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1. INTRODUCTION 

In this Thesis we focus on the use of Bayesian inference in the field of psychology from 

different perspectives: 

1. The reflection on the current statistical practices in psychology, the reported errors and 

possible contribution of Bayesian inference to solve these problems. This analysis is 

carried out from the philosophical and psychological points of views (Chapter 1). 

2. The study of some applications of Bayesian methods in psychometrics to estimate 

different indicators used in the Classical Tests Theory. These possibilities are analysed 

from the theoretical (Chapter 3) and practical (Chapters 4, 5) points of view and are 

applied in the process of building a questionnaire to assess conditional probability 

reasoning (CPR), which is also justified in the thesis. 

3. The feasibility of teaching basic Bayesian elements in undergraduate psychology courses. 

We develop a teaching material that takes into account the previous analyses, as well as 

previous research in statistics education and the type of students. This material was tested 

with a sample of 78 students, and data on the students’ learning at the end of the 

experience are provided (Chapter 6). 

 

Below we describe the aims and structure of the thesis and summarize the different studies 

included in the same. 
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2. RESEARCH AIMS AND STRUCTURE 

There are four main goals in this research. For each of them we carry out one or more 

studies, which are related one to another as shown in Figure 1. 

 

• Objective 1. Rethinking the Classical Tests Theory CTT from the Bayesian point of view 

and analyzing the implications of this change of perspective on the estimation of some 

psychometric features in the tests and items. 

In Chapter 3 we analyse the implications of a Bayesian perspective on the estimation of 

tests mean scores, differences in mean scores, difficulty and discrimination indexes. For each 

of these parameters we consider both informative and non informative priors and prepare 

some Excel programs to carry out the computations of posterior distributions and credibility 

intervals. Results are useful to build and adapt other questionnaires, in particular when prior 

information for the psychometric features is available. 

  

• Objective 2. Applying the above analysis in the process of building a questionnaire and 

comparing results from classical and Bayesian estimates in some of the test features. 

The building of the RPC questionnaire starts from the semantic definition of the variable 

through content analysis of 18 statistics textbooks directed to psychology students (Studies 1- 

4; Chapter 4). The process follows the recommendations by APA, AERA and NCME (1999) 

and includes items trials, expert judgment to fix the content and select the items, pilot trial of 

the questionnaire and a second expert judgment to improve the items wording. Reliability and 

validity studies (Studies 5 and 6; Chapter 5) are carried out in different sample of students. 

All this process is complemented with application of Bayesian methods. The RPC 

questionnaire is useful to assess students’ understanding of conditional probability in statistics 

courses and future research. 

 

• Objective 3. Assessing conditional probability reasoning in psychology students to decide 

the suitability of teaching Bayesian methods to these students. 

The RPC questionnaire is applied to a sample of 413 psychology students (Study 7) and 

their responses are analysed from different points of views. Students showed enough 

understanding of conditional probability to start the learning of Bayesian inference, but, at the 

same time, we found some widespread misconceptions that were taken into account in the 

next stage (designing a curricular proposal). 
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• Objective 4. Preparing and assessing didactic materials to introduce elementary 

Bayesian inference to Psychology students that takes into account the previous 

assessment. 

The teaching materials are based on several textbooks of Bayesian inference and include 

activities, assessment questionnaires and Excel programs. It is available from the web page 

http://www.ugr.es/~mcdiaz/bayes/. An experiment is organized with a sample of 78 students 

(working in small groups) to try these materials (Studies 8 and 9). The posterior learning, 

structure of responses to assessment items and relationship with understanding conditional 

probability are analysed. 

 
Figure 1. Research Structure 
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3. JUSTIFICATION 

In Chapter 1 we present the foundations of the Thesis that can be classified in three main 

parts: a) Current situation in the practice of statistics inference and the need for a change; b) 

Possible contributions of Bayesian inference to improve the situation and need to include 

these methods in undergraduate courses; c) Relevance of assuring correct reasoning on 

conditional probability in the students before trying to teach them Bayesian inference and 
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need for a comprehensive questionnaire to assess this reasoning (RPC questionnaire). In the 

following we summarize the main points in this justification. 

 

3.1. CRITICISMS IN THE CURRENT PRACTICE OF STATISTICS IN EMPIRICAL 

RESEARCH 

Empirical sciences heavily rely on establishing the existence of effects using the 

statistical analysis of data. Statistical inference dates back almost 300 years. However, since 

the logic of statistical inference is difficult to grasp, its use and interpretation are not always 

adequate and have been criticized for nearly 50 years (for example, in Yates, 1951; Morrison 

& Henkel, 1970; Harlow, Mulaik & Steiger, 1997). This controversy has increased in the past 

ten years within professional organizations (Menon, 1993; Ellerton, 1996; Levin, 1998; Levin 

& Robinson, 1999; Robinson & Levin, 1997; Ares, 1999; Glaser, 1999; Wilkinson, 1999; 

Batanero, 2001; Fidler, 2002), which are suggesting important shifts in their editorial policies 

regarding the use of statistical significance testing.  

Despite the arguments that statistical tests are not adequate to justify scientific knowledge, 

researchers persist in relying on statistical significance (Hager, 2000; Borges, San Luis, Sánchez 

& Cañadas, 2001; Finch, Cumming & Thomason, 2001). Some explanations for this persistence 

include inertia, conceptual confusion, lack of better alternative tools, and psychological 

mechanisms such as invalid generalization from deductive logic to inference under uncertainty 

(Falk & Greenbaum, 1995). Below we summarize some of the problems that were analyzed in 

Batanero (2000) and Díaz and De la Fuente (2004). 

 

Common Errors in Interpreting Statistical Tests 

Misconceptions related to statistical tests mainly refer to the level of significance α, 

which is defined as the probability of rejecting a null hypothesis, given that it is true. The 

most common misinterpretation of this concept consists of switching the two terms in the 

conditional probability. For example, Birnbaum (1982) reported that his students found the 

following definition reasonable: "A level of significance of 5% means that, on average, 5 out 

of every 100 times we reject the null hypothesis, we will be wrong". Falk (1986) found that 

most of her students believed that α was the probability of being wrong when rejecting the 

null hypothesis at a significance level α. Similar results were described in Pollard and 

Richardson (1987), Lecoutre, Lecoutre and Poitevineau (2001) and Haller and Krauss (2002) 

in their studies using researchers. 
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Another common error is the belief in the conservation of the significance level value 

when successive tests are carried out on the same data set, which produces the problem of 

multiple comparisons (Moses, 1992). Some people believe that the p-value is the probability 

that the result is due to chance. The p-value however is the probability of obtaining the particular 

result or one more extreme when the null hypothesis is true and there are no other possible 

factors influencing the result. What is rejected in a statistical test is the null hypothesis, and 

therefore we cannot infer the existence of a particular cause in an experiment from a significant 

result.  

