 
subjects, making inferences was difficult, and it seemed that the variation inherent in  
 
situations led to subjects’ claim of difficulty in predicting.  When LT writes (as above)  
 
that it is “hard to predict”, it seems that what she is really saying is that it is hard to  
 
predict and then have the prediction match with the actual outcome. 
 
 In the interview setting, many subjects also clearly showed their difficulty in 
 
decision making, with some questions eliciting long, protracted attempts to reconcile 
 
the reality of variation with the theory of prediction.  The two themes for this  
 
dimension are connected in the sense that how a subject perceives a situation  
 
influences the ease and confidence they have in making predictions or decisions based  
 
on that situation. 
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 D] Influencing Expectation and Variation:  Two themes I saw in connection 

with this dimension were quantities in sampling, and the number of samples taken.  

I’ll illustrate the two themes and also how subjects seemed to relate the 

themes to influencing expectation and variation. 

 i) Quantities in Sampling – This theme arose from questions about drawing 

samples from the Small Jar and from the Large Jar.  The key idea was how  

subjects’ responses (or parts of their responses) focused on the numbers of the candies 

in the sample or in the jar rather than emphasizing the ratio.  Other researchers have 

used the term “Additive Reasoning” to describe the focus on the sheer size or numbers 

used in sampling situations (Shaughnessy et. al., 2004).  Here are some examples of 

responses from PreSurvey Q1, concerning samples from the Small Jar (60 Red/ 40 

Yellow): 

 MM: [Q1a] Because there are more red candies than yellow 
 MA: [Q1a] I stand a greater chance of pulling more red than yellow, because  
  there are more of them to begin with in the [jar] 
 RF: [Q1b] Because if I had more red I have more probability to get more of  
  these 
 SW: [Q1c] The odds are that each classmate would have more red because  
  there are 20 more reds to begin with. 
 
The common theme in the above responses is that there are more reds than yellows in 

the jar.  In the absence of any additional information, their responses above beg the 

question of whether the likelihood of getting a red candy has more to do with the 

numbers in the jar or with the proportion.  That is, the responses show more that the 

subjects are influenced by quantities (the numbers of candies) than they are influenced 

by proportion.  For instance, SW explicitly mentions how “there are 20 more reds”, 

showing an additive strategy.   
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 In the next set of examples, LT also uses an additive strategy, claiming there’s 

“only 20 more reds”. These responses come from Sampling PostSurvey Q1, when 

subjects were reasoning how many samples from the Small Jar they would expect to 

make in order to get 0 or 1 red candy in their sample: 

  LT: There is not much of a difference between 60 Red and 40 Yellow.  
   There are only 20 more reds than yellow.   
 SA:  I’m sure it has something to do with the fact there is so many more reds  
  than yellow 
 MG:  The likelihood of getting only yellow is low because there are so many  
  more red than yellow. 
 SL:  The red has higher chance ‘cause there are more. 
 
I placed this theme concerning the number of candies in the dimension of influencing 

expectation and variation because I wondered if the likelihoods were seen by subjects 

as influenced by the quantities and not relative quantities. For instance, since SL 

suggests above that red has a higher probability of being chosen because there are 

more red candies to begin with, perhaps she would therefore reason that the 

probability would increase if the numbers increase (but the ratio stays the same).   

 On the Sampling PostSurvey Q4, when justifying the predictions for 50 

samples taken from the Large Jar, again there were further suggestions of additive 

reasoning: 

 LW: Since there are more red than yellow I believe it more likely for the  
  trend to push higher rather than lower. 
 MG: Because there are so many more red than yellow, they will be more  
  likely to pull more than 60 rather than less 
 SA: You have a better chance of pulling all reds than pulling no reds  
  because there are 200 more reds than yellow in the jar. 
 
Thus, the sheer size of the samples and populations featured prominently in subjects’ 

reasoning about both Small and Large Jars.  There are some useful ways in which 
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moving from a Small to Large Jar does influence the distribution, but I hypothesize 

that many subjects only think in terms of greater numbers leading to higher or lower 

likelihood. For instance, they may think that trying to draw a red marble from a 60 

Red/ 40 Yellow mix is an easier (likelier) task than trying to draw a red marble from a 

600 Red/ 400 Yellow mix. 

 ii) Number of Samples – There were four characteristics I saw within this 

theme.  The first characteristic was that more samples has no effect on the probability 

associated with individual results. In stressing the stability of the underlying 

proportion, communicating how the ratio doesn’t change no matter how many trials 

are performed, RB expressed the argument this way: “No matter how many people 

take a handful, the odds will always be the same because each handful is replaced 

before the next person draws.”  In PreSurvey Q7 when subjects considered samples of 

50 flips of a fair coin, some wrote as follows: 

 JL: No matter how many times he flips, the odds are the same 
 SP: No matter how many times he flips it, the chance is still ½  
    AL: I don’t see how the chances of getting heads will change if he does  
  more sets of 50 flips 
 SR: Still he has a 50/50 chance on each flip and on each group of flips 
 
While the above observations  true, the responses were often used to justify an 

expectation of no variation in results from repeated samples.  In other words, there an 

assumption that because the number of samples does not change the underlying ratio, 

whatever was result expected for one sample should be extended to all samples. 
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 The second characteristic was that more samples would yield more variation, 

and in this sense variation was used as a synonym for range. In other words, doing 

more samples would extend the range in both directions.  On PreSurvey Q2, I asked a 

question that invited a comparison of ranges for a smaller and larger number of 

samples.  Responses included the following: 

 
 CM: The range will increase with increasing attempts 
 JL: The more people that do the experiment, the more varied the results. 
 RL: As the number of trials goes up, so expands the range of possible 
  outcomes towards the extremes. 
 MG: I think (?) there should be a larger range of variation (from the mean)  
  as the number of samples increases. 
 
Another way that students had of expressing the view of an expanding range was to 

say that more samples gave more chances to get extreme values, or as JX put it on  

Probability PostSurvey Q2: “The more sets done, the more likely you will get less  

likely results.”   

 The third characteristic was that more samples also gave more chances to 

actually attain the expected value, and related to this characteristic was the notion that 

the average of a set of trials should be (or be closer to) the expected value. Often the 

principle of the Law of Large Numbers was implicit in responses, and in one instance 

the Law was explicitly stated.  The following examples are in response to Probability 

PostSurvey Q1b, as subjects consider more than one sample of 50 spins of the fair 

spinner: 

 GP: The more times, the closer it will be toward 25 
 LW: The more times he spins, the closer he will actually get to the 50/50  
  chance 
 SA: The more he spins the closer the results will match the probability (1/2) 
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 SX: Because there are more spins, the variation will be less than with only 
  50 spins, hence closer to ½ the # spun (50) 
 MG: It will be even closer to 25 because of the Law of Large Numbers 
 
In SX’s response, when she says that “the variation will be less” with more spins, she 
 
may be using the term variation to refer to the relative clustering of results around the  
 
mean and not to the absolute range.  
 
 
 The fourth characteristic was that more samples give a better picture of the 
 
underlying distribution.  For instance, distributions become more normal, and  
 
subranges – such as the range capturing the central 90%  of the results – shrink  
 
relative to the  absolute range.  In the Probability PostSurvey, here are two examples  
 
of this characteristic concerning the distribution and an increasing number of samples: 
 
 JL: [Q1b] I think the sample results would get tighter, the grouping would 
  accumulate around [the expected value] 
  RL: [Q2] The more trials run, the more normal the distribution, but the  
   chance of outliers also increases 
 
Thus, taking more samples was thought to have no effect on the underlying  
 
proportion, and to increase the chances of expanding the range by attaining extreme 

values. Also, more samples improved the chances of actually attaining the expected 

value, and more results would cluster around the expected value, affecting the shape of 

the distribution. 

Summary 
 
 This section has shown what I mean by each of the themes that make up each  
 
dimension for each aspect within my evolving framework.  The framework addresses 

my first research question by providing a comprehensive structure to characterize 

EPST’s conceptions about variation.  It must be reiterated that the framework allows  
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for responses to fall across more than one aspect, dimension, or theme, depending on 

the complexity of the response.  Researchers using this framework will occasionally 

come across responses that only exemplify a single theme, and will frequently 

encounter multi-thematic or multi-dimensional responses.  Most of the examples of 

student responses in this section have been excerpts of longer responses, for the 

purpose of highlighting the meaning of the themes.  The framework was informed by 

the entire corpus of data on all instruments, although I deliberately chose exemplifying 

responses more from the Surveys and less from the Interviews.  In the next section, I 

apply the framework to compare six individuals’ conceptions of variation from before 

to after the class interventions, and I focus on their responses to the Pre and 

PostInterviews. 

Individual Cases 
 
 To answer my second research question, I used the evolving framework as a  
 
lens to view the thinking of six subjects who each participated in two interviews.  I 

looked for significant ways in which subjects’ conceptions changed or remained the 

same as the subjects progressed through the research.  The framework helped 

characterize my findings, and the case studies are organized according to the main 

aspects of expecting, displaying, and interpreting variation.  I’ll describe the main 

ways that each of my six cases showed stability or shifts in thinking within each 

aspect.  

  Of the eleven subjects interviewed, there were three females (SP, EM, and DS) 

as well as three males (GP, JM, and RL) who were selected to be the six case studies 

for this research.  They were selected mainly because their collective responses 
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spanned all the themes of the framework.  Moreover, they had no problem sharing 

their thoughts in the interviews, and their narrative provided vivid illustrations of their 

thinking.  Each of the six cases participated in two videotaped interviews, with each 

interview lasting about 45 minutes.  The PreInterview was given within two weeks of 

administering the PreSurvey, and was conducted before formal instruction on 

probability and statistics in MET 2 had begun (recall that the first four weeks of the 

quarter in MET 2 was spent on geometry).  After four weeks of doing lessons and 

activities on probability and statistics (this time frame corresponded with weeks 5 – 8 

in the ten week quarter), the PostInterviews were conducted.  To illustrate the 

comparisons for each case, I’ll mainly use responses to a subset of questions from the 

Pre and PostInterviews. 

 The interview questions were summarized in Tables 4 and 8 of Chapter  
 
Three, and they are found in their entirety in Appendix B.  I chose a subset of the  
 
interview questions for case analyses for three reasons.  First, the cases’ collective  
 
responses on these questions spanned all the themes of the framework. Second, the 

questions themselves spanned the three contexts of sampling, data and graphs, and 

probability situations.  Third, the questions were specifically constructed to so that 

PreInterview questions were isomorphic to PostInterview questions. By isomorphic, I 

mean that the questions were phrased similarly or addressed similar ideas.  I’ve 

reorganized Tables 4 and 8 to show how questions matched up, and also to assign 

nicknames that will help identify the questions used in this section (see Table 12).   
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Table 12. Isomorphism of Interview Questions 

Pre NickName Scenario Involved Post NickName Scenario Involved 

Q1a 
Q1b 
Q1c 

One Sample 
Several Samples 
Six Samples 

Q1a 
Q1b 
Q1c 

One Sample 
Several Samples 
Six Samples 

Q2 Compare Lists Q2 Compare Lists 

Q3 Graph: 30 Q3 Graph: 30 

Q4 Graph: 300 

Small Jar :  
  60R/40Y 
  (Samples of  10) 

Q4 Graph: 300 

Large Jar :   
   600R/400Y 
   (Samples of 100) 
 

Q6 
 

Causes: Train Q6 Causes: Muffin  

Q7 Compare 
Graphs 

21 Times Recorded 
  (One MAX Train) Q7 Compare Graphs 

20 Weights 
Recorded 
(One Bakery) 

Q8 MAX  
Wait-Times 

10 Wait-Times Each 
  (Two MAX Trains)

Q9 Muffin Weights 12 Muffins Each 
(Two Bakeries) 

Q9 
Q10 
Q11 

One Sample 
Who Cheated?  
Six Samples 

 Six-Sided Die 
   (Samples of 60) 
 

Q10a 
Q10b 
Q10c 

One Sample 
Compare 
Samples 
Six Samples 

* * * Q11 Compare Lists 
Q13 Likelier Graph? 2:1 Spinner 

  (Samples of 60) 
Q13 Likelier Graph? 

1:1 Spinner 
   (Samples of 50) 
 

 
(* Along this row, the Post Q11 “Compare Lists” was in the Probability context and did not have 
    a direct counterpart in the PreInterview. Post Q11 is similar in structure to Post Q2 and Pre Q2.) 

 
 In Table 12, I’ve created nicknames that reflect the content of the questions,  
 
and in general the Pre and Post questions can be matched by their nicknames.  For  
 
example, “One Sample” for the Small Jar on Pre Q1 is similar to “One Sample” for the  
 
Large Jar on Post Q1.  “MAX Wait-Times” (Pre Q8) is similar to “Muffin Weights”  
 
(Post Q9), and “Who Cheated?” (Pre Q10) gets at the same essential idea as “Compare  
 
Samples” (Post Q10b).  There is one question in Table 12 (Post Q11) which does not  
 
match directly across to a counterpart in the PreInterview.  Post Q11 had subjects  

“Compare Lists” in a probability context, but on the PreInterview I only had subjects 

“Compare Lists” on Q2 in a sampling context.  Despite differences in context, useful 

comparisons of subjects’ responses were still made between Pre Q2 and Post Q11.   
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 In next presenting the case studies, I’ll use the following structure.  First I’ll  
 
introduce the case, summarizing upfront the main points of stability or shifts in a  
 
student’s thinking.  Then I’ll describe further details according to each aspect of the  
 
framework. 
 

The Case of DS 
 
  DS was a very energetic individual who readily expressed opinions and 

thoughts on all the questions.  She had taken MET 2 the previous quarter with Steve, 

and had also taken a prior course in  probability and statistics at another college, 

saying she “loved it.”  On the PreSurvey, for her initial definition of variation she had 

said that variation meant “changes over time,” and cited her mood as an example of 

something that varies.   

  Summary:  It was clear from the PreSurvey and PreInterview that prior to the 

class interventions, DS already had a good grasp of the basic ideas involved in 

probability and statistics.  She showed a facile use of proportional reasoning, and 

usually expected results of repeated samples to vary.  She also gave reasonable ranges 

for predicting results of six samples, but was generally wide on her ranges for thirty or 

more samples.  She expected ranges to increase as the numbers of samples increased.  

Lastly, in attending to graphs DS referred to center, range, and shape of the 

distribution.   

   DS corrected herself at two key points during the PreInterview: Once when 

she first thought that all tens was a good guess for “One Sample” of the die tossing  

(Pre Q9), and again when she initially thought Group B had a realistic graph in 

“Likelier Graph?” (Pre Q13).  In both instances she changed her mind on the basis of 
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her “Won’t be Perfect” reasoning strategy.  I was surprised that she misidentified 

“Graph:30” as actual results for Pre Q3, since I would have expected her to say that it 

also looked too “perfect.”   

  The main changes I noticed in DS’s collective responses were that she had 

more complex responses in the PostInterview.  In particular, she tended to use more 

descriptive language in the PostInterview than in the Pre when talking about the 

variation in situations, such as how data was “clustered”. She attended to more 

features of the distribution (average, range, shape, and spread) in the Post than in the 

Pre, often incorporating several features in a single response.  DS had some fairly 

reasonable ideas and good ways of communicating during the PreInterview, but she 

added depth to her responses and expressed herself even better in all aspects during 

the PostInterview. 

 Expecting:  I’ll use DS’s responses to PreInterview Q1 as a starting point for  
 
this discussion.  In “One Sample” from the Small Jar, DS predicted a result of 6 reds: 
 
 I: [Pre Q1a] How many red do you think you’re going to get? 
 DS: I think I’m going to get 6 red. 
 I: Why do you think that? 
 DS: Because 60% of the 100 are red, and 6 is 60% of 10.  So, it’s not for  
  sure. The odds are. 
 I: What do you mean, “it’s not for sure” ? 
 DS: Well, ‘cause, I could get a different amount of reds, and a  
  different amount of yellows. 
 I: Right now you’re saying 6 
 DS: Six is the best shot. 
 
Her response was very reasonable, and she reasoned proportionally yet also  
 
acknowledged the possibility of variation.  In “One Sample” from the Large Jar, she  
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predicted a value close to the expected value of 60 reds: 
 

I: [Post Q1a] How many do you think are red? 
DS: Sixty-four 
I: Alright. Why do you think that? 
DS: Because, odds are, 60% are red, and you’re probably not going to  
 get exactly 60%, just because of the variability of the blind 
 drawing… so 64 is close. 
 

She again used proportional reasoning and considered the possibility of variation, and  
 
she used the same “odds” language as in the PreInterview.  She actually expected  
 
variation from the mean, and had a prediction which she knew was “close” enough to  
 
be reasonable.  What I found interesting was that she explicitly said that she probably  
 
wouldn’t get 60 reds, and she gave a reason.  While the expected value of 60 reds may  
 
be the most likely outcome for one sample, DS’s response seemed to acknowledge  
 
that the likelihood of actually getting 60 reds is small.  
 
 For predicting “Six Samples” from the Small Jar on Pre Q1c, DS had a  
 
reasonable list of “4, 5, 6, 6, 7, 7”, and I wondered if she would just multiply by ten  
 
when moving to the Large Jar.  However, on Post Q1c her “Six Sample” predictions  
 
were “56, 58, 60, 61, 62, 64” , which all fall within a reasonable range for sampling  
 
from the Large Jar.  In the probability context, however, DS initially expected no  
 
variation when considering the number of times each face of the die would show in  
 
“One Sample” of 60 tosses (Pre Q9): 
 

I: [Pre Q9] What do you think is going to happen, for these faces?  
DS: I’ll just go, ten of each [Writes down all tens] 
I: Why do you think those numbers are reasonable? 
DS: Because… one out of 6 is going to roll up a “1”, and one out of 6 will  
 roll up a “2”…But then, going back to that question about picking the  
 colored candies and the 6,6,6,6… That’s kind of … 10,10,10,10 is kind  
 of like 6,6,6,6… so it probably will vary somewhere. 
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I: Well, put what you think, Debbie.  
DS: Ten is as good a guess as any. 
I: If you rolled it 60 times, that’s what you think you’re going to get? 
DS: Sure. [Seems pretty confident] It’s as good as any guess. 

 
DS clearly was influenced by proportional thinking, but I noticed that DS reflected  
 
back to “Six Samples” from the Small Jar.  Her expectations from Pre Q1c seemed to  
 
conflict with her expectations for Pre Q9.  However, an outcome of ten was “as good  
 
as any guess” for one face, hence good enough for all faces.   
 
 When I showed DS the supposed results of dice tossing on Pre Q10 (“Who  
 
Cheated?”), she was quick to identify Lee’s list of “10, 10, 10, 10, 10, 10” as  
 
unbelievable: 
  

I: Explain your reasoning, please. 
DS: Well, because really, the 10, 10, 10, would be so unusual that it would  
 come out that way. 
I: Ok, it would be so unusual, and yet that’s exactly what you said you  
 thought might happen [Turns back to Q9] 
DS: Well, I don’t really think that it’s going to happen. It’s a guesstimate…  
 It’s an educated guess.  
 

For DS, all tens was a reasonable guess and she listed all tens as an a priori  
 
expectation.  When faced with the same result of all tens as a supposedly a posteriori  
 
result, she was quick to see that all tens was just not very realistic.  She went back to  
 
Pre Q9 to change her  “One Sample” result list from “10, 10, 10, 10, 10, 10” to  
 
“6, 8, 10, 10, 12, 14”,  saying all tens was too “perfect”, and unlikely to happen in real  
 
life.  I’ll comment more on her line of reasoning against reality being “perfect” in the  
 
interpreting aspect.  When asked to evaluate Lynn’s list (“10, 11, 10, 10, 9, 10”) as a  
 
part of Q10, DS said: 
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 DS: And then Lynn, I don’t think that out of 60 rolls that there’s not enough 
  variation, between what came up how many times...he [Lynn] only 
   went over one and under one. Where really, chance could probably  
  have a broader range. 
 
I thought DS had some good reasoning in evaluating the different lists in the, and she  
 
clearly connected a narrower range with having less variation.  When I asked DS to  
 
predict how many fives would result in each of “Six Samples” of sixty tosses (Pre  
 
Q11), she wrote “6, 8, 10, 12, 13, 14” saying she “liked those numbers”. She also  
 
indicated she thought  that with more samples, she would have chosen a broader 

range.  The tendency of wider ranges in larger samples also arose for DS in the 

interpreting aspect. 

 DS never again listed a string of all identical numbers when given the  
 
opportunity to predict results.  For instance, in the probability context on the 

PostInterview, she listed a reasonable “21, 23, 25, 26, 28, 29” for “Six Samples” of the 

spinner (Post Q10c). When explaining her choices, she included some proportional 

reasoning, and then said: 

 DS: So I have one 25 here. And then I have a few scattered close to 25, but  
  not 25...’Cause there’s gonna be variation, because the spinner CAN  
  land anywhere, but probably on average it’ll be close to 25. 
 
DS included many themes in her above response. She appealed to the notion of  
 
distribution by describing how results are “scattered close to” the expected value,  
 
and she acknowledged that individual results and the average of a set of results will  
 
vary.  
 
 Displaying:  DS suggested that the thirty supposed results of “Graph: 30” on  
 
Pre Q3 were actual results: 
 



 

 I: [Pre Q3] Which of the following do you think is most likely? 
 DS: Oh, I think… those could have been the [actual] results 
 I: Why do you think that’s the most likely? 
 
 DS: Because six is our odds-on favorite, and they just didn’t have a  
  lot of variation when they picked out their candies. 
 I: What makes you say “they didn’t have very much variation” ? 
 DS: Because here’s six, and they’re only one away from six, on each  
  side [She pointing with her finger on the graph, tracing out the range] 
 
Thus, DS was comfortable with the unlikely narrow range portrayed by “Graph: 30”  
 
(see Figure 22), but she didn’t have too much to say in terms of her justification.  She  
 
focused briefly on the mode of 6.   
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            0   1   2   3   4   5   6   7   8   9   10 
       How Many Reds  (Out of 10) 
         

Figure 22 – PreInterview Q3 “Graph: 30”  
 

She also attended to the range in making her evaluation, noting how the thirty results  

ranged from 5 red to 7 red candies.  It is possible for thirty actual results from the 

Small Jar to look like the graph shown in “Graph: 30”, but not very likely. 

 In the PostInterview, the “Graph: 30” for the Large Jar on Q3 really did  
 
represent actual data (see Figure 23), and DS made a correct identification of the graph  
 
as being authentic.   
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GRAPH 1 (Rounded to nearest 15 sec.)           GRAPH 2 (Rounded to nearest 5 sec.) 
 
Mean    = 59:00      Mean     = 59:01 
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Mode    = 59:15                Mode     = 58:50 
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Figure 24 – PreInterview Q7 “Compare Graphs” 

Thus, her initial focus was on the range.  For Graph 1, she pointed to the subrange 

represented by the two middle bars and said that “more people experienced that time  

frame”, and she also counted individual data points on both graphs to help her 

compare.  What I found most interesting about DS’s response in Pre Q7 was her 

conclusion about the two graphs that “I think I like them both. Either graph is fine.”  

Her response on the similar “Compare Graphs” on Post Q7 involved more 

distributional reasoning and also a firmer decision in favor of Graph 1 (see Figure 25).  

She thought the two graphs on the Post Q7 told her different stories, with Graph 2 

appearing more spread out: 

 DS: Yeah, ‘cause this [Graph 2] is kind of...it’s like spread out in teeny  
  increments, and kind of detailed like that. And also, in this Graph [2] 
  there’s so many numbers that you kinda go “Too Much!”...Like too 
  much flatness, for it to really make a statement about how much it  
  weighs. Where here [Graph 1] it makes more of a statement, like “Oh,  
  probably weighs 109 or 111 – Somewhere in there.” 
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 GRAPH 1          GRAPH 2 
 (Rounded to nearest whole-gram.)                   (Rounded to nearest quarter-gram) 
 
 Mean    = 110 g          Mean     = 109.25 g 
 Median = 110 g          Median  = 110.00 g 
 Mode    = 111 g                    Mode     = 110.75 g 
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    Figure 25 – PostInterview Q7 “Compare Graphs” 

DS has two dimensions reflected in her response.  For evaluating and comparing  
 
graphs, she attended to the shape of Graph 2, noting its “flatness”. For making  

conclusions about graphs, she emphasized the level of detail and subsequent 

usefulness of Graph 1 versus Graph 2.  Specifically, even though the rounding is finer 

in Graph 2, DS liked Graph 1 because it better conveys to her where most of the data 

fell.  

 Another example for DS’s reasoning about displays of variation comes from  
 
the “Likelier Graph?” questions on the Pre and Post.  On Pre Q13, Group B’s graph is  
 
fake  (see Figure 26), but DS initially said “I think Group B looks more like what I  
 
would expect.” When asked why, she appealed to the shape, saying “it’s that famous  
 
curve” (the graph was roughly bell-shaped).   
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Figure 26 – PreInterview Q13 “Likelier Graph?” 
 
She also focused on the mode, which was at the expected value of 20 blacks for a  
 
sample of 60 spins of the 1:2 (Black:White) spinner.  Her comment was: 
 
 DS: And so, most of those, in Group B, fell in that one-out-of-three...20  
  [blacks]. And then, you just vary a little on each side, ‘cause you only 
  have 20 sets [of 60 spins per “set”].  You don’t have a lot of sets. 
 
Finally, she focused on the range for Group B, which she liked.  DS used all elements 
 
of the distribution – average, range, spread, and shape – in her evaluation of Group B, 
 
and she was convincing herself that the graph was reasonable.  Then she changed her  
 
mind: 
 
 DS: Back up. I think Group A looks more real.  
 I: Now what are you thinking? 
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 DS: Well, now I’m thinking that, you know, that it’s not going to always  
  end up in this perfect graph picture. So this [Pointing to Group B]  
  would be, if you were going to fake a graph? This would be a fake  
  graph [Laughs]. 
 
When pressed for more reasoning about her change of mind, her main rationale was  
 
the expectation for a more expanded range with 20 samples than what was pictured for  
 
Group B. 
 
 I thought that DS had some reasonable thoughts on the “Likelier Graph?” task 
 
in Pre Q13, and she expressed her ideas well, but in the PostInterview she expressed  
 
herself even better on this task (see Figure 27).   
 
     CLASS A 
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Figure 27 – PostInterview Q13 “Likelier Graph?” 

 
This time Class A had the fake, more compact bell- shaped graph, and Class B was  
 
real: 
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 DS: There’s this...kind of, you know, bell curve [for Class A] that’s kind of  
  clustered right in the center, without much variation on either side of  
  that 25 [The expected value]. Class B, you still have your cluster in the  
  center...and then you have a few little odd birds [The extreme values] 
 
DS considered shape and spread as she compared the two graphs (see Figure 27).   
 
Class A’s mode was right at the expected value of 25, whereas Class B’s mode was at  
 
about 27, but what DS particularly liked in Class B was the “cluster in the center”.   
 
She also liked how Class B had a broader range than Class A’s range of about 22 to  
 
28.  She was quick and confident to denounce Class A as a fake: 
 
 I: Do you have a sense that one class or the other is likelier to have... 
 DS: [Interrupts] I think Class A cheated. 
 I: Well, why do you think that? 
 DS: Well, because it’s toooooo perfect. I just think somebody would have  
  gotten, you know, under 20, or 20, or you know, 32...You know, even  
  if it’s just one person, that would be out of the cluster. 
 
She shows her a sense of distribution by wanting a grouping close to the expected  
 
value, tapering off on either side of that value, and a reasonable sense of range.  
 
 Interpreting: DS continually referred to the “perfect” results in her reasoning 
 
on both the PreInterview and PostInterview.  I saw that her sense of the “perfect”  
 
world was tied to her perception of variation.  As seen in her above response to Post  
 
Q13, when rejecting Class A as the “Likelier Graph?”, she claims Class A looks  
 
“toooooo perfect”.  Class A’s graph is not completely symmetrical, but what DS  
 
meant was that the general shape and tightness of range was not realistic.  The same  
 
idea of the “perfect” shape comes through in her comment about Group B’s graph in  
 
Pre Q13’s “Likelier Graph?”, when she says that one won’t always have a “perfect  
 
graph picture.”  Group B did have the mode at the expected value of 20 blacks, and  
 
DS was explicit about how “your odds are...1 out of 3 is going to be black, in a perfect  
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world.” 
 
 DS’s reference to the “perfect world” shows how she connects perfection to  
 
the absence of variation. She seemed to perceive probabilistic theory as predicting  
 
what would happen in the “perfect world” , while results in the real world varied away  
 
from the “perfect”.  I asked her to explain more about her perceptions when she had  
 
decided that rolling a die sixty times and getting each 10 of each face was unrealistic: 
 
 DS: [Pre Q10: “Who Cheated?”] Because it’s  TOO perfect [Lee’s choice of  
  all 10s]. Life doesn’t happen that way. It could but it doesn’t. [Laughs] 
 I: Why doesn’t it? 
 DS: Because it’s… a random thing. 
 I: Could you tell me what you mean by that?  
 DS: That there’s chance involved, so, whenever there’s chance, then things  
  won’t necessarily turn out perfectly. Like, in a perfect world situation, 
   where the dice was loaded. 
 
I think DS’s reasoning serves her well.  If it were a “perfect world situation,” she  
 
seems to be saying, then less variation would mean more consistently correct  
 
predictions.  Chance leads to variation, both of which are related to uncertainty.  The  
 
“perfect” result was clearly one number, she explains further: 
 
 DS: It is an idea that I hold. So, ‘cause I think that, um, that there IS the  
  chance that it’ll come up perfect, but there’s … “perfect” is one [Holds  
  up hand to signify one number] , and there’re more things that are  
  imperfect, like, not perfect. [Waves hands to show distribution of other  
  numbers on either side of the “perfect” number] So, there’s a lot more  
  options for the imperfect.    
 
Her explanation above shows why DS said for “One Sample” at the Large Jar in Post  
 
Q1a that her result probably wouldn’t be exactly 60 reds.  A sample result 60 reds is  
 
just one of many other possibilities.  Her sense of the “perfect” went beyond just the  
 
expected value to include shape and spread, as exemplified by her responses to the  
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“Likelier Graph?” questions.  She also commented on a list of supposed results for six  
 
samples of the fair spinner in “Compare Lists”, Post Q11.  About list (v), she said: 
  
 DS: Choice (v) is good, the only thing is that it’s so…Perfect...You know,  
  24, 24, 25, 25, 26, 26…There’s not a lot of variation there, which I  
  think there might be a little more. 
 
List (v) is so “perfect” because it only varies by one on either side of the expected  
 
value of 25, and because it shows a uniform distribution of two samples for each of the  
 
outcomes of 24, 25, and 26. 
 
 Another example of DS’s thinking in the interpreting aspect is how she built 

upon her notion of what effect taking increasing numbers of samples would have.  She 

already thought in the PreInterview that more samples meant a widening range and she 

held onto that notion in the PostInterview: 

 DS: [Pre Q1b: “Several Samples” of the Small Jar] The more I choose  
  candies, the more chance there will be that I’ll get different than six  
  reds. Either fewer or more. 
 DS: [Pre Q11: “Six Samples” of the Die] If we had more sets of 60, then I 
   would make my numbers go lower than…[Showing with hands a  
  greater range] 
  DS: [Post Q13: “Likelier Graph?”] The more spins you do, I think there’s  
  more chance that you’ll get… A number that varies from your, you  
  know, further from your 25. 
 
DS had already expressed how more samples meant more chances for the “imperfect”,  
 
what happened in the PostInterview was that she added to her notion of more samples  
 
meaning a wider range.  In the Post (but not in the Pre), she added the idea that more  
 
samples gave more chances to actually attain the expected value.  For example, on  
 
Post Q10c, “Six Samples” of the spinner, DS said: “But the more times you spin it, the 

more chance that you’ll get 25.”  Now compare what DS said above in “Several 



 

Samples” of the Small Jar on Pre  Q1b to what she said about “Several Samples” of 

the Large Jar on Post Q1b: 

 DS: [Post Q1b] And the more times you pull, you’ll have variations on each  
  end, which might get wider, but you’ll have more in the center, around  
  the 60 number.  
 
Whereas in Pre Q1b she mention getting “fewer or more” with more samples, in Post  
 
Q1b she includes the language of “variations” to describe a widening of the range, and 
 
she also added the distributional idea that more samples meant more near the center, 
 
“around” the expected value of 60 reds. 
 
 Finally, DS also related more samples to the shape of a distribution in the Post, 
 
but not in the Pre.  A good example comes from “Graph:300” (see Figure 28), and for  
 
the Small Jar on Pre Q4 she mainly attended to the range:  
 
 DS: [Pre Q4] Well, this [“Graph:300”] has a broader range of picks, of  
  number picks [Her finger traces out the range on the horizontal axis] 
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Her answer was much more thorough on Post Q4 in evaluating the “Graph:300” (see  
 
Figure 29): 
 
 DS: [Post Q4] Well, the most common is right around 60, and then there’s 
  fewer on the edges as get further away from 60. And, in class when we 
  did, on the computer, the more pulls you do, the more evenly shaped  
  your graph is going to be. Where fewer pulls, you’re going to have a  
  little more unevenness in your curve 
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Figure 29 – PostInterview Q4 “Graph: 300” 
 
DS’s thoughts are extremely well-said, and she includes many themes such as  
 
attention to average, range, and she includes class experience in her reasoning.  The  
 
focus for the interpreting aspects is the effect of the number of samples: More pulls  
 
means a more “even” shape, less pulls means more “unevennesss” in shape.   
 