Another erroneous belief is that the .05 and .01 levels of significance are justified by 

mathematical theory. In his book “Design of Experiments”, Fisher (1935) suggested selecting 

a significance level of 5% as a convention to recognize significant results in experiments. In 

later writings, however, Fisher considered that "in fact, no scientific worker has a fixed level 

of significance at which from year to year and in all circumstances, he rejects hypotheses" 

(Fisher, 1956, p. 42). Instead, Fisher suggested publishing the exact p-value obtained in each 

particular experiment which, in fact, implies establishing the significance level after the 

experiment. In spite of these recommendations, research literature shows that the common 

arbitrary levels of .05, .01 and .001 are almost universally selected for all types of research 

problems and are sometimes used as criteria for publication.  

Misinterpretations of the significance level are linked to misinterpreting significant 

results; we should distinguish between statistical and practical significance, since we might 

have obtained a higher level of significance with a smaller experimental effect and a larger 

sample size. Practical significance involves statistical significance plus a sufficiently large 

experimental effect. 

 

Philosophical and Psychological Issues 

Several reasons explain the difficulties in understanding statistical tests. On one hand, 

statistical tests involve a series of concepts such as null and alternative hypotheses, Type I and 

Type II errors, probability of errors, significant and non significant results, population and 

sample, parameter and statistics, sampling distribution. Some of these concepts are 

misunderstood or confused by students and experimental researchers.  

Moreover, the formal structure of statistical tests is superficially similar to that of proof 

by contradiction. However, there are fundamental differences between these two types of 

reasoning that are not always well understood. In proof by contradiction we reason in the 

following way: If A implies B cannot happen, then, if B happens, we deduce A is false. In 
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statistical testing, it is tempting to apply similar reasoning as follows: If A implies B is very 

unlikely to happen. However, this does not imply that if B happens, A is very unlikely and 

here lays the confusion.  

The controversy surrounding statistical inference involves the philosophy of inference 

and the logical relations between theories and facts. We expect from statistical testing more 

than it can provide us, and underlying this expectation is the philosophical problem of finding 

scientific criteria to justify inductive reasoning, as stated by Hume. The contribution made by 

statistical inference in this direction is important but it does not give a complete solution to 

this problem (Hacking, 1975; Seidenfeld, 1979; Cabria, 1994).  

On the other hand, there are two different views about statistical tests that sometimes are 

confused or mixed. Fisher saw the aims of significance testing as confronting a null 

hypothesis with observations and for him a p-value indicated the strength of the evidence 

against the hypothesis (Fisher, 1958). However, Fisher did not believe that statistical tests 

provided inductive inferences from samples to population, but rather, a deductive inference 

from the population of possible samples to the particular sample obtained in each case. 

For Neyman (1950), the problem of testing a statistical hypothesis occurs when 

circumstances force us to make a choice between two courses of action. To accept a 

hypothesis means only to decide to take one action rather than another. This does not mean 

that one necessarily believes that the hypothesis is true. For Neyman and Pearson, a statistical 

test is a rule of inductive behaviour, a criterion for decision-making, which allows us to 

accept or reject a hypothesis by assuming some risks.  

The dispute between these authors has been hidden in applications of statistical inference in 

psychology and other experimental sciences, where it has been assumed that there is only one 

statistical solution to inference (Gingerenzer et al, 1989). Today, many researchers apply the 

statistical tools, methods, and concepts of the Neyman-Pearson theory with a different aim, 

namely, to measure the evidence in favour of a given hypothesis. Therefore, the current 

practice of statistical tests contains elements from Neyman-Pearson (it is a decision procedure) 

and from Fisher (it is an inferential procedure, whereby data are used to provide evidence in 

favour of the hypothesis), which apply at different stages of the process. We should also add that 

some researchers often give a Bayesian interpretation to the result of (classical) hypothesis 

tests, in spite of the fact that the view from Bayesian statistics is very different from the 

theories of either Fisher or Neyman and Pearson. 

Moreover, biases in inferential reasoning can be seen simply as examples of adults' poor 

reasoning in probabilistic problems (Nisbett & Ross, 1980; Kahneman, Slovic & Tversky, 
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1982). In the specific case of misinterpreting statistical inference results, Falk and Greenbaum 

(1995) describe the illusion of probabilistic proof by contradiction, which consists on the 

erroneous belief that one has rendered the null hypothesis improbable by obtaining a 

significant result. Misconceptions around the significance level are also related to difficulties 

in discriminating between the two directions of conditional probabilities, otherwise known as 

the fallacy of the transposed conditional (Diaconis & Friedman, 1981). Although α is a well 

defined conditional probability, the expression "Type I error" is not conditionally phrased, 

and does not spell out to which combination of the two events it refers. This leads us to 

interpret the significance level as the conjunction of the two events "the null hypothesis is 

true" and "the null hypothesis is rejected" (Menon, 1993). 

  

The Statistical Tests Controversy 

For many years, criticisms have been raised against statistical testing, and many suggestions 

have been made to eliminate this procedure from academic research. However, significant results 

continue to be published in research journals, and errors around statistical tests continue to be 

spread throughout statistics courses and books, as well as in published research. An additional 

problem is that other statistical procedures suggested  to replace or complement statistical tests 

(such as confidence intervals, measuring the magnitude of experimental effects, power analysis, 

and Bayesian inference) do not solve the philosophical and psychological problems we have 

described (see Fidler, 2002; Cumming, Williams & Fidler, 2004). Below we revisit some 

frequent criticisms that either are not justified or refer to researchers’ use of statistical tests more 

than to the procedure itself. 

 

Criticism 1. The null hypothesis is never true and therefore statistical tests are invalid, as 

they are based on a false premise (that the null hypothesis is true). This criticism is not 

pertinent because what is asserted in a test is that a significant result is improbable, given that the 

null hypothesis is true. This is a mathematical property of the sampling distribution that has 

nothing to do with the truth or falsity of the null hypothesis. 

  

Criticism 2. Statistical significance is not informative about the practical significance of the 

data, since the alternative hypothesis says nothing about the exact magnitude of the effect. In 

significance testing (Fisher’s approach) the aim of experimental research is directed towards 

theory confirmation in providing support for a substantive hypothesis and the magnitude of 

effect is not so important. In the context of taking a decision (Neyman- Pearson), however, the 
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magnitude of the effect could be relevant to the decision. In these cases, the criticism applies and 

statistical tests should be complemented with power analysis and/ or estimates of the magnitude 

of the effects (Levin, 1998; Frías, Pascual & García, 2000; Vacha-Haase, 2001). 

  

Criticism 3. The choice of the level of significance is arbitrary; therefore some data could 

be significant at a given level and not significant at another different level. It is true that the 

researcher chooses the level of significance. This arbitrariness does not, however, mean that the 

procedure is invalid. Moreover, it is also possible, following the approach of Fisher, to use the 

exact p-value to reject the null hypothesis at different levels, though in the current practice of 

statistical testing it is advisable to choose the significance level before taking the data to give 

more objectivity to the decision. 

 

Criticism 4. Statistical significance does not provide the probability of the hypothesis being 

true. Nor is statistical significance informative of the true value of the parameter. The posterior 

probability of the null hypothesis, given a significant result, depends on the prior probability of 

the null hypothesis, as well as on the probabilities of having a significant result given the null and 

the alternative hypotheses. These probabilities cannot be determined in classical inference. It is 

only within Bayesian inference that posterior probability of the hypotheses can be computed, 

although these are subjective probabilities (Cabria, 1994; Lecoutre, 1999; 2006). 

 

Criticism 4. Type I error and Type II errors are inversely related. Researchers seem to 

ignore Type II errors while paying undue attention to Type I error. Though the probabilities of 

the two types of errors are inversely related, there is a fundamental difference between them. 

While the probability of Type I error α is a constant that can be chosen before the experiment is 

done, the probability of Type II error is a function of the true value of the parameter, which is 

unknown. To solve this problem, power analysis assumes different possible values for the 

parameter and computes the probability of Type II error for these different values.  

 

3.2. POSIBLE CONTRIBUTIONS OF BAYESIAN INFERENCE TO IMPROVE 

METHODOLOGICAL PRACTICE 

In this section we begin summarizing the characteristics of Bayesian inference. We then 

present some arguments in favour of the Bayesian methodology: a) Bayesian inference does 

not contain greater subjectivity than other statistical methods; b) it provides the information 

that researchers need and c) there is statistical software available that facilitates the 
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application of this methodology. We then suggest that the basic Bayesian concepts are 

understandable by psychology students, if a necessary didactic effort is made. 

 

Bayesian inference 

Bayesian inference is based on the systematic application of the Bayes Theorem, whose 

publication in 1763 disturbed the contemporary mathematicians. While in the previous 

conceptions of probability2 it was assumed an objective value of probability, the possibility of 

revising the prior probabilities based on the new information opened by this theorem, lead to a 

new subjective view (Hacking, 1975; Cabriá, 1994). This new point of view also enlarges the 

applications of probability, since the repetition of an experience in exactly the same 

conditions was no more a requirement. Gradually, a distinction between frequentist 

probability, empirically accessible through frequencies, and epistemic probability or degree of 

belief in the occurrence of an event in a unique experiment (Rouanet, 1998) and two schools 

of inference were developed. 

In Bayesian inference a parameter θ is a random variable and we associate to it a prior 

epistemic distribution of probabilities p(θ), which represents the knowledge (or lack of 

knowledge) about θ before collecting the data. Let y = (y1,..., yn) be a data set, whose 

likelihood function p(y/θ) depends on the parameter, then the conditional distribution of θ 

given the observed data y is given by the Bayes theorem: 

 (1)                                                
)(

)()/()/(
yp

pypyp θθθ =  

In (1) p(y) = ∑ p(y/θ)p (θ), where the sum extends through the admissible range of θ (Box 

and Tiao, 1992; Lee, 2004). The posterior distribution p(θ/y) contains all the information 

about θ once the data are observed. The Bayes theorem can be successively applied in new 

experiments, taking as prior probabilities of the second experiment the posterior probabilities 

obtained in a first experiment and so on. We speak of "learning process" (Box and Tiao, 

1992). 

The main method in Bayesian inference is the systematic application of the Bayes 

theorem, and the basic aim is updating the parameters prior distributions. The posterior 

distribution is the essence of Bayesian estimation. The answer to the question: once we see 

the data, what do we know about the parameter? It is the posterior distribution, since this 

                                                 
2 Classical (quotient between favourable and possible cases) and frequentist (limit of relative frequency) 
conceptions. 
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distribution synthesizes all the information about the parameter, once the data have been 

gathered and contains all the inferences that can be done from it (O’Hagan & Forster, 2004). 

The point estimate for the parameter is the mean of the posterior distribution, since it 

minimizes the expected quadratic error (O’Hagan & Forster, 2004). The posterior distribution 

will also allow us to compute the probability that the parameter is included in a given interval 

(credible interval) and the probability that the hypothesis is either true or false. Bayesian 

inference’ aim is to compute the hypothesis’ posterior probability, contrary to classical 

inference, where the hypothesis is either accepted or rejected, which is not an inference, but a 

decision (O’Hagan & Forster, 2004).  

The predictive or marginal distribution  

( )p y = ( / ) ( )p y p dθ θ θ∫  

is used to predict future values of y. It takes into account the uncertainty about the parameter 

value θ , as well as the residual uncertainty about y when θ  is known (Lee, 2004). This kind 

of probability cannot be computed in classical inference (Bolstad, 2004). 

 

Subjectivity in Bayesian methods  

A fundamental difference between Bayesian and classical inference is the subjective 

character (not frequentist) of probabilities, since neither the problem of repeated sampling is 

considered nor the sample distribution is required. Subjective probabilities can be defined for 

any situation, whereas frequentist probabilities are only defined for events in a space sample 

(O’Hagan & Forster, 2004). Moreover, Bayesian methods use all the previous information 

available, whereas in classical inference previous information is not considered. 