  In conclusion, there was one instance on the PreInterview where DS had 

predicted all tens for each side of the die as the outcome of 60 tosses on Pre Q9 (One 

Sample). During the PreInterview, she changed her mind about the reasonableness of 
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her prediction, and never again predicted identical results.  She erroneously supported 

fake graphs as being realistic on the PreInterview, but her later evaluations of such 

real-versus-fake graphs were more reasonable on the PostInterview. DS had stability 

in her language and reasoning from Pre to Post about how results wouldn’t always be 

“perfect”, and added to her thinking about the effect of doing increasing numbers of 

samples in the PostInterview. The biggest difference for DS in all aspects from before 

to after the interventions was a qualitative broadening in her reasoning skills.  She had 

some reasonable ideas in the PreInterview, but her responses were deeper, more 

complex, and better expressed by the time of the PostInterview.   

The Case of GP 
 

  GP was an effusive character who used gesture quite frequently in his 

explanations during both interviews.  Like DS, GP had also taken Math 211 the 

previous quarter with Steve, but unlike DS, he had taken no prior classes in probability 

or statistics that he could recall.  When asked how he felt in anticipation of learning 

the topic, he said “I’m open to it, but not really excited.”  His initial sense of what 

variation meant was “a different look to a subject,” and when asked to give an 

example of something that varies, he wrote “the weather changes its look.”   

  Summary:  In expecting variation, on the PreSurvey and PreInterview GP 

showed a fairly naive understanding of how unlikely some extreme values were.  He 

became more sensitive to the presence of outliers by the time of the PostInterview, and 

incorporated more language about what was possible or likely.  He consistently 

thought results from multiple samples should usually be different from one another,  



 

 199

and also mentioned experience as a reason on both Pre and PostInterviews.  The 

sampling activities seemed to make an impression on GP, particularly the computer 

simulation.  

  When considering displays of variation, on the PreInterview he made many 

reasonable evaluations and comparisons, and he continued to do so in the 

PostInterview.  He was quicker to make conclusions about graphs in the PreInterview, 

and was occasionally less decisive initially in the Post.  The biggest change for GP in 

this aspect was that he became much more sophisticated in his communication about 

graphs, and on the PostInterview he reasoned more distributionally.    

 For interpretations of variation, GP consistently focused on the physical nature 
 
of the candy mixing, although he did so to a lesser extent in the PostInterview.  He 

also consistently used forms of the word “random” to describe many facets of  

variation.  While he knew that the number of samples was likely to extend the range of 

results, this idea came out stronger in the PostInterview than in the Pre. He also 

considered the numbers of candies in the jar to be influential for the PostInterview.      

 Expecting:  On the PreInterview, GP gave “6 red” as his prediction for “One 
 
Sample” of the Small Jar (Q1a), and he gave a proportional reason.  Thus, I knew that 
 
GP was capable of reasoning proportionally, which was a significant finding because  
 
he also frequently relied on additive reasoning (meaning that he focused on the sheer  
 
numbers of candies).  He included additive reasoning (to be discussed further in the  
 
interpreting aspect) when he predicted “70 reds” for “One Sample” of the Large Jar on 
 
Post Q1a. His language in answering “Several Samples” was similar on both Pre and 
 
Post Q1b, when I asked him if he would get the same results each time: 
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 GP: [Pre Q1b] Probably not. Probably not, no. 
 GP: [Post Q1b] No. I mean, not every time. It could happen, but...Not 
  very likely. 
 
Both of his responses show the theme of possibilities and likelihoods, and on the Post 
 
he often was very explicit about results being possible but unlikely.  For “Six  
 
Samples”, GP’s range was too wide on the PreInterview (he picked 1, 3, 4, 5, 6, 10),  
 
and he said: 
 
 GP: [Pre Q1c] It just randomly came to me.  I thought if you stick your  
  hands in there randomly, you could just pick up any number, between 1  
  and 10 
 
The result of 1 red is very unlikely for “Six Samples” of the Small Jar, yet GP did not  
 
comment on the relative likeliness for that lower extreme value.  He also did not seem  
 
to consider zero reds as a possibility, and he uses “randomly” to describe both a 

cognitive process and a physical process.  In the PostInterview, his range and 

reasoning both improved on  “Six Samples” of the Large Jar, when he chose 48, 50, 

58, 62, 68, 72, saying: 

 GP: [Post Q1c] You want to pick around 60, kind of going a little extreme... 
  I just picked around 60, and 10 or whatever [Waves his hands to show 
  both sides of 60]. I mean, it could go anywhere...So I just picked more 
  likely options. 
 
GP knew the expected value in Post Q1c was 60 reds, but he didn’t expect any of his 
 
“Six Samples” to actually be 60, just “around 60”. He gives very reasonable choices. 
 
When he said “and 10 or whatever”, he meant plus or minus approximately 10 on  
 
either side of 60.  Even though he has the same “It Could Be Anything” kind of  

statement he made in the PreInterview, on the Post he stressed that he was picking  

results that he felt were “more likely”.   
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 The “Compare Lists” questions on the Pre and PostInterviews showed more of  
 
what GP expected and why.  For example, on Q2 in the PreInterview, GP felt list 
 
(i) was “fine”, even though list (i) for six results of samples of the Small Jar has  
 
numbers that are only 6 and above (“7, 9, 7, 6, 8, 7”).  Other subjects tended to notice 

that the entire list seemed high.  List (ii) was most reasonable (“6, 7, 5,8, 5, 4”) and 

GP liked it because it had “less radical numbers”, which was the way he often referred 

to extreme results.  List (iii) had all sixes, which GP did not like because “all in a row 

would be pretty unlikely”.  GP thought results for multiple samples should be 

“random”, which frequently meant different or lacking a discernible pattern. Thus,  he 

liked list (iv) – “2, 5, 4, 3, 6, 4” – because it was “kinda random, you know, not that 

many radicals in there”.  He did not comment on List (iv) being low overall.  He also 

liked list (v) – “3, 10, 9, 2, 1, 5” - saying: 

 GP: There’s the 1 and the 9, that’s pretty, you know...[High? Rare?] But I  
  like that. 
 I: Isn’t that one most like the one that you put [On “Six Samples”] ? 
 GP: Yeah, I kinda...I did that because, I kinda wanted to be a little radical 
 
GP did favor list (ii) overall, but it was clear from his responses that high or low  
 
results were fine with GP, and extreme values were not a concern, but he did like  
 
results to not all be the same. 
 
 On the similar Post Q2, list (i) for the Large Jar was also high (“72, 91, 74, 63,  
 
81, 78”).  GP checked off list (i) on Post Q2 as one of several lists he liked, saying the  
 
six results “just look like a bunch of random numbers, that were picked out of a jar.”   
 
Later in his response to Post Q2, GP eventually commented on the result of 91 being  
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“pretty rare”.  He still never commented on how list (i)  was high overall.  List (ii) on  
 
Post Q2 was the most reasonable choice (“61, 73, 56, 69, 59, 48”), and it was  GP’s 

favorite because they were “just pretty random numbers...they’re all different,  there’s 

no rhythm to ‘em.”  As in the PreInterview, on Post Q2 he did not like all the  repeated 

values  of list (iii), and again he didn’t comment on how list (iv) was low overall. At 

the end of his consideration of Pots Q2’s “Compare Lists”, he commented on how list 

(iv) had a 34, but list (ii) had “less extreme numbers.”  

 Towards the end of the PostInterview, on “Compare Lists for six samples of 

the spinner (Q11), again list (i) was high (“38, 43, 36, 26, 41, 33”). This time GP was  

more cautious, saying: “Um, I guess it’s possible. The 43 and 41 is pretty high, but...  

Well, it’s possible, I guess.” Although he didn’t comment on list (i) being high overall, 

he did focus on the extreme value of 43 for the spinner just as he had done for the 

extreme value of 91 for the Large Jar.  Finally, on Post Q11 GP noticed how list (iv) 

was low overall (“15, 19, 11, 25, 21, 23”): 

 GP: [Post Q11] I’d be surprised at this one too [List (iv)].  
 I: Why? 
 GP: Well, you have the 11...Yeah, these lower numbers, but...Possible. 
  I mean...The highest one is, there’s nothing over 25, so that’s pretty 
  unlikely. 
 
For GP, the shift to the theme of possibilities and likelihoods showed a bit more  
 
hesitancy about accepting the highly improbably extremes shown in some of the lists  
 
on PostInterview Q2  and Q11.   
 
 GP mentioned experience as a reason for his expectations on both interviews.   
 
In “One Sample” of tossing the die on PreInterview Q9, GP was one of the two cases  
 
who did not put all tens for the faces of the die.  He put “7, 8, 9, 11, 12, 13” because: 
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 GP: Well, I knew it was going to be random, and so I first looked at the 60,  
    and I said, well, these all have to add up to 60. So I divided by 6, and I  
  said 10 each. And then I said, well, it’s not going to be happening, 10  
  for each one, and so I just took 2 numbers and made it so they would  
  equal 20, like 7 and 13 is twenty...8 and 12 is twenty, 9 and 11 is 20.  
  And so I knew that would all add up to 60 
 
GP again ties “random” to differences, he uses some part-to-whole reasoning, and also 

he knows that a uniform distribution is “not going to be happening.”  Thus, in 

considering “Who Cheated?” on Pre Q10, GP was quick to denounce Lee’s results of 

all tens as unbelievable, saying “I look at it and go: Come on, Lee! There’s no way 

that this happened!”.  GP also thought Lynn’s results (“10, 11, 10, 10, 9, 10”) “seemed 

too... Balanced. Too – Not as random, or something.”  For Pat’s results (“2,15, 10, 28, 

1, 4”), GP is explicit about relying on experience: 

 GP: Pat...That’s pretty, kinda believable, but ...[Takes his time thinking] 
  um...Gonna...Too extreme, I guess... 
 I: What tells you that? 
 GP: Well, she only hit...with the 60 times, she only got one “5” ? 
 I: Oh, yeah... 
 GP: I mean, that’s...You’re going to get more “5”s than that, out of 60 rolls, 
  you know? 
 I: Okay 
 GP: I’ve played board games, and I’d roll dice, and you get 5 more than  
  that, you know 
 
After the class interventions, GP referred to experience several times on the  
 
PostSurveys and in the PostInterview.  For example, when considering different  
 
arguments for how twenty samples of the spinner might look on PostInterview Q12, 

GP said: “And that’s when I would pull out the Phantom [Fathom] software and show 

‘em how this works.”  It was also clear from his comments in class that the activities 

in sampling and probability, combined with the computer simulations, had made an 
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impression on GP.  He would point out results that had been obtained experientially as 

justification for what he expected.  

 Displaying:  Whereas GP had some questionable expectations in other question 
 
involving sampling and probability on the PreInterview (and even on the  
 
PostInterview), I was surprised at how reasonable many of his ideas were in  
 
evaluating and comparing graphs.  It seemed to me that he was more of a visual 

learner, attracted to graphs in the sense that he responded with much energy.  For 

example, in PreInterview Q3 and Q4, when he was thinking about whether “Graph: 

30” and “Graph: 300” were real or fake, he was quick to judge “Graph: 30” as fake, 

saying “I think they cheated”.  He thought there should be a wider range for “Graph: 

30”, but did think that the mode should be at 6 and the shape should resemble a 

“pyramid.”  He used “pyramid” several times in the interviews, often accompanied by 

holding his hands in an inverted “V”.  It seemed that “pyramid” was a way of 

connoting a bell-shaped distribution, and he justified his thinking of “Graph: 300” as 

real by saying: 

 GP: [Pre Q4] I think this is more like the pyramid, what I would see. This 
  looks more legit to me [Holds hands in inverted “V”]. It seems like it 
  spreads out...you have a few extremes out here. and then it kinds goes  
  up, where it is more likely in the middle here [Points to mode of 6] 
 
GP appeals to all aspects of the distribution in one response: Average, range, shape,  
 
and spread.   
 
 On the similar Q3 and Q4 on the PostInterview, GP found it difficult to decide  
 
if “Graph: 30” was real or fake: 
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 GP: [Post Q3] It’s definitely possible. I can’t see how you can say that this  
  is...You look at it and go ‘No, this is fake”, you know? I just see that  
  they’re all...kind of gathering in the middle around 60.  Anything is  
  possible, you can’t say ‘Oh no, you guys did this wrong, you cheaters!’  
  You know, I would say these are actual results: ‘Good job, guys!’  You  
  can’t prove that...they cheated. You can’t. 
 
However, on Pre Q3, GP had said confidently “I think they cheated”, and I suspect  
 
that his softening of graph judgments might be linked to his sense of what was  
 
possible.  Commenting on “Graph: 300” in the PostInterview, GP thought it showed 

actual results.  His response included a focus on average and shape, and he also 

invoked experience as a justification: 

 GP: [Post Q4] The majority is over the sixty, kind of tapers off...That’s  
  usually the look of a large-number grab. You get more of that look.  
  That’s my experience. 
 
When he said “over the sixty”, he meant that the data was literally piled up above the  
 
mode of sixty.   
 
 A comparison of GP’s responses to Q7 on both interviews indicates a situation  
 
where he showed more decisiveness as he “Compared Graphs” in the PostInterview 

than he had in the Pre.  Looking at Graph 1 in the PreInterview, GP focused on the 

mode of 59:15, saying it was “really tall” and that “your eye usually goes to the tallest 

one.”  The mode was a visual attractor for GP.  He then said “I think Graph 2 is more 

helpful”, but as he explained his thinking,  he started to do something that no other 

case did.  GP started using his pencil to re-distribute data on the different graphs, 

trying to figure out how they compared to one another.  He talked aloud as he shuffled 

data around, and seemed to come to an impasse about which graph was giving him 

more useful information. Then he said: 
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 GP: [Pre Q7] I think this one [Graph 1] is easier...This one [Graph 2] gets a 
  little confusing, you know. This one [Graph 1] is if you were going to 
  talk about it, it’d be easier to do this one [Graph 1].  
 
On the similar “Compare Graphs” question on the PostInterview, GP had an opposite 
 
opinion.  That is, Graph 1, which had coarser rounding than Graph 2, was denounced  
 
as “totally misleading.”  He had some interesting comments about use of the average  
 
in either graph, saying: 
 
 GP: [Post Q7] I think the median and mean thing is kind of a tricky thing to  
  use, in just weighing this one muffin. Because you’re kinda  
  compromising the weight, kinda thing, you know?  You’re just saying:  
  You know, we didn’t get one answer, so let’s just...get the middle  
  between the mistakes here... 
 
I thought GP’s ideas provided a basis for thinking about averages as a way of  
 
balancing out the variation (“mistakes”) in the data.  He went on to talk specifically  
 
about the rounding strategies used in generating both graphs: 
 
 GP: [Post Q7] Well, this [Graph 2] is more accurate because you’re taking  
  the less, the rounding – to the lowest quality, so you get a more  
  accurate view of what you got. This [Graph 1] is more spread out, you  
  know, less differences here [Graph 2] between the measurements,  you  
  can see. 
 
GP uses “spread” to describe the range of Graph 1, which is wider than the range of  
 
Graph 2.   
 
 Just as GP talked about the mean and median being “tricky” in Post Q7, he  
 
also had some difficulty reconciling the identical averages on “MAX Wait-Times”  
 
with the differences in spread shown in the data sets (see Figure 30) in PreInterview  
 
Q8.   
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Figure 30 – PreInterview Q8 “MAX Wait-Times” 
 
His initial impressions on PreInterview Q8 were: 
 
 GP: [Pre Q8] Well, the Eastbound train seems to be more consistent. ‘Cause  
  their’s seem to be more closer together [Pushing his hands together]  
  This [Westbound] seems to be less consistent, since it’s more spread  
  out…[Drawing his hands apart] 
 
His body language made me think that GP was primarily focusing on range, and when  
 
he considered the summary statistics, he seemed to experience the tension between  
 
centers and spread: 
 
 GP: [Pre Q8] So in some ways it DOES balance out in the end, because  
  these are balancing out as you see in these , these calculations. [Waves  
  hands across the graphs, then points to summary stats] I’m going back  
  and forth with these mean and median kinda things... 
 I: Oh yeah? What do you mean? 
 GP: Well, it’s saying that they’re the same in some ways, you know.  
 I: Interesting 
 GP: They have both the same numbers in the top and bottom [Same  
  averages].  But then...they look different, down below [Different  
  graphs]. So you’re kinda going back and forth. 
 
His eventual conclusion aligned with his initial impression, which he repeated, adding  
 
that the “Westbound train seems more of a...gamble.” 
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 GP correctly connected more variability with less reliability in the “MAX  
 
Wait-Times” question on the PreInterview, and he reasoned similarly on the Post Q9  
 
about “Muffin Weights”  (Figure 31). 
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Figure 31 – PostInterview Q9 “Muffin Weights” 
 

More importantly, the quality of his reasoning increased in sophistication in the  
 
PostInterview task: 
 
 GP: [Post Q9] Well, you see that the West End Bakery has a lot more  
  consistency in their...the way they make their muffins.  
 I: How does the data show you that? 
 GP: Well, you can just look at the boxplot here...The middle 50% is a lot 
  shorter than the middle 50% of the East End Bakery. You can see down 
  here, in the dotplot, that there’s quite a bit of difference where the dots 
  are, little groupings where the dots are. The West End Bakery is closer 
  together. 
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GP’s comments really focus on spread, especially the way he notices the “groupings” 

of the dotplot and the interquartile range of the boxplot.  He reasons from both types 

of graphs for both bakeries in making his conclusion. 

 Interpreting:  Many of the above responses have already showed how GP 

defined variation in terms of having difference, or being “random.”  Ranges were also 

a part of his definition, meaning a wider range corresponded with more “randomness.”  

His response in PreInterview Q13 showed some of his ideas about variation as he 

reasoned about the “Likelier Graph?” : 

 GP: Uhhh, Group A is...more spread out.  
 I: Okay, what shows you that? 
 GP: You have some out here, like 13, 30...more randomness to it, I guess.  
  This [Group B] is more bunched up. Probably Group A would be more 
  expected. 
 I: Any reason for that? 
 GP: Just more random. I dunno 
 
Later, GP noticed that “the middle [of Group A] is more random too,” and he seemed 
 
to use the term “random” to describe spread as well as range.  On the PostInterview he 
 
still used the term “random” in reference to variation he was noticing, but he also  
 
broadened his definition to include other terms. For instance, on the similar “Likelier 
 
Graph?” question on the PostInterview (Q13), he said about Class A and B’s graphs: 
 
 GP: Well, Class A is a lot more compact, less range. Class B has a wider 
  range, a lot more different variations... 
 
GP’s use of the word “random” featured prominently in an early PreInterview 
 
exchange in which he focused on the physical nature of the candy mixing.  I asked him 
 
why he thought results for “Several Samples” of the Small Jar would probably not 
 
be the same each time: 
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 GP: [Pre Q1b] Because, I mean, you pour in the different candies, and 
  [they’re] all mixed up, and you might grab in a different place or pick 
  different ones, and...it’s kind of random. 
 I: You’re saying ‘random’. What do you mean by that? 
 GP: Random being...You can grab from so many different places in the jar. 
  So your hand can go this way, this way, this way [He mimics with his 
  hands how he’d hold the jar and grab in different ways] this way, this 
  way... And then, while you reach in, the candies move, all over the  
  place, and so... Your hand creates randomness. 
 
Since the above exchange was during the PreInterview, it was my first chance to see 
 
how really animated GP was.  As far as his reasoning, GP clearly had a notion about 
 
the physical causes of variation. Most interestingly, he seemed to be saying that if only 
 
those candies would stop shifting around, and if one could grab the same way each  
 
time, then variation would be minimized.    
 
 He made fewer references to the nature of the candy mixing in the  
 
PostInterview than he had in the PreInterview. Instead, the bigger numbers of candies  
 
in the Large Jar of the PostInterview clearly caught GP’s attention. On Post Q1a, when  
 
I asked about results for “One Sample”, his first reaction was: 
 
 GP: [Post Q1a] Since there’s more...you’re more likely to get more of the, I  
  don’t know, extreme numbers...you know, the higher end and the  
  very few, since there’s more choices.  
 
Thus, the sheer quantity of candies is, for GP, influential on expectation and variation  
 
of results.  He repeated the theme concerning sample or population size a few times 
 
in the PostInterview. When comparing results of forty samples each from the Small  
 
and Large Jar on PostInterview Q5, GP was very clear that the Large Jar should have a 
 
wider range than the Small Jar: 
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 GP: See, the thing is, this [Small Jar] is a wider range, it seems like, than  
  this [Large Jar] … and this [Large Jar] should have the wider range. 
 I: So the Class B in your mind, should have the larger range? 
 GP: Yeah, because you’re grabbing from a larger group, and you know,  
  [Class B] should have a larger range than that [Class A], the smaller  
  container. 
 
Aside from the fact that GP’s interpretation is contrary to what statistical theory  
 
suggests, the point is that GP clearly saw that the sizes of the jars influenced the  
 
expected ranges. 
 
 As a last example of GP’s interpretation of variation, I knew from his 

PreSurvey responses that he thought more samples might increase the range of results. 

On the PostInterview, he added the idea that more samples also meant getting an 

average of results closer to the expected value: 

 GP: [Post Q1a “One Sample” of the Large Jar] The more you grab, the  
  closer you’ll get to 60 and 40 being...your ‘grab’, the more and more 
  you grab... 
 GP: [Post Q10b “Compare Samples” of the spinner] It’s all in the spin, you 
  know. The more you spin it, though, you’re gonna get closer to 25 
 
His first of the above two comments makes it seems as if he was saying a single 

sample result will be closer to the expected value. However, I think based on some of 

the class activities where we kept a cumulative average of multiple samples, and based 

on some of GP’s other comments, he meant that the average of all samples would 

move closer to the expected value. 

 In conclusion, GP developed some appreciation for how unlikely some 

extreme values were in sampling and probability situations, and he expects variation in 

results for multiple samples.  My impression is that GP is a very visual and kinetic 

learner, which would be consistent with the way he instinctively seemed to relate to 
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graphs and also was concerned with physical causes of variation.  In the classroom 

setting, GP was the only student who exploited the slight tactile difference in the chips 

we used for sampling.  Thus, he was able to select all green chips, for example, and 

knew about skewing results due to physical manipulation.  He reasoned fairly well 

with graphs, and incorporated new terminology and graph types into his PostInterview 

reasoning.  He already attended to average and range in the PreInterview, and in the 

PostInterview he had increased attention to shape and spread.  One concept that would 

be good to explore further with someone like GP is the effect of the sample and 

population size on expectation and variation, since GP showed some naive 

understanding of that effect on the PostInterview.  

The Case of EM 
 

 EM was quite willing to share what she knew and didn’t know, and she needed  

very little prompting to voice her thoughts during both interviews. She had taken MET 

1 the prior quarter with Steve.  Although she was clear about not having had any prior 

courses in probability or statistics, her responses on the PreSurvey and PreInterview 

reflected her familiarity and comfort with mathematical ideas.  Looking ahead to the 

material we would be doing in class, she said she was “open to it” and “interested to 

learn more”.  Her response at the start of the quarter to what variation meant was that 

it had something to do with when “there is a pattern and something changes in the 

pattern,” and she gave as an example the time in the morning when her dog awoke 

each day.   
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 Summary:  EM expected some reasonable results in both interviews, but her  
 
sense of appropriate ranges and extreme values was not always consistent from Pre to 

Post. On the one hand, she predicted some reasonable ranges for “Six Samples” in 

both interviews. On the other hand, she had some poorer evaluations in “Comparing 

Lists” on the PostInterview than she had in the Pre.  The biggest change for EM in this 

aspect was in her reliance on experience. Although she referred to her own instinct and 

experience on one PreInterview question, she made many references to class 

experience on the PostInterview.  It was clear that the class interventions had made a 

significant impact on her reasoning.  

 When considering displays of variation, EM used more elements of the  

distribution in discussing graphs on the PostInterview than she had on the Pre.  

However, EM paid minimal attention to averages when evaluating graphs on both  

interviews, especially on both “MAX Wait-Times” (Pre Q8) and “Muffin Weights”  

(Post Q9).  Instead, she talked in both interviews about how a train or bakery was  

consistent, and her  reasoning focused mainly on the range.   

 There were two significant differences for EM in the interpreting aspect.  The 

first difference was that while she hardly ever volunteered thoughts about the 

influence of the number of samples on expectation and variation in the PreInterview, 

she made reasonable several observations in the PostInterview.  The second difference 

was how the PreSurvey and PreInterview picture I got of EM’s  perception of 

randomness and variation was that enough math or science could provide her with 

correct predictions, but she didn’t convey any of those perceptions on the 
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PostInterview.  A significant way in which EM was consistent on both interviews was 

in her attention to physical causes of variation. 

 Expecting:  On PreInterview Q1a, EM guessed 6 reds for the results of “One  
 
Sample” from the Small Jar, and she reasoned proportionally.  On the identical  

question from the PreSurvey, she had written “5 or 6”, so she did have a sense that 

results from “One Sample” might not necessarily be the expected value.  Her answers 

on the PostInterview “One Sample” questions were ranges: 

 EM: [Post Q1a “One Sample” of the Large Jar] I think I would get, you  
  know, somewhere in between 50 to 70 reds. 
 EM: [Post Q10a “One Sample” of the spinner] I think it will land there 
  somewhere close to 50% of the time...I think it will be probably  
  between 40 and 60% of the time. Out of 50 spins, somewhere between  
  – What would that be? Between 20 and 30 spins. 
 
EM’s adeptness at calculating 40% and 60% of 50 spins showed her proficiency in 
 
proportional reasoning, and she exhibited similar mathematical fluency in the  
 
PreSurvey and PreInterview.  The more important point in the above two responses is  
 
EM’s emphasis on range expectations in the PostInterview. 
 
 Her range for “Six Samples” from the Small Jar was adequate (“2, 5, 5, 6, 6,  
 
8”) on  the PreInterview and also for the Large Jar on PostInterview (“54, 58, 60, 62,  
 
65, 70”).  Elsewhere on the Pre and PostInterview, when she had to list choices her  
 
ranges were also plausible.  For instance, on Pre Q11 her results for “Six Samples” of  
 
sixty tosses of a die were “5, 8, 10, 12, 13, 15”.  On PostInterview Q10c, she predicted  
 
results for “Six Samples” of the spinner as “18, 20, 23, 24, 28, 32”.  
 
 EM showed a peculiar inconsistency when “Comparing Lists” on  the two  
 
interviews.  In PreInterview Q2, she correctly thought list (i) – “7, 9, 7, 6, 8, 7” – was  
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too high and that list (iv) – “2, 5, 4, 3, 6, 4” – was too low.  For list (v) – “3, 10, 9, 2, 

1, 5” – she did not think the upper and lower extremes were likely.  However, on 

PostInterview Q2, EM tended to favor high lists. She acknowledged that list (i) – “72, 

91, 74, 63, 81,78” – was high overall and said she liked it anyway: 

 EM: [Post Q2] I like the first one. Choice (i) has good variation, the numbers 
  are also above 60, which I think is more likely to happen than below. I 
  like that there are some 70s, I think the 91 is a little out there, but... 
  Occasionally I think you are going to pull... [Something high] 
 
When EM said list (i) had good variation, she meant that the numbers were all 

different from each other.  I think EM had an unrealistic sense of just how unlikely 91 

reds really is for sampling from the Large Jar.  She seemed more cautious about the 

low list (iv) –  “53, 41, 34, 60, 46, 52” – for which she thought both 34 reds and 41 

reds were low.  On the “Compare Lists” question for the spinner (Post Q11), EM again 

favored the high list (i) – “38, 43, 36, 26, 41, 33” – acknowledging that “it was 

definitely higher than the 50%.”  She cited class experience as a reason why she 

thought  the results of list (i) were likely, and then she also went ahead and accepted 

the low list (iv) – “15, 19, 11, 25, 21, 23”: 

 EM: [Post Q11] I picked (iv) because I figured: If I’m gonna [go] high on 
  number (i), I could see it going low, where maybe you would only get  
  black 11 out of 50 times. 
 
I was uncertain which class experience led EM to think that results might be generally 
 
high or low, since I don’t recall any group presentations of such results.  In class, we  
 
tended to aggregate results from multiple samples and those results were always on  
 
both sides of the expected value.  However, the aggregate results encompassed more  
 
than six samples, so it could have happened that EM encountered runs of six samples  
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that reflected the high and low lists.  
 
 In any case, EM was certainly influenced by experience, and in the  
 
PreInterview she cited experience as a reason for why she knew she wouldn’t get all  
 
tens for each face of the die in sixty tosses.  At many other times in both interviews,  
 
EM stressed how results from multiple samples probably would not repeat each time: 
  
 EM: [Pre Q2 “Compare Lists”] I don’t think you’re always going to pull 6 
 EM: [Pre Q11 “Six Samples”] I’d be surprised if it came to be the exact 
   same number as...before. I mean, yeah, It could happen, but I’d be  
  surprised. 
 EM: [Post Q1c “Six Samples”] I don’t think they’ll pull 60 every time 
 EM: [Post Q10a “One Sample”] I don’t think it will always be 50% of the  
  time 
 
On PreInterview Q9 (“One Sample” of the die toss) she put “8, 9, 10, 10, 11, 12” for 

each face,  although she said “there’s no reason not to get 10 of each.”  In fact, 

experience was EM’s reason for not putting all tens, because later she said she was 

using “instinct, thinking about when I’ve played games, and how often sixes came up, 

and how often fours...”  EM had naive reasoning about how often results might repeat 

when tossing a fair die, because earlier in Q9 she said: 

 EM: [Pre Q9] Pretty often you’re going to get, I don’t know, every six or 
  seven times [tosses of the fair die] I think you’re going to roll the same  
  number, again... 
 
It is hard to imagine that EM actually based her response above on experience, and  
 
instead I suspect that proportional reasoning was influencing her thinking, based on  
 
her response above.  Her informal experience also clearly influenced the list of  
 
numbers she provided in Q9, and she noted: “I just know that when I play games I  
 
usually don’t get ones, so I made that one smaller.” 
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 On the PostInterview, EM made many comments about class experience.  For 
 
example, on “One Sample” from the Large Jar, she reasoned that 
 
 EM: [Post Q1a] From what we’ve done in class, when we pulled handfuls 
  before, we can see that the numbers generally center around the same 
  kind of percentage as there are red to yellow, so 60% red, 40% yellow, 
  so somewhere between 50 and 70% 
 
I liked how she included distributional language of how results would “center around”  
 
the expected value, and she appealed to a range of results.  She based her response on 
 
what she saw in class, and she reasoned similarly in “Comparing Lists” on Post Q2: 
 
 EM: [Post Q2, List (iii) – “60, 60, 60, 60, 60, 60”] Just from what we’ve  
  done in class, I never pulled a number the same time, six times in a row 
 EM: [Post Q2, List (vi) – “30, 10, 90, 20, 60, 50”] On choice (vi), I don’t  
  like, because it’s too low, the 10 is too low. From what we saw in class,  
  you know, it took I think something like 500 tries before we got so low  
  a number. 
 
EM’s comment about the “500 tries” meant that she was recalling the computer  
 
simulation, since our hand-drawn samples usually totaled less than 300 for the entire 
 
class.  For “Six Samples” of the spinner (Post Q10c), she knew “after having done it  
 
in class” that results would be “generally concentrated” around 25 blacks, which was a  
 
reasonable expectation.  Experience was also her reason for why she liked the high  
 
list (i) on “Compare Lists” for the spinner (Post Q11), since she claimed that “I’ve 

seen it happen, so I liked it.”  Finally, using identical reasoning as she had for pulling 

all 60s from the Large Jar, she didn’t like all 25s for the spinner, saying “I didn’t pick 

25, 25, 25...[List (iii)] –  Although it’s possible, I just haven’t seen it happen, so I 

didn’t pick that”.  I think it is good that the class experiences had left such an 

impression on EM, but I also think her thinking shows the dangers of relying too much  
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on experience.  She often seemed to argue more on the basis of just what she had or 

had not seen, and less on the basis of what was more or less likely regardless of what 

she had seen. 

 Displaying:  Throughout the interviews, surveys, and class interactions EM  
 
made it clear that she knew about averages and how to use them, but when talking  
 
about graphs EM tended to say more about other elements of the distribution besides 

the average.  For example, in her evaluations of the “Graph: 30” and “Graph: 300” 

questions on both interviews (Q3 and Q4), EM paid more attention to range and 

spread than to average.  She also paid minimal attention to average on the “Compare 

Graphs” questions (Q7), instead focusing more of her comments on the rounding 

procedures for each graph and spread of the data.   

 On  PreInterview Q8, part of the interview script asked for her comparison of  

“MAX Wait-Times” when the averages were the same: 

 I: [Pre Q8] A student in class argues that there really is no difference in  
  the wait-times because the averages are the same. What would you say  
  to this student...? 
 EM: [Laughs] Ohhh. I know that the average says that, but you also have  
  two ends of the large spectrum on the Westbound train, and a shorter  
  spectrum on the Eastbound train. So, even though the average wait time  
  may not differ, the amount of wait time could be a lot less, or it could  
  be a lot more on the Westbound. 
 
Aside from the time when I specifically directed her attention to the average, her other 
 
comments about the trains primarily concerned reliability and range: 
 
 EM: I would say that the Westbound trains are less consistent in their wait- 
  times. There’s more variance. So, you can be waiting 7 minutes, and  
  you can be waiting 14 minutes. And then, the Eastbound trains are  
  pretty consistent, anywhere from 8 and a half to 11 and a half minutes.  
  And nothing falling outside of that, so. 
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For EM, the term “variance” in her response above refers to the wider range on the  
 
Westbound train. On the PostInterview “Muffin Weights” Q9, the West End Bakery 
 
had the narrower range, and EM’s reasoning was similar to that on the PreInterview: 
 
 I: [Post Q9] How do you think these bakeries compare to one another, in 
  terms of the muffins? 
 EM: If I wanted to go to a bakery where I had a good sense of what I was  
  going to get, they were more consistent in the weight of the muffin, I  
  would go to the West bakery… 
 I: Oh, why is that? 
 EM: Because I can see from both the boxplot and the dotplot that they are  
  more consistent in their weights. Their weights are concentrated 
   between 93 and 120, whereas in the East End, you have – sometime  
  you might get an 88 gram muffin, but you could get all the way up to  
  142. So if I was a big muffin eater, and I wanted to take my risk that I  
  would get a nice weighty muffin, I would try the East bakery. 
 
As in the PreInterview, EM again paid most of her attention to the range.  She  
 
reasoned both from the boxplot and the dotplot, considered spread as she talks about 

how data is “concentrated”, and also included “risk” as a part of her decision-making 

process.  She knew the dotplot gave more detailed information, and she explicitly tied 

the consistency of the West End Bakery to its narrower range: 

 EM: Again, I like the dotplot just ‘cause I can see exactly where each  
  muffin’s weight fell, although just glancing at the boxplot, I can see  
  that the West bakery is more consistent because the span is smaller…  
  or the range. I’m sorry, the range is smaller, and… That is more  
  consistent, then. 
 
 A good example illustrating EM’s overall increased sophistication in the  
 
PostInterview when reasoning about displays of variation is found in her answers to  
 
the “Likelier Graph?” questions. In PreInterview Q13, she mostly focused on ranges,  
 
and for Group B she noted: 
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 EM: [Pre Q13] Group B is all...The number of times is all right in the  
  middle of the graph, 17 to 23...Yeah, that would be exactly, really close  
  to one-third of the time they landed on black. Which is what I guess  
  would normally happen.  
 
At first, EM seemed comfortable with the range of 17 to 23 on Group B, and she liked 
 
the spread of data being “close” to the expected value of 20 blacks, but she concluded 
 
that “Group A is more what I would expect.”  Her main reason seemed to be because  
 
she liked the wider range of Group A: 
 
 EM: There was the rare times when it [Group A] dropped less than 16, and  
  way above 24. I can also see why that would happen as well. Where  
  occasionally...the few that are way off the charts, you know, there’s a  
  13...and then 30 times it landed on black. 
 
She was clearly comfortable with the range for Group A, which had the graph  
 
reflecting actual data.  Since she didn’t explicitly bring up the average or the shape, I  
 
asked her how she felt about the fact that Group A only hit the expected value of 20  
 
blacks one time out of twenty samples, and she countered: “But they got around 20:  
 
21, 18, 19, somewhere in the... around one-third of the time.”   
 
 Thus, EM’s analysis on Pre Q13 was reasonable, but what I noticed in the  
 
similar question on the PostInterview was that her response took into account a better  
 
synthesis of the elements of the distribution.  About Class A, she said: 
 
 EM: [Post Q13] For Class A, it’s all – The numbers are ONLY between 20 – 
  it looks like 22, and 28. Yeah, 22 and 28. And it’s kind of, almost like a 
  pyramid, with just a little drop off, after the 25, so it’s shaped like a 
  pyramid...it’s all concentrated around the 50% 
 
Thus, she included average, range, shape, and spread in her analysis of Class A, which  
 
she correctly thought was likelier to be fake: “This, to me, doesn’t look right, that  
 
looks like somebody made that up.”  Her analysis of Class B was similarly rich in  
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detail: 
 
 EM: Class B’s are more spread out...your mode being 27, and you know, a  
  lot – Several of the sets were within 24 and 28, and that’s what I would  
  guess. You have a 16, and you have a 34, and there is some variation in  
  the numbers, and that seems to be more accurate because sometimes 
   you CAN get as low as a 16, and sometimes you can get as high as  
  34...25 isn’t the tallest number, so...heh heh 
 
EM appeals to a subrange of 24 to 28 within which most of the data is clustered, and  
 
she also takes note of the extreme values, which are not unreasonable to her.  She also  
 
doesn’t mind having the mode be somewhere other than the expected value.   
 
 Interpreting:  EM was the case who made the most references to class  
 
experience in the interviews, and she was also the case who made repeated mention of 

how she might answer if only she knew enough mathematics.  However, she only 

talked about having enough evidence, or having a formula, on the PreInterview.  It 

seems that her initial perception of variation was that she could make correct 

conclusions or inferences only with the proper knowledge.  On the PreSurvey, for 

“Several Samples” and “Six Samples” (Q1b and Q1c on the PreSurvey were identical 

to those on the PreInterview) she wrote: “Sorry, but I don’t know how to calculate 

these answers. I’m just going off instinct.  No formula, just guessing.”  Here is a 

similar response from her PreInterview: 

 EM: [Pre Q1c “Six Samples” of the Small Jar] Ohhh...I don’t...I don’t  
  know... [Big sigh] Well, I think, like, I don’t know...I don’t have any  
  set computation, but I think it’s somewhere around 6 
 
I included the entire transcript of her response to show how she wrestled with the  
 
question. Along with the effects on her perception – how she thought that maybe a  
 
“computation” would help her figure out results in the face of variation – EM also  
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exhibited the effects of variation on her decisions for “Six Samples”.  On the die- 
 
tossing questions of the PreInterview, EM prefaced her comments about having played  
 
games by saying “I don’t have a calculation, but in my head, if I threw it, I think I’d  
 
see the same number at least once every seven times.”  She used instinct and  
 
experience in considering results from tossing the die because she lacked “any  
 
scientific evidence for that...or mathematical evidence.”   
 
 Another major change for EM was in her sense of how the number of samples 

influenced expectations and variation.  She only made one reference to the number of  

samples in the PreInterview, but made more then several such references on the 

PostInterview.  Her thinking was that more samples would widen the range of results, 

and sometimes she used the inverse of this concept, meaning that less samples could 

have a narrower range. For example, when justifying her (reasonable) list of results for 

“Six Samples” of the Large Jar on Post Q1c, she stressed that “you’re only pulling six  

times.”  A comparison of Pre and Post responses to the “Graph:30” and “Graph:300” 

questions exemplifies her attention to the number of samples.  In the PreInterview, EM  

didn’t think “Graph:30” was real because: 

 EM: [Pre Q3] I think, when you pull 30 times, you're going to have even  
  more variety of times that you pull reds, and I can't believe that not  
  once out of  30 times would they pull... no less than 5 reds. 

I: Ok, so it's the "no less than 5" that bothers you? 
EM: Yeah, it IS the "no less than 5" that bothers me...AND a little bit about  
 the no more than 7. I think sometimes that you might pull 8 or 9, at  
 least ONCE. 
 

So, EM thought that 30 samples was enough to guarantee her wider range than 5 to 7  
 
reds when sampling from the Small Jar.  For samples from the Large Jar (Post Q3),  
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EM similarly thought about “Graph:30” that “maybe you would have a few over 70, or 

maybe one lower than 50, in thirty pulls.”  I  commented that her own choices for “Six 

Samples” from the Large Jar (Post Q1c) had been between 50 and 70 red, and she 

countered that 

 EM: That was only out of six pulls. And six, I like that idea, but with thirty  
  pulls, I think you’re going to have more – chance for the numbers to be 
  a little...more spread out. 
 
She repeated her conviction about more samples having results that were more spread 
 
out later in analysing “Graph:300” on the PostInterview. Also, she considered 45  
 
blacks for the spinner in Post Q11 “Compare Lists” to be too high for list (vi), but it  
 
could happen “if you did 5000 sets.”   
 
 A final comparison of EM’s thinking for the interpreting aspect concerns her 
 
attention to physical causes of variation on both interviews. For example, in sampling 
 
from the Small Jar in the PreInterview, consider her following responses: 
 
 EM: [Pre Q1b “Several Samples”] Well, I mean, some yellows might  
  get...extra yellows might get mixed in there. It’s kind of the draw I  
  guess, how many fall into your hand 
 EM: [Pre Q1c “Six Samples”] Occasionally, maybe some yellows got  
  pushed over to the side, so you’ll pull more yellow 
 EM: [Pre Q2 “Compare Lists”] In case, you know, some more yellow have  
  gone into the batch in the jar...I think that in some places, you’re not  
  always gonna have a red/yellow red/yellow...In some places, they’ll be 
  yellows that have collected together. 
 
EM created a very vivid picture of what she anticipated. She pictured possibly  
 
grabbing more yellows in her handful of ten candies because her hand might hit a  
 
pocket of overwhelmingly yellow candies.  Her attention to physical causes was not  
 
limited to sampling, and in considering “Six Samples” of the die toss for Pre Q11, she  
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claimed: 
 
 EM: [Pre Q11] I just don’t think you’re likely to get the same answer every 
  time. There’s no way you could do that unless you know how to drop  
  the dice, or something. 
 
Her implication was that someone could “know how to drop the dice” and thus get  
 
repeated results.  In the PostInterview, she was concerned over whether the spinner  
 
was working properly on “Six Samples” of the spinner (Q10c), and her comments  
 
about the Large Jar sampling sounded very much like what she had said for the Small  
 
Jar: 
 
 EM: [Post Q1b “Several Samples”]  A big bunch of yellows might be there 
  and that’s where you reach. You’re shaking it all around, but...that’s 
  where your hand goes, and so maybe you pulled some more yellows... 
 
She mentioned physical causes less in the PostInterview than she had in the Pre, but 
 
it was clear that she was concerned about where those yellow candies were in the jar 
 
on both interviews. 
 
 In conclusion, class experience obviously had an effect on what EM expected. 
 
Although she frequently gave good ranges for results of multiple samples, she also  
 
allowed for some fairly unreasonable results because experience supposedly suggested 
 
to her that such results could occur or had actually occurred.  Also, she knew that  
 
results for multiple samples would not necessarily be the same each time, but she had 
 
an interesting expectation of a pattern of results for the PreInterview die tossing  
 
question.  She did not often mention average when considering displays of variation,  
 
but otherwise improved in her ability to talk and reason distributionally about graphs.  

Making decisions on the basis of where she perceived more reliability was important 

to her on both interviews. She had increased attention to how more samples would 
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broaden the range of results in the PostInterview, and on both interviews she seemed 

concerned about physical causes of variation. What stood out for me in EM’s 

interpretations of variation was how she repeatedly seemed almost apologetic about 

not having the right math to figure things out on the PreSurvey and PostSurvey, but 

stopped reasoning along those lines in the PostInterview. The change in her thinking 

seemed to reflect the impact of the class activities.  That is, regardless of the 

theoretical expectations, for which some formula were derived or provided in class, 

actual results still vary.   

 There is a nice connection back to something that EM had first put on the 

PreSurvey in about what was the  meaning of “random” to her. She wrote that it meant 

“no rhyme or reason – There is no formula.” Randomness and variation together make 

up the Janus of stochastics: Randomness looks to the domain of probability and 

variation looks to the domain of statistics, but they are still two faces of the same coin. 

For EM at the start of the MET 2 course, she saw the variation in the outcomes of 

random events and wanted a formula. After multiple experiences with probability and 

statistics in class, she no longer mentioned wanting a “set computation,” suggestive 

perhaps of a more accommodating or accepting attitude towards variation. 

The Case of JM 

 Although JM was very adept at sharing his serious thoughts about variation, he  

also flavored his speech with levity, such as when he mentioned bringing his “triple-

beam balance” to the two bakeries in the “Muffin Weights” problem, or if the person  

 



 

 226

doing trials at the spinner “wasn’t drinking the night before.”  He seemed quite at ease 

during both interviews, was quick at expressing thoughts when he was certain, but 

pensive when he wanted to mull over a situation for which he was uncertain.  JM had 

taken MET 1 the prior quarter with Steve, and when asked on the PreSurvey if he had 

taken any prior courses in probability and statistics, JM wrote “no, not really. A little 

sociology,” which I assumed might have included a small amount of statistics.  He 

described his own attitude going into the course in a positive way, saying it “sounds 

great, looking forward to it.” Each of JM’s interviews lasted longer than any of the 

other cases. A taste of how JM tended to be more expansive in his responses came 

early in the PreSurvey, when he gave a more protracted definition of variation as 

“something that fluctuates and is somewhat unpredictable. There is variety or 

differences.” He then went on to give four separate examples of things that vary: “The 

weather, people’s attitudes, the shapes of rocks, snowflakes.”     

 Summary:  JM was a strong proportional reasoner who shifted from having  

more emphasis on centers in his expectations in the PreInterview to having more 

emphasis on ranges in the Post.  The biggest change for JM was that he seemed to 

contradict himself within the PreInterview but not within the Post.  The two areas of 

contradiction for JM in the PreInterview concerned his sense of possibilities and 

likelihoods for extreme values and also for repeated values. 

 With displays of variation, JM demonstrated a very comprehensive and  

consistent ability to make sense of graphs on both interviews.  However, even though  

he carefully analyzed every graph, on the questions that asked if the graphs were real  
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or made up JM seldom had confidence in making a decision.  On such questions he  

tended to draw his own idea of what he thought the graphs should look really like.  He 

was very consistent in using centers, ranges, shapes and spreads of distributions on 

both interviews. 

 There were two big shifts for JM in interpreting variation.  First, he said much  
 
about physical causes of variation in the PreSurvey and PreInterview, and he said  
 
relatively little on the PostInterview. Secondly, on the PostInterview his ideas about  
 
the effect of more samples were more comprehensive than on the Pre. 
 
 Expecting:  JM clearly knew how to calculate the expected value in figuring 
 
results for the  “One Sample” questions, and in PreInterview Q1a his answer reflected 
 
his sense of proportion:   
 
 JM: [Pre Q1a] I’d say, basically, six out of ten. There’s a chance of six out  
  ten. 
 I: Why do you think that? 
 JM: Well, because the ratio is 6 red for 4 yellow, for every ten there’s  
  60%... 
 
Similarly, on “One Sample” of the 60 tosses of the die in PreInterview Q9, he  
 
reasoned proportionally and focused on the expected value.  He listed all tens for the  
 
faces of the die, and his justification was brief: “Well, it’s one out of six.”  There were  
 
many other examples in the PreSurvey and PreInterview in which JM tended to  
 
emphasize a point estimate rather than talk about ranges. 
 
 In contrast, on the PostInterview all of his expectations were stated in terms of 
 
being close to or around the expected value.  More importantly, his expectations on 

the PostInterview almost always included a range of possible results.  He frequently  
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used the phrase “plus or minus” or some version of that idea to convey his range 

expectations.  For example, compare his above response to “One Sample” of the Small 

Jar in the PreInterview to his response on the similar task with the Large Jar on the 

PostInterview: 

 JM: [Post Q1a] Um, since the mix is 60% red...I’m gonna get close to that, 
  maybe plus or minus...I’m going to say it’s going to be a good... 
  Between, you know, 45 and 80 
 
He later narrowed his range down to “45 to 75, somewhere around there.”  He said he  
 
liked list (ii) – “61, 73, 56, 69, 59, 48” – because “it’s around 60, but it has a decent  
 
distribution of, looks like, 20% either way from the actual number”.  In other words,  
 
JM liked the range around the expected value of 60 red.  Also, in his comments about  
 
samples with the spinner on PostInterview Q10, for each part of the question JM  
 
emphasized ranges in explaining either what he expected or why: 
 
 I: [Post Q10a] How many times, out of 50 [spins] do you think the arrow  
  might land on black? 
 JM: Well, approximately 50%, but it will be, you know, plus or minus,  
  maybe 20% of that number – Somewhere in there 
 I: [Post Q10b] Oh, the results on the second set, would be... 
 JM: Yeah, I think [it’d be] fairly close in the sense that it’s gonna be 
  around the...uh, 25 blacks, plus or minus that 10% or so... 
 I: [Post Q10c] So, 21, 23, 25, 26, 27, 29! Why those numbers? 
 JM: Well, they’re close to that 50 percentile that we’re looking for, plus or 
  minus – I’m thinking, 10% or so. Actually, I’m a little high, aren’t I, 
  with the 29? But still... 
 
JM seemed fairly flexible with his ranges.  At first (Q10a) he said plus or minus  
 
“maybe 20%”, and then backed down to plus or minus “10% or so” in Q10b and  
 
Q10c.  What was significant to me was that JM clearly had a preference for range  
 
expectations in the PostInterview that was beyond what he indicated on the Pre.  His  
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language of “plus or minus” mirrored what he and others in class had said when  
 
discussing predictions, particularly in talking about what was in the Unknown  
 
Mixture.   
 
 One area in which JM contradicted himself during the PreInterview concerned 
 
the possibility of extreme values.  On Q1a, “One Sample” at the Small Jar, JM said  
 
“you could pick out 10 red. Or you could pick out 10 yellow.”  Later in the  
 
PreInterview, on Q1c, he justified his prediction of “2, 3, 4, 5, 6, 7” for “Six Samples”  
 
by saying “you know, of course, you CAN pick out ten red, or you can pick out zero  
 
red.”  By the time of  “Graph: 300” in  PreInterview Q4, JM backed away from his  
 
emphasis on the possibility of extreme values: 
 
 JM: [Pre Q4] I can’t believe that there were, um, that you could...I don’t  
  think you COULD pick up all 10 red, or all...or zero red. I think there  
  would have to be some [yellow?]...I just think it’s impossible to pick  
  out [all reds], if they’re mixed. 
 
I did not point out JM’s inconsistency to him, but I found it interesting how the  

following pattern seemed to emerge with JM: When JM was asked to predict results, 

he was careful to mention how extreme outcomes were possible, yet when he was 

shown purported results (particularly in graphical form) he was skeptical of the 

extremes.  On the  PostInterview, JM still emphasized the possibility of extremes, but 

did not contradict himself.  He said, for drawing “One Sample” from the Large Jar in 

Q1a, “I mean, it’s possible to get zero red, and it’s possible to get 100 red.”  His most 

common way of talking about extreme values in the PostInterview included how those 

values were possible but unlikely.  For example, in considering list (vi) – “30, 10, 90, 

20, 60, 50” – JM commented that “when we go to extremes like that, they’re highly 
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unlikely and to have those...It’s possible.”  I thought that JM had moved to a 

somewhat more balanced view about extremes in the PostInterview.  Instead of 

swinging between polarized opinions of what could or could not happen, he had a 

better sense that some outcomes, while still possible, were “highly unlikely.”  

 The other area in which JM contradicted himself during the PreInterview 

concerned the likelihood of repeated results.  When I asked him in Q1b if he thought  

he’d get the same results every time for “Several Samples”, JM was quick to stress 

“no, no...of course not.” When I asked him why he thought results would not repeat, 

he said “well, because it’s...it’s impossible.”  Thus, it was clear that JM did not expect 

results to repeat for multiple samples, and on his own choices for “Six Samples” he 

did not repeat any values. However, by the time of PreInterview Q2, JM liked list (iii) 

– “6, 6, 6, 6, 6, 6” – saying initially that “Choice (iii)’s real good, because it could be 

60% every time [laughs].” JM went on to wrestle aloud with the twin notions that 

getting all sixes was possible but unlikely.  My main surprise for JM came in 

PreInterview Q9, when he listed all tens for the faces of the die in “One Sample” of 

sixty tosses, saying his choices were “not unreasonable.”  When JM considered Lee’s 

supposed results of all tens in “Who Cheated” on Q10, JM said “I don’t think, even if I 

rolled them 60 times, I would not get 10 numbers each.” As I had done with DS, I 

pointed out how JM had listed all tens on Q9, to which he replied: 

 JM: I think it’s possible, likely, because it’s one out of six times, but I don’t  
  think I could roll that and that’d actually happen. I said they’re  
  REASONABLE... 
 
JM then went back and started to change his list of all tens on Q9, but then he resolved 
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to leave his list of all tens in place, and continued to defend his choice.  His eventual 
 
argument was that  
 
 JM: I think there’s a greater chance of it coming up the ten, than maybe  
  another number. And to pick ANOTHER number is, it’d be just as 
  good as maybe picking ten. Since it’s [the probability] 1 out of 6, I 
  mean, I would pick 10. 
 
JM was willing to stick with his own list of all tens, saying his list was “possible, but 
 
not probable”, and clearly wrestled with himself over how likely he really thought it  
 
would be to see repeated results in multiple samples.  In other tasks on the  
 
PreInterview, and all throughout the PostInterview, JM took a more moderate view of  
 
repeated values.  That is, he included in his responses both the possibility and the  
 
unlikeliness of getting the same result each time for multiple samples.   
 
 Displaying:  JM used all elements of the distribution at some point in both  
 
interviews as he deliberated the questions involving graphs.  While he did not  
 
demonstrate any dramatic changes in reasoning about displays of variation from Pre to  
 
Post, he did add some sophistication to his discussion in the PostInterview as he  
 
invoked new ideas (such as the interquartile range) that he had gained in class.  
 
 To illustrate how JM reasoned about graphs, consider his response to  
 
PreInterview Q8 about the “MAX Wait-Times.”  At first, he pointed out how the two  
 
trains had the same means and medians.  Then he said that there was a “big  
 
difference” between the trains because: 
 
 JM: Even though we have 2 thirteens and a fourteen or a fifteen minute on  
  the Westbound train, that’s just 3 trains out of , what? Out of ten? Ten  
  trains? So 30% of the trains take longer than 12 minutes on the  
  Westbound train, and then , um, you know, it looks like 100% of the  
  trains are under 12 minutes on the Eastbound train. 
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I thought JM’s above response showed a reasonable attempt to compare the  
 
distribution of wait-times between the trains, and he later appealed to the shorter range 

of the Eastbound train in declaring it to be more reliable than the Westbound train: 

 JM: Well, the Eastbound’s are much more reliable. They go from 8 and a  
  half to 11 and a half minutes. So you don’t have this broad…You’re  
  going from 7 minutes to 14 and a half minutes on the Westbound train,  
  so the chances of you  waiting - shorter than the Eastbound train – are  
  … it’s only 30% of the time, most of the time you’re going to wait  
  equally or more, on the Westbound.  
 
Thus, JM noted how the Eastbound train a narrower range than the Westbound  train.  
 
He also calculated what percentage of the Westbound trains had longer and shorter  
 
wait-times than the Eastbound, which to me seemed to be JM’s way of getting a sense  
 
of the relative spreads of the two data sets.  
 
 In the isomorphic “Muffin Weights” task on PostInterview Q9, JM reasoned  
 
similarly to the way he had in the PreInterview.  Again, he first focused on the median, 
 
saying that “obviously the west End bakery produces, on average, a bigger muffin.”  
 
Then, he shifted his attention to the range and spread of the data, using the boxplots as  
 
a basis of comparison.  He rightly noted that “the interquartile range – 50% of all the  
 
muffins [in the East End bakery] – exceeds the whole range of the West End bakery.”   
 
Because of their wider range, JM said “I’d probably be less confident of going to the 
 
East End bakery.”  He then made some astute observations about the three measures of 
 
center, which were all different between the two bakeries.  For example, the West had  
 
a higher median than the East, but the East had a higher mean and a higher mode than  
 
the West.  JM took note of how the data was distributed along the dotplots for the two  
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bakeries, and concluded: 
 
 JM: We really wouldn’t want to look for the typical muffin in the mean,  
  we’d want to look for it probably more in the median. 
 I: Oh, why is that? 
 JM: Well, because there’s just too many...the range is...too many low- 
  weight and high-weight muffins. That really throws off our idea of the  
  typical muffin. 
 
I was pleased to hear that JM had some notion of the effect of variability on the mean  
 
in context of the “Muffin Weights” task, because a comparison of the merits of  
 
different measures of center had been a part of the class curriculum.  
 
 I’ll use Q13 from both interviews – the “Likelier Graph?” task – to illustrate  
 
two tendencies that JM showed when comparing and evaluating graphs to see if one  
 
graph or the other was likelier to reflect actual data.  One tendency was to not have  
 
much confidence in deciding whether graphs were real or fake, and the other tendency 

was to sketch on the interview script to show his own idea of what results should look 

like.  He also showed these two tendencies in “Graph: 30” and “Graph: 300” (Q3 and 

Q4) on both interviews.  In the PreInterview Q13, JM was quick to compare ranges in 

talking about which was the “Likelier Graph” : 

 JM: [Pre Q13] Group A certainly has wider variables [Holds hands far  
  apart], it’s gone between 13 and 30. And Group B of course, is a much  
  tighter distribution of black [Brings hands close together]. 
 
He then noted how Group A lacked any entries at the expected value of 20 blacks,  
 
while 20 blacks was the mode for Group B.  For a time, he leaned towards thinking  
 
Group B’s graph was real, but he pondered both graphs for awhile before saying:  
 
 JM: These graphs have got me stumped in the sense that…I would think  
  that there would be more… More 20s here [Group A]… I would like to  
  meld both of the graphs. 
 



 

 234

JM decided that, instead of having confidence in either Group A or Group B being  
 
realistic graphs, he would draw on top of both graphs to make them look as he thought 
 
they should.  He changed Group A by moving the mode to the expected value, and 
 
he narrowed the range.  He changed Group B by reducing the height at the mode, and 

widening the range.  In the end he had two graphs that looked roughly the same, and 

they were both shaped like smooth bell curves centered at the expected value of 20 

blacks.   

 In the PostInterview Q13 “Likelier Graph?” task, JM reasoned much as he had 

in the PreInterview, but his language was slightly more descriptive.  I asked him to 

compare the two graphs, and he said: 

 JM: [Post Q13] Class A has that nice, nice shape that I was looking for [He 
  draws an inverted-“V” shape on Class A], though it might not be  
  evenly distributed. And Class B is just all over the place, with a mode  
  of it looks like 27...And the fact that there were no, nothing below 22  
  here, on Class A, or above 28...it was just too tight, in 30 sets. 
 
JM attended to average, range, shape, and spread in his response above, and eventually 
 
he concluded that both Class A and Class B “have a pretty good chance of being  
 
made-up.”  He then drew on both graphs. He expanded the “tight” range of Class A,  
 
and he shifted the mode on Class B to 25 while also narrowing Class B’s range.   
 
Because he had mentioned Class B being “all over the place,” I was not surprised to  
 
hear that he wanted data to be “more evenly distributed.”  It was clear that JM could  
 
use all elements of the distribution in making his evaluations and comparisons of  

graphs, but he still under-appreciated just how scattered data from on 30 samples 

could look in the PostInterview.  That is, he saw the gaps along the axis for Class B  
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(the possible outcomes for which no results were attained), and he was skeptical.  He 

also was still expecting to see the mode at the expected value, even for only 30 

samples. 

  Interpreting:  JM volunteered many more causes of variation in the 

PreInterview than in the Post.  For instance, in PreInterview Q1c (“One Sample” of 

the Small Jar)  he suggested that one might get different results “depending on how 

they’re mixed  up.”  He seemed especially interested in how the individual candies 

might lie in the jar next to one another, and in PreInterview Q3 (“Graph: 30”) he 

expressed his thinking as follows: 

  JM: You know, I guess I’d have to see how they fit into your hand. Maybe  
    that has a bearing on it possibly, right? And when you reach into a  
    container, and pull them out, and if they’re completely mixed, whereas  
    one red is lying is against, or there’d be, what is it, 60%?  So you’d  
    have almost...2 reds around 1 white [He means yellow]. Maybe?  
    Something like that? 
 
So too did JM stress causes in the spinner scenario of PreInterview Q12.  Although 

Pre Q12 did not have an isomorphic counterpart in the PostInterview, JM’s initial 

response focused on the mechanics of the spinner, not the content of the task.  I’ll 

quote the entire exchange because it really shows JM’s emphasis on physical causes of 

variation: 

  JM: Um, well…I want to look at the engineering of the spinner, where do  
    you start the spin, you know, I mean…. Do you start it in white, you  
    know, the velocity, or the force… None of that really matters, I  
    guess…I mean, it CAN matter of course, yeah. Well, of course, it  
    WOULD matter, you know, I mean, you play like a game that has a  
    spinner, and, if you’re a kid, you know if you hit it just the right way,  
    and you start it at just the right the spot, you could… there’s a chance  
    of it being in one spot are greater than in another spot. 
  I:  So this is very well-oiled spinner…Very, very fair spinner 
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  JM: Ok, so this is a GOOD spinner. Yeah. Ok. A fair spinner. Um,  
    yeah. And the spinner is, is flat? A flat plane? It’s a fairly spun  
    game? 
 
Rather than being contentious, my sense was that JM’s expectation of variation  
 
depended greatly on the physical apparatus and the actual performance of each trial,  
 
whether it was drawing candies from jars or using spinners.  However, in the  
 
PostInterview he offered very few ideas about causes in these contexts, and it seemed  
 
that his side comment above about “none of that really matters” probably gained  
 
dominance over his thinking as we engaged in the class activities designed to show  
 
random behavior.  He did mention the way the spinner was used in  PostInterview  
 
Q10b (“Compare Samples”), and “getting into the rhythm of it [spinning]”. However,  
 
JM volunteered much less about physical causes in the PostInterview than in the  
 
PreInterview.    
 
 Another change for JM was that he expressed better ideas in the PostInterview  

expectation and variation.  On PreInterview Q1b, he indirectly appealed to the Law of  
 
Large Numbers when he commented about “Several Samples” that “I think on  
 
average, if you did it enough times, you probably average 6 reds”.  JM also suggested  
 
that more samples gave more chances to obtain the expected value in the “Compare  
 
Lists” question on PreInterview Q2, saying “in six tries, I would  think that six reds  
 
would have to come up at least once or twice.”  More samples meant a broader range  
 
as well.  In PreInterview Q3,  JM felt that the 30 samples in “Graph: 30” would surely  
 
range beyond the 5 to 7 reds depicted in the graph. A significant idea JM expressed in  
 
 

 
than in the Pre about what the influence of doing more samples would be on  
 



 

 237

the PreInterview which was not expressed in the Post was how the ratio doesn’t  
 
change regardless of the number of samples.  On PreInterview Q9, JM argued in favor  
 
of his list of all tens for “One Sample” of sixty tosses of the die, reasoning that 
 
 JM: You have one out of [six]...There’s six sides. It’s got to land on one of 
  the six. And each one is, I guess, equal. So, after the first time, it’s still 
  one out of six. And the second time it’s still one out of six. So... 
 
He later re-iterated his emphasis on the unchanging ratio within the PreInterview. 
 
 On the PostInterview, JM didn’t mention how the ratio is independent of the 
 
number of samples, but he repeated his earlier ideas and emphasized them more often.   
 
That is, more samples meant a widening range, more chances to actually attain the  
 
expected value, and a convergence of the cumulative average of results toward the  
 
expected value.  Here are some examples of his responses: 
 
 JM: [Post Q4a “Graph: 300”] In 300 pulls, I mean, it’s gonna happen,  
  you’re going to pull out less than 48 reds, at least once. At LEAST  
  once. Maybe twice, or three times, or four or something... 
 JM: [Post Q10a “One Sample”] If he does it enough times, he’s going to 
  be right at that number [6 reds] 
 JM: [Post Q10a “One Sample”] With 50 spins...that’s fairly good sampling,  
  or...number of trials...that would approximate the theoretical probability
  
JM’s reference to approximating the theoretical probability mirrored what we had  
 
discussed in class, and he was even more articulate when talking about the “Likelier  
 
Graph?” of PostInterview Q13: 
 
 JM: [Post Q13] So, the theoretical should come close to the experimental…  
  over the long run, if we do enough trials, and have a big enough  
  sampling of what we’re doing. So once we figure out the theoretical, 
  we go out and try to prove it experimentally, and see how close they  
  come. And, chances are, they’ll come pretty close if we do a fair  
  number of sets. 
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JM also implied that graphs would have a better “look” with more samples, and about  
 
“Graph: 300”, he said that: 
 
 JM: [Post Q4] I think that the more sampling that you do, the more close to  
  that nice 60% distribution you’re gonna get. If we did 3000 pulls, it  
  would even look , you know, better… 
 
I did not probe JM’s thinking in the latter response, but I believe he was referring to  
 
having a smoother bell-shaped curve with increasing samples. 
 
 In conclusion, although JM gave more range expectations in the PostInterview  
 
than in the Pre, I could see how much he was influenced by centers in both interviews.  
 
For example, one reason he was unwilling to identify authentic graphs as such is  
 
because he thought the expected value was what should occur the most often, in both  
 
interviews.  His expectations about ranges also seemed inconsistent at times.  In 

PreInterview Q4 (“Graph: 300”), he thought the range was too wide for 300 pulls, and 

in the isomorphic task on PostInterview Q4, he thought the range was too narrow.  In 

both situations, the graphs were authentic.  JM was adept at using different elements 

of the distribution in discussing graphs, but he in both interviews he lacked confidence 

in deciding if graphs were real or made-up.  Class experience seemed to help him 

identify unlikely graphs, but not to help him argue that a graph was in fact likely.  I 

think that physical causes of variation remained an important issue for JM in both 

interviews, but it seemed more on his mind in the PreInterview than in the Post.  He 

had many reasonable notions in both interviews about the influence of more samples, 

and clearly reflected ideas about the Law of Large Numbers which had been brought 

out in class. 
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The Case of SP 
 

  SP was a very reflective individual, someone who really thought not only 

about her answers, but also how she was thinking and feeling about the questions.  Her 

language suggested she was comfortable with a sort of metacognition, and she 

repeatedly talked about her instincts and feelings, often contrasting those thoughts 

with a logical perspective.  For example, she talked about “my first instinct”, and then 

how “there’s not any super-logical reason” but “I guess that’s just where my brain 

goes first.”  She clearly showed a willingness to try and explain what was going on in 

her mind.  She volunteered information readily, telling me what would or wouldn’t 

surprise her, for instance. Although she was an easy person to talk with, both of her 

interviews lasted a bit shorter than average. SP had taken Math 211 the prior quarter 

with Steve, and wrote on her PreSurvey that she had taken some probability or 

statistics course at another university four years ago. She recalled that it had been a 

“fun, interesting class,” yet currently she said she felt “comfortable but shaky – don’t 

remember much but I’m sure it will come back to me.” She wrote that that variation 

meant to her “the differences between things in a group,” and gave several examples: 

“Weight, height, hair color of a group of people.” 