Since the researcher specifies the prior distribution, the Bayesian approach takes into 

account the researcher’s perspective, his/her knowledge of the problem. There is not just one 

way to choose the prior distribution, which conditions the results of inference. This fact has 

originated strong criticisms towards Bayesian methods since they can lead researchers to 

obtain different results from the same data set, depending on their previous knowledge or 

experience. The use of non informative priors at the beginning of the application of these 

methods, and updating these prior distributions in new applications, with the results of the 

previous steps has been suggested in order to confront these criticisms. 

There is also the possibility of changing the models and interpretations throughout the 

analysis, whereas in classical inference both hypotheses and models are settled down before 

gathering the data and cannot be changed. This is not reasonable, since “allowing data to 
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speak by themselves” is a basic idea in the mathematical modelling, where models are 

assumed to be useful to describe data but not to be exactly equal to data and it is therefore 

possible to change the model throughout the analysis (Pruzek, 1997; McLean, 2001).  

The influence of prior distributions also depends on the sample size and the possible 

initial biases are corrected in successive experiments, since the weight lays on the likelihood 

as the sample size is progressively increased (Lindley, 1993). It is also advisable to repeat the 

analysis with different priors and inform about the differences obtained in the posterior 

distributions (Zhu and Lu, 2004). Procedures are standardised, using conjugated distributions, 

so that both the prior and posterior distribution belongs to the same functions family (Cabriá, 

1994). 

On the other hand, frequentist methods are not free of subjectivity: the significance level 

is arbitrarily defined, so that the same data is statistically significant or not depending on the 

chosen significance level (Skipper, Guenter & Nash, 1970). Statistical significance has no 

sense when the sample size is so big that any detected difference led to rejecting the null 

hypothesis. The variable definition, scale of measurement, significance tests used, are other 

subjective choices and even more, subjectivity is unavoidable in the interpretation of the 

results (Ayçaguera & Benavides, 2003). Of course, subjectivity does not imply arbitrairity; it 

is inevitable in social sciences due to the inherent randomness in its variables and has an 

important paper in the scientific research. The scientific community accepts the different 

findings, by establishing methodological or plausibility criteria (Matthews, 1998). 

 

What are the Bayesian answers to researcher’s needs? 

Several works suggest that Bayesian inference provides a better answer to the researcher’s 

needs as compared with frequentists inference (Lindley, 1993; Lecoutre, 1999; 2006).  

Firstly, the meaning of probability in Bayesian statistics is identical to that of ordinary 

language: conditional measurement of uncertainty associated to the occurrence of an event, 

when some assumptions are assumed (Bernardo, 2003). This is the intuitive - although 

incorrect - interpretation that many scientists give to the frequentist probabilities associated to 

hypotheses tests, whose results are unconsciously interpreted in Bayesians terms (Falk, 1986; 

Gingerenzer, 1993; Rouanet, 1998; Lecoutre, 2006; Lecoutre, Lecoutre & Poitevineau, 2001; 

Haller & Krauss, 2002).  

Consequently, the Bayesian interpretation of inference is simpler and more natural than 

that of frequentists inference (Pruzek, 1997), besides providing a base for coherent decision 

making in uncertainty situations (Western, 1999). In addition, Bayesian inference provides a 
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totally general method, because its application does not require a particular kind of 

distribution and sampling distributions do not need to be deduced (Bernardo, 2003). Next we 

analyze the Bayesian answer to several questions of interest for researchers. 

 

Effect size 

A recommendation to complement hypothesis tests is to study the effect size, but a point 

estimation is insufficient, since it does not consider the sample error (Poitevineau, 1998). A 

power study would be recommendable to avoid erroneous conclusions about the absence of 

an effect when the result is nonsignificant (Cohen, 1990), but power computations does not 

depend on the statistical value observed in the sample and is therefore not pertinent to 

interpret a particular result, once the data are gathered (Falk & Greenbaum, 1995). 

Confidence intervals have the same frequentist interpretation than hypotheses tests, since they 

only indicate the proportion of intervals with a given sample size computed from the same 

population that would cover the parameter value, but they do not give information about 

whether the calculated interval covers the parameter or not (Cumming, Williams & Fidler, 

2004). 

Effect sizes and their magnitude appear in natural way in the Bayesians methods, which 

consider the parameter as a random variable. The probability that this parameter takes a certain 

value can be computed via the posterior distribution; for example it is possible to use sentences 

such as "the probability that the effect is larger than a is equal to 0.25". The credibility interval 

also provides the limits in which the parameter is included with a certain probability 

(Poitevineau, 1998; Lecoutre, 2006).  

 

Hypothesis tests 

The p-value provides a probability that is not useful for researchers: the probability of 

collecting data more extreme than the obtained if we repeated many times the experiment and 

the hypothesis were true (Matthews, 1998). But no researcher is interested in repeating the 

same experiment indefinitely and the aim of the scientific research is not to make a decision 

about the certainty of the hypothesis but adjusting our degree of belief in the hypothesis that is 

being tested (Rozeboom, 1970).  

Interpreting the rejection of the null hypothesis as direct support to the research 

hypothesis (alternative) is incorrect, since a significant result does not indicate the magnitude 

of the effect, so that the statistical hypothesis does not inform on the practical meaning of the 

data (Hager, 2000; Finch, Cumming & Thomason, 2001). This can produce situations in 
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which rejecting a null hypothesis does not provide any new information, since the only thing 

we can deduce when we reject a hypothesis is that there is an effect, but not its direction or 

magnitude (Falk & Greenbaum, 1995; Lecoutre, 1999).  

On the contrary, in Bayesian inference we can compute the hypothesis posterior 

probabilities and the probabilities that the effect has a given size (Lindley, 1993). Moreover, 

the Bayesian method is comparative. It compares the probability of the observed event under 

the null hypothesis and under different alternative hypotheses (Lindley, 1993). Besides, in 

some situations, as bioequivalence tests, the interest is centred in verifying the null 

hypothesis, that is, we hope the treatments are equivalent (Molinero, 2002). In these cases the 

Bayesian approach is much more natural than the frequentists one, since we try to accept (not 

to reject) the null hypothesis. 