 Summary:  SP’s PreInterview ideas about how “Anything Could Happen” and 
 
“You Can Never Know” reflect the Outcome Approach detailed earlier in Chapter 2.  
 
The essence of the Outcome Approach can be characterized by an attempt to look only 

at the next outcome of a probabilistic event, and transfers to the sampling context by  

focusing on the results of the next sample drawn.  I think that when SP said that she  
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“can’t guess”, what she really meant is that she could not guess with the a priori  

assurance of being correct.  In other words, she could never know ahead of time what 

the outcome would be.  Since she believed in the PreInterview that uncertainty meant  

“Anything Could Happen”, and because she could never know ahead of time what 

would happen, that why making a prediction was the same to her as “saying 

anything.”  Her sense of how “Anything Could Happen” explains why her ranges were 

so wide in many of the PreInterview questions, and yet it also explains why she gave 

all tens in Pre Q9 even though she didn’t really think that outcome would happen.   

 SP expected results for multiple samples to be usually be different and not 

repeat, and she made explicit references to the underlying theoretical ratio in the 

PostInterview but not in the Pre.  Instead of using “median” numbers and wide ranges 

to express what she expected in the PreInterview, she offered reasonable ranges that 

were appropriately centered around the expected value in the PostInterview.  The 

distributional elements of  range, shape, and spread were evident in her responses 

considering displays of variation in both interviews, and she included more of a focus 

on average in the PostInterview.  In her interpretations of variation, during the 

PostInterview (but not in the Pre) SP volunteered some very reasonable ways that the 

number of samples might influence expectation. She also showed a major shift in her 

thinking, moving from the idea that “Anything Could Happen” in the PreInterview to 

the notion that some outcomes were likelier than others in the PostInterview.  Her 

related PreInterview theme of not knowing gave way in the PostInterview to a theme 

suggesting that while you may not know for sure about a given outcome, you can still  

make reasonable statements of expectation.   
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 Expecting:  SP established at many times throughout both interviews that she  

expected results for multiple samples to usually be different from one another.  For  

example, in Pre Q1c (“Six Samples” of the Small Jar) she mentioned how she would 

“be more surprised if the same number kept showing up, as opposed to if it was just  

completely random.”  She acknowledged that repeated results were possible in  

“Comparing Lists” on Pre Q2, but maintained that the “6, 6, 6, 6, 6, 6” of list (iii) 

would cause her to “be VERY surprised.” Even list (i) seemed “more unlikely” to SP, 

since list (i) contained three results of seven reds.  Her responses in “Comparing Lists” 

on the PostInterview were similar to those on the Pre concerning repeated values. She  

liked list (ii) on Post Q11 because “there’s not a lot of repetition”. List (v) on Post  

Q11 – “24, 24, 25, 25, 26, 25” – was not favored by SP because of “too much 

repetition, you expect more variation.” 

 The expectations that SP volunteered improved dramatically from Pre to 

PostInterviews. One area of improvement was how she gave appropriately wider 

ranges on the “One Sample” PostInterview questions. For example, in Pre Q1a for 

“One Sample” of the Small Jar, she said: “I guess instinctually I would say that it’d be 

somewhere in a median, like uh... 4, 5...just instinctually.”  In contrast, for Post Q1a 

she said that “One Sample” of the Large Jar should give her “somewhere between 50 

and 70” red.  Whereas she gave all tens for the “One Sample” of sixty tosses of the die 

on Pre Q9, for “One Sample” of the spinner on Post Q10a she expected “between 20 

and 30” blacks.  In the above examples, her expectations in the PreInterview are less 

reasonable, than those given in the Post.  A second area of improvement for SP was  
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how the ranges she had for the “Six Samples” questions were appropriately narrower 

in the PostInterview than in the Pre.  For “Six Samples” from the Small Jar (Pre Q1c), 

she listed “1, 2, 3, 4, 6, 8” , which is too wide.  In the isomorphic question for the 

Large Jar (Post Q1c), she gave “49, 51, 55, 62, 65, 68”, which is quite reasonable.  

Similarly, her choices for “Six Samples” of the die toss (Pre Q11) were “2, 5, 7, 1, 14, 

20”, again an unlikely list.  SP had a much better list for “Six Samples” of the spinner 

in Post Q10c,  “20, 23, 24, 26, 28,  29”.   

 Another change for SP was that she included references to the theoretical ratio 

in the PostInterview but not in the Pre.  For instance, she talked about expecting 

“median” numbers of 4 or 5 in “One Sample” of the Small Jar (Pre Q1a), and she 

repeated her preference for “median” numbers in response to a couple of other 

questions in the PreInterview: 

 SP: [Pre Q1c] I just actually did like a median number, like 5... 
 SP: [Pre Q2] And again, I don’t know why I feel also comfortable with the 
  median numbers, the 4, the 5, 6... for some reason. Yeah, like 4s, 5s,  
  and 6, to me, is somewhere in the middle 
  
It wasn’t clear to me at that point in the PreInterview if SP even knew that the 

expected value for the Small Jar sampling was 6 reds.  Even in the “One Sample” of 

sixty tosses of the die, she listed all tens but never explicitly said anything about the 

probability for any face being one out of six.  Instead, she talked about giving all the 

faces “an even chance” and how she wanted to make sure her choices added up to 60.  

SP never articulated a single fraction or ratio anywhere in the PreInterview, showing  
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what I think was an under-attention to the expected value.  In the PostInterview, she 

made it clear that she had considered the ratio in making her choices. For example, 

here is what she said in “Comparing Lists” on Post Q2: 

 SP: There’s also that 400 yellow in there, 600 red and 400 yellow, [and] the 
  likelihood of just getting the 60 out of 100, which is like the perfect 
  ratio or whatever, is very unlikely  
 
An increased attention to the ratio helped SP to center her ranges in the PostInterview,  
 
such as when she had put “between 20 and 30” for “One Sample” of the spinner in  
 
Q10a, saying: 
   
 SP: Umm, because of that 50 to 50 ratio, or chance of getting black, and  
  chance of getting white – And so, out of 50 times, half of 50 is 25, and  
  so that would be the, sort of – expected ratio. Not expected, but the –  
  Theoretical ratio [Laughs] And uh, the between 20 and 30 would take 
   into account the, the actual practice of spinning it… 
 
 The increased attention to expected values and improved sense of range that 

SP had in the PostInterview also allowed her to make better choices in the “Compare 

Lists” questions.  In the PreInterview, she never commented on list (i) being generally 

too high, although she did feel the result of 9 reds was too extreme.  Similarly, she 

liked list (iv) because of the “median” numbers, and never pointed out how the entire 

list was generally too low.  She picked list (v) – “3, 10, 9, 2, 1, 5” – as her favorite 

because she liked the “huge...variety of numbers.”  She added that “Even though I said 

I would be surprised by 10... I feel like that [list (v)] covers a wider range . It has some 

high, and some really low.”  However, in the PostInterview, she correctly pointed out 

how list (i) was high overall and how list (iv) was low overall.  She reasoned that  

 SP: [Post Q2] ‘Cause again – The perfect ratio’s you would get 60 red, 40 
  yellow, and so...I guess you would want to go maybe 10 above or 
  below that?  Maybe more...for a variety of answers 
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At the end of her analysis, she picked list (ii) as her favorite on Post Q2, which was 

the most reasonable choice (and consistent with her own reasoning).  List (ii) was also 

SP’s favorite choice (and most reasonable) in Post Q11, the “Compare Lists” problem 

for the spinner.  When I asked her why she liked list (ii), she said  “they fall in that 

nice little range of mine, between 20 and 30, but with a few just going a little below 

and a little above, which I like.” She also liked how list (ii) had no repeated values, 

and noted how the list had “a lot of variation.”  Thus, her final choices in “Comparing 

Lists” were better on the PostInterview than on the Pre. 

 Displaying:  SP used range, shape, and spread in comparing and evaluating  
 
graphs during both interviews.  The biggest change from Pre to Post was that she  
 
showed an increased attention to averages in the PostInterview. Also, while she 

correctly discerned real from fake graphs in both interviews, she seemed more 

confident of herself in the PostInterview. 

 I’ll first illustrate her reasoning about displays of variation using her responses 

to the “Graph: 30” and “Graph: 300” questions on both interviews.  In Pre Q3, at first 

SP spent some time wondering if she could have any confidence in knowing if the 

graph was real or fake.  Eventually she thought that “Graph: 30” was made up because 

she did not “feel comfortable” with the shape of the graph, and we then had the 

following exchange: 

 SP: [Pre Q3] I like the wider range of things, I feel like that’s more likely to  
  happen. If, you know, to have it more random and this [graph] seems  
  really less random. 
 I: Oh. What makes it seem less random to you? 
 SP: Because they’re all 5, 6, and 7s. And three numbers in a row and...all 
  clustered 
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SP thought “Graph: 300” was “more realistic”, and she liked it because “it’s spread  
 
out, there’s a little bit of everything, and then...most of them are somewhere in the  
 
middle...” She had a slight reservation about “how perfect” the graph was, and when I  
 
asked her what she meant she said: 
 
 SP: [Pre Q4] As in, it, you know, it’s like this perfect curve. Whereas I  
  don’t know if something’s randomly being chosen, that you can get 
  this perfect curve. [Traces the shape with her finger] 
 
She continued to emphasize shape as I asked her to compare “Graph: 30” to “Graph:  
 
300”, saying that the former had “a more extreme curve” while the latter had “a more 
 
gentle, gradual curve.”  I thought she reasoned well in the PreInterview, but what she 
 
added to her reasoning in the PostInterview was an explicit attention to the center of 
 
the distribution.  Her entire response to Post Q3 is an excellent example of the overall 
 
improved caliber of communication: 
 
 SP: [Post Q3] They seem like they could be the actual results.  
 I: What convinces you, or what is your reasoning? 
 SP: Because they fall into that sort of theory, that you’re going to have the  
  most around 60, because of that perfect, that 60 to 40 sort of ratio, or 40  
  to 60, whichever. And so, you sort of that happening, and then they fall  
  out in about a range of plus 10 , minus 10. So it makes sense. But they  
  – It’s random enough so that it’s not like this perfect bell-curve, so it  
  seems like more of a realistic situation because it’s not perfect.  
 
She also mentioned how “Graph:30” was more “scattered” and that was why it was 

“not perfect” to her.  She did a good job of synthesizing several elements of the 

distribution in her response, including an explicit mention of the average of 60 reds.  

SP also pointed out the mode of “Graph: 300” in Post Q4, and she commented on the  
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graph’s shape, spread, and range in deciding the graph reflected genuine data: 

 SP: [Post Q4] But every once in a while it would happen that you would  
  get, somewhere, like 48 or something like that, or a 73… And , yeah,  
  it’s starting to conform more to that bell-curvish, where you’re getting  
  mostly results from, like, 58 to 62 [The modal category] which you  
  would  think to happen, and again, it spreads out from there, along the  
  range  
 
I particularly liked the language she used when she pointed out similarities between 
  
“Graph: 30” and “Graph: 300” in the PostInterview, because it showed her attention to  
 
the way the data was distributed: 
 
 SP: Yeah, well, the bulk [of the data for “Graph: 30”] is still sort of in  
  this little area here [She circles her finger around 60 red], and of course 
  it’s a little more scattered...And it does the same thing where it goes 
  out almost at the same distance from that center 60. 
 
SP conveyed a good sense of variation away from the mean in her latter  response. 
 
 A second illustration of SP’s reasoning about displays of variation comes from  
 
the “Likelier Graph?” questions on both interviews.  Again, as in the “Graph: 30” and 
 
“Graph: 300” questions, SP demonstrated that she had some good ideas about graphs  
 
in the PreInterview which she improved upon in the Post.  In PreInterview Q13, SP  
 
correctly identified Group A as likelier to be the authentic graph.  She claimed that 
 
Group A had “greater variation” than Group B because Group A had a wider range: 
 
 SP: [Pre Q13] It’s more spread out. It [Group A] goes from, the lowest is  
  13, and it goes up to 30. This one [Group B] is clustered within 17 to  
  23 
 
In the isomorphic PostInterview Q13, she again correctly identified the authentic  
 
graph (Class B), and at first she used an argument based on shape which sounded very  
 
much like what she had said at the end of PreInterview Q4: 
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 SP: [Post Q13] Class A is more like a drastic bell [Traces a bell curve], 
  and this [Class B] is a more gentle bell [Traces broader bell curve] 
 SP went on to say how Class B had “more variation, is more spread out”, while Class 
 
A was “more compact...and the range is really short.”  She explicitly mentioned the 
 
average (something she hadn’t done in the PreInterview) when she pointed out that 
 
Class A had “not a lot of variation, and all sort of centered around that theoretical 25.” 
 
SP also continued to refer to where the “bulk” of the data was for both Class A and 
 
for Class B, a term which she used to indicate where she saw data clustered.   
 
 Overall, the inclusion of the references to the average in the PostInterview 
 
was the biggest difference in SP’s responses about displays of variation.  She  
 
consistently reasoned well in the other questions involving graphs. For example, in the  
 
“Compare Graphs” questions for both interviews, SP felt that coarser rounding 

produced graphs that masked variation more than the graphs using finer rounding.  In 

“MAX Wait-Times” and “Muffin Weights”, she used both range and spread to help 

her identify the more consistent train or bakery.  Throughout both interviews, she used 

many different descriptive terms suggestive of how data was distributed, such as 

“compact”, “scattered”, and “clustered.” 

 Interpreting:  One way that SP was fairly consistent in this aspect was how she 

referred to the number of candies in both interviews.  In PreInterview Q1a, she said 

that “One Sample” of the Small Jar had “a slightly greater chance” of having more red  

“because there’s more red than yellow.” Later in the PreInterview, she repeated the 

same theme.  In PostInterview, after she gave her range of 50 to 70 reds for “One 

Sample” of the Large Jar, she cautioned that she wouldn’t expect “too many less,  
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because there’re so many red in there.” Later in the PostInterview she returned her 

focus to the number of candies used in sampling.   

 A significant change in how SP interpreted variation was that she mentioned  
 
the influence of doing more samples during the PostInterview but not during the Pre.   
 
Because I had asked questions on the PreSurvey and PostSurveys that directly invited  
 
thinking about the influence of more samples, it was clear that SP expected a wider  
 
range from an increased number of samples.  However, she never volunteered any  

information in the PreInterview about the influence of more samples.  On the 

PostInterview, however, she had several ideas.  For example, in Post Q1a, she said 

“you expect a sort of, an average of 60, if you did many of these [samples].”  I thought 

her response suggested the Law of Large Numbers, and reflected activities and 

discussions we had as a class. SP also thought that more samples gave more chances 

to attain extreme values, and she repeated this contention several times during the 

PostInterview.  What follows are some of the different questions in which she 

addresses connects more samples to a widening range or more extremes: 

 SP: [Post Q1b “Several Samples”] But also [there’d be] some more extreme 
  numbers, eventually 
 SP: [Post Q4 “Graph: 300”] They’re going out a little bit even further, 
   which  which you would expect...With more pulls you would do, the  
  more sort of outliers you would get, or the “unexpecteds” you would  
  get... 
 SP: [Post Q11 “Compare Lists”] You’re only spinning 50 times...But if you 
  were spinning 100 times, maybe those numbers [extremes] would go 
  further 
 
The final idea SP had along this theme was that more samples influenced the shape of 
 
the graph.  In “Graph: 30” she emphasized that “you only did 30 pulls, so it’s going to 
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look a little bit more scattered.” Since “Graph: 300” involved more samples, the graph 
 
“would become more...conformed to this perfect bell-curve, and that it would pull out  
 
just a little bit more.”  The ideas that more samples would move the cumulative  
 
average closer to the expected value, widen the overall range, and better reflect the  
 
shape of the underlying distribution were all ideas we had addressed as a class. 
 
 Another significant change was that SP repeatedly discussed in the 
 
PreInterview but not in the Post how she had difficulty guessing because “Anything  
 
Could Happen.” The effects of variation on SP’s perception and decisions were so  
 
pronounced in SP’s PreInterview (and PreSurvey) responses that they seemed to  
 
dominate her thinking at times, and I’ll highlight several examples.  In PreInterview  
 
Q1a, her very first words for “One Sample” of the Small Jar were: 
 
 SP: [Pre Q1a] My first instinct is just to say that, it could be any amount.  
  You could have all, you could have none...[Then, later on:] But then,  
  like, if I try to THINK about it, if I tried to think it out, then I’m  
  thinking : It could be ANY amount, and I can’t guess, you know. 
 
She emphasized her view again in Q1b (“Several Samples”), saying that “it can be  
 
anything. Logically, that’s what my brain is telling me, is it can be absolutely  
 
anything.”  I had already known about how SP thought results “Could be Anything”  
 
from her PreSurvey responses, but I then saw in the PreInterview how the effect on  
 
her decisions was that she did not want to make any guess at all.  She continued in Pre  
 
Q1b to say: 
 
 SP: [Pre Q1b] I think I’m just pulling out a number because I’m feeling like 
  I should make a guess. But I really don’t want to make a guess...Yeah, 
   because I feel like it really can be anything. And so making a guess is  
  just like…. Just saying anything. 
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Coming at the beginning of the PreInterview, a snapshot of SP’s thinking developed  
 
which portrayed her as having difficulty predicting results because “Anything Could  
 
Happen”.  By the time of Pre Q3, although she thought “Graph: 30” was fake, she was 
 
“also attracted to the ‘We Have No Confidence’ because we REALLY can never  
 
know, because it COULD happen, there’s always the chance that it COULD happen.”  
 
The effects of variation on her perception decisions were particularly relevant to her  
 
reasoning on the die-tossing questions of Pre Q9, Q10, and Q11.  She reiterated the  
 
following view:  
 
 I: [Pre Q9 “One Sample”] Why do you think those numbers [All tens] 
  are reasonable? 
 SP: Because if you’re forced to guess...as I’ve been saying, that they could 
  be anything. So I just gave them each an even chance...I can’t guess. I 
  have trouble making guesses 
 
SP then went on to describe how she could get the same face of the die for each of her  
 
sixty tosses, but that she’d be surprised at that outcome because “it could be any of the  
 
numbers.” She declared that “I’m just giving them each an even chance, because I  
 
guess...I can never know.”  On Pre Q10, in discussing “Who Cheated?”, SP explained 
 
how her strategy in choosing all tens on Q9 was not motivated by what might really 
 
happen, but that “when you’re making a guess, I just do it that way, because you can  
 
never really guess.” She went on to stress how results “Could be Anything” later in  
 
her response to Q10,  Q11 (“Six Samples” of the die toss), and Q13 (“Likelier 
 
Graph?”).  Other subjects had expressed similar themes about not knowing what might  
 
happen, or what could happen, or how anything could happen, but no other subject  
 
was as outspoken on these themes as SP.  Thus, I was surprised that in the  
 
PostInterview, SP never expressed views about how “Anything Could Happen” or  
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“You Can Never Know”. 

 
The Case of RL 

 
 Of all the students in Steve’s section, RL stood out in class discussions, 

on the research surveys, and in the interviews as having the most mathematically-

oriented responses.  He had a strong background in mathematics and also in 

philosophy, and during the interviews he would occasionally veer off on some tangent 

that seemed related in his mind, such as how the digits in the decimal representation of 

pi were randomly distributed.  RL readily volunteered all kinds of information about 

what he thought and why, and his unprompted responses were lengthier in general 

than  those of the other cases.    

 RL had taken MET 2 the prior quarter with Steve, and had taken a past college  

course in statistics at a different university.  He also thought that both probability and 

statistics had been covered briefly in his own high school.  Considering his own 

attitude at the start of MET 2, RL said: “As a future teacher, I look forward to 

mastering at least the basics.” Again reflecting his penchant for mathematical 

terminology, RL’s definition of what variation meant to him on the PreSurvey was “a 

measure of how a piece of data compares with the average of similar data.”  His 

definition corresponded well to the idea of variation from the mean, and his example 

of something that varies was “sea level.” 
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 Summary:  Although RL clearly exhibited distributional reasoning prior to the 

class interventions, he had some contradictory expectations within both the PreSurvey 

and the PreInterview.  For example, on some questions RL wrote or talked about 

expecting to see variation in results, but on some other questions he said the expected 

value should occur repeatedly because it was the most likely outcome for a single 

sample.  Due to the cognitive conflict induced by the sequencing of the die-tossing 

questions in the PreInterview, RL began a shift in his expectations that led to a more 

consistent appreciation for ranges by the end of the PostInterview.  RL’s reduced 

emphasis on centers from the Pre to the Post was also accompanied by a reduction 

in his frequent references to mathematical computation, and an increase in his focus 

on distributional reasoning. 

 RL seemed to misidentify real versus fake graphs for different reasons in  
 
considering displays of variation during both interviews, but overall I think he was  
 
relying on the Representative heuristic mentioned in Chapter 2.  He liked  “Graph: 30”  
 
in PreInterview Q3 because of the symmetry and the center, erroneously thinking that 

results for 30 samples would be a fair representative of the underlying distribution.  He 

used the same kind of reasoning in considering the “Likelier Graph?” of PreInterview 

Q13.  The graph for Group A he incorrectly labeled as fake because it was too “wild” 

and not as representative of the underlying distribution as Group B. In particular, RL 

thought that Group A had too many extremes.  In both PreInterview Q3 and Q13, the 

small sample sizes used are not likely to yield graphs that are very representative of 

the population distribution, but RL did not seem to appreciate that fact. On the other 

hand, in PostInterview Q4, “Graph: 300” would be expected to give a reasonable 
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representation of the overall distribution. RL thought that the graph did not go wide 

enough, however, and was suspicious of the graph’s authenticity. 

 In his interpretations of variation, RL reminded himself in the PreSurvey and 

PreInterview how reality was different from theoretical expectations, but he didn’t  

often give voice to those thoughts in the PostInterview.  He was the most outspoken  

subject in terms of the influence of the number of samples, especially regarding the 

influence on the shape of the distribution.  He knew that overall ranges would expand  

with an increased number of samples, yet also expressed in the PostInterview how  

relative ranges would tighten. He seemed to focus more in the PostInterview on how 

the average of results of multiple samples should be the expected value. 

 Expecting:  It is useful in RL’s case to recall some of his original responses on  

the PreSurvey because those responses help establish RL’s initial contradictions in 

terms of his anticipation variation versus his occasional over-emphasis of the expected 

value.  He demonstrated distributional reasoning even in the PreSurvey as he 

considered both centers and spread in his responses.  In explaining his choices of  “4, 

5, 6, 6, 7, 8” for “Six Samples” of the Small Jar on PreSurvey Q1c, RL said that  

“while 6 red candies remains the average outcome, variation is likely.”  Later, when  

reasoning about 50 trials at the Small Jar on PreSurvey Q3, RL claimed that “a bell  

curve represents the most likely scenario – the extremes aren’t seen often , the average  

is seen most often.” As a final example, for “Six Samples” of the coin (PreSurvey 

Q7c), RL wrote that  “while 25 flips are likely to be heads, in reality some variation is  
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likely, so my numbers represent a range that averages 25.”  RL’s responses above  

show his consistency in combining the usage of both average and variation in his 

reasoning, even before the PreInterview. 

 However, RL was the only subject among the 27 who took the PreSurvey and 

put an unqualified “Yes” on Q1b when asked if results of several samples of the Small 

Jar would repeat.  One other student put “Yes” but then qualified her answer, but RL 

alone was mathematically blunt.  Six reds were expected on one handful because “reds 

are likely to be chosen according to their relative percentage of the  total,” and six reds 

would come out every time because “returning the candies recreates the original 

conditions, so the odds don’t change.”  He reasoned similarly in comparing samples of 

fifty flips of a coin on PreSurvey Q7b, saying that “in the absence of any change of 

approach, the results [25 heads] are most likely to be the same.”  This latter response 

is very telling about the thinking of RL and how the expected value sometimes 

dominated his reasoning at the beginning of the research.   

 In the first few questions of the PreInterview, RL still had an occasionally  
 
unreasonable heavy emphasis on the expected value.  For example, he thought he’d  
 
get “probably 6” reds for “One Sample” of the Small Jar on Pre Q1a, and he then  
 
reasoned  that for “Several Samples” 6 reds would continue to be the most likely result  
 
to occur.  RL liked list (iii) on PreInterview Q2, and indicated that though rare, he  
 
would not be “too surprised” to see all six samples result in 6 reds each.   
 
 It was in PreInterview Q9 and Q10 that RL seemed to really begin a shift in his  
 
expectations.  RL initially put all tens for “One Sample” of sixty tosses of the die in  
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Pre Q9,  saying that neither face of the die was “more likely or less likely than  
 
another.”  Because I knew that RL had a strong math background and was likely to 

simply rely on proportional reasoning,  I spent extra time with RL to make sure he 

understood that the intent of Q9 was for him to put what really thought might happen 

if we did the experiment of tossing the die sixty times in Steve’s class. At two 

different times, RL repeated: “I think that’s going to happen [All tens].”  Again, I  

found RL’s attraction to the expected value was at times a powerful influence on his 

expectations.  But in Q10, when asked to evaluate Lee’s list of all tens and Lynn’s 

narrow list, RL was quick to point out  “I don’t believe they actually got that.”  He 

started to defend why it was reasonable for someone to predict all tens, but then he 

reflected on his own earlier thinking about “Six Samples” of the Small Jar.  He had 

listed a reasonable “4, 5, 6, 6, 7, 8” for his “Six Samples” on Pre Q1c, which was the 

exact same list he had put on the PreSurvey (Q1 was identical on both the PreSurvey 

and PreInterview).  He explained that he had originally thought of putting all sixes in 

his list for “Six Samples” of the Small Jar, but that he knew six reds wasn’t  

“exclusive to all other possibilities.”  Thus, when ruminating over his list of all tens on 

Pre Q9 and reflecting on Lee’s list of all tens in Pre Q10, he said: 

 RL: That [All tens] would be the basis of my expectations. But it would be 
  pretty funny, to see the likelihood matched so closely. Just like the 
   other one [Flips back to Q1c, “Six Samples” of the Small Jar], just like  
  this one [Q9]. Well, this was like, when I originally did this [Q1c], and  
  I put 6 down for the first one, and then I’m saying: You know what?  
  We’re living in the real world, this is not going to be 10, 10, 10... 
 
He then changed his Q9 list to “5, 8, 9, 11, 12, 15”, and I noticed that he didn’t even  
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bother to include the expected value of 10 in his list.  He was very articulate in  
 
explaining his change of mind: 
 RL: I’m changing my mind [on Q9] because I’m making the same mistake 
  that I was accusing some kids earlier of, and that I was considering  
  average but not considering variation...You need to consider variation 
  to get the full picture.  This [All tens] is average only... there will  
  always be a range of responses...but not every response will be 10. So, I  
  think I was being limited in my consideration. 
 
Pre Q9 and Q10 seemed to be watershed events for RL’s thinking, in the sense that 
 
he really appeared to be engaged in some meta-cognition.  He thought about how he  
 
had responded on earlier questions, and how repeated results of the expected value 
 
just didn’t really make sense to him anymore.  On PreInterview Q11, “Six Samples”  
 
of the die toss,  RL listed “8, 9, 10, 10, 11, 12.”  He said that he didn’t expect to see  
 
the same result for each of the six samples, and that he  had “actually represented here  
 
a pretty limited range.” 
 
 During the PostInterview, RL was clearly more appropriately attuned to range  
 
expectations than he had been in the PreSurvey or PreInterview.  For “One Sample” of  
 
the Large Jar (Post Q1a), he initially said: “Well, I am inclined to estimate a range, 

rather than give an exact number.” He then predicted “within a pretty wide range...I 

would say, even as low as oh, 40 to 80, even.” After listing a reasonable “50, 55, 62, 

65, 68, 70” for “Six Samples” of the Large Jar (Post Q1c), RL justified his choices by 

saying that “they are near the most likely value, but still wide enough to account for 

variation.”  Later, in PostInterview Q10a, RL thought that “One Sample” of the 

spinner would have a result “somewhere between 21 and 29...it’s probably within that 

range.”  He felt in “Comparing Samples” for Post Q10b that results would “probably  
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not” be exactly the same each time, but that results were “likely to fall in a same 

range, similar range” as he had given for “One Sample” on Post Q10a.  He also gave a 

reasonable list of “21, 22, 23, 27, 28, 29” for “Six Samples” of the spinner in Post 

Q10c, pointing out to me how “there’s no repeats, but...they’re similar, not identical.”  

When I commented on how his list did not include the expected value, he said that “25 

is the theoretical expected result, but that’s not to say that that defines what happens.”  

 RL’s shift away from stressing the expected value went along with his marked 
 
decrease in expressing his mathematical calculations. While he stressed his 
 
mathematical computations in the PreInterview, he never gave voice to his  
 
calculations in the Post.  In PreInterview Q1, RL wondered about the likelihood of  
 
getting all yellows (that is, no reds) in his sample of ten candies, and he calculated  
 
aloud: 
 
 RL: Right. So, it is...if there is a 0.4 chance of pulling yellow,  and then  
  there’s 0.4 chance of pulling another yellow, then there’s a 0.16 chance  
  of pulling two yellows. And if you’ve got ten, then you’ve got 0.4 to  
  the tenth, which makes it real unlikely 
 
Aside from the way that RL had considered drawing a candy and then replacing it (as  
 
opposed to the intent of the sampling scenario, which was to pull the handful without 
 
replacing any of the ten candies), his response was unique in that no one of the other  
 
cases showed such a willingness to calculate to the same extent as  RL.  He even  
 
speculated on a rate of convergence in PreInterview Q2, noting: 
 
 RL: Because if you’ve got...since I’m talking about decimals, when you  
  multiply them they get smaller and smaller. But at least when you’re  
  using the 0.6 [For getting Red] it gets smaller more slowly.  
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There were many other places with both PreSurvey and PreInterview where RL  
 
offered fairly intense mathematical computations to analyze the situation, but not after  
 
the die-tossing questions in PreInterview.  In the PostInterview, he still flavored his  
 
explanations with relatively sophisticated mathematical terminology, such as when he  
 
wondered about finding the “inflection point” on a normal distribution of results, but  
 
he never articulated his calculations.  Perhaps one reason for this shift is because his  
 
calculations were more useful to RL in finding centers, but not in estimating the  
 
variance that he came to expect. 
 
 RL’s explanations in the PreSurvey and PreInterview often reflected  
 
distributional reasoning, but he was even more explicit about wanting a symmetric or  
 
skewed distribution in the PostInterview.  For example, in PreInterview Q1a, when RL  
 
was talking about whether or not extremes were likely, he said: 
 
 RL: Well, I mean that, it is entirely possible that if there were 99 candies  
  and 1 yellow, you could pick that one yellow every single time. It is  
  possible.  It’s on the far end of a bell curve, it’s extremely unlikely, but  
  it COULD happen. 
 
I noticed how RL had used “bell curve” in his reasoning, even though there were no  
 
graphs provided for the question.  It turned out that RL frequently envisioned what he  
 
thought the underlying distribution would look like, and occasionally he drew graphs  
 
on the interview script to help him make his point.  In Pre Q1c, when predicting  
 
results for  “Six Samples”, RL started off saying “I’m going to use a bell curve, put 6  
 
right at the middle here...”  and then he drew a skewed bell curve and used it to help  
 
him make his choices.  Later, in “Six Samples” of the die toss, RL mentioned that with  
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each sample of sixty tosses “the whole distribution would be different.”  Thus, I could  
 
see how the distribution of results was important to RL even in the PreInterview, and I  
 
noticed how his lists on the “Six Samples” questions were symmetric around the mean  
 
(“4, 5, 6, 6, 7, 8” on Pre Q1c; “5, 8, 9, 11, 12, 15” on the amended Pre Q9; “8, 9, 10,  
 
10, 11, 12” on Pre Q11).  During the PostInterview, he continued to refer to  
 
distribution, often making clear his preference for a symmetric or a skewed  
 
distribution.  In “Comparing Lists” on Post Q2, he liked list (ii) “because the graph of  
 
this distribution skews to the left, [so] I would think I’d see more pulls higher than 60  
 
than less than 60.”  After he gave his range of 21 to 29 blacks for “One Sample” of the  
 
spinner in Post Q10a, he explained that 
 
 RL: Because there’s gonna be a, uh, symmetrical distribution, neither of  
  these is more likely than the other...which is why I don’t say, you 
   know, 18 to 29...I’m going afar from 25 in either direction. 
 
RL therefore explicitly detailed how he wanted variation on both sides of the mean. In  
 
the “Six Samples” of the spinner, he justified his Post Q10c list of “21, 22, 23, 27, 28,  
 
29” by saying that he “did a pair, each equally far out from the mean in either  
 
direction.” He continued to stress distribution in “Comparing Lists” for the spinner on  
 
Post Q11.  Although he said “I expect to see a symmetric distribution” in rejecting list  
 
(i), the symmetrical list (v) was also rejected as unlikely, because RL said: 
 
 RL: Yeah there’s variation, but there’s so LITTLE variation, that it  
  discounts the possibility that even though a wider distribution of values  
  isn’t AS likely, it is still SOMEWHAT likely, and so… I’m a little  
  suspicious of such a tight distribution. 
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The reason he favored list (ii) for Post Q11 was “because there’s a range that seems  
 
legitimately wide, and it looks at first blush to be relatively symmetrical.”   
 
 Displaying:  RL attended to all elements of the distribution (center, range,  
 
shape, and spread) when considering displays of variation in both interviews, but he 

misidentified real graphs as fake and vice versa in each interview.  In PreInterview 

Q3, he thought “Graph: 30” was what he “would expect to see,” even though “Graph: 

30” was really made up.  Although he also expressed some surprise at the limited 

range for “Graph: 30”, he liked the fact that the mode was the expected value of 6 

reds.  He correctly thought “Graph: 300” showed actual results, and said that “the last 

graph here [Q3] was a very rough bell curve, [and] this [Q4] is much more similar to a 

bell curve” of the type he expected to see.  For “Graph: 300”, he noted that “you see 

other things that are POSSIBLE, just relatively unlikely. You still see them come up, 

but just less often.”  Thus, he commented on the shapes of both “Graph: 30” and 

“Graph: 300”, and also the ranges. He offered similar reasoning strategies in the 

PostInterview.  However, while he correctly identified “Graph: 30” as real in Post Q3, 

he thought that “Graph: 300” might be fake (when it was not) in Post Q4.  His concern 

about “Graph: 300” in Post Q4 was that he said “I would expect to see more, more 

extreme values...It’s kind of funny that there’s nothing outside that certain range.” I 

thought that in PreInterview Q3, at a time when RL was still fixated on the average, it 

was natural for him to accept the relatively tight range of “Graph:30” with minimal 

suspicion.  He almost seemed to have over-compensated in his appreciation of range 

expectations in PostInterview Q4, since he thought that the range should be even 

wider than it already was. 
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 A comparison of RL’s responses to the “Likelier Graphs?” questions in both 

interviews showcases his reasoning skills in evaluating and comparing graphs while 
 
also demonstrating an improvement in his final conclusions.  In PreInterview Q13, RL 
 
thought that Group A was the fake graph and that Group B was the real graph, when  
 
the opposite was true.  About Group A, he said: 
 
 RL: [Pre Q13] You have such a wide range...more outliers in Group  
  A....Not only did someone get the very unlikely result of 13, somebody  
  else got the very unlikely result of 30...Both of those [extreme values]  
  are further out than everything else.  
 
I noticed that RL never commented on how Group A only had one out of twenty  
 
results at the expected value of 20 blacks, but that his explanation hinged upon the  
 
wide range of Group A.  His reasoning on Group B included a reference to center and  
 
spread: 
 
 RL: Group B is tighter, and definitely holds to a center more...in Group B, 
  you just didn’t see that kind of variance [as in Group A]. In Group B, 
  people did it, and no big surprises. 
 
It did not surprise me that RL erroneously thought Group B was authentic, because the  
 
graph for Group B was almost symmetric about the mean, just as all of RL’s lists were  
 
when he predicted results for multiple samples.  In PostInterview Q13, RL correctly  
 
identified Class A as fake and Class B as real.  He suspected that Class A had  
 
“underestimated, perhaps, the possibility of seeing less common values,” meaning that  
 
he thought there should be more extremes in the graph for Class A.  Furthermore, he  
 
said  “the shape here [for Class A was] very tight, very narrow, not a lot of variation”,  
 
and he thought the data was unnaturally grouped around the expected value of 25  
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blacks.  Class A was  “too neat” for RL to believe it came from genuine data. In Class  
 
B, on the other hand, RL saw “a lot more different values being represented,” which  
 
he liked.  He said he would have expected to see a graph like Class B’s coming from  
 
real data because: 
 
 
 RL: [Post Q13] You still see in the middle there, between 24 and 27 or what 
  have you, you see most values. And then a few on either side, kind of 
  trickling out, or sprinkled to the sides. 
 
I appreciated how RL attended to spread, noting that he pointed out “most values” in 
 
a central subrange of 24 to 27, and yet he also was comfortable with the few extremes 
 
shown in Class B. 
 
 RL used similar reasoning when comparing distributions on both the “MAX  
 
Wait-Times” question in the PreInterview and the “Muffin Weights” question on the  
 
PostInterview, but he increased his attention to subranges in the latter question.  For  
 
PreInterview Q8, he thought the Eastbound train was more “reliable,”  and he pointed 

out how the Eastbound train had a shorter range than the Westbound.  For the 

Westbound train, he made a point of stressing how a potential passenger wouldn’t 

know what to expect for wait-times, because “there’s a lot of variation...it’s not a 

consistent pattern.”  When I asked him to comment on someone’s argument that there 

was no difference in wait-times because the averages were the same, he said “the 

average does not tell all the story...they are not including the variation.” He then 

affirmed his initial view that “the Eastbound is more predictable, and less variation.”   
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For the “Muffin Weights” of PostInterview Q9, RL named the West End bakery as 

being “a little more reliable.”  When I asked him why, he said that “the interquartile 

range is narrower, you can pretty much count on most muffins are gonna be within a 

certain range.”  I thought that RL used the boxplots in Post Q9 appropriately, and he 

went on to comment negatively about the wider range of the East End bakery.  Just as 

he had wondered about how long a passenger might wait for the Westbound train in 

the PreInterview, so too RL was concerned about the weight of the muffin he might 

get at the East End bakery: 

 RL: The variation is SO much that, if I’m looking for reliability, if I wanna  
  know what I’m gonna [get], to expect, then I don’t wanna mess around 
  wondering if I’m gonna get a huge honkin’ muffin, or I’m gonna get 
  a little sub-standard muffin... 
 
He had a good observation in comparing the relative merits of boxplots versus 

dotplots, noting that “with the boxplot you’re sacrificing information.”  When he 

wanted to see the specifics of where the data was grouped, he found the dotplots more 

helpful.  

 Interpreting:  RL referred many times in the PreSurvey and PreInterview (but  
 
not as much in the PostInterview) to the way that theoretical probability was different 

from reality, and he seemed to use this theme to convince himself that results would 

not be the expected value each time.  For example, in PreInterview Q1c RL had 

explained to me why he had initially put all 6s on the identical question earlier on the 

PreSurvey Q1c: 

RL:  The first thing I did for part c [PreSurvey Q1c], where how many do 
 you [think you’ll get], and I wrote “6” in every one. 
I: Oh, yeah. 
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RL: Being very strict as in probability-dictated reality, as distinct from  
 described likelihoods. And so I went back and, instead of 6 every  
 one, this one 6 and then a 5 and a 7, and a 3... 
I: So you changed it [on the PreSurvey] ? 
RL: I did change it, when I went back and I thought, okay, reality is  
 going to impinge on the strict likelihood by a given thing 

 
Later, in PreInterview Q3, even though RL thought “Graph: 30” was authentic, he  
 
wondered if one might see more extremes “just because weird things happen” in real  
 
life.  Again, he used “living in the real world” as a reason for changing his list of all 
 
tens in “One Sample” of the die toss in PreInterview Q9, mentioning our “world of 
 
imperfect scientific conditions.”  He stressed that real-world “conditions are never 
 
identical”, and that was a reason he thought he would see variation in results.  On the  
 
PreSurvey Q7b RL had implied that absent “any change of approach” in flipping  
 
coins, results would “most likely...be the same,” and yet by the end of the  
 
PreInterview he seemed to believe that variation was unavoidable.  He did not say as  
 
much about the difference between reality versus theory in the PostInterview, perhaps  
 
because he had already convinced himself of the difference in the PreInterview and  
 
throughout the class interventions. 
 
 RL consistently described influences of the number of samples in both  
 
interviews, and he included many explicit references to the influence of doing fewer 
 
as well as greater numbers of samples.  One characteristic that he frequently pointed  
 
out was how the number of samples affected the chances of getting extreme values.  
 
For example, in PreInterview Q4 RL had envisioned his own hypothetical jar  
 
containing 99 Red candies and 1 Yellow candy: 
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 RL: Just like the example I gave with the one yellow candy and the 99. You  
  can pull out the yellow candy, it’s possible. It’s not going to happen  
  that often, but if you do it enough times, sooner or later, it’s bound to  
  happen. 
 
RL was even more specific about the number of samples in PreInterview Q11, when  
 
he considered “Six Samples” of the die toss.  He had listed “8, 9, 10, 10, 11, 12”,  
 
which we both thought had a “pretty limited range.”  RL justified his choice as  
 
follows: 
 
 RL: But we’re only talking about 6 people throwing, and when you’ve got  
  6, it’s a pretty small sample size. So, chances are you’re not going to  
  see anything too goofy. You get a hundred people doing this, you’re  
  definitely going to see the extremes pop up more often. 
 
I asked him what kind of range he might expect with one hundred samples, and he  
 
suggested the maximal range possible (0 to 60), saying “It can happen. It is unlikely.” 
 
I thought RL had an under-appreciation of just how unlikely it is to get sixty 5s in  
 
sixty tosses of the fair die, but after the class interventions he had a better sense of  
 
how many samples it might take to attain extreme results.  In considering samples  
 
from the Large Jar in PostInterview Q4, he talked about the chances of getting 0 red in  
 
his sample of 100: 
 
 RL: It’s possible, it’s a one in..., you know, trillion badillion, but if you do a 
  hundred bunillion trillion pulls, you’re gonna get a zero! And so, the  
  more pulls you do, the more opportunity that exceptional event has of 
  occurring. 
 
He expressed the idea of more samples offering more chances to attain extreme results  
 
at many other times in the PostInterview, and was suspicious of unexpected results  
 
occurring with few samples.  For example, in Post Q11 he declared list (i) for six  
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samples of the spinner (“38, 43, 36, 26, 41, 33”) to be high overall, and then he added: 
 
 RL: So, I’m a little bit suspicious, that having done so few spins, there’s so  
  many relatively unlikely [results]…With more sets, sure, I think again  
  you’re gonna start to see these more exceptional things happen, but you  
  will also have seen many more expected results. 
 
 The last part of RL’s previous response illustrates how RL also thought that  
 
more samples gave more chances to actually attain the expected value.  In fact, he  
 
generally thought in both interviews that the average results of multiple samples 

should be the expected value.  In other words, he did not expect the mean, median, or 

mode to vary when doing more samples.  Even in PreInterview Q9, when he finally 

talked about “living in the real world” and how results for sixty tosses of the die would 

not be all tens, he stressed that “if you’re going to see a range, the average of that 

range will be 10.” During the PostInterview, he repeatedly made it clear that results 

from multiple samples should have an average equal to the expected value.  For 

example, in “One Sample” of Large Jar (Post Q1a), he thought that “over time, if I 

pulled 100 candies, put them back, pulled another hundred candies… I think I would 

average a representative of 60 red , 40 yellow.” Again, in “Several Samples” of the 

Large Jar (Post Q1b), RL thought that he’d “get more 60s than anything else”, 

suggesting that the mode should be the expected value.  He was even more explicit in 

PostInterview Q3 when he expressed how credible “Graph: 300” was, saying “we’ve 

got a mode of 60, which is what I would expect to see, so it looks believable.”  

 Finally, in both interviews RL emphasized the influence of the number of  
 
samples on the shape of distribution of results, and he did so to a much greater extent  
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than any other subject.  During the PreInterview, for instance, as he compared “Graph:  
 
30” and “Graph: 300” toward the end of his analysis in Q4, he noted that: 
 
 RL: I expect to see a certain bell curve, given more trials. This was to so  
  few trials [in “Graph: 30”], that it’s not a very fleshed-out bell curve.  
  Here [in “Graph: 300”] you start to see things fall into a pattern.  If you  
  did this [sampling] ten thousand [times], you’d  probably have a really  
  nice bell curve. So, I attribute the more bell curve-looking design to the  
  number of trials. 
 
I was impressed at RL’s articulation in connecting the shape of the distribution to the 
 
number of samples, and he expounded on that connection even more frequently in the  
 
PostInterview.  Even when no graph was present, as in “Several Samples” of the Large 
 
Jar in PostInterview Q1b, RL’s language reflected the shape of the underlying  
 
distribution: 
  
 RL: [Post Q1b] Well, the more times I draw, the more normal the  
  distribution, I think I’d get more 60s than anything else, but the more  
  you draw, then the wider the distribution as well. More, just – The  
  more you draw, the more chance there is of getting an outlier, or an  
  extreme value. So, I would think that the more I draw, I’m more likely  
  to get… Well, over time I think I’m more likely to get within a tighter  
  range, actually. 
 
At first I thought RL had concluded that results of a greater number of trials would   
 
have a smaller overall range than would the results of a fewer number of trials.   
 
However, based on all his other responses, particularly those having to do with 

distribution, it seems more likely that what RL meant was that data for more trials  

would likely be more concentrated within a narrower subrange.  His last comment in 

the PostInterview was a good exemplar of his view about the influence of more  
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samples on the shape of distributions.  After he considered the “Likelier Graph?” in 

Post Q13, he said in conclusion that “it’s easy to see how more sets will start to 

normalize that distribution and approach the theoretical prediction.”  

 In conclusion, RL had the broadest and strongest mathematical background of  

anyone else in the MET 2 class.  He demonstrated distributional reasoning even in the  

PreSurvey as he considered both centers and spread in his responses.  However, RL’s 

thinking was occasionally over-influenced by the expected value in the PreSurvey and 

much of the PreInterview.  After the die-tossing questions of the PreInterview, RL 

more consistently expressed his expectations in terms of ranges. Although 

he never once referred to what he had seen in class, I think that the class experiences 

and his own self-reflection led to an improved sense of variation.  His mathematical 

computations, which he articulated in the PreSurvey and PreInterview but not in the  

PostInterview, seemed to influence his choices throughout the research.  Thus, RL 

carefully predicted results for multiple samples so that they were symmetrically  

distributed about the expected value.  He reasoned about graphs using all aspects of the 

distribution (center, range, shape, and spread), and seemed to pay even more attention 

to relative subranges on the PostInterview. However, RL incorrectly identified real 

versus fake graphs on both interviews.  Although he commented several times before 

the class interventions how reality was different from theory, after the interventions 

he stopped making those kinds of comments.  Lastly, RL initially had a reasonable 

sense of the influence of the number of the number of samples on the distribution of 

results, and he demonstrated an even more extensive understanding of this theme in 

the PostInterview. 
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Cross-Case Comparisons 

 As mentioned previously, responses can be coded at multiple places within the  

framework, a possibility that arises when a response is longer and multi-faceted. From 

the interview transcripts, I took questions or portions of a question and considered 

each case’s response through the evolving framework. Because some questions had 

multiple parts, there were often some substantial and lengthy responses by a case to a 

question.  To illustrate what I did, consider Q2 (“Compare Lists” for the Small Jar) on 

the PreInterview.  I asked subjects to pick the list(s) that they thought might be likely 

to occur as choices for six trials, and then to comment on all the lists. Then I asked 

them which list they thought best described what might happen and explain why. 

Since there were five lists, naturally this interview question had the potential to elicit a 

considerable amount of dialogue in response.  

 In the cross-case analysis, I took each question or subquestion (such as Q1a, 

Q1b, Q1c, or Q2), and coded the aggregate response for each case. That is, I took 

everything the subject said on that question or subquestion and saw how the parts of 

the response fit into the framework. On Q2, for instance, I generated Table 13 to show 

me how the different cases’ responses fit into the framework.  I called such tables 

“CodeFrames” because I was coding responses in view of the framework.  I made 

CodeFrames for every question on the PreInterview and PostInterview, including 

subquestions as I thought necessary or advantageous.   
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Table 13.  CodeFrame for PreInterview Q2 (Cross-Case Analysis) 

Framework Description Within Themes Subject (Case) 

1Ai Should be on Both Sides of Exp. Val. DS EM  JM RL SP 
1Aii Won't be Exp. Val. Each Time DS EM GP JM  SP 
1Aii  Shouldn’t Repeat Values in General      SP 
1Aiii Should be in the MidRange  EM GP   SP 
1Aiii Shouldn't be Too Many Highs (or Lows)  EM    SP 
1Aiii Should be Within Range Around Exp. Val.  EM  JM  SP 
1Bi Expected Value is Most Likely DS   JM RL  
1Bi Extremes are Unlikely DS EM GP JM RL  
1Bi Extremes are Possible DS    RL SP 
1Biii Proportional Reasoning    JM RL  
3Bii Nature of the Candy Mixing  EM     
3Ci Anything Can Happen    JM   
3Cii Difficulty in Making a Choice   GP    
3Dii Expected Value as an Average  EM     
3Dii More Trials = More Variation DS      

 The CodeFrames give much information: the rows give different  
 
themes from the framework, or specific characteristics within the themes. The  
 
columns under the Subject (Case) heading show which cases were coded at the 

different places within the framework.  For example, in Table 13, the CodeFrame for 

Q2 on the PreInterview shows how DS responded throughout Q2. Reading all the way 

down the Subject column for DS, we see that she had some part of her response 

address how more trials would give more variation. Moving across the row for “More 

Trials = More Variation”, we see that no one else but DS included that theme as part 

of a response for Q2 on the PreInterview. On the other hand, Table 13 shows how five 

of the six cases all addressed three characteristics of themes in their responses to Q2.  

Results should be close to the expected value [1Ai], results won’t be the expected 

value each time [1Ai], and extremes are unlikely [1Bi].  In this section I will 
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summarize the rows (which represent dimensions, themes, or characteristics of themes 

from the framework) from PreInterview and PostInterview questions where all six 

cases had part of their response coded at that row. 

 As mentioned above, I had many CodeFrames for each of the interviews. The 

number of rows in each CodeFrame was inherently variable, depending on what the 

cases had to say. For instance, Table 13 has fifteen rows simply because that’s how 

many dimensions, themes, or characteristics of themes occurred in the collective 

responses of the six cases. In some of the CodeFrames, there are matches among all 

six cases for certain rows, which I refer to as “Match 6 Rows”. There were also 

“Match 5 Rows”, meaning that exactly five of the six cases were coded along that row 

(there are three such rows in Table 13). Table 14 shows the number of CodeFrames 

for the questions in each interview, the number of rows in each CodeFrame, and how 

many Match 5 or Match 6 Rows were in each CodeFrame. 
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 I chose to show Match 5 or Match 6 Rows in Table 14 because those were the 

strongest two levels of agreement. As a percentage, the Match 5 or Match 6 Rows out 

of the total rows are [ (15+14) / 213 ] = 13.6 % for the PreInterview and [ (24 + 18) / 

219 ] = 19.2 % for the PostInterview, suggesting slightly more agreement in the 

PostInterview.  The fourteen Match 6 Rows in the PreInterview and the eighteen 

Match 6 Rows in the PostInterview are summarized next, because they represent the 

most agreement. 

 

 

Table 14.  CodeFrame Summary 

PreInterview PostInterview 
Question 
Number 

Rows in 
CodeFrame 

Match 5 
Rows 

Match 6 
Rows 

Question 
Number 

Rows in 
CodeFrame 

Match 5 
Rows 

Match 6 
Rows 

Q1a 12 2  Q1a 11  1 
Q1b 10   Q1b 10 1  
Q1c 11   Q1c   7 1  
Q2 17 3  Q2 14 2 3 
Q3 10  1 Q3 12 2  
Q4a 12 1 1 Q4a 12   
Q4b   6   Q4b   8   
Q5 16  1 Q5 16   
Q6   4 2  Q6   6 2 1 
Q7 18 2 2 Q7 17 3 1 
Q8 15  2 Q8 13 3 1 
Q9   7  1 Q9 16 1  
Q10 17 3 3 Q10a   8  2 
Q11a   9 1 1 Q10b   6 1 1 
Q11b   9  1 Q10c 10  1 
Q12a   4  1 Q11 15 5 3 
Q12b   6 1  Q12 14 1 3 
Q12c   6   Q13ab 10 1  
Q13a   7   Q13c 14 1 1 
Q13b 17       
20 
Total 

213 
Total 

15 
Total 

14 
Total 

19 
Total 

219 
Total 

24 
Total 

18 
Total 
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PreInterview 
 
 Table 14 does not indicate the parts of the framework which garnered 

agreement, unless we see the actual rows from the different CodeFrames.  Thus, I cut 

the rows out of each of the relevant CodeFrames and used the framework to re-

organize the fourteen Match 6 Rows from the PreInterview. Table 15 shows exactly 

what the fourteen rows represented with respect to the framework. 

 
Table 15.  Match 6 Rows from PreInterview CodeFrames 

Framework Description Within Theme or Dimension Question 
1A Riki: Really rolled It Q10 
1A Yes, I’d be surprised if more Black than White in 3 spins Q12a 
1Aii  Repeated values could happen  Q11 
1Aii Their own choices are all different Q11 
1Bii Probability arguments (chance, likelihoods) Q9 
1Bii Extremes possible, but unlikely Q10 
1Biv Lynn: Not enough variation  Q10 
2Bi Focus on mode in comparing graphs Q7 
2Bi Comments on same summary statistics Q8 
2Bii Noticing limited range: Only got three types of values Q3 
2C Those are the real results shown in the graph Q4 
2C  Comfortable with average answer for “True duration of trip” Q7 
2Ci Eastbound train: More consistent or reliable Q8 
2Cii Engineer: Should use Graph 3 Q5 

 

Table 15 shows where within the framework there was agreement among all six cases 

on the PreInterview.  I’ll discuss some of the areas of agreement from Table 15 in 

terms of the evolving framework.  

 Within the aspect of expecting variation, notice how all six cases thought Riki  

was the student on Q10 (“Who Cheated?”) who really rolled the die.  There is no 

theme within the dimension for that row, meaning that it is simply in the framework as 
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[1A] because it shows specific expectations for that question.  Most importantly, Riki 

did have the list which showed genuine data, and the fact that all six cases correctly 

identified Riki as having really rolled the die shows reasonable expectations on the 

part of the subjects. The theme concerning repeated values [1Aii] also had agreement 

in Q11 (“Six Samples” of sixty tosses of the die), and every one of the cases gave a list 

of predictions that contained distinct values. In other words, the lists given had no 

repeated values.  I think that the subjects were particularly careful to choose all 

distinct values for their list of “Six Samples” in Q11 because the discussions of Q9 

and Q10 tended to bring out strong reactions from the subjects about how six results of 

sixty would not occur.  Thus, the subjects may have been over-compensating, thinking 

that if six results would not all be identical, then the six results would be all distinct.  

In explaining why they held their opinions, the cases agreed in Q10 (“Who Cheated?”) 

that extremes were possible but unlikely [1Bii], and that Lynn’s list did not exhibit 

enough variation [1Biv].  I was surprised that all the cases were suspicious of Lynn’s 

list, because I had thought some subjects might argue that “Anything Can Happen.” 

However, the common sense from the cases was that Lynn’s was too narrow, which is 

a reasonable assessment. 

 In displaying variation, all cases focused on the averages [2Bi] shown for the 

graphs in Q7 (“Compare Graphs”) and Q8 (“MAX Wait-Times”).  Since averages are 

such a dominant part of traditional stochastics curricula and the media, it was no  

surprise that my subjects’ attention gravitated towards centers.  I was encouraged to 

see that all subjects commented on the narrow range depicted in the graph on Q3 

(“Graph: 30”), which did show fabricated data.  However, even though they had a 
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focus on the range [2Bii], not all the subjects identified the graph as being fake. In Q4 

(“Graph: 300”) the same specific conclusion [2C] for that question was made by all 

cases: Those were in fact real results shown in the graph. I also noticed that when 

making conclusions about the Eastbound train in Q8 (“MAX Wait-Times”), all cases 

had some emphasis on the consistency or reliability [2Ci] of the train. Finally, there 

was agreement that the Engineer of Q5 (“Car Brakes”) should use Graph 3 in her 

report, a reasonable conclusion to make in the context of the question [2Ciii].   

PostInterview 
 
 When I realized that there was agreement (Match 6 Rows) in the PreInterview 

for the expecting  and displaying aspects but not for the interpreting aspect, I was 

curious to see how the eighteen Match 6 Rows for the PostInterview were organized 

according to the framework, and this organization is given in Table 16. Not only was 

there at least some agreement in the PostInterview on all three aspects, but the nature 

of the agreement represented an overall maturity of reasoning about variation.  I’ll 

comment more on this observation after discussing some of the areas of agreement on 

the PostInterview in terms of the framework. 

 Most of the agreement in PostInterview responses had to do with expecting 

variation.  For example, on Q1a and Q10a (“One Sample” of the Large Jar and 

spinner, respectively) each of the cases did not just put the expected value for their 

prediction, but rather they gave answers indicating an appreciation for variation. 
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Table 16.  Match 6 Rows from PostInterview CodeFrames 

Framework Description Within Theme or Dimension Question 

1A  Gives a # Other than 60 or Range Q1a 
1A  Gives a # Other than 25 or a Range Q10a 
1A  Picks List (ii) Q11 
1Ai Should be Close to the Expected Value Q11 
1Ai Should be Close to the Expected Value Q10b 
1Aii Their own choices are all different Q10c 
1Aii Shouldn’t repeat: Should be Different Q2 
1Aiii Should have Variation or Range Q2 
1Bi Extremes Unlikely Q2 
1Bi Extremes Unlikely Q11 
1Bi Extremes Possible Q12 
1Bi No Guarantee of Getting Expected Value Q12 
1Biii Proportional Reasoning Q10a 
2C Class A : Likely Cheated Q13 
2Ciii Rounding Affects Accuracy Q7 
2Ciii More Detail in Histogram Q8 
3Bi Operator Method or Perspective in Using the Scale Q6 
3Dii Number of Spins Affects Amount of Variation Q12 

 

The six cases also all favored list (ii) on Q2 (“Compare Lists” for the Large Jar), 

which was the most reasonable choice.  All cases gave responses that reflected the 

theme concerning the expected value [1Ai] in Q11 (“Compare Lists” for the spinner) 

and in Q10b (“Compare Samples” for the spinner). In particular, the cases’ responses 

indicated that results should be close to the expected value. Further agreement for 

what was expected included the themes concerning repeated values [1Aii] and the idea 

that results should exhibit a range or some variation [1Aiii]. Regarding reasons why 

expectations were held, the language of possibilities and likelihoods [1Bi] was used by 

all cases in response to several questions: Q2, Q11, and Q12 (“Compare Comments”).  

One key idea that seems commonly held is the notion that extreme values are possible 

but unlikely. 
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 For displaying variation, everyone commented on Q13 (“Likelier Graph?”) 

that the graph for Class A was likelier to reflect made-up data, a correct conclusion 

[2C]. Concerning level of detail and usefulness of different types of graphs [2Ciii], 

there was consensus that less rounding led to a more accurate graph in Q7 (“Compare 

Graphs” for the muffins) and also that the histogram showed more detail in Q8 (“35 

Muffins”). I noticed that there was no agreement for specific characteristics of themes 

within the dimension of evaluating and comparing graphs for the PostInterview, and I 

suspect one reason is that the questions offered more graph types than on the 

PreInterview, hence more opportunities emphasize themes in different ways.  

 There were two dimensions of agreement in interpreting variation. One 

dimension concerned causes of variation, in that all cases had some theme of operator 

error in using the scale for the repeated-measurement question involving the weight of 

a single muffin (Q6: “Causes: Muffin”). I considered the causes they listed as 

naturally occurring causes [3Bi] because they did not include a deliberate, subversive 

attempt to introduce variation, but were the kinds of variation that one would 

reasonably expect to find among different people attempting to discern a 

measurement.  Finally, in Q12 (“Compare Comments”), everyone had some element 

of their response that connected the number of trials or spins with the resulting 

variation [3Dii]. 

 In summary, the use of the CodeFrames in the cross-case analysis reveals some 

overall trends, most notably the closer agreement in expecting variation in the 

PostInterview.  For example, on the PreInterview there were many predictions for 

“One Sample” questions that were just the expected value.  However, on the 
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PostInterview ranges were given for predictions, or values that were explained as 

being “near” to the expected value.  Also, on the PreInterview, some cases did not 

access proportional reasoning, while others seemed overwhelmingly influenced by 

theoretical predictions. On the PostInterview they all used proportional reasoning but 

no one claimed that the theoretically expected value should always be the outcome.  

There were also some uniformly reasonable conclusions made regarding displays of 

variation, as well as attention given to average and range when evaluating and 

comparing graphs.  Finally, in the PostInterview there was total agreement about 

plausible interpretations  of variation, namely the cause of variation in Q6 (“Causes: 

Muffin”) and the influence of more trials on results in Q12 (“Compare Comments”).  
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CHAPTER FIVE 

Discussion and Conclusion 

 

 This chapter summarizes the main contributions of my research findings to the 

general field of studying probability and statistics education among teachers and 

students.  I’ll discuss how the study has addressed each of my research questions in 

turn, offering further analysis and reflection concerning teacher education before 

articulating some limitations of the research. Then I’ll outline some implications for 

future research. 

First Research Question 

 The first research question asked “What are the components of a conceptual 

framework that help characterize EPST’s thinking about variation?”  The evolving 

framework presented in the first part of Chapter 4 informs this question by offering an 

in-depth exploration of a sample of elementary preservice teachers’ thinking about 

variability.  The framework, reproduced in Figure 32, provides a lens through which 

three different aspects of an EPST’s understanding of variation can be viewed.  The 

three aspects address how EPSTs reasons in terms of expecting¸ displaying, and 

interpreting variation. 

Expecting 

 When expecting variation, my subjects expressed both what they expected and 

why.  The expected value or average was a frequent theme concerning what EPSTs  

thought might occur.  A dominant type of response was how results should be close to,  



 

 280

about, or near the expected value, and a more explicit type of response was how 

results might be higher or lower than the expected value.  

 

Evolving Framework 
 

[1] Expecting Variation  
 A] Describing What is Expected   
  i)    Concerning Expected Value 
  ii)   Concerning Repeated Values 
  iii)  Concerning Range or Extremes 
 B] Describing Why (Reasons for Expectations) 
  i)    Involves Possibility or Likelihood 
  ii)   Involves Experiential Reasoning  
  iii)  Involves Proportional Reasoning 
  iv)  Involves Distributional Reasoning 

  
[2] Displaying Variation  
 A] Producing Graphs 
  i)    Technical Details 
  ii)   Characteristics of the Distribution 
 B] Evaluating & Comparing Graphs 
  i)    Focus on Average  
  ii)   Focus on Range or Extremes  
  iii)  Focus on Shape 
  iv)  Focus on Spread 
 C] Making Conclusions about Graphs  
  i)    Emphasizing Decisions in Context  
  ii)   Emphasizing Consistency or Reliability 
  iii)  Emphasizing Level of Detail & Usefulness 
   
[3] Interpreting Variation   
 A] Defining Variation 
  i)   Definitions & Descriptions 
  ii)  Examples 
 B] Causes of Variation  
  i)   Naturally Occurring Causes 
  ii)  Physically Induced Causes  
 C] Effects of Variation  
  i)   Effects on Perception 
  ii)  Effects on Decisions 

D] Influencing Expectations and Variation 
  i)   Quantities in Sampling 
   ii)  Number of Samples 

        

  

 
Figure 32 – Evolving Framework 
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Responses of both types show an acknowledgement of variation, and offer the teacher 

educator a good stepping stone to finding out just how close or how much higher is 

reasonable.  Another theme for what was expected concerned whether or not results 

from multiple samples might repeat.  Almost all of my subjects thought that results 

would not necessarily repeat each time, but there were a few who either implied or 

stated outright that results should or would repeat every time.  It is crucial for a teacher 

educator not to assume that EPSTs automatically believe results are unlikely to repeat 

each time.  An EPST may have had little or no exposure to probability and statistics 

and may actually believe that point estimates offer a “correct” answer to questions 

involving multiple samples.  For example, the thinking may be that if “6 reds” is a 

good guess for a single sample of the Small Jar, then “6, 6, 6, 6, 6, 6” is a good guess 

for six samples.  A third theme for what was expected concerned ranges or extreme 

values.  More specific than just suggesting that results be above and below the 

expected value, some responses actually specified a numeric range.  When a person 

volunteers an answer like “between 21 to 29 black” for the result of one sample of 

fifty spins of the half-black and half-white spinner, that kind of answer shows the 

specific variation the person expects. 

 In describing why they held their expectations, almost all of my subjects’ 

reasoning at some point involved the language of possibilities and likelihood.  For 

example, many subjects explained how extreme results were possible but unlikely.  In 

the absence of quantitative indicators, informal language (such as “entirely possible” 

or “highly unlikely”) provides at least some qualitative gauge of just how possible or 

likely people perceive events to be.  Students using informal notions of possibilities 
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and likelihoods can be challenged to come up with their own quantitative measures of 

how likely they think events are.  The students should then be provided experiences by 

which they can test their ideas.  Reasons involving experience constituted another 

theme for why my subjects held their expectations.  Some subjects mentioned informal 

out-of-class experiences, such as games they had played, and other subjects recalled 

their experiences with the in-class activities.  Experience can be very useful if subjects 

have a good way to record what actually happened, otherwise their recollection of 

events may be incomplete. For example, someone may claim to recall “hardly ever 

getting of ones” when tossing a fair die, when in reality their data may support a 

reasonable amount of ones.  A person who thinks extreme results are “pretty likely” 

because they recall getting a sample result of 23 reds from the Large Jar may not 

remember how many total samples they had taken before obtaining that rare result.  