 

Predictive probabilities and replication 

Interpreting statistical significance as support to data replicability does not have a 

statistical base (Falk, 1986; Gingerenzer, 1994; Cohen, 1994; Falk & Greenbaum, 1995; 

Pascual, García & Frías, 2000). Statistical significance neither can be taken as an evidence 

that the research hypothesis is true; nor it provides the probability of the hypothesis; there is 

therefore no base to study replication and it does not provide verifiable evidence to replication 

either (Sohn, 1998). 

In the Bayesian approach we can compute the probability of a future event, using the 

predictive distribution, which is given by the denominator in the Bayes formula, that is, the 

weighted average of the probability function, weighted by the prior probabilities (Berry, 

1995). This distribution serves to study the possibility of replication of our results or to 

compute the sample size needed for a future study to be conclusive (Lecoutre, 1996). Of 

course, in case the requirements of data precision and sound procedures are fulfilled (Sohn, 

1998). Correctly understood, replicability is related to the data reliability and consistency, and 

the only way to achieve it is sucessive empirical trials (Pascual, García & Frías, 2000).  

 

Use of previous information  

Whereas frequentist methods consider each sample as completely new and do not 

incorporate the information of previous studies, in the Bayesian framework we conceive a 

sequence of articulated experiments, where the information of each of them is used in the 

following step (Pruzek, 1997); the possibility of different opinions or knowledge is also accepted 

(Lindley, 1993). Although is possible to use Bayesian inference when there is no previous 
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information about the parameter, the most interesting characteristic is the use "informative" 

priors whenever this is possible, or even investigate the effect of different priors. The central idea 

of Bayesian approach is updating the probabilistic knowledge about the phenomenon, based on 

the information available. 

 

Computational viability of Bayesian methodology 

A requirement to introduce new data analysis methods is the availability of calculation 

programs that facilitate their application. In the last years several researchers are developing 

diverse Bayesian programs, so that this approach is being introduced gradually in Social 

Sciences. For example, Albert (1996) published some Minitab subroutines for elementary 

Bayesian analysis that can be downloaded from the author’s website (http://bayes.bgsu.edu/). 

First Bayes (http://www.tonyohagan.co.uk/1b/) was prepared at Sheffield University to teach 

elementary Bayesian concepts. It admits different families of distributions and calculates 

posterior and predictive probabilities in uniparametrics models, analysis of variance and 

regression (Lawrence, 2003). 

PAC (Lecoutre, 1996) also allows the analysis of data from general experimental designs, 

incorporating univariate and multivariate variance analysis, including repeated and covariable 

measures. The program includes frequentist and Bayesian analysis, with prior informative and 

non informative. It was developed by a research group that tries to incorporate Bayesian analysis 

in the statistical methods more frequently used in psychology. A reduced version is freely 

distributed from the group website (http://www.univ-rouen.fr/LMRS/Persopage/ 

Lecoutre/Eris.html). 

For more complex analyses Buggs (Bayesian inference Using Gibbs Sampling) is an 

interactive and flexible software Windows compatible, that allows complex Bayesians 

calculations, based on simulation (see in http://www.mrc-bsu.cam.ac.uk/bugs/). There are on line 

facilities, such as tutorial, user groups and examples.  

BACC (Bayesian Analysis Computation and Communication) was developed from a 

project funded by the National Science Foundation in the United States, and offers resources for 

Bayesian calculations, freely available. The emphasis is put in the combination of models and the 

development of predictive distributions. There are versions available for Matlab, S-PLUS and R, 

for Windows, UNIX and Linux systems (http://www2.cirano.qc.ca/~bacc/). 

Other Bayesian computation programs, some specific are listed in 

http://www.mas.ncl.ac.uk/~ndjw1/bookmarks/Stats/Software-Statistical_computing/Bayesian 

_software/index.html/. 
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Didactic viability of elementary Bayesians methods 

Introducing a new methodology in psychology will require its understanding by the 

possible users, that is to say, will depend on the degree to which we are able to transmit its 

main ideas in applied statistic courses. Iglesias et al. (2000) suggest the following content to 

introduce Bayesian inference, along with classical inference in undergraduates’ courses 

following the approach by De Groot (1988): 

• Basic concepts: population, parameter, sample, statistics, likelihood function, prior and 

posterior distributions. 

• Point estimation: Classical and Bayesian methods. 

• Interval estimation: Confidence and credibility intervals. 

• Hypothesis tests: Classical and Bayesian tests, multiple decision problems. 

 

In this sense, we found a increasing number of textbooks whose understanding does not 

require much mathematical knowledge and where basic Bayesian inference elements are 

contextualized in examples interesting and familiar for the students (for example Berry, 1995 or 

Albert & Rossman, 2001). These materials can be complemented with many references that 

explain in a simple way the basics of Bayesian inference (e.g. Ayçaguera & Benavides, 2003; 

Ayçaguera & Suárez, 1995). We can also find Internet didactic resources that facilitate the 

learning of these concepts, such as applets that visualize the Bayes theorem or the probability 

distributions, or compute posterior distributions, inference for means and proportions with 

discrete or continuous prior distributions (see, for example Jim Albert site, 

http://bayes.bgsu.edu/).  

Most of the authors mentioned in this section have incorporated Bayesian methods to their 

teaching and have reported that students seem to understand better Bayesian inference than 

classical inference. We also found descriptions of concrete teaching experiments and suggestions 

about the way to carry them out (Bolstad, 2002). We are conscious, nevertheless, that this 

position is still controversial (e.g. Moore, 1997) due to the scarce empirical research on the 

students learning within statistics courses. Moreover, biases in conditional probability reasoning, 

as described below, may affect students’ learning of Bayesian inference. 
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3.3. CONDITIONAL REASONING AND ITS RELEVANCE FOR UNDERSTANDING 

BAYESIAN INFERENCE 

Research on understanding conditional probability has been carried out with both secondary 

school and University students. Fischbein and Gazit (1984) organized teaching experiments with 

10-12 year-olds and found that conditional probability problems were harder in without 

replacement situation as compared to with replacement problems. Following that research Tarr 

and Jones (1997) identified the following four levels of thinking about conditional probability 

and independence in middle school students (9-13 year-olds): 

• Level 1 (subjective): students ignore given numerical information in making predictions.  

• Level 2 (transitional): students demonstrate some recognition of whether consecutive 

events are related or not; however, their use of numbers to determine conditional 

probability is inappropriate.  