 The theme of proportional reasoning can be a useful anchor to help center 

expectations appropriately, and this theme was a part of many of my subjects’ reasons 

for why they expected what they did.  An over-reliance on proportional reasoning can 

lead to a restricted expectation of variation, but an under-reliance on proportional 

reasoning can also lead to poor expectations.  For example, when SP expected samples 

from the Small Jar to be near her “midrange” results of 4, 5, or 6 reds, it was 

encouraging to note her expectation of variation but it was discouraging to see her that 

her choices weren’t centered around 6 reds.  In explaining why certain results are 

expected, the theme of distributional reasoning focused on elements of the distribution 

of data: Center, range, shape, and spread.  Responses for this theme generally reflected 

a more comprehensive sense of variation than the other themes for the dimension of 
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describing why expectations are held.  Even brief answers could reflect distributional 

reasoning, as in JL’s response to Probability PostSurvey Q1b. The question asked how 

a second sample of 50 spins of the half-black and half-white spinner would compare to 

the first sample, and JL said “I think the sample results would get tighter, the grouping 

would accumulate around 50 [blacks].”  She misstated the center as 50 blacks when it 

should be 25 blacks, and her answer also went beyond the idea of only two samples to 

anticipate multiple samples.  However, the larger point is that JL conveyed a sense of 

the underlying distribution in her reasoning, and how she saw the data getting spread 

about the mean. 

Displaying 

 Concerning displays of variation, EPST’s showed their skills and reasoning 

along the three dimensions of producing graphs, evaluating and comparing graphs, 

and making conclusions about graphs. 

 When I considered how my subjects produced graphs, I could tell that the 

technical details of their graphs were a reflection of the subjects’ graph sense.  For 

example, I saw many smooth bell curves that were drawn for PreSurvey Q4, even 

though a bar chart or dotplot would have been a better choice for the type of graph 

in that problem situation.  Some graphs had detailed axes with an appropriate scale, 

while some others had unlabeled axes or inappropriate scales.  It is hard to convey a 

proper sense of variation in a graph if the student lacks a useful graph sense to begin 

with. Again, it is important for the teacher educator to not take for granted a student’s 

graph sense, but to provide plenty of opportunities to assess and develop graph skills. 
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How the characteristics of the distribution get conveyed is another theme in producing 

graphs.  My subjects generally gave centers that were reasonably placed, but they 

often provided ranges that were too wide.  Spreads were occasionally too tight or too 

scattered, and shapes were often unnaturally symmetric.  I suggest that teacher 

educators have their students gather actual data, make the resultant graphs, and discuss 

the specific ways that the graphs reflect characteristics of the distribution.  As more 

types of graphs are learned, more possibilities are created for comparing how different 

graph types lend themselves to displaying variation. 

 When evaluating and comparing graphs, the four themes I looked for in my 

subjects’ responses corresponded to the four components of distributional reasoning: 

Average, range, shape, and spread.  The first of these themes, a focus on average, was 

reflected in most but not all of my subjects’ responses.  Many subjects were able to 

move beyond a focus on average to include references to other features of the 

distribution, but some people made it clear that the average was their primary 

consideration in answering any question having to do with graphs. The theme focusing 

on range or extremes was often reflected in questions having to do with which graph 

had more variation.  In fact, many subjects seemed to make an initial association 

between “more variation” and “wider range” (and vice versa), which is not a bad first 

step to make in thinking about displays of variation.  Not many subjects volunteered 

written information to indicate that they were attending to shape as a theme, but there 

were more responses that focused on shape during the in-class discussions and during 

the PostInterviews.  My subjects had some standard ways of talking about shape, using 

language like “symmetric” or “skewed”, “normal” or “uniform”. There were also 
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some non-standard ways of referring to the shape of a distribution, including the use of 

hand gestures to try to communicate the picture in the subjects’ mind.  Responses that 

focused on the theme of spread depended on the type of display that subjects were 

considering. For example, when using dotplots some subjects referred to the way data 

was “clustered” or “scattered” along different places along the horizontal axis to 

indicate how they saw the way data was grouped or spread out in a graph.  In using 

boxplots, we had discussed as a class how the interquartile range was one measure of 

spread, and many subjects referred to that measure in their responses. 

 The first theme I had for making conclusions about graphs was how some 

responses emphasized the context of the problem.  For example, many subjects 

considered their own preference for rain, their tolerance in waiting for trains, and their 

desire for weighty muffins in making their conclusions.  The context of the problem 

is particularly important for tasks involving graphs because the context invites the 

subject to consider whether or not the amount of variation shown is desirable or 

appropriate. In other words, it is not enough to merely analyze the graph, but instead it 

is desirable to think about what the variation means in the context of the problem. 

Responses in the next theme emphasized consistency or reliability of the phenomena 

under consideration.  Subjects often associated a wider range with less consistency, 

and a narrower range with more consistency.  Another theme for responses 

emphasized the level of detail and subsequent usefulness of the graph.  This latter 

theme was particularly relevant in the questions which offered different types of 

graphs for the same data set.  Some subjects clearly expressed their preferences for 

one type of graph over another, saying for instance how boxplots gave a good overall 
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sense of the data while histograms were too finely detailed.  Because different graphs 

convey different messages about variation, it seems important to encourage student 

discussion about how useful a graph is. 

Interpreting 

 The four dimensions that arose in the data for this aspect were defining 

variation, discerning causes of variation, effects of variation, and also influencing 

expectations and variation. 

 The two themes for defining variation were an actual definition of variation 

and also examples of variation.  When I asked on the PreSurvey what variation meant 

to my subjects, many of them of them conveyed the idea that variation meant having 

differences, or the degree of difference.  After all the survey and interview data had  

been gathered, I looked back on all the ways in which variation was reflected in the 

collective responses in order to further describe what students were saying about 

“variation.” Two important uses of the term were to describe the range of data and to 

describe the distribution of data within the range.  Other descriptors I found 

for variation included the way that data was clustered, spread, concentrated, and 

distributed.   

 The theme of examples of variation was addressed in the PreSurvey, and the 

main types of examples reflected natural or personal characteristics.  Throughout the 

subsequent research instruments, students affirmed examples of variation via their 

responses.  For instance, students provided choices on “Six Samples” that varied, and 

they gave graphs illustrating expected variation.  Furthermore, they talked about the 

variation they did or did not expect in all contexts of sampling, data and graphs, and 
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probability situations.  Thus, the students acknowledged that situations such as daily 

rainfall, muffin weights, MAX wait-times, or the results of a probability or sampling 

experiment are examples of things that vary.  

 Under causes of variation, one theme I saw reflected in the data was naturally  
 
occurring causes.  My subjects had no trouble coming up with many different 

naturally occurring causes of variation, such as all the causes they listed for 

differences in rainfall patterns.  In the sampling and probability situations, many 

students seemed to point to randomness as a naturally occurring cause.  For example, 

if asked why the spinner doesn’t land in the same spot each time it is spun and a 

student says that “it’s luck,” that may be the student’s way of identifying randomness 

as the underlying cause of variation. The other theme of physically induced causes 

included those causes which were deliberate or intentional as opposed to naturally 

occurring.  For example, lining up the spinner in the same spot for each spin and 

trying to apply the same amount of force each time was seen a physically induced 

cause for reduced variation.  Class discussions about the different types of causes of 

variation can lay a good foundation for the notion of variation which we can and  

cannot control, which in turn can help students generate ideas about how to minimize  
 
variation.  
 
 I thought of effects of variation in terms of two distinct but related themes, the  
 
effect of variation on students’ perceptions and the effect of variation on their 

decisions.  For the first of these themes, some students perceived a difference between 

theoretical predictions and real-life outcomes.  Also, many students perceived that 

“Anything Can Happen” in situations involving variation.  The second theme 
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concerned the effect of variation on students’ decisions.  Some students expressed a 

lack of confidence in making decisions, and “I Don’t Know” was a frequent response 

reflecting this theme.  In making inferences, it seems that the two themes for effects of 

variation were often linked.  For example, a student who thinks that “Anything Can 

Happen” may therefore think that there is no way to decide what might happen, and 

thus the student may respond with “I Don’t Know”.   

 The two themes for influencing expectations and variation were quantities in  
 
sampling (i.e., the numbers of candies in the population or in the sample) and also the  
 
numbers of samples.  The first theme applied primarily to the context of drawing 

samples where there was a discrete population, such as samples of candies from the 

Small Jar or the Large Jar.  Several subjects focused on the sheer numbers of candies 

in the jar, and in some cases it seemed that the probabilities of getting different 

outcomes were linked to quantities.  Particularly for subjects who are not strong 

proportional reasoners, there may be a tendency to see the quantity and not the ratio as 

the influential factor in what the sample results are likely to be. For example, if getting 

a sample result of 9 red is unlikely for the Small Jar, then a student may reason that a 

sample result of 90 red is much more unlikely for the Large Jar since there are “so 

many more candies”.   

 The second theme, involving the numbers of samples, was reflected in many  

different ways.  Almost all of my subjects pointed out that more samples would widen 

the overall range, while very few subjects suggested that more samples would also 

tighten the subrange capturing most of the results.  Other ideas included how more 
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samples offered more chances to attain the expected value, and how more samples 

provided a better picture of the underlying distribution. 

 The summary of the evolving framework provided in this chapter captures 

some of the main ideas presented in the previous chapter, where the details and 

examples of the meaning of the framework were provided in greater depth.  It is the 

evolving framework, grounded in the survey and interview data, which addresses the 

first research question.  In considering the conceptions of EPSTs in the contexts of 

sampling, data and graphs, and probability situations, the framework provides 

structure for characterizing thinking about variation.   

 While the aspects and main dimensions within each aspect were hypothesized 

based on the work of other researchers with different subjects (e.g., Pfannkuch & 

Wild, 2001; Watson, 2000b), it remained an open question at the outset of this 

research whether or not EPSTs thought along the lines suggested by the initial 

framework posited at the end of Chapter Three.  In conclusion, this research more 

deeply explored EPSTs’ conceptions about variation, showed how those conceptions 

mapped into the evolving framework, and fleshed out richer detail in the framework 

itself. 

Second Research Question 

My second research question asked “How do EPST’s conceptions of variation 

before an instructional intervention compare to those conceptions after the 

intervention?” This question was informed by the second part of Chapter Four, where 

the Emergent Framework proved useful for looking at individual conceptions of 

variation in considering the six cases’ responses to a common subset of PostInterview 
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questions.  I also used the framework to describe similarities among and differences 

between the six cases at the end of Chapter Four.  

 DS had some reasonable ideas about variation even at  the start of the quarter, 

but in the PreInterview I was surprised that she considered Q3 (“Graph: 30”) as 

showing real data.  By the end of the quarter, along with the other cases, she knew that 

having such a narrow range as  shown in Q3 was unrealistic. Whereas DS had talked 

earlier in the quarter about results not being “perfect”, in the PostInterview she 

consistently talked more about expecting a range of results.  

 GP had not shown in the PreSurvey or the PreInterview that he had a very firm 

idea of what to expect or why, and he was prone to talking about physical causes of 

variation, especially in the way he might be able to draw out candies of a certain color. 

By the end of the quarter, GP had less emphasis on physical causes, and  was giving 

more reasonable expectations, explanations, and interpretations. GP also repeatedly 

referred to experiences in class in his subsequent  justifications.  Finally, GP’s manner 

in considering displays of variation started off with a heavy reliance on gesture, yet in 

the PostInterview he clearly had gained sophistication in his use of terminology to 

discuss  graphs. 

 EM had an initial preoccupation with finding a mathematical formula.  It  

seemed she thought that if she only could learn enough math, she could then make the 

correct predictions. By the end of the quarter, she expressed a more balanced view, 

considering proportional reasoning along with the variation she knew would be 

present.  EM also made references to experiences done in class, and shifted in her 



 

 291

interpretation of variation by commenting on the PostInterview about influence of the 

number of trials on results (comments not made by EM in the PreInterview).  

 JM had a strong sense of proportional reasoning throughout the quarter, but 

was less tied to the idea of seeing average results in the PostInterview. He knew 

extreme results were possible, but developed in his sense of how unlikely those 

extreme values would be to occur.  Also, while I think his appreciation for the physical 

causes of variation never went away, he mentioned these causes less frequently on the 

PostInterview.  The biggest difference for JM, I believe, came from his own 

development of a sense of what really happens in situations where variation is 

inherent.  Recall that JM had put all tens on Q9 (“Sixty Tosses” of the die) in the 

PreInterview.  He never again made choices that exhibited such a lack of variation.  

 SP was emphatic in the PreSurvey and PreInterview that “Anything Can 

Happen” and “You Can Never Know” (other cases reflected these ideas, but none 

more so than SP).  Consequently, SP had difficulty in making decisions about real or 

made-up data in the PreInterview, and she also had a marked lack of commentary 

about the expected value.  She still did not explicitly mention average very much in 

the PostInterview, but her ranges for expectation were narrower.  More importantly, 

she stopped talking about not knowing, or how anything could happen, and started 

giving more reasonable expectations and justifications.  

 Whereas RL was highly motivated by theoretical expectations at the outset of 

MET 2, over the quarter he increased in his appreciation of variation. For example, he 

countered his own inclination to offer only theoretical predictions for his expectations 

by offering ranges in the PostInterview.  He also had a more sophisticated awareness 
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of influencing expectation and variation. In the PreInterview, he had conceded that 

even if individual results varied, the average of results should still match the expected 

value. However, he did move more in PostInterview towards the idea that means, 

medians, and modes also vary. 

 Using the CodeFrames bolstered my own analytic impression that by the end 

of the quarter, the six cases were closer together in terms of their reasoning than they 

were at the start of the quarter. Not only were they closer in agreement, they also each 

exhibited more mature reasoning.  In particular, there were certain naïve features or 

responses for each case which had stood out in the early part of the quarter (on the 

PreSurvey or PreInterview) which were significantly diminished by the PostInterview, 

a change I attribute to the class interventions and also to the interview and survey 

tasks. 

 

 In summary, I saw some convergence when considering all six cases  as they  

moved through the quarter. Expectations were more balanced: Predictions that were 

too narrow became wider, and wide ranges became narrower.  Instead of “Anything  

Can Happen”, extremes were seen as possible but unlikely.  In displaying variation, 

graphs that were harder to decide as real or made-up became easier to adjudge.  There 

was also better use of language in describing graphs, and it seemed that having 

experience with different graph types gave the cases more ways of evaluating and 

comparing graphs. The sense of interpreting variation also seemed more mature 

overall, with all cases having a reasonable view of how more trials influences 

expectation and variation.   
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 One catalyst for changes in subject response was the class interventions, since 

the activities provided opportunities to explore and interact with sampling, data and 

graphs, and probability situations.  Many subjects referred to something they had seen, 

heard, or thought of as a result of class interactions. Another catalyst for some changes 

in subject response was the survey or interview questions themselves.  In other words, 

there was some self-learning that occurred as a direct result of interacting with the 

tasks I had provided in the surveys and interview scripts.  The usefulness of research 

tasks addresses my third research question. 

Third Research Question 

My third research question asked “What tasks are useful for examining EPST’s 

conceptions of variation in the contexts of sampling, data and graphs, and 

probability?” This question was informed by both the activities of the class 

interventions and the survey and interview tasks.  I’ll discuss some main highlights 

from the activities, surveys, and interviews, pointing out what made certain tasks  

useful. 

Class Interventions 
 
 In the context of data and graphs, the “Four Questions” activity was useful for 
 
generating discussion about different measures of center and for bringing the  
 
importance of spread into the conversation.  For instance, as we talked about what was  
 
“typical” for the number of pets in a household, some students wondered about the  
 
difficulty in saying what was typical without a consideration of both center and  
 
spread.  The same tension between centers and spread arose when we discussed data  
 
for the “Body Measurements” activity.  The latter activity also was useful for talking  
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about causes of variation, particularly for the repeated-measurements experiment in  
 
determining Matt’s armspan.  There were also opportunities to discuss the level of  
 
detail and subsequent usefulness of different types of graphs when the class engaged  
 
in the “Four Questions” and “Body Measurements” activities. 
 
 In the contexts of sampling and probability, there were three ways in which all 
 
 the activities (“Known Mixture”, “Unknown Mixture”, “Cereal Boxes”, and the  
 
“River Crossing Game”) were extremely useful for examining conceptions of  
 
variation.  The first way is that the activities all allowed for initial discussion to bring  
 
out what subjects expected and why.  Second, the activities all gave students hands-on  
 
opportunities to see for themselves what kind of variation really results from sampling  
 
and probability situations.  Third, the activities all lent themselves to using computer  
 
simulations to show what happens with extremely large numbers of samples.   
 
 For example, both the “Known Mixture” and the “River Crossing Game” 

involved students making predictions ahead of time for what they thought might 

happen, and many students had some initial idea of what the underlying distribution 

looked like.  As we talked in class about what we might expect, some students 

suggested that the mode would be at the expected value, while others mentioned the 

kind of range they thought might result.  I think it is very important for teacher 

educators to thoroughly discuss predictions ahead of time and not just jump into 

activities to see the actual results.  A huge opportunity will be lost if students are not 

asked ahead of time what they expect, and why, in situations involving variability.  

The pedagogical payoff comes from relating the post-activity discussions back to the 
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ideas prompted in the pre-activity discussion.  Especially when records of initial 

predictions and actual results are posted up in the class for everyone to see, it becomes 

easy for students to reflect on differences and similarities they notice.   

 The main reason I think the physical data gathering is so important for students 

is  because there seems to be some cognitive need to see for themselves what will 

happen by actually doing the experiment with their own hands.  Piaget (1975) wrote 

about how children at the stage of concrete operational thought develop mathematical 

ideas as they engage and reflect upon activity in a tangible environment.  Piaget’s 

ideas about the importance of concrete operations transfers to the adult learner, and 

thus it is important to offer physical experiences in data-gathering not only to children, 

but to the prospective teachers of children.  The experiences were useful for 

convincing EPSTs, for instance, how they really don’t usually get the same result each 

time, and that even if they try to roll the dice the same way they’ll still see variation in 

their results.  Making the graphs of results by hand encouraged the students pay 

attention to different elements of the distribution.  The physical data collection also 

paved the way for understanding what the computer simulations were accomplishing.   

 The usefulness of the computer simulations were apparent from the way that so 

many subjects commented on them afterwards.  They noted how many trials it took to 

get extreme results, and we also called attention to the changes in shape of the 

distribution of cumulative results as we did more and more samples.  I think it is 

critical to do and then discuss the hands-on data gathering before doing any computer 

simulations, because otherwise some students may not fully appreciate what is going 

on with the computer displays.  The MET 2 class slowly aggregated samples by first 
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doing experiments in small groups, then combining results from a few groups, and 

then looking at classwide data.  Whether we were looking at tens or hundreds of 

samples, it was only after we had thoroughly discussed results gained from our hands-

on experiments that we turned to the computer. 

Survey Tasks 

 Most of the survey tasks were either direct copies of or very similar to tasks  

used by other researchers, because those tasks had already proven useful in examining  

conceptions of variation with precollege students.  For example, the “One Sample”, 

“Several Samples”, and “Six Samples” questions for drawing candies from a jar had 

all been used in prior research, and I also applied those questions to flips of a fair coin 

and spinner scenarios.  There were a few tasks that I created or adapted for survey use. 

I’ll highlight some of those tasks from the Data & Graphs PostSurvey, discussing what 

made them useful for examining conceptions of variation held by EPSTs. 

 The rainfall tasks on the Data & Graphs PostSurvey were useful for drawing 

out students’ ideas about causes of variation.  Having data presented in two types of 

graphs was useful for having students attend to different elements of the distribution.  

The rainfall data was presented in both boxplots and bar charts, and I could see how 

the height of bars made a visual impression on some students while the width of the  

box was a focus for some other students.   

 I also phrased a couple of the rainfall questions so that students reacted to an 

argument given by some hypothetical person, such as, “Zain said Columbus was 

rainier because the average monthly rainfall was higher than Portland.”  I found that 

this “React to an Argument” style of question provided a good springboard for 
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students to tell me what they thought.  In fact, when I asked the React-to-an-Argument 

type of questions I tended to get more information than when I asked an open-ended 

question.  For example, when I asked an open-ended question about traffic deaths 

(“How do traffic deaths rates in the South compare with those in the Northeast?”) 

often I just got responses telling me how the South had a higher average.  When I 

asked an open-ended question about which city the students thought was rainier and 

why, I got some very good answers involving different elements of the distributions 

but I also got many more responses that just expressed personal opinions about how 

students felt about rain.  In contrast, when I asked students to react to someone else’s 

argument based on extreme values (such as how Portland had the highest rainfall), I 

read lengthier responses that showed greater detail about what the students were 

thinking about the theme of range of extremes.  The “React to an Argument” style of 

questioning has also been used by other researchers to gather data about how students 

think about probability and statistics (e.g., Jacobs, 1997; Watson et. al., 2002). 

 The question in the Data & Graphs PostSurvey about generating a graph to 

show daily rainfall based on knowing the monthly average was motivated by the 

approach of Mokros & Russel (1995), and was extremely useful for two reasons.  

First, the responses gave me some idea of the students’ graph sense, because although 

I provided two labeled axes and scaled the horizontal axis, I did not specify what kind 

of graph they should use and I did not scale the vertical axis.  I was surprised at the 

variety of graph types the students used, and that some of their graphs were better-

suited to showing daily variation then others.  Second, I was able to see the kind of 

variation they expected in this situation, and in some cases there were big surprises.  
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For example, some graphs showed rain every single day, in varying amounts. Some 

graphs showed no rain for most days, and a couple of graphs showed exactly the same 

amount of rain for each day.  In retrospect, it would have been a great idea to take a 

document camera and show the class some of their classmates’ graphs and ask what 

they thought about the amount of variation shown. 

Interviews 

 The interviews, like the surveys, also contained some tasks that had already 

proven useful in other research (e.g., Watson et. al., 2002; Shaughnessy, Ciancetta, & 

Canada, 2003).  Tasks like “One Sample”, “Several Samples”, and “Six Samples” let 

students make their own predictions and justify their choices.  Tasks like “Compare 

Lists” let students react to given predictions.  In an interview setting, I found that there 

are two key features that make a task particularly useful. One feature is how easily the 

subject is able to get engaged in the task. If a subject readily understands the nature of 

the task, finds it interesting, and is able to talk about it with little prompting, then it is 

easier to gather data from that subject. Another feature is the quality of the data 

gathered. That is, if the subject is offering thoughts germane to the research, then the 

data is useful.  Thus, copious and relevant input from the subjects were two hallmarks 

of useful tasks, and I’ll profile just a few of the more interesting interview tasks that I 

had either created or substantially modified based on questions used in other research. 

 The “MAX Wait-Times” question in the PreInterview was useful for 

highlighting the tension between centers and spread.  Since the data sets had identical 

means and medians some subjects were initially attracted to the claim that there was 

no real difference in wait-times. Other subjects focused right away on the different 
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spreads of the two data sets, and talked about how the average doesn’t give an 

accurate picture of the data.  I had included a React-to-an-Argument type of probe in 

the “MAX Wait-Times” situation, but left the line of questioning more open-ended in 

the similar “Muffin Weights” question on the PostInterview.  Also, the two “Muffin 

Weights” data sets did not have equal averages, and the bakery with more spread had a 

higher mean and mode.  Subjects seemed very willing to discuss the graphs in both 

“MAX Wait-Times” and “Muffin Weights”, and in both questions they volunteered 

some detailed information about what they were thinking in terms of the distribution.  

In “Muffin Weights”, I was able to see how subjects interacted with boxplots versus 

dotplots, since I used both types of graphs in that task. The “MAX Wait-Times” 

question was later modified into a “Movie Wait-Time” question which was then used 

in research with middle and high school students.  

 Several tasks on both interviews had a common Real-versus-Fake dynamic,  

including the “Graph: 30”, “Graph: 300”, and “Likelier Graph?” questions.  I varied 

the specific wording on the different questions, but the basic idea was always the 

same: Did subjects think a graph reflected real or made-up data?  Every time I asked 

any subject a question having a Real-versus-Fake dynamic, the subject seemed to have 

no trouble talking about what he or she was thinking.  That is not to say that all 

subjects were quick to decide, because several subjects wrestled at length even in 

coming to a decision of no confidence.  I thought it was important to include “no 

confidence” when asking students what they thought was most likely, because 

otherwise they may have felt compelled to make a choice between the two other 

choices of “real” or “made-up”.  
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 I combined a Real-versus-Fake dynamic with several React-to-an-Argument 

probes in PostInterview Q12, which I nicknamed “Compare Comments.”  The probes 

specifically asked students to react to comments about different elements of the 

distribution of the graph under question.  My subjects found it very easy to be 

assertive when reacting to given arguments, and their responses typically addressed 

themes of the evolving framework.  For example, the expected value of the problem 

was 25 blacks, and one given argument was how “Keith argued that something was 

wrong with the experiment because no one got exactly 25 out of 50 landing on black.”  

Here was RL’s reaction: 

 RL: Well, I don’t think that –just because somebody, nobody got 25, that  
  seems to me a little bit nit-picky, uh, because you’re not – That’s   
  adherence , that’s too close adherence to this principle of “It’s  
  theoretical, and therefore that’s what I expect to see” And what Keith is  
  not appreciating, in fact, I think a couple people here are overlooking  
  the fact that they spun it 20 [sets of 50 spins each]… But ONLY 20  
  sets. And so, do it 10,000, see, you know? Come back and talk about  
  that. 
 
I noticed a corrective tone in RL’s response as he was telling me what Keith was “not  
 
appreciating”, and RL offered some valid counter-arguments of his own.  I think that 
 
“React-to-an-Argument” questions, while directed more by the researcher and  
 
therefore less open-ended initially, definitely generate useful data and seem to make it  
 
very easy for subjects to say what they think. 
 
 The Real-versus-Fake questions described so far in this section all involved  
 
graphs, and were inspired by questions used in previous research (e.g., Watson et. al.,  
 
2002; Shaughnessy et. al., 2004). However, the first two die-tossing questions in the 

PreInterview did not involve graphs but still had a Real-versus-Fake dynamic.  
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PreInterview Q9 (“One Sample”) and Q10 (“Who Cheated?”) were powerful 

questions because of the cognitive conflict they helped invoke.  The key to the two 

questions’ strength, I believe, lay in the Before-and-After sequencing of the questions. 

That is, in Q9 the subjects were asked to imagine what results might actually occur 

before an experiment was to take place.  In Q10, subjects were presented with results 

that were reported after the experiment had supposedly been done.  Regardless of 

whether a subject had put all tens or not in Q9, every single subject seemed to evaluate 

the entire situation differently in Q10.  It was as if the question itself took on a new 

level of importance once we got to Q10 and I suggested to my subjects that they 

would have to decide if their hypothetical students were cheating or not.  

Limitations of Research 

 There are two limitations regarding this research that I want to mention. One 

concerns the themes within the framework, and the other concerns the class 

environment. 

 The themes of the framework are useful for looking at EPSTs’ conceptions of 

variation, but are not guaranteed to easily characterize all possible responses. One 

example of a type of response that did not easily fit into the framework concerned 

levels of surprise. On the PreInterview, I asked a series of questions based on Truran’s 

(1994) research tasks, asking subjects about a series of outcomes to find out what was 

surprising. At first I had considered adding “Concerning Levels of Surprise” to go 

along with the other themes listed in [1A] for what was expected.  However, in the 

PostInterview, a case used the language of surprise in a way that suggested a  reason 

why expectations were held, and it seemed that “surprising” was linked to possibilities 
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and likelihood.  Thus, it was unclear whether responses involving a sense of surprise 

fit more naturally with what was expected or with why.  Truran’s idea of a series of 

questions leading to a sort of ”surprise threshold” helps reveal what is or is not 

expected, but at the same time the notion of surprise also can offer a form of 

justification. The dilemma is much akin to expecting results to vary because there 

should be variation: The way the students phrase their response and the context of the 

question give clues about what theme best fits their idea.  Thus, some of the themes 

within the framework could use some additional sharpening in definition.   

 There also may be additional conceptions not addressed by the framework.  As 

a first look at EPSTs conceptions of variation, the framework has much to offer, but I 

suggest further possible refinements in the next section. 

 Another possible limitation of the research concerns the class environment.  

The culture of the MET 1 and MET 2 classes were largely defined by the in-class 

activities, group interactions, and spirit of student-driven inquiry. Almost all the 

students who participated in the research had taken MET 1 at the same university 

where the research was conducted. Over half of the students completing the surveys –  

and all of the case studies – had taken the prerequisite course with the same instructor, 

Steve, whose teaching exemplified the class culture earlier described. Thus, my sense 

of the students was that they were experienced in describing their own reasoning, 

communicating how they were thinking both verbally and in writing. However, it is 

not clear what replication of results would be found among other EPSTs at other 

universities,  especially given the considerable variation among teacher preparation 
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programs.  I would expect the conceptions of other EPSTs to  fall within the 

framework, but further study is warranted. 

Implications for Research and Teaching 

 There are three areas for which I recommend future research relating to the  

continued improvement of preservice teacher education about variation. One area  

concerns the refinement and testing of the framework; a second area concerns 

comparing preservice teachers’ conceptions with the conceptions of school students; a 

third area concerns the curriculum for teacher preparation.  

Refinement 

 To further sharpen some of the definitions of the themes within the framework, 

research tasks should be crafted to tease apart finer shades of meaning.  For example, 

in comparing data sets, sometimes students referred to variation as a synonym for 

range, and sometimes variation meant the distribution of data within the range.  It 

became problematic when the students had alternate meanings within the same 

response, and some new tasks or new lines of questioning could be designed to clarify 

these problematic situations. Also, using some of the survey items on a large scale 

with preservice teachers across several universities would accomplish two useful 

purposes.  First, the overall utility of the framework could be tested on a stronger 

quantitative basis than was offered in this research, and one could begin to investigate 

the generalization of the application of the framework.  Second, interactions within the 

framework could be examined with greater clarity.  For instance, are students with 

stronger interpretations likelier to have better expectations? Do students who make 

reasonable comparisons of graphs also produce reasonable graphs themselves? There 
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are many questions suitable to a more quantitative study, given that this research has 

provided a critical first step towards identifying the important aspects of variation and 

what comprises those aspects. 

 

Comparisons Across Age Levels 

 Previous research has looked at or is looking at conceptions of variation held  

by elementary, middle, and high school students.  My research looked at prospective  

teachers of students.  I recommend studies designed to compare the conceptions of 

students and their prospective teachers.  A possible benefit of such a comparison could 

be the design of better curricula for classroom teaching, since such curricula would be 

informed not only by a sense of student conceptions, but also by preservice teachers’ 

conceptions.  

Curriculum Development 

 A study designed specifically as a teaching experiment would be appropriate. 

This research has pointed out relevant aspects to focus upon. This research has also 

laid out some useful interventions to consider.  However, to actually measure 

effectiveness in a classroom setting it would require additional research that aims 

more at the teaching and learning within a class.  Steve is a seasoned MET 2 teacher, 

and Matt and I were experienced in working with class interventions for variation at 

the middle and high school level. Since all three of us had a  hand in the MET 2 

interventions, it is safe to say that the subjects in this research had a fairly unique 

experience.  Regarding the teaching and learning about variation, how do the actions 

and background of the college instructor shape the dialogue and experiences of the 
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preservice teacher?  Research designed along the lines of a teaching experiment could 

address that question, and others such as: What are the most effective ways to 

construct a class intervention about variation? How much computer simulation is 

appropriate, and how should those simulations be designed? There is  much more that 

research can contribute to finding optimal ways to structure courses for preservice 

teachers, especially concerning probability and statistics. 

 This research already provides a number of suggestions for teachers of teachers 

of mathematics. The research implies that it is not sufficient to merely address 

normative measures such as range and standard deviation in order to address 

conceptions of variation. Preservice teachers need to have opportunities to address all 

three aspects: expecting, displaying, and interpreting variation. They need these 

opportunities within different contexts, such as sampling, data and graphs, and 

probability. With students like SP or GP, for example, it would have been easy to 

assume they had an overall weak appreciation for variation at the outset of the course, 

based on some unreasonable expectations or justifications which they provided on the 

PreSurvey and in the PreInterview.  However, because the instruments varied in 

context, I was able to see, in the case of GP for example, that while he had some 

questionable ideas about sampling, he had a natural inclination towards considering 

variation in the context of data and graphs. Also, while his language in discussing 

graphs in the PreInterview was less sophisticated, he made heavy use of gesture to 

convey some very reasonable ideas. By attending to different contexts and ways of 

expressing ideas, a better picture emerges of what preservice teachers can and do 

understand about variation.  
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Concluding Comments 

 Ultimately, it is precisely what EPSTs do understand about variation that sets  

this research apart.  Finding out what learners don’t know about probability and 

statistics is one approach to research, exemplified by earlier studies about intuition and 

misconceptions, but the focus for this research has been on what learners do know.  

My research adds to the literature in the area of statistical education by offering an in-

depth exploration of the conceptions of EPSTs about variation, along with a detailed 

framework for characterizing their conceptions. Finding out the conceptions of  

variation held by EPSTs lays the groundwork for improved instruction at the  college 

level, in turn resulting in better experiences for children at the schools where the 

EPSTs eventually serve.  
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APPENDIX A 
 

Informed Consent 

 

 You are invited to participate in a doctoral research project entitled 
“Elementary Preservice Teachers’ Conceptions of Variation”, being conducted by 
Daniel Canada from the Department of Mathematical Sciences at Portland State 
University.  The researcher hopes to develop a characterization of the knowledge held 
by elementary preservice teachers about this important statistical concept. You were 
selected as a possible participant by virtue of your enrollment in the Math 212 class. 
  
 By giving your consent to take part in this study, you are agreeing to three 
distinct aspects of data gathering. First of all, comments made by you in class which 
the researcher deems pertinent can be transcribed and used as data. Secondly, 
homework which is relevant to the project can be photocopied and used as data.  
Thirdly, you agree to participate in at least one interview which takes place outside of 
the normal class hours. The interview will be scheduled at a mutually convenient time 
and place; it will be videotaped, and will last approximately one hour.  The transcripts 
from this interview can also be used as data. 
 
 You as a prospective teacher will gain a direct benefit from a deeper 
exploration of your own ideas about this key statistical concept; this exploration 
allows you to extend your own learning about variation in the non-evaluative 
environment of the research project.  Moreover, the practice in articulating your 
thinking is especially helpful as you make the transition to your own classroom, and 
invoke similar practices with your own students.  
 
 Potential risks include the possibility that an unauthorized person may view the 
data, or that your actual name may inadvertently become associated with the data. To 
minimize this risk, all written responses, notes, audio and video tapes, and 
transcriptions will be kept confidential, and will be kept locked up in the researcher’s 
office in the Department of Mathematical Science at PSU.  After three years, these 
records will be destroyed.  In writing any results for the study, pseudonyms will be 
used so that your identity cannot be matched with the responses you have provided.  
There is also a risk that having a researcher in the classroom may affect the learning 
environment. To lessen this risk, it will be stressed that this research is descriptive and 
not evaluative in nature. 
 
 Your participation in this study is voluntary and you are completely free to 
withdraw from the study at any time. Your decision to participate or not will not affect 
your relationship with the researcher or with any academic program at PSU in any 
way.  
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 If you have concerns about your participation in this study or your rights as a 
research subject, please contact the Human Subjects Research Review Committee, 
Office of Research and Sponsored Projects, 111 Cramer Hall, Portland State 
University, (503) 725-8182.  If you have any questions about the study itself, please 
contact Daniel Canada, at the Department of Mathematical Sciences, 334 Neuberger 
Hall, Portland State University, (503) 725-3621. 
 
 Your signature indicates that you have read and understand the above 
information and agree to take part in this study.  Please remember that you may 
withdraw your consent at any time without penalty.  Also, by signing, you are not 
waiving any legal claims, rights or remedies.  The researcher has provided you with a 
copy of this form for your records. 
 
 
 
________________________________ _________________ 
Signature of Participant               Date   
 
 
________________________________ _________________ 
Daniel Canada, Researcher   Date 
Department of Mathematical Sciences 
Portland State University 
(503) 725-3621 
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APPENDIX B 
 

Surveys and Interviews 

 

 The surveys and interview scripts are appended in the order that they  
 
were administered: 
 

• PreSurvey    p. 327 
 

• PreInterview    p. 336 
 

• PostSurvey (Data & Graphs)  p. 348 
   

• PostSurvey (Sampling)  p. 352 
 

• PostSurvey (Probability)  p. 355 
 

• PostInterview    p. 357 
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PRESURVEY 
 
 
Mth 212  Survey on Probability and Statistics  Name:   
 
1]   Where & when did you take Math 211? 
 
2]   If you have taken prior math courses in which probability and/or statistics was  
  taught, 
 
  a) When & where did you take those courses ? 
 
 
  b)  How did you feel about the probability and/or statistics at that time? 
 
 
3]  How comfortable do you feel about learning probability and/or statistics now ? 
 
 
 
 
4]   What does the word “random” mean to you ?  
 
 
 
 
 
 Give an example of something that happens in “a “random” way. 
  
 
 
 
 
5] What does the word “variation” mean to you ?   
 
 
 
 
 
 Give an example of something that “varies”. 
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____________________________________________________________________ 
 
This set of questions helps to give a picture of how you think about some problems in 
probability and statistics. Rather than think in terms of a right or wrong answer, just 
write down your best thinking for each situation. Later in the quarter, we’ll explore 
situations like these as a class. 
 
[1] Suppose there is a container with 100 pieces of candy in it. 60 are Red, and 40  
 are  
 Yellow. The candies are all mixed up in the container.  
 
 You reach in and pull out a handful of 10 candies at random. 
 
 (a)  How many red candies do you think you might get?  
  
  Why do you think this? 
 
 
 
 
 (b)  Suppose you do this several times (each time returning the previous  
  handful of 10 candies and remixing the container). Do you think this  
  many reds would come out  every time?    
 
  Why do you think this? 
 
 
 
 
 (c) Suppose six classmates do this experiment (each time returning the  
  previous handful of 10 candies and remixing the container). Write  
  down the number of reds that you think each classmate might get: 
 
 
 
     ______ 
     (Out of 10)   _________ 
         (Out of 10) 
   ______   ______ 
   (Out of 10)   (Out of 10) 
    _________   _________ 

(Out of 10)   (Out of 10) 
 
 
 
 

 
 

 
 
 
 
 
 

Why did you choose those numbers? 
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[2] Suppose 6 people did this experiment – pulled ten candies from the container,  
 wrote down the number of reds, then returned the ten and remixed all the  
 candies. 
 
 What do you think the numbers of reds will most likely go from? 
 
    From a low of  ______ to a high of _______. 
 
 Now suppose 30 people did this experiment. What do you think the numbers of  
 reds will most likely go from? 
 
    From a low of  ______ to a high of _______. 
 
 
 Why do you think this? 
 
 
 
 
 
 
 
[3] At the same container, suppose that 50 people each pulled out handfuls of 10  
 candies, wrote down the number of reds, put the candies back and mixed them  
 up again. Of the 50 people, how many of them do you think would get: 
 
 0   Red ? ____ 
 1   Red ? ____ 
 2   Red ? ____ 
 3   Red ? ____ 
 4   Red ? ____ 
 5   Red ? ____ 
 6   Red ? ____ 
 7   Red ? ____ 
 8   Red ? ____ 
 9   Red ? ____ 
 10 Red ? ____ 
 
 Total    :  50 People 
 
 
 Why do you think the numbers you wrote above are reasonable? 
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[4] Fifty students lined up at the candy container.  Each student pulled a handful of  
 10 candies, wrote on the chalkboard how many reds they had, and then  
 returned the candies and mixed them all up again. 
 

The class decided to draw a graph of their data. Show below what their graph  
might look like: 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
          0      1      2      3      4      5      6      7      8      9      10 
   
     
             How many Reds  
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[5]  Two schools are comparing some classes to see which school is better at  
 spelling. All the classes took identical tests. 
 
     (a) First consider two classes, the YELLOW class and the BROWN class. The  
 scores for the two classes are shown on the two charts below, Each shaded box  
 is one person’s test score. 
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 at the scores of all students in each class, and then decide: 
o classes do equally well on the test, or did one of the classes  

than the other?  Explain how you decided. 



 

     (b) Now consider two more classes, the PINK class and the BLACK class. The  
 scores for the two classes are shown below, and once again each box is one  
 person’s test score. 
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look at the scores of all students in each class, and then decide: 
 two classes do equally well on the test, or did one of the classes  
er than the other?  Explain how you decided. 

1      2      3      4      5      6     7      8      9 
Number Correct 
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[6] The following graphs describe some data collected about Grade 7 students’  
 heights (measured in centimeters) in two different schools: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Which graph shows more variability in students’ heights? 
 
 
 
  Explain why you think this. 
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[7] Consider flipping a fair coin. 
 
     (a) Mark is curious to see how often the coin lands  
 Heads-up, so he flips it 50 times. How many 
 times out of 50 flips do you think the coin might 
 land Heads-up for Mark? 
 
 
 Why do you think this? 
 
 
 
 
     (b) After Mark’s first set of 50 flip, he decides to do a second set of 50 flips. How  
 do you think his results on the second set of 50 flips will compare with the  
 results of his first set? 
 
 
 
 
 
     (c) Mark actually has a lot of time on his hands, so the next day he does 6 sets of  
 50 flips. Write in the numbers for what you think might happen for the number  
 of flips out of 50 the coin would land Heads-up (in each of the 6 sets of 50  
 flips). 

 
 
     ______ 
     (Out of 50)   _________ 
         (Out of 50) 
   ______   ______ 
   (Out of 50)   (Out of 50) 

_________   _________ 
(Out of 50)   (Out of 50) 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Why did you choose those numbers? 
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[8] The two fair spinners shown below are a part of a game, which goes like this: 
  A player spins each spinner once, and wins a prize only if both arrows land on  
 black.  
 
 
 
 
 
 
 
 
      Angela thinks she has a 50-50 chance of winning. Do you agree?    
  
 
           Yes        No 
 Explain your answer. Why do you think this? 
 
 
 
 
 
 
 
 [9] Suppose the game is played with the new spinners shown below. Again, both  
 spinners are spun once, and the arrows must both land on black in order to  
 win. 
 
 
 
 
 
 
 
 
      What do you think the chances of winning this game would be? 
 
 
 
 
 Explain your answer. Why do you think this? 
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PREINTERVIEW 
 
 

First Interview       Date:         Name:    
 
[1] Suppose there is a container with 100 pieces of candy in it. 60 are Red, and 40  
 are Yellow. The candies are all mixed up in the container.  
 
 You reach in and pull out a handful of 10 candies at random. 
 
 (a)  How many red candies do you think you might get?  
  
  Why do you think this? 
 
 
 (b)  Suppose you do this several times (each time returning the previous  
  handful of 10 candies and remixing the container). Do you think this  
  many reds would come out every time?    
 
  Why do you think this? 
 
 
 
 (c) Suppose six classmates do this experiment (each time returning the  
  previous handful of 10 candies and remixing the container). Write  
  down the number of reds that you think each classmate might get: 
 
 
 
     ______ 
     (Out of 10)   _________ 
         (Out of 10) 
   ______       ______ 
   (Out of 10)          (Out of 10) 

 _________  _________ 
 (Out of 10)  (Out of 10) 
 
 
 
 

 
   
 
 
 
 
 
 

 
 
 
 
 
 

Why did you choose those numbers? 
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[2] Here are some examples of what other people have said for the numbers of 
 reds that they think the six classmates would get in each handful.  
 
 i) 7, 9, 7, 6, 8, 7      
 
 ii) 6, 7, 5, 8, 5, 4      
 
 iii) 6, 6, 6, 6, 6, 6 
 
 iv)  2, 5, 4, 3, 6, 4 
 
 v) 3, 10, 9, 2, 1, 5 
 
     (a) Put a check mark next to any of these that you think might be likely. 
  
 
 
     (b) Circle the list that you think best describes what might happen. 
 
 
 
     (c) Why do think the list you chose best describes what might happen? 
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[3]   Matt took his class to the candy container (100 Candies = 60 Red and 40  
 Yellow). Then he left the room. When he came back, the class claimed to have  
 pulled 30 samples each of size 10, with replacement. They showed Matt their  
 data and a graph: 
 
        
 
 
 Number of Reds 
 in 30 Samples of 10 

    30 Pulls of 10  

  
 7       6 5    
 5 7 6                                                                       
 6 5          7                                                                  
 7 6          7                                                                      
 6 6          6                                                                      
 7 5          5                                                                  
 5 6 5     
 6 7 6   
 7 6          6 
 5 7 7   
         
  
  
 
     Which of the following do you think is most likely ? Put a check mark next to  
 it. 
 
  ___ Matt’s class just made up these results 
 
  ___ Those are the actual results of the class samples 
 
  ___ No one can have much confidence if the results are made up or not. 
 
 Explain why you think this is the most likely. 
 
 
 
 
 
 
 
 
 
 
 

      
            

   0   1   2   3   4   5   6   7   8   9   10 

        How Many Reds  (Out of 10) 



 

[4] Jen’s class also visited the candy container (100 Candies = 60 Red and 40  
 Yellow). The class claims to have pulled 300 samples each of size 10, with  
 replacement. They showed Jen this graph: 
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[5]  A new car was being tested to see how well the brakes worked. The test  
  engineer measured how many inches the car took to slow from 40 mph to 0  
  mph; the fewer inches taken, the better the braking power. Twelve trials were  
  run, under the same road conditions and with the same test driver. Here were  
  the results (to the nearest inch): 
 
      Stopping Distance (in.)   
    68  68  70  75 
    75  75  80  80 
    82  85  90  95 
  
 The engineer was then trying to decide how to graph the results. She came up  
 with the following three graphs for representing the data: 
   
  
 
           
     
   
    
 
    Graph 2 
 

                                        X 
   X                            X                    X 
   X      X                    X                    X      X           X                    X                    X 
| 68  |  70  |  72  |  74  |  76  |  78  |  80  |  82  |  84  |  86  |  88  |  90  |  92  |  94  |  96  |   

 
   
 
       
       
       
    
   
 
 
     (a) Do these graphs differ in the way they show the braking power? If so, how? 
   
 
     (b) Do you think one graph shows more variability in the results than the others?   
 Explain. 
   
 
     (c) If the engineer wanted to suggest that the car was fairly consistent in its  
 braking power, which graph would you suggest she use, and why? 
 
 

  
 Graph 1 

                         X 
   X              X        X                           
   X        X       X        X       X       X       X       X 
  68       70     75      80      82     85     90      95 

 Graph 3 

        X    X         
        X    X         
    X    X    X    X     
    X    X    X    X    
60-69 70-79 80-89 90-99 



 

 341

[6] A class of twenty-one 6th-grade students wanted to find out some information 
 about MAX train rides.  Their first goal was to find out the duration of  a ride  
 from Washington Park to Gresham. They all got on the same train, but they sat  
 separately and kept track of the time on their own. Later in class, they were  
 surprised to find that they did not have the same results:  
 
      Duration of Ride ( Min:Sec , to the nearest second)                  
 58: 36   58 :36  58: 40  58: 44  58: 51   
 58: 50  58: 49  58: 50  58 :56  59: 01   
 59: 02  59: 06  59: 11  59: 09  59: 16   
 59 :14  59: 15  59: 19  59: 21  59: 20   
 59: 24 
 
      What are some possible reasons for why the class did not all get the same  
 result? 
 
[7] The class was deciding how to display their data. In Graph 1, they rounded to  
 the nearest 15 seconds. In Graph 2, they rounded to the nearest 5 seconds. 
 

 
Mean    = 59:00    
Median = 59:00          Median  = 59:00 
Mode    = 59:15                    Mode     = 58:50 
 
 
 
 
 

 
 
 
       Duration of Trip                  Duration of Trip 
               (Minutes and Seconds)             (Minutes and Seconds) 

 
     (a) How do these graphs differ in the stories they tell about the duration of the  
 trip? 
 
     (b) Some members of the class argue that the trip was really under 59 minutes,  
 while some argue that it was over 59 minutes. Others claim it was exactly 59  
 minutes. What do you think about the true duration of the trip, and why do you  
 think this? 
 
     (c) Does one graph help you more than the other in making your conclusion? 

 
GRAPH 1 (Rounded to nearest 15 sec.)                GRAPH 2 (Rounded to nearest 5 sec.) 

       Mean     = 59:01 
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[8] The Wait-Time for the MAX is defined as the interval of time which starts 
 when one train leaves and ends when the next train arrives. In other words, the  
 Wait-Time is how long there’s no train at the station.   
 
  A class of twenty students wanted to find out if there was a difference in Wait- 
  Times between Westbound and Eastbound MAX trains. They went and got the  
  following ten Wait-Times for different Westbound trains and ten Wait-Times  
  for different Eastbound trains (rounded to the nearest half-minute): 
 
   Data: (Wait-Times in Minutes) 
 
  Westbound 
   7.0     7.0     7.0     11.5     10.5    
   8.5     8.0   13.0     14.5.    13.0    
 
  Eastbound 
    8.5     9.0     9.0      11.0     11.0           
              9.5     9.0   11.0      10.5     11.5            
 

 
 

 (a)  What can you conclude about the Wait-Times for the two trains? 
 
 (b) One student in class argues that there’s really no difference in the Wait- 
  Times of the two trains, since the averages are the same. Do you agree?   
 
 
 
 

Wait-Times for MAX Trains 
(In Minutes) 

 x                 
 x            x     
 x  x x    x  x   x   x  
 7  8  9  10  11  12  13  14  15

WestBound Train 
 

     x    x         
     x    x         
    x x x  x x x        
 7  8  9  10  11  12  13  14  15

EastBound Train 

Mean    = 10.0 min.    
Median = 10.5 min. 

Mean    = 10.0 min.      
Median = 10.5 min. 
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[9] Consider a regular, fair, six-sided die. Imagine that  
 you  threw the die 60 times.  Fill in the table below to  
 show how many times you think each number might  
 come up. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Why do you think those numbers are reasonable? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number that 
shows on the 
tossed die 
 

How many 
times it might 
come up 

1  

2  

3  

4  

5  

6  

Total  = 60 
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[10] For homework, Mr. Blair asked each student in his class to toss a die 60 times  
 and keep track of how many times each of the 6 sides came up. Below are the  
 results turned in the next day by four students (Riki, for example, reported that  
 Side 1 came up 7 times in 60 tosses). 
 
  

 Riki Lynn Lee Pat 
Side that came up     

1 7 10 10 2 
2 12 11 10 15 
3 6 10 10 10 
4 9 10 10 28 
5 14 9 10 1 
6 12 10 10 4 

 
      Only one of these students actually rolled the die. The other three students just 
 made up their results before class. What do you think is most likely? 
 
 ___i)  Riki really rolled it     
 
 ___ii) Lynn really rolled it 
    
 ___iii) Lee really rolled it 
 
 ___iv) Pat really rolled it 
 
 ___v)  No one can say. Any of the 4 students is equally likely to have really  
  rolled it. 
 
 
 Explain your reasoning. 
 
 
 
 
 
 
 
 
 
 
 
 



 

[11] Look back at Question [9] to see how many “5”s you predicted in 60 tosses.  
 
     (a)  If you did another set of 60 tosses, do you think you would get that many “5”s  
 again? 
 
 Why or why not? 
 
 
 
     (b) If six friends took turns tossing the die 60 times each, write down how many  
 “5”s you think each friend might get in their 60 tosses: 
 
 
 
    ______ 
    (Out of 60)   _________ 
        (Out of 60) 
  ______   ______ 
  (Out of 60)   (Out of 60) 

_________   _________ 
(Out of 60)   (Out of 60) 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
       Why did you choose those numbers?
 345
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[12] The spinner at the right has three regions of 
 equal area: Two of the three regions are White 
 and one of the three regions is Black. 
 
  
 (a) If you spun this 3 times, would you be surprised 
  if you got more Black than White? 
 
 
 (b) If you spun this 12 times, would you be surprised 
  if you got more Black than White? 
 
 
 (c) If you spun this 60 times, would you be surprised if it landed on White 30  
  times? 
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[13] Ron split his class into two groups, and he told each group to conduct the  
 following experiment  twenty times: Spin the spinner 60 times, and write down  
 how many times it landed on Black. So, each group was supposed to do twenty  
 sets of 60 spins. 
 
 Ron went for some coffee, and when he returned he saw these two graphs: 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
    
 
 
 
 
 
 
 
 
     (a) What are some similarities and differences you notice in the two graphs above? 
 
 
     (b) Does one graph or the other look more like what you would have expected?   
 Explain. 
 
 
 
 
 
 
 

GROUP “A”       

GROUP “B” 

  GROUP “B” 

12 14 16 18 20 22 24 26 28 30 32
Black

Sets of Fifty Dot Plot

12 14 16 18 20 22 24 26 28 30
Black

Sets of Fifty Dot Plot

20 Sets of 60 Spins 

  20 Sets of 60 Spins 

Number of Times (Out of 60) 
      It Landed on Black 

Number of Times (Out of 60) 
      It Landed on Black 
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POSTSURVEY (DATA & GRAPHS) 
 
 

Mth 212       Written Reflection: Data & Graphs      Name: __  
 
[1] The following data was taken from a National Weather Service. They kept 
 records of the rainfall in cities to see how much rain fell each month. After 30  
 years, they averaged the amounts of rainfall in each month: This is called the  
 average, or Normal Rainfall for the 30-year period.  
 
 (a) In the bar chart below, the normal monthly rainfall data for both  
  Portland (Oregon) and Columbus (Ohio) are graphed together: 
 

 
    Portland 

    
        Median = 3.20 in.    
 
 
   i) What do you think are some causes for the different patterns of rain in  
  the two cities? 
 
   ii) Adam and Zain are two Math 212 students who were discussing the  
  data. Adam said Portland was rainier because it got the highest amount  
  of rain a month. What do you think Adam is thinking when he says  
 
  this?  
 
 
 

 Columbus 
Mean    = 3.18 in. Mean   = 3.04 in. 

Median = 2.55 in. 

        
          
 
 
 
 
 
 
 
 
 
 
 
 
 

Normal Rainfall (1961-1990)
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    (b) Here are two boxplots that show the same data for the normal monthly rainfall  
 in both Columbus and Portland: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       i) Zain said Columbus was rainier because the average monthly rainfall was  
 higher than Portland. What do you think Zain is thinking when he says this? 
 
       ii) Which city do you think is rainier, and why? 
 
 
     c) In Columbus, the normal monthly rainfall for the month of June is reported as  
 4 inches.  Draw a graph below which shows how many inches of rain  
 Columbus might get for each day in June (assuming that the average rainfall  
 for the entire month is 4 inches). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Columbus
1 2 3 4 5 6 7

Normal Rainfall (1961-1990) Box Plot
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              5              10             15             20             25            30th thth th th th

Portland
1 2 3 4 5 6 7

Normal Rainfall (1961-1990) Box Plot

Day in June 
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[2] The National Safety Council groups the following 25 States plus the District of  
 Columbia into two regions: South and Northeast. The following data and  
 graphs show the number of traffic deaths in a recent year per 100 million  
 vehicle miles driven: 
 

Motor Vehicle Traffic Deaths per 100 Million Vehicle Miles Driven 
 
  South     Northeast 
  Alabama  2.6  Connecticut   1.5 
  Arkansas  2.9  Delaware   2.2 
  Florida   2.7  District of Columbia  1.6 
  Georgia   2.0  Maine    1.8 
  Kentucky  2.6  Maryland   1.9 
  Louisiana  2.5  Massachusetts   1.3 
  Mississippi  3.2  New Hampshire   1.6 
  North Carolina  2.3  New Jersey   1.5 
  Oklahoma  2.0  New York   2.0 
  South Carolina  2.9  Pennsylvania   1.9 
  Tennessee  2.6  Rhode Island   1.3 
  Texas   2.0  Vermont   1.5 
  Virginia  1.8  West Virginia   3.2
    
    
    
    
    
    
    
    
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N
S
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0.5 1.0 1.5 2.0 2.5 3.0 3.5
Deaths

Traffic Deaths Box Plot

N
S

R
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n

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Deaths

Traffic Deaths Dot Plot
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     (a) How do the traffic deaths rates in the South compare with those in the  
 Northeast ? 
 
 
 
 
 
 
 
     (b) What factors do you think might help to explain the difference between the  
 South and the Northeast ? 
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POSTSURVEY (SAMPLING) 

 
 

Mth 212          Written Reflection: Sampling Name:    
 
 [1] Consider the container of candy that holds 100 pieces (60 Red and 40 Yellow). 
 Suppose that 20 people lined up at the container. Each person pulled out a  
 handful of 10 candies at a time , wrote down the number of reds, put the  
 candies back and mixed them up again. They made a boxplot of their results,  
 and the graph looked like this: 
 
 
 

edian      = 6 
inimum   = 3 
aximum  = 9 

 
 
 
 
 
 
     a) When we look at the boxplot, we only get a bit of information about the entire  
 data set. Write down what you think all 20 results might have been (for the  
 number of red in each handful of ten): 
 
 ____ ____ ____ ____ ____  ____ ____ ____ ____ ____ 
 
 ____ ____ ____ ____ ____  ____ ____ ____ ____ ____ 
  
 
 
     b) Mike was surprised that nobody got 0 or 1 Red candy in their handful.  He  
 decides that he’s going to try it with more than 20 people. 
  
      How many people do you think Mike should have do this so that at least one  
 person gets 0 or 1 Red candy in their handful ? 
 
  
 How did you decide on that answer? 
   
 
 
 

        M
        M
        M

HowManyReds
3 4 5 6 7 8 9 10

TwentyPulls Box Plot
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[2] Now suppose there is a LARGER container with 1000 pieces of candy in it.  
 600 are Red, 400 are Yellow. The candies are all mixed up in the container.  
 
 You reach in and pull out a handful of 100 candies at random. 
 
 (a)  How many red candies do you think you will get?  
 
 
 (b)  Suppose you do this several times (each time returning the previous  
  handful of 100 candies and remixing the container). Do you think this  
  many reds would  
  come out every time?    
 
   
 
  Why do you think this? 
 
 
 
 
 
 (c) Suppose six classmates do this experiment (each time returning the  
  previous handful of 100 candies and remixing the container). Write  
  down the number of reds that you think each classmate obtained: 
 
 
    _______ 
    (Out of 100)   __________ 
        (Out of 100) 
  _______   _______ 
  (Out of 100)   (Out of 100)     
    __________   __________ 

(Out of 100)   (Out of 100) 
 
 
 
 

 
   
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Why did you choose those numbers? 
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[3] Suppose 30 people did this experiment – pulled one hundred, candies from the 
  LARGE container (600 Red and 400 Yellow), wrote down the number of reds,  
 then returned the hundred and remixed all the candies. 
 
 What do you think the numbers of reds will most likely go from? 
 
  From a low of  ______ (out of 100) to a high of _______ (out of 100). 
 
 Now suppose 300 people did this experiment. What do you think the numbers  
 of reds will most likely go from? 
 
  From a low of  ______  (out of 100) to a high of _______ (out of 100). 
 
 
 Why do you think this? 
 
 
[4] Suppose that 50 people each pulled out 100 candies from the LARGE  
 container (600 Red and 400 Yellow), wrote down the number of reds they  
 pulled, put the candies back and mixed them up again. Of  the 50 people, how  
 many of them do you think would get: 
 
  0 -10   Red ? ____ 
 11-20   Red ? ____ 
 21-30   Red ? ____ 
 31-40   Red ? ____ 
 41-50   Red ? ____ 
 51-60   Red ? ____ 
 61-70   Red ? ____ 
 71-80   Red ? ____ 
 81-90   Red ? ____ 
 91-100 Red ? ____ 
 
 Total       :      50 People 
 
 Why do you think the numbers you wrote above are reasonable? 
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POSTSURVEY (PROBABILITY) 
 

 
Mth 212       Written Reflection: Probability      Name:  _______ 
 
[1] Consider the spinner on the right: 
 
     (a) Matt is curious to see how often the 
 spinner lands on black, so he spins it  
 50 times.  How many times (out of 50 
 tries) do you think the arrow might land  
 black? 
 
 
 Why do you think this? 
 
 
 
     (b) After Matt’s first set of 50 spins, he decides to do a second set of 50 spins.  
 How do you think his results on the second set of 50 spins will compare with  
 the results of his first set? 
 
 
     (c) Matt actually has a lot of time on his hands, so the next day he does 6 sets of  
 50 spins. Write a list that would describe what you think might happen for the  
 number of spins out of 50 the spinner would land on black in each of the 6 sets  
 of 50 spins. 
 
 
 
    ______ 
    (Out of 50)   _________ 
        (Out of 50) 
  ______   ______ 
  (Out of 50)   (Out of 50) 

_________   _________ 
(Out of 50)   (Out of 50) 
 
 
 
 
 

  
 
 
 
 

 
 

 
 
 
 
 
 

Why did you choose those numbers? 
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[2] Suppose 30 students did this experiment – Each student 
 spun the spinner 50 times and wrote down how many tim
 (out of 50 tries) the arrow landed on black. 
 
 
 
      What do you think the students’ numbers (of times the arrow  
 lands on black) will most likely go from? 
 
   From a low of  ______ to a high of _______. 
 
 Now suppose 300 students did this experiment. What do you think the  
 numbers (of times the arrow lands on black) will most likely go from? 
 
   From a low of  ______ to a high of _______. 
 
 Why do you think this? 
 
 
[3] Forty students lined up at the spinner. Each student spun it 50 times and wrote  
 down how many times (out of 50 tries) the arrow landed on the shaded part. 
 
 At the end of class, they decided to make a graph of their data. Show below  
 what their graph might look like: 
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Number of Times (Out of 50) Spinner Landed on Black 
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POSTINTERVIEW 
 
 

Second Interview        Date:            Name:                                           
 
 
[1] Suppose there is a large container with 1000 pieces of candy in it. 600 are Red,  

400 are Yellow. The candies are all mixed up in the container.  
 
 You reach in and pull out a handful of 100 candies at random. 
 
 (a)  How many red candies do you think you will get?  
 
 
 (b)  Suppose you do this several times (each time returning the previous 
   handful of  100 candies and remixing the container). Do you think this  
  many reds would come out every time?    
 
 
  Why do you think this? 
 
 
 (c) Suppose six classmates do this experiment (each time returning the  
  previous handful of 100 candies and remixing the container). Write  
  down the number of reds that you think each classmate obtained: 
 
 
 
 
    _______ 
    (Out of 100)   __________ 
        (Out of 100) 
   _______  _______ 
   (Out of 100)  (Out of 100) 

          __________   __________ 
          (Out of 100)   (Out of 100) 
 
 
 
 

 
   
 
 
 
 
 
 

 
 
 
 
 
 

Why did you choose those numbers? 
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[2]  Here are some examples of what other people have said for the numbers of  
 reds that they think the six classmates would get in each handful. Put a check  
 mark next to any of these that you think might be likely: 
 
 i) 72, 91, 74, 63, 81, 78      
 
 ii)  61, 73, 56, 69, 59, 48      
 
 iii)  60, 60, 60, 60, 60, 60 
 
 iv)  53, 41, 34, 60, 46, 52 
 
 v) 61, 66, 62, 62, 60, 59 
 
 vi) 30, 10, 90, 20, 60, 50 
 
 
 
     (a) Put a check mark next to any of these that you think might be likely. 
  
 
 
     (b) Circle the list that you think best describes what might happen. 
 
 
 
     (c) Why do think the list you chose best describes what might happen? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

[3]   Craig took his class to a large candy container (1000 Candies = 600 Red and 
 400 Yellow).  Then he left the room. When he came back, the class claimed to  
 have pulled 30 samples each of size 100, with replacement. They showed  
 Craig their data and a graph: 
 
 Number of Reds in 30 Samples of Size 100 
 53 54 54 54 56 56 
 56 57 57 58 59 59 
 60 60 60 60 60 61 
 61 61 61 62 62 62 
 63 65 67 67 68 69 
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[4] Marj also took her class to a large container (1000 Candies = 600 Red and 400  
 Yellow). Then she left the room. When she came back, the class claimed to  
 have pulled 300 samples each of size 100, with replacement. They showed  
 Marj this graph: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     (a) Which of the following do you think is most likely ? Put a check mark next to  
 it. 
 
  ___ Marj’s class just made up these results 
 
  ___ Those are the actual results of the class samples 
 
  ___ No one can have much confidence if the results are made up or not. 
 
 Explain why you think this is the most likely. 
 
 
 
 
 
     (b) How does the shape of the graph for Marj’s class compare to the shape of the  
 graph for Craig’s class? 
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[5] On a day of planned absence from school, Keith left these instructions for his  
 two classes: 

• He told the forty students in “Class A” to go to the SMALL container 
 (100 Candies = 60 Red and 40 Yellow). They were each supposed to 
 draw small handfuls of 10 candies (with replacement after each draw). 
• He told the forty students in “Class B” to go to the LARGE container 
 (1000 Candies = 600 Red and 400 Yellow). They were each supposed  
 to draw small handfuls of 100 candies (with replacement after each  
 draw). 
When Keith came back the next day, he saw these graphs and sets of data for 
the two classes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keith suspects that one of the two classes just made up the data and didn’t 
really carry out the experiment. What do you think? That is, based on the two 
graphs shown above, do think one graph is likelier than the other to reflect 
made-up data ? 
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[6] A class of twenty 6th-grade students wanted to find out the muffins weighed  
 from some local bakeries. Their first goal was to see how good their  
 measurement skills were, so they decided to find out the weight of a single  
 muffin from the East End Bakery. They purchased one muffin, and took turns  
 weighing it.  They were surprised to find that they did not have the same  
 results:  
 
   Weight of One Muffin (To Nearest 1/100 of a Gram)  
  108.23  108.24  108.51  108.75  108.74  
  108.98  109.24  109.49  109.76  109.98  
  110.02  110.20  110.50  110.52  110.53  
  110.75  110.76  110.78  110.74  111.00 
 
 What are some possible reasons for why the class did not all get the  
 same result? 
 
[7] The class was deciding how to display their data. In Graph 1, they rounded to  
 the nearest whole gram. In Graph 2, they rounded to the nearest ¼ - gram. 
 

 (Rounded to nearest whole-gram.)              
 
 Mean    = 110 g    
 Median = 110 g         Median  = 110.00 g 
 Mode    = 111 g                Mode     = 110.75 g 
 
 
 
 
 
 
 

 
 
     
             Weight of Muffin           Weight of Muffin 
                (In Grams)                 (In Grams) 
 
     (a)  How do these graphs differ in the stories they tell about the weight of the  
 muffin ? 
 
     (b) Some members of the class argue that the muffin was really under 110 grams,  
 while some argue that it was over 110 grams. Others claim it was exactly 110  
 grams. What do you think  about the true weight of the muffin, and why do  
 you think this? 

 
     (c) Does one graph help you more than the other in making your conclusion? 

 GRAPH 1          GRAPH 2 
     (Rounded to nearest quarter-gram) 

      Mean     = 109.25 g 
 
    

 

10
8.

25
10

8.
50

10
8.

75
10

9.
00

10
9.

25
10

9.
50

10
9.

75
11

0.
00

11
0.

25
11

0.
50

10
9.

75

10
8 

11
1 

10
8.

00

11
1.

00

10
9 

11
0 

             



 

 363

[8] A different class of 35 students wanted to know how much a “Grande Muffin”  
 from the West End Bakery weighed..  They decided that each student should  
 buy one “Grande Muffin” at different times during the week, and weigh the  
 muffins before eating them.  
 