• Level 3 (informal quantitative): students’ differentiation of “with and without 

replacement situations” is imprecise as is the quantification of the corresponding 

probabilities; they are also unable to produce the complete composition of the sample 

space in judging independence. 

• Level 4 (numerical): students state the necessary conditions for two events to be related, 

they assign the correct numerical probabilities and they distinguish between dependent 

and independent events in “with (e.g. item 15 in appendix) and without (items 4, 9) 

replacement situations”.  

 

Even when students progress towards the upper level in this classification (see also Tarr 

& Lannin, 2005), difficulties still remain at high school and University. This is shown in the 

various studies we summarize below, from which we have taken some of the items in our 

questionnaire. The full questionnaire is included in Appendix 1. 

 

Conditioning and causation 

It is well known that if an event B is the cause of another event A whenever B is present A 

is also present and therefore P(A/B)=1. On the contrary P(A/B)=1 does not imply that B is a 

cause for A, though the existence of a conditional relationship indicates a possible causal 

relationship. From a psychological point of view, the person who assesses the conditional 

probability P(A/B) may perceive different type of relationships between A and B depending 

on the context (Tversky & Kahneman, 1982a). If B is perceived as a cause of A, P(A/B) is 



 17

viewed as a causal relation, if A is perceived as a possible cause of B, P(A/B) is viewed as a 

diagnostic relation. At other times people confuse the two probabilities P(A/B) and P(B/A); 

this confusion was termed the fallacy of the transposed conditional (Falk, 1986). Item 10 in 

Appendix 1 was included to assess these difficulties. 

 

Causal reasoning and the fallacy of the time axis 

Falk (1989) gave item 17 in the Appendix 1 to 88 university students and found that while 

students easily answered part (a), in part (b) they typically argued that the result of the second 

draw could not influence the first, and claimed that the probability in Part B is 1/2. Falk 

suggested that these students confused conditional and causal reasoning and termed fallacy of 

the time axis their belief that an event could not condition another event that occurs before it. 

This is a false reasoning, because even though there is no causal relation from the second 

event to the first one, the information in the problem that the second ball is red has reduced 

the sample space for the first drawing. Hence, P (B1 is red/ B2 is red) =1/3. Similar results 

were found by Gras and Totohasina (1995) who identified two different misconceptions about 

conditional probability in a survey of seventy-five 17 to 18 year-old secondary school 

students: 

• The chronological conception where students interpret the conditional probability P(A/B) 

as a temporal relationship; that is, the conditioning event B should always precede event 

A.  

• The causal conception where students interpret the conditional probability P(A/B) as an 

implicit causal relationship; that is, the conditioning event B is the cause and A is the 

consequence. 

 

Synchronical and diachronical situations 

Another issue involving time and conditional probability has been identified in the 

literature. In diachronical situations (e.g. items 5 and 17 in the Appendix) the problem is 

formulated as a series of sequential experiments, which are carried out over time. 

Synchronical situations (e.g. items 4, 8 and 10 in the Appendix) are static and do not 

incorporate an underlying sequence of experiments. Formally the two situations are 

equivalent, however Sánchez and Hernández (2003) found that students did not always 

perceive the situations as equivalent and produce additive solutions to synchronical 

conditional problems. 
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Solving Bayes problems 

As regards Bayesian reasoning (see a summary in Koehler, 1996), early research by 

Tversky and Kahneman (1982a) suggests that people do not employ this reasoning intuitively 

and establish the robustness and spread of the base-rate fallacy in students and professionals 

(Bar-Hillel, 1983). Totohasina (1992) suggested that part of the difficulty in solving Bayes' 

problems is due to the representation chosen by the student to solve the problems and that 

using a two way table is an obstacle to perceive the sequential nature of some problems, and 

therefore can lead students to confuse conditional and joint probability.  

Recent research suggests that Bayesian computations are simpler when information is 

given in natural frequencies, instead of using probabilities, percentages or relative frequencies 

(Cosmides & Tooby, 1996; Gigerenzer, 1994; Gigerenzer & Hoffrage, 1995). The reason is 

that natural frequencies (absolute frequencies) correspond to the format of information 

humans have encountered throughout their evolutionary development. In particular, Bayes 

problems transform to simple probability problems if the data are given in an adequate format 

of absolute frequencies. Sedlmeier (1999) analyzes and summarizes recent teaching 

experiments carried out by psychologists that follow this approach and involve the use of 

computers. The results of these experiments suggest that statistical training is effective if 

students are taught to translate statistical tasks to an adequate format, including tree diagrams 

and absolute frequencies (Martignon & Wassner, 2002). 

 

Other difficulties and need for a comprehensive assessment questionnaire 

Other difficulties include problems in defining the conditioning event (Bar-Hillel & Falk, 

1982) and misunderstanding of independence (Sánchez, 1996; Truran & Truran, 1997). 

People also have problems with compound probabilities. Kahneman and Tversky (1982a) 

termed conjunction fallacy people’s unawareness that a compound probability cannot be 

higher than the probability of each single event. 

The previous study of literature showed us that there is a large amount of research on this 

topic but we found no comprehensive questionnaires to globally assess students' 

understanding and misconceptions on these topics and relate one to another. As a result, one 

of the goals in this research was constructing a questionnaire, which takes into account the 

content of conditional probability taught in the Spanish universities to psychology students, as 

well as the biases and misconceptions described in the literature. Studies 1-6 were oriented to 

construct and validate the questionnaire; Study 7 was directed to assess conditional reasoning 

with this questionnaire in a sample of 414 psychology students after teaching of the topic. We 
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also analyse possible relationships between formal knowledge of the topics and psychological 

biases (Study 6) and relationship between understanding conditional probability and learning 

Bayesian inference (Study 9). Even when we focus on psychology students, the questionnaire 

is useful in assessing conditional probability reasoning for other undergraduate or high school 

students. 

 

4. A BAYESIAN APPROACH TO CLASSICAL TESTS THEORY  

In the Classical Tests Theory (Muñiz, 1994; Martinez Arias, 1995), formulated by 

Spearman (1904), the empirical score X obtained by a subject in a test is a random variable 

and it is made of two components: the subject’s true score (V) in that test, that it is assumed to 

be constant and the error measurement (e). The model makes the following hypotheses 

(Muñiz, 1995): 

X=V+e 

E(X)=V 

• E (ei;)=0, for the population of subjects being measured, as well as for the infinite 

repetitions of the test in a subject. It is supposed that errors follow a normal distribution. 

• ( , ) 0; ( , ) 0i jV e e eρ ρ= = . It is assumed that the measurement error is not correlated with 

the true score and the measurement errors of different subjects are also independent.  

 

In a consistent Bayesian formulation of the Classical Tests Theory, the basic assumptions 

should be respected and the main difference is considering the model parameters as random 

variables, with prior and posterior distributions. Accepting this assumption, the estimation of 

these parameters should be carried out with a Bayesian methodology, following its procedures 

and objectives. Consequently, the true score is now a random variable with a normal prior 

distribution3. From these assumptions we derive the following equalities, similar to those in 

CTT since they are still applicable when V is a random variable: 

E (X)=E (V) 

2 2 2
X V eσ σ σ= +  

2 2
2 2

2 21 1V e
XV Xe

X X

σ σρ ρ
σ σ

= = − = −  

 

 

                                                 
3 Since the true score is sum of scores in the different items, approximated normality is reasonable. 
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Mean score  

We can use Bayesian inference to estimate the population mean, or the difference of two 

different means, with both informative and non informative priors. For non informative prior 

distribution two cases appear: 

• The standard deviation σi of the average prior distribution is known. In this case, for a 

uniform prior distribution, the average posterior distribution is normal N ( x ,σ/√n) where 

x  is the sample mean. The equation 
/
f x

Z
n

µ
σ

−
=  follows a distribution N (0,1) (Berry, 

1995). The point estimator of the mean on the posterior distribution fµ  is the sample 

mean x  of the data. The credibility interval for a credibility coefficient a is given by: 

1 /1. ) / 2 1 /1. ) / 2( / ; / )x Z n x Z nα ασ σ− −− + , being Z a percentile of the standard normal 

distribution. 

 

• If σ (population standard deviation) is not known, we can use s, the unbiased estimation 

of the standard deviation (sample cuasivariance square root) and the T distribution with n-

1 degrees of freedom, being n the sample size of data (Bolstad, 2004).  

 

• When the prior distribution for the population mean follows a normal distribution N(µi, 

σi) and the standard deviation σi on the prior distribution of the mean is known, the 

posterior distribution also follows a normal distribution N(µf, σf). The values of the mean 

and standard deviation of the posterior distribution are given by the following formulas: 

  
2 2

2 2
0

1

i

i
f

n x
s
n
s

µ
σµ

σ

−

+
=

+
   

2 2

1
/ 1/

f

in s
σ

σ
=

+
 

In previous expressions n is the sample size, x  and s the mean and standard deviation of 

the sample. For the case that the standard deviation σi in the prior distribution of the mean is 

not known, this one is estimated from the square root of sample cuasivariance s. The previous 

formulas of the mean and standard deviation of the posterior distribution are the same, but 

now the distribution will be T with n-1 degrees of freedom (being n the sample size), that can 

be approximated to the normal distribution with a sufficient sample size (Bolstad, 2004). 
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Difference of two mean scores  

The commonest situation is the comparison of two independent simples, where different 

cases can be found. We will only deal with the case of prior informative distributions, since 

the non informative case can be included in this one. 

 

Case 1. Identical known variances. The mean and variance of the score difference in the 

posterior distribution are given by: 

1 2
f f f

dµ µ µ= −  

2 2 2
1 2

f f f
dσ σ σ= +  

which would coincide with the mean and variance of the sample distribution in the case of non 

informative prior distribution. The credibility interval of the means difference for a a credibility 

coefficient would be: 

2 2
1 2 1 /1. ) / 2 1 2( )f f f fZ αµ µ σ σ−− ± +  

 

Case 2. Different known variances. When and prior distributions are independent in both 

samples, posterior distributions will be also independent. The mean and variance of the posterior 

distribution will be again4: 

1 2
f f f

dµ µ µ= −  

2 2 2
1 2

f f f
dσ σ σ= +  

and the credibility is given by: 

2 2
1 2 1 /1. ) / 2 1 2( )f f f fZ αµ µ σ σ−− ± +  

 

Case 3. Variances are not known. In this case, each of the variances should be estimated from 

the sample data (using the sample cuasivariances 2 2
1 2;s s ). This increases the uncertainty of the 

estimation, and therefore a T distribution will be used, instead of the normal distribution (Box 

& Tiao, 1992). The degrees of freedom are given by the Satterhwaite formula: (Bolstad, 

2004): 
2 2
1 2

1 2
2 2 2 2
1 1 2 2

1 2

( / ) ( / )
1 1

s s
n n

s n s n
n n

υ
+

=
+

+ +

 

                                                 
4 In this case the initial variances are different. 
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The approximated credibility interval is given by  

2 2
1 2 1 /1. ) / 2 1 2( )f f f fT αµ µ σ σ−− ± +  

where mean and variance on the posterior distributions are given by (1), the prior variances 

are estimated by the sample cuasivariances and the Satterhwaite formula is used for 

calculating the degrees of freedom. For the non informative prior distribution case, this 

expression is: 
2 2
1 2

1 2 1 /1. ) / 2
1 2

( )f f s sT
n nαµ µ −− ± +  

which coincides with the frecuentist confidence interval, but with a different interpretation. 

 

Estimation of difficulty indexes 

The difficulty index is defined as the proportion p of subjects that will get right the item, 

between all those that try to solve it in a certain population (Thorndike, 1991). Whereas in 

classical inference, the proportion p is considered constant, in Bayesian inference the 

difficulty index p is a random variable. Given a prior probability function Be(a,b) for a 

proportion, if in a new sample we observe e successes and f failures, the posterior probability 

function is Be(a+e, b+f) (Serrano, 2003).  

Any Beta with a=b can be used as non informative prior, that is to say, a uniform 

distribution of the parameter p (Lecoutre, 1996). In our study we use Be(0.5,0.5) as 

recommended by Lecoutre (1996) or Serrano (2003). The credibility interval is given by: 

0,5+p, 0,5+q 0,5+p, 0,5+q

1 1( 2) (1 2)β α β α− − − −   

where 
a,b

1β −  is the Beta (a,b) distribution inverse function and α the credibility coefficient. 

 

Estimation of discrimination indexes 

A first approach to study the discrimination indexes is analysing the difference in the 

proportion of the item success in two groups of students with different competence5. Let ps 

and pi be the difficulty indexes in the higher and lower groups. In the classical theory these 

parameters are unknown constants in their respective populations and the point estimation of 

the discrimination index is: 

l l-s id p p=  

                                                 
5 For example, students with and without instruction. 
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where l l s ip p  are the point estimators of ps and pi respectively. In the Bayesian interpretation, 

the previous proportions and their difference would be random variables. If the prior 

distribution for ps pi are taken from the Beta family, we will obtain a posterior Beta 

distributions for each of these proportions. Since the populations are independent, the 

posterior joint distribution of the bidimensional variable (ps pi) is the product of two posterior 

distributions for each proportion.  

In case of non informative prior (for example, B(1,1)), let es be the successes and fs the 

failures in the higher group and ei the successes and fi the failures in the lower group. The 

respective estimators for the proportions are: 

l 1
2

s s
s

s s

ep
e f
+

=
+ +

  l 1
2

i
i

i i

ep
e f

+
=

+ +
 (Albert, 1995; 1996) 

 

Let the prior distribution for ps be B (as, bs) and the prior distribution for pi B (ai, bi). If we 

achieve es successes and fs failures in the higher group and ei successes and fi failures in the 

lower group, the respective estimators of the proportions are:  

l s s
s

s s s s

a ep
a b e f

+
=

+ + +
  l i i

i
i i i i

a ep
a b e f

+
=

+ + +
 (Albert, 1996) 

 

In both cases the posterior distributions of the populations ps is B (a’s, b’s) and that of pi is 

B (a’i, b’i), that will be given by the previous formulas and are independent (Bolstad, 2004). 

Following Berry (1995) the estimators for the means in the posterior distribution are:  

l '
' '

s
s

s s

ap
a b

=
+

 l '
' '

i
i

i i

ap
a b

=
+

 

The estimators for the standard deviations in the posterior distributions will be (Bolstad, 

2004): 

l �

1
s s

s
s

p q
n

∂ =
+

 
l �

1
i i

i
i

p q
n

∂ =
+

 

 

Consequently, the difference of proportions is approximately a normal 

distribution l l 2 2( , )s is iN p p− ∂ + ∂ , so that the approximated credibility interval is given by:  

l l 1 2 2
1

2
s is ip p Z α

−
−− ± ∂ + ∂  

where Z is the normal N(0,1) distribution. 
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Estimating correlations and reliability coefficients 

There are diverse procedures to estimate the reliability coefficient, some of which are 

based on estimating the correlation coefficient between scores in two administrations of the 

questionnaire or between scores in two equivalent forms of the questionnaire: test-retest; 

parallel forms and split-half reliability. In estimating these coefficients and other 

psychometric features6 the correlation coefficient is used, which is a random variable in the 

Bayesian interpretation. Given a set of observed pairs (x1, y1), (x1, y1), ... (x1, y1) for a 

bidimensional random variable (X, Y) with bivariate normal distribution, let’s assume that the 

mean, variances and correlation of the scores are given by: 
2

2

( ) ; ( )
( ) ; ( )
( , )

E X Var X
E Y Var X

X Y

µ σ

η ϕ
ρ ρ

= =

= =
=

 

Assume we have computed the means x  and y  and correlation r in the data. In case of 

non informative priors for the means and variances of X and Y, and given a prior distribution 

for the correlation coefficient ( )p ρ , a reasonable estimation for the correlation coefficient 

posterior distribution is given by (Lee, 2004): 

( /( , ))p x yρ
( )
( )

( 1) / 22

3/ 2

1
( )

1

n

np
r

ρ
ρ

ρ

−

−

−

−
 

Replacing tanh ; tanhr zρ ξ= = , a new estimation is obtained, this time through the 

normal distribution: 

( ,1/ )N z nξ ∼  

This approximation can be used to find credibility intervals for the hyperbolic tangent of 

the correlation coefficient and from these intervals, inverting the change of variable; we find 

the interval for the correlation coefficient.  

For informative priors, let’s assume that in the first occasion we observe a correlation 

coefficient r1 in a sample size n1, which lead to a posterior distribution N(tanh-1 r1, 1/n1). In a 

second occasion we observe a correlation coefficient r2 in a sample size of n2. When taking 

the posterior distribution in the first observation as a prior distribution in the second 

experiment, we can apply the formulas for estimating the mean of the normal distribution. 

Therefore, to estimate tanh-1 r we have a normal posterior distribution, whose mean and 

                                                 
6 E.g. the discrimination index can also be assessed as correlation between the item score and total score in the 
test. 
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variance are given by the following expressions: 

1 2

1Variance
n n

=
+

 

-1 -1
1 1 1 1( tanh tanh )Mean Variance n r n r= +  

 

Again this transformation is applied to obtain a credibility interval of the hyperbolic 

tangent arc for the correlation coefficient, and inverting the transformation we obtain the 

credibility interval for the correlation coefficient. 

 

Computation software 

In order to make the above calculations we prepare a set of Excel programs (See examples 

in Figure 2), using the formulas given in the previous sections, for each of the cases 

described. We also have distinguished (in different sheets of Excel files) the informative and 

non informative prior cases. The programs permit the variation of credibility and confidence 

coefficients, sample sizes, prior distributions parameters, sample statistics etc. The data 

statistics required can be computed with SPSS or another statistical program. 

 
Figure 2. Some Excel programmes developed 

 
Mean 

 
Correlation 

 
Difference of means 

 
Difference of proportions 
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In summary the above analysis was carried out to follow the Research Objective 1: 

Rethinking the Classical Tests Theory (TCT) from the Bayesian point of view and analyzing 

the implications of this change of perspective on the estimation of some psychometric features 

in the tests and items. 

 

5. BUILDING AND VALIDATING THE CPR QUESTIONNAIRE 

The objective 2 in this research was to apply the above analysis in the process of building 

a questionnaire and compare results from classical and Bayesian estimates in some of the test 

features. At the same time Objective 3 was assessing conditional probability reasoning in 

psychology students to decide the suitability of teaching Bayesian methods to these students. 

In Chapters 4 and 5 of the thesis we describe the process of building and validating the CPR 

questionnaire with the purpose