 They recorded their  35 muffin weights (rounded to the nearest half-gram, see  
 below), and summarized the results with a boxplot and a histogram: 
 
 Data: (Weight of Muffin) 
 109.5 109.5 110.0 111.0 111.5   
 112.0 112.0 112.5 112.5 112.5    
 113.0 113.0 113.0 113.0 113.0   
 113.0 113.0 113.5 114.0 114.0   
 114.5 114.5 114.5 114.5 115.0   
 115.0 115.0 115.5 115.5 116.5 
 117.0 117.0 117.0 117.5 118.0 
           
         
          . 
 

 
     a) Suppose you bought a “Grande Muffin” from the West End Bakery. How  
 much do you think your muffin would weigh? Explain your reasoning. 
 
     b) What are some similarities and differences in the way these two graphs present  
 the data? 
 
     c) Do you think one graph tells you more about the variation in the data than the 
 the other graph? Explain your thinking. 
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 Histogram: (35 Muffins)  Boxplot: (35 Muffins) 

Mean        = 113.79  g 
Mode        = 113.00  g 
Median     = 113.50  g 
Minimum  = 109.50  g 
Maximum = 118.00  g 
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[9] The MathTeam must choose a new bakery to supply them with muffins. The  
 MathTeam wants muffins that are usually at least 110 grams in weight.  
 
 So, the MathTeam samples twelve muffins from the West End Bakery and  
 twelve muffins from the East Side Bakery. The weight of the muffins from the  
 different bakeries were as follows: 
 

 
 
 

 
 
   A Boxplot and Dotplot were used to portray the data: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     i) Do you think that one bakery would better meet the needs of the MathTeam  
 over the other bakery?  Explain your thinking. 
     ii) Is one graph or the other more helpful in showing the differences between the  
 two bakeries?  Explain your thinking. 
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  West: 93  102 102 108  Mean = 110.25 
  111 111 114 114  Median= 112.50 
  114 117 117 120  Mode = 114.00 

  East : 88 91 91 95  Mean  = 110.75 
   95 99 104 104  Median= 101.50 

  136 142 142 142  Mode = 142.00 
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[10] Consider the spinner on the right: 
 
     a) Matt is curious to see how often the 
 spinner lands on black, so he spins it  
 50 times.  How many times (out of 50 
 tries) do you think the arrow might land  
 black? 
 
 
 Why do you think this? 
 
 
 
 
     b) After Matt’s first set of 50 spins, he decides to do a second set of 50 spins.  
 How do you think his results on the second set of 50 spins will compare with  
 the results of his first set? 
 
 
 
     c) Matt actually has a lot of time on his hands, so the next day he does 6 sets of  
 50 spins.  Write a list that would describe what you think might happen for the  
 number of spins out of 50 the spinner would land on the shaded part in each of  
 the 6 sets of 50 spins. 
 
 
 
    ______ 
    (Out of 50)   _________ 
        (Out of 50) 
  ______   ______ 
  (Out of 50)   (Out of 50) 

_________   _________ 
(Out of 50)   (Out of 50) 
 
 
 
 

  
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

Why did you choose those numbers? 
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[11] Here are some examples of what other people have said  
 for the number of times (out of 50 spins) the arrows would  
 land on black in each of the 6 sets of 50 spins. Put a check 
 mark next to any of these that you think might be likely: 
  
     i) 38, 43, 36, 26, 41, 33 
 
     ii)    26, 32, 22, 29, 24, 19 
 
     iii) 25, 25, 25, 25, 25, 25 
 
     iv)   15, 19, 11, 25, 21, 23 
 
     v)    24, 25, 26, 25, 24, 26 
 
     vi)   30, 10, 45, 20, 25, 35 
 
 
 
     (a) Put a check mark next to any of these that you think might be likely. 
  
 
 
     (b) Circle the list that you think best describes what might happen. 
 
 
 
     (c) Why do think the list you chose best describes what might happen? 
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[12] Twenty students lined up at the spinner. Each student spun it 50 times and  
 wrote down how many times (out of 50 tries) the arrow landed  on the shaded  
 part. At the end of class, they decided to make graphs of their data. Their  
 boxplot and dot plot looked like this: 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     * Keith argued that something was wrong with the experiment because no one 
 got exactly 25 out of 50 spins landing on black. 
     * Karen argued that, since the mode (and median) was 28 out of 50 spins landing  
 on black, something was wrong with the spinner. 
     * Jeanette argued that the maximum of 34 out of 50 spins landing on black  
 would not have happened unless something was wrong with the spinner.  
     * Marjorie argued there was nothing wrong with the spinner, since she had  
 expected the results to look like this. 
 
 
     (a) What do you think about each person’s argument? 
 
  
     (b) Is there a different argument that you would make?  
 
 Explain. 
 
 

16 18 20 22 24 26 28 30 32 34 36
Black

Sets of Fifty Box Plot20 Sets of Fifty Spins 

How Many Times (Out of 50) It Was Black 

16 18 20 22 24 26 28 30 32 34 36
Black

Sets of Fifty Dot Plot

How Many Times (Out of 50) It Was Black 

20 Sets of Fifty Spins 
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[13] On a day of sick leave, Mr. Shaw left instructions  
 for Class A to conduct 30 sets of 50 spins. For each 
 set of 50 spins, they were supposed to record how 
 many times (out of 50) the spinner landed on the 
 shaded part. Then they had to graph the results of 
 the 30 sets. He left these same instructions for 
 another of his classes, Class B. 
 
 When he came back the next day, he saw these two graphs, showing the results 
 of 30 sets of 50 spins for Class A and Class B: 
 
 

 
 
 
 
 
 
 

                30                 35                40      
 

  Number of Times (Out of 50) Spinner Landed on Black 
 

 
 
 
 
 
 
 

 
 

 
 (a) How would you describe the shape of the graph for Class A? 
 (b) How would you describe the shape of the graph for Class B? 
 (c) Mr. Shaw suspects that one of the two classes did not really do 30 sets  
  of 50 spins, but instead just made up the data. Based on the results  
  shown in the two graphs, do you think one class or the other is likelier  
  to have simply made up the data? 

 
Explain why you think this. 

 
 

     CLASS A 

      
             10                 15                20                25 

     CLASS B 

      
             10                 15                20                25                30                 35                40      

   Number of Times (Out of 50) Spinner Landed on Black 
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APPENDIX C 
 

Class Interventions 
   
 
 

Class Intervention #1: Data & Graphs 
 
 In the fifth week of the quarter, Steve left the topic of geometry and entered the 
topics of statistics and probability. Matt and I also began attending class, and we set up 
our audiovisual equipment on a table in the back of the room, leaving the class with 
seven table groups’ worth of students instead of the previous maximum of eight.  
Steve’s section had an enrollment of 30, so after Matt and I began attending the groups 
at the remaining seven tables had four or five students in each group.  I was in 
attendance for eight days (spanning weeks 5 through 8), and some of the main 
activities 
 
 The contexts of data and graphs, sampling, and probability shared considerable 
overlap, and in fact Steve began with a class discussion of each of the terms which he 
had written on the board: Data, statistics, and probability. I have identified for each 
intervention a context which I thought had a more unique focus, and the dominant 
context in which Steve first led the class was data and graphs. The two activities 
comprising the Class Intervention for the context of data and graphs were called “Four 
Questions” and “Body Measurements,” and are discussed next.  It is important to 
remember that the purpose in sharing the details of these class interventions is to 
create a picture of the opportunities given to the subjects for exploring variation. Shifts 
in thinking from the pre- to post-instruments may indeed be attributable to the 
interventions, but this research does not set out to prove a treatment-and-effect 
dynamic.  However, the environment for learning is certainly important to document, 
as it does offer clues as to how conceptions may be formed and influenced.   
 
 The “Four Questions” activity, as a part of the first intervention, was chosen 
because for two reasons. One reason is because Steve and I had each used versions of 
the activity with other Math 212 classes, and were therefore experienced in how it 
went and what it offered.  The second reason is because it offered a good opportunity 
to discuss both average and spread in data sets.  Steve therefore started the class 
exploration of statistics in the fifth week by having the entire class gather data from 
one another in response to four questions: 
 
 How many pets do you have?   
 How many years have you lived in Portland (to nearest half-year) ? 
 How many people are in your household? 
 How much change (in coins) do you have today? 
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 Different groups were in charge of graphing the collected data for an assigned 
question in any way they wanted. Because there were more groups than questions, 
some questions were duplicated by different groups. However, being a very open-
ended activity, the same question ended up being graphed by different groups in 
different ways.  The graphs were all put up on poster paper in front of the room, and 
comparisons were made between the different types of graphs.  An example of an 
actual graph for the number of pets of shown below in Figure C1: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C1 – How Many Pets? 
 
As an example of how, for example, the contexts of sampling and data and graphs 
could overlap, here is an example of a comment volunteered by one of the six cases, 
SP, speaking on behalf of her group about a graph showing the number of people in a 
household: 
 
 SP: The most common [number] was two…No household contained  
  more than five, and that surprised us. So we thought, “Why is  
  that?” And then we were thinking that this class is probably not  
  representative of the population as a whole, because of age,  
  education level, academic status… 
 
The idea of representativeness clearly came through from other groups also. 
 
 Having done the activity with different Math 212 classes, the variety of types 
of graphs the students came up with on their own was greater than I’d seen with other 
classes. Steve’s section had come up with pie and bar charts, histograms, pictographs, 

     Figure 1 
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and line and dot plots.  A discussion ensued about the different ways that data could be 
presented, and also about the level of detail provided by each type of graph. One line 
of questioning that Steve and I prompted was the idea of what would be a “typical” 
value for a Math 212 student or for the class. For instance, the number of years living 
in Portland ranged from less than one year to over 40 years (see Figure 2). We could 
find an average, but in what sense would that value be  typical?  
 

Figure C2 – Years Living in Portland 
 
Figure C2 represents a computer-generated version of one kind of graph the class had 
in the front of the room for discussion purposes.  Another table used  a pie chart for 
displaying the data for number of years in Portland.  The ideas that  Steve was able to  
draw out or introduce included the definitions of mean,   median, and mode,  and how 
those measures appealed to a sense of  average. He also highlighted the term “outlier” 
for the maximal value. The  class picked up on how a measure like the mean doesn’t 
even have to be  an actual data point, as in Figure C2, where the mean is 11 years.  
The class expressed some dissatisfaction in claiming, for instance, that the typical 
student from Steve’s section had lived in Portland for 11 years, when (a) No one 
actually reported the value of 11 years, and (b) More responses seemed to be under 11 
years  as opposed to over 11 years (the median in Figure 2 is in fact 5.5 years).  
  
 The  main point is that the tension between centers and spread of data  emerged 
as  theme of discussion even from the very first day of doing   statistics.  Steve  then 
went on in the next class session to  investigate a model for  obtaining the mean by 
balancing out stacks of tiles,  and he also worked with the class to create and use 
boxplots. Particular attention was paid in the class discussions to what kind of 
information boxplots showed and what kind of detail they obscured. 
 
 The second activity in the class intervention focusing on the context of  data 
and graphs was “Body Measurements”, which was also selected for the reason that it 
was a well-rehearsed activity for Steve and me. More importantly, a similar activity 
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was to be used for the NSF-sponsored project (mentioned earlier) that looked at 
conceptions of variation in middle and high school classes.  Having been a part of that 
project, Matt and I had agreed that the activity was useful for prompting thinking 
about variation. In particular, causes of variation in a repeated-measurement scenario 
get explored in Body Measurements, as do issues of confidence in situations involving 
measurement. 
 
 The introduction to Body Measurements came towards the end of the first class 
session of week 6, with about 30 minutes left in class. By way of introduction, we 
discussed scenarios that we’d already seen in class whereby the data varied. For 
example, the data in response to the four questions shared earlier had varied. We also 
listed things we thought would not vary, such as the time class started each day, or the 
amount it costs to park on the street for an hour during classtime. I offered the idea 
that some of our body measurements – such as armspan or head circumference – 
would not vary during a short interval of time.  Thus, the task was given to gather 
several sets of data: First, everyone in class was going to measure Matt’s armspan. 
Second, everyone had a “personal data sheet” which required their own armspan, 
height, handspan, head circumference, and pulse rate per minute. The only directions 
given were that pulse had to be counted out for a full minute, not some shorter interval 
and then multiplied by an appropriate factor. 
 
 What happened next mirrored in many ways what Matt and I saw later in the 
middle and high school classes. Armed with meter sticks and tape measures, the Math 
212 students did find partners to help gather their own personal data, and in many 
cases the measurements were carried out very casually. For example, head 
circumferences were measured above the ears for some people and around the ears for 
others. Handspans included a natural span (meaning the subject just opened a hand as 
far as it would naturally go) or a forced span (meaning that the subject found some 
way to open their hand even farther, such as pushing the open hand against a table). 
What was really interesting was the measuring of Matt’s armspan. Since none of the 
measuring tapes or meter sticks would singularly cover the armspan, subjects were 
forced to find a way of compensating.  
 
 The typical way of measuring was to start at one side and measure across 
Matt’s back until, for instance, the measuring tape ended. Then subjects would hold a 
finger at the ending spot, or even affix their gaze to the ending spot, and then start a 
new measurement from that spot to the other side.  For the twenty-seven students that 
we had in attendance that day, the time needed to gather the measurements was 
sufficiently lengthy to make Matt’s outstretched arms sag after awhile. Eventually he 
would just put up one arm at a time as needed.  There were so many sources of error in 
just the 15 minutes of data gathering that it was not possible to list them all, but it is 
interesting that many of the same issues arose later when Matt and I watched the 
activity done in the middle and high schools.  I collected all the personal data sheets, 
which also had each subject’s measurement of Matt’s armspan, and then class ended 
for the day. 
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 Because the students had already practiced making different kinds of graphs in 
class, I decided to type up the class results and distribute sheets of the data and some 
graphs during the next class session. The main part of the class discussion was on 
interpreting the graphs. For example, the graph for Matt’s Armspan is shown in Figure 
C3 below. Questions that we asked of the students included: Why are the 
measurements different? What can you conclude about Matt’s armspan? How 
confident are you about Matt’s true armspan?  Several comments emerged to show 
that students knew many causes of variation in the repeated-measurements situation.  
As to conclusions about Matt’s true armspan, there were different ideas expressed with 
different degrees of confidence. For example, the whole class seemed very confident 
that the true measurement was captured within the range, and some members felt that 
the mean (about 76.5 cm) was the true value. Other students liked the mode (which 
was also the median value of 76 cm) because they felt that most students must have 
done the measurement correctly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C3 – Matt’s Armspan 
 

A big idea to come out of the discussion of Matt’s armspan was that it was harder to 
identify a single value as being true or “accurate”, but it was easier to talk about 
intervals of values where the true value might lie.  Then in talking about the armspans 
for the whole class, again there was a similar discussion as we had for the “Four 
Questions” about what was a typical measurement for the class.  Only a couple of 
students made a connection between the variation shown for a single measurement 
(Matt’s armspan) and what that variation  implied about the accuracy of the classwide 
measurements.  The comment that came out in class were to the effect that, since 
Matt’s armspan was  “fuzzy” (meaning hard to pin down with precision based on the 
data), so too  should each of the classwide measurements be “fuzzy” as well. 
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Class Intervention #2: Sampling 
 

 In the seventh week of class, we spent most of both class sessions doing two 
activities that comprised an intervention focused on the context of sampling. The two 
activities, “Known Mixture” and “Unknown Mixture,” were selected because Matt 
and I had participated in the activities at six other schools as a part of the NSF-
sponsored project mentioned previously. We had seen how effective the activities 
were in drawing attention to variation, and decided to follow the same essential plan 
for carrying out the activities as had been enacted in the middle and high schools. The 
sampling activities had evolved in the NSF project through meetings with classroom 
teachers and university researchers with an interest in promoting thinking about 
variation. Steve had done similar activities in previous Math 212 classes. 
 
 For the Known Mixture, we started with a general discussion of what were 
samples, who uses samples, and what samples were good for. Then the following 
scenario was given as a part of a handout (see Figure C4): 
 
 

Scenario for Known Mixture Activity 

 The band at Johnson Middle School has 100 members, 70 females 
 and 30 males. To plan this year’s field trip, the band wants to put  
 together a committee of 10 band members. To be fair, they decide to 
 choose the committee members by putting the names of all the band 
 members in a hat and then they randomly draw out 10 names 

    

 
 
 
 
 
 

Figure C4 – Known Mixture Activity 
 
Individually, the Math 212 students considered how many females they might get in a 
single draw of ten names (referred to a one sample). Then they wrote  down what they 
thought they might get in six samples, and finally they made predictions for thirty 
samples. It was made clear that multiple samples were done with replacement.  After 
making the above predictions individually, the students talked within their groups, 
coming to a group consensus about what they expected for 30 samples, and then they 
brought their numbers up to the overhead. I wrote all seven groups’ numbers down, 
and they are shown in  Table C1 on the next page. 
 
 In discussing similarities and differences in what the groups had predicted, 
students noted that all groups had highest numbers of females between 6 and 8, and 
the mode for almost all groups was at 7 (which corresponded to the proportion 7/10 = 
70/100). Also, all groups had at least some results at 10. Three groups had no results 
lower than 3 females in a sample of size 10, while three groups predicted at least one 
sample having 1 female.  After discussing the predictions, the directions for actually 
drawing 30 samples of size 10 were given. 
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 Plastic jars with 100 chips (30 green and 70 yellow) had been prepared, 
with the yellow chips corresponding to the females in the band committee scenario. 
Students were instructed, in their groups, to draw 30 handfuls (each of size 10) , 
recording the numbers of yellows in each handful before returning the chips to the jar 
for remixing. The subsequent sampling showed many of the same lackadaisical 
mixing techniques as had been observed in the middle and high schools. For example, 
some students would return their chips to the jar and then just give a weak side-to-side 
shake. Especially because the chips were flat and smooth, a sideways motion is not an 
optimum strategy for mixing. Other students would use the stirring technique, putting 
their hand in for a brief stir before drawing out their new sample. Another method was 
the up-and-down shake of the jar, which generally had to be tempered by the fact that 
the jars had no tops. Too vigorous of a shaking sometimes resulted in chips getting 
ejected from the jars. 
 
 Eventually, twin posters went up for each group: The top posted held the graph 
of that groups’ prediction, and the bottom poster held the actual results. We were able 
to get all seven pairs of posters up on the boards in the front of the room. Figure C5 
shows two of the posters. 
 
 In discussing the posters, the initial questions were “What do you  notice?” and 
“What was surprising?”.  Some of the comments that followed had to do with the 
centers, spreads, and shapes of the graphs. For example, in comparing from predicted 
to actual, while almost all of the modes for the predicted graphs were at 7, only three 
of the actual graphs had modes at 7 (modes for the groups’ actual graphs were 6, 6, 7, 
7, 7, 8, 8 ). All of the actual data is shown below in Table C2. 
 
 
 
 
 
 

Table C1. Predicted Results for 30 Samples of Size 10 

Number 
of Females 

0 
F 

1 
F 

2 
F 

3 
F 

4 
F 

5 
F 

6 
F 

7 
F 

8 
F 

9 
F 

10 
F 

Group #1 0 0 0 1 1 1 5 10 5 5 2 

Group #2 0 0 0 1 2 3 6 8 6 3 1 
Group #3 0 0 1 1 3 2 5 7 6 3 2 

Group #4 0 1 1 2 3 4 5 6 5 2 1 
Group #5 0 1 1 2 3 3 5 6 5 3 1 

Group #6 0 0 0 1 2 4 6 6 5 3 3 
Group #7 0 1 1 1 2 2 5 10 5 2 1 
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Figure C5 – Posters for Known Mixture 
 
Students brought up how the predicted graphs were more spread out  than the actual 
graphs, and also how  the shapes of the predicted graphs all  looked  somewhat 
similar, but the actual graphs had shapes that were  noticeably different from one 
another. 
 

Table C2. Actual Results for 30 Samples of Size 10 

  
 
 
 
 
 
 

Figure 4 

Number 
of Yellows 

0 
Y 

1 
Y 

2 
Y 

3 
Y 

4 
Y 

5 
Y 

6 
Y 

7 
Y 

8 
Y 

9 
Y 

10 
Y 

Group #1 0 0 0 0 1 3 8 5 6 7 0 

Group #2 0 0 0 1 3 3 6 6 7 3 1 
Group #3 0 0 0 0 2 4 4 7 6 6 2 

Group #4 0 0 0 0 3 2 9 7 5 3 1 
Group #5 0 0 0 0 0 4 7 9 6 2 2 

Group #6 0 0 0 1 1 5 8 10 3 1 1 
Group #7 2 0 0 0 0 5 4 6 8 4 1 

Actual Results 

Predicted Results 
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  On the issue of extreme values, it was mentioned how not all groups got a 10, 
and how most groups did not get below a 4. Group #7, who had reported getting two 
handfuls containing zero yellows, did raise suspicions among other class members. 
They asked the members of Group #7 if they had adhered to the procedures for 
drawing handfuls, , and it turned out that one of my cases, GP, admitted to using his 
sense of touch to discern  the colors of the pieces. One of GP’s group members, MG, 
said: “If you really  compared the feeling of the two [types of chips], the yellow had a 
sharp edge  and the green had a blunt edge.”  GP was also shown in the interviews to 
have an acute awareness of the role of his hand in creating (or impeding)  randomness 
in these kinds of sampling situations. No one else in class  seemed to have been aware 
of the tactile differences in the chips that GP’s  group had exploited to deliberately 
draw two handfuls of zero yellow in a row. Another of my cases, in a different group, 
asked GP if those two non-random samples had been calculated into the mean, 
showing an appreciation for the effects of outliers.   
 
 One big idea that came from the discussion was  that the actual posters  were 
not all the same, and in fact looked even more  different from each other  than had the 
predicted posters. Another big idea was that just as the predicted posters had most of 
the data around 6, 7, and 8, so  too did the actual posters. Finally, disregarding GP’s 
results of 0, a final big idea was that the lower extremes did not seem likely to result 
from actual results of 30 samples. At the end of the class session, it was suggested that 
we could get a better “actual” graph if we combined the results from our groups. 
 
 With these ideas in mind, the next class session began with an extended time of 
interacting with the ProbSim software, which some students later referred to as 
Fathom because that was the program I had used at an  earlier time in the quarter.  
Matt led the class through much of the investigation as he had done with the NSF 
project. However, we spent more time using  ProbSim with the Math 212 class than 
we had usually done in the  middle and high schools.  
 
 The first thing we did was to run many trials of 30 samples. Since the students 
had done and seen the results for seven trials of 30 samples, the results (which 
ProbSim displays quite rapidly) made sense to the class: They were essentially 
imagining that hundreds of groups had done trials of 30 samples, not just seven groups 
as they themselves had done during the previous class session.  Since we had 
mentioned aggregating our seven groups’ worth of data, Matt shifted to trials of 210 
samples (corresponding to seven groups at 30 samples per group).  Two things that 
students were quick to pick up on was how the shapes started to look very similar 
from trial to trial (of 210 samples in each trial). In particular, the mode had stabilized 
at seven, and the graphs all looked like skewed bells. However, the far extreme of 1 
yellow did not always result, and 0 never appeared. Matt then did repeated trials of 
500 samples, and also 5000 samples, but 0 never appeared. Students felt sure that 
since 0 was a possibility, it should result given enough samples. Matt, Steve, and I 
pointed out that collectively we had seen tens of thousands of samples of size 10, and 
none of them had resulted in 0 yellow.  There was a considerable anticipation in the 
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class, waiting for a result of 0, but we ended the computer simulation before that result 
occurred. 
 
 We then made a transition into the second activity in this intervention, 
which was the Unknown Mixture.  It was made clear that even though we had 
known what was in the earlier jars, samples still had varied. Now we had 
larger jars, each containing 1000 chips of yellow and green, and the mixtures were 
known to be the same in each jar. However,  the exact mixture was not known to the 
class (it was actually 550 yellows and 450 greens). The students were, in their groups, 
to decide what sample size they wanted to use (we imposed an upped limit of size 
twenty for all groups) and how many samples they wanted to draw. Then they were to 
carry out their plans, do the sampling, graph the results, and make some conjecture 
about the true mixture in the jar.  
 
 As an example of one groups’ results and reasoning,  the poster in Figure C6 
shows how the mean and the median of 5 yellows helped this group decide on a 
prediction of 50% yellow in the jar.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C6 – Poster #1 for Unknown Mixture 
 
The groups who authored the poster in Figure C6 used a sample size of 10, and they 
drew 70 samples. The group who made the poster shown in Figure C7 on the next 
page also used samples of size ten, and they drew 40 samples. However, they obtained 
their “guesstimate” of 57% by looking to their mean of 5.47 yellow and also their 
mode and median of 6 yellow, and finding some a value that they felt was somewhat 
close to both 5.47 and 6, namely 5.7.  Then they used the ratio of sample size to 
population and determined that 570 yellow chips out of 1000 total chips would 
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correspond to 57%. They added the “margin of error” because they knew that plus-or-
minus three percentage points would cover their mean, median, and mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C7 – Poster #2 for Unknown Mixture 
 
Other groups selected sample sizes that went as low as 6 and as high as 200, and after 
discussing the different estimates we decided to try for a class consensus.  I introduced 
the idea of confidence by relating the idea to what was shown in the posters. For 
example the group for the poster in Figure C6 had an estimate of 50% yellow, or 500 
yellow chips, but they were not too confident the jars really did have exactly 500 
yellows. The group for the poster in Figure C7 were not confident of the point 
estimate of exactly 570 yellow, but were fairly confident that the true value was 
somewhere in the interval from 540 to 600 yellow.   
 
 Comparisons across all the posters showed that the sample sizes for ranged 
from 6 to 20, and the numbers of trials ranged from 20 to 70. Predictions ranged from 
500 to 600 yellows, with a couple of groups offering an interval. In discussion, I asked 
the class as a whole what would or would not be surprising to them: For example, the 
class expressed no surprise if the true value was 520 yellow, or 580 yellow. The class 
eventually came to a consensus on an interval as small as 540 yellow to 570 yellow. 
The big idea here was that an unknown mixture (or any other realistic sampling 
situation) does not mean that nothing can be said with any confidence about the 
mixture. In other words, the class was overwhelmingly confident that there were more 
yellows than greens, but not as high a ratio as 650 to 350, for example. Despite 
attempts to have the students accept that in real life sampling investigations, having 
some degree of confidence in an interval is the best that can be hoped for or expected, 
students still wanted to know the exact percentage, which was revealed at the end. 
 
 

Class Intervention#3: Probability 
 
 There were two activities that made up this intervention, “Cereal Boxes”  
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and “The River Crossing Game,” and these were chosen specifically because 
of the probability aspects involved in the activities. Namely, Cereal Boxes  
relies on the use of spinners and River Crossing on the use of dice as random  
generators, and these two activities were the main ones done in Math 212  
involving spinners or dice.  
 
 Cereal Boxes actually took place in the first class session of week 2,  
just before we gathered data for Body Measurements. As explained earlier,  
there was considerable overlap in the contexts, and Cereal Boxes is a good  
example of this overlap. Cereal Boxes is sample-until scenario, supposing that  
any of five different stickers can be obtained with each box of cereal opened,  
and that the five stickers have equal chances of being obtained.  The question  
is, about how many boxes would be opened to obtain all five stickers, and the  
situation can be simulated by using a five-region spinner. Cereal Boxes brings 
together probability, sampling, and data and graphs in way that also highlights 
variation, and that is why I chose to use the activity.  
 
  After posing the problem, guesses were taken from the class about how many 
spins they expected to have to do to hit every region at least once. An upper limit of 
1000 was suggested, and one student suggested the upper limit was infinite. Also, a 
students suggested an expectation of 5 spins, the lower limit. Although this latter 
student was labeled an optimist by classmates, it focused attention on the probability 
aspects of this activity: After all, if we say there is a 1-in-5 chance of getting a region 
on the spinner, then after 5 spins there might be an expectation that all regions have 
been hit. As for the suggestion of infinite spins, it also focused attention on the idea 
that there was a chance of never hitting a certain region.  
 
 After discussing expectations, working individually at their tables, each student 
performed 10 trials (one trial was defined as finding the least number of spins it took 
to hit  all five of the regions at least once).  SW, for example, whose initial guess was 
105 spins, obtained the following results for 10 trials: 9, 5, 20, 6, 14, 17, 6, 14, 10, 9.  I 
asked her if, after looking at the results of her 10 trials, 105 spins was still about what 
she would expect: 
 
 SW:  I think I might lower it a little bit, maybe to 70, in the 70s. But I  
  think it would take quite a bit, it might even be higher than that  
  [105]. Because, I mean, you’re not just dealing with numbers,   
  then, you’re dealing with, you know, they want you to buy as  
  many boxes of cereal as possible, so they’re going to spread it  
  out a little bit more.  
 
The class did raise the issue of what a cereal company’s actual distribution would be 
like, and Steve re-focused the attention on the assumptions of the simulation. Thinking 
strictly in terms of numbers of spins to get the different regions on the five-spinner, 
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new expectations were made in light of the trials gathered. Instead of ranging from 5 
to 1000 spins, the second round of predictions for an expectation ranged from 7 to 25.  
 
 Another key issue arose when Steve was asking the class to notice how the 
second round of predictions was tighter than the first round, and he asked “Which 
answer is right?” After someone said that there was no right answer, Steve steered the 
conversation to the idea that some predictions seemed more reasonable than others, 
and a part of the discussion included the idea of aggregating results to get even better 
predictions. After aggregating individual results at their tables, there were seven group 
predictions based on 40 to 50 trials, and the predictions ranged from 7 to 11 spins. 
Students did want to aggregate the whole class results sensing that more trials offered 
an increasing better idea of what to expect. Instead of taking the time to graph all the 
data, I brought out the Fathom software.  Figure C8 shows the results for 150 trials: 
 
 Steve talked about where the upper and lower 10% of the data was, and also 
used the Fathom graphs to talk about boxplots and distribution of data. While the 
mode in the data set for Figure C8 is 9 and the median is 10, the 
mean is 11.7 and quite close to the expected value in this situation. But what 
students were aware of from having done their own trials was the variation in this 
situation, and how the chances of getting a certain region on that spinner were not 
guaranteed. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C8 – 150 Computer-Generated Samples  
 

In Figure C8, students knew that the meaning of the upper extreme was that one 
region on the spinner got avoided for 34 spins, only receiving a hit on the 35th spin. 
Cereal boxes, although modeling a sample-until scenario, did afford students good 
opportunities to focus on probabilities involving the spinners, which was among the 
reasons I had wanted to include it as a part of the intervention for the context of 
probability. 
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 The second activity for this intervention, the River Crossing Game, involved 
finding the sum of two dice. Credit for this activity goes to the Math and the Mind’s 
Eye curriculum (Shaughnessy & Arcidiacono, 1993).  Using two players, each player 
got 12 chips to place on their side of a “river”, along spaces marked 1 through 12.  
 
 

Figure C9 – Initial Strategies for River Crossing Game 
 

After configuring their chips in an initial arrangement  (see Figure C9 for an example 
of two players’ initial arrangements), players took turns tossing a pair of dice. If either 
player had any chips on the space showing the total for the dice, one chip could “cross 
the river” and be removed from the board. The winning player was the first one to 
remove all the chips on his or her side. For instance, in Figure C9, if the dice resulted 
in a sum of 10, Player A on top could remove one chip. If the dice showed 8, Player A 
and B could each remove one chip.   
 
 Teams of students played several games, and kept track of the results of each 
toss of the dice on a dot plot: Sums were given along the horizontal axis, and students 
could just make a mark showing the sum obtained. Some students’ initial 
arrangements changed from game to game. For example, seeing from their dotplots 
how sums of 6, 7 and 8 tended to occur more than other sums, some students put most 
of their chips on those spaces. Other students continued to spread out their chips, 
feeling that in the course of tossing the dice, they would get a sum of 2 or 12 for 
example.  
 
 After a few games, the dotplots from the teams were put up on the board in 
front of the class, and each graph showed well over one hundred tosses of the dice.  
Steve led the class in a discussion about the graphs, their shapes, and what the class as 
a whole might expect. Despite the variation shown in each graph, students volunteered 
that what they felt was most likely to happen for a sum would be 6, 7, or 8. Some 
students kept volunteering 7, but Steve made a distinction between the knowledge that 
some already held (that 7 was most likely) and what the class’ experimental data 
suggested. Most of the class thought that 8 came through as being most likely, based 

 
 
 
 
 
 
 
 

 
 
 
 

Initial Arrangement 
 
  * Player A has 12 chips on top 
  * Player B has 12 chips on bottom

10 11 
9 8 7 
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4 3 2 
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10 11 
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on class results.  Steve pointed out that “there are trends, but there’s still a lot of 
variation from group to group.”  Looking across the graphs, the idea of a symmetrical 
theoretic distribution also emerged, and the class later went on to look at the 
theoretical probability for the sum of two dice.  
 
 After the idea about 7 being the theoretically most likely sum emerged, 
Steve also discussed what the class thought might be an optimum initial arrangement 
for playing the River Crossing Game. An example of two strategies, informed by 
having now had experience playing and by looking at the theoretical distribution, are 
given in Figure C10 below: 
 
 

 
Figure C10 – Experienced Strategies for River Crossing Game 

 
A question arose as to why people don’t just put all their chips on 7, since that sum is 
most likely.  Steve brought out the connection that putting all the chips of 7 was 
making a statement of expectation of no variation. He pointed out how the dotplots of 
results showed not only what happened most, but also gave an idea of the kind of 
variation we could expect as well.  
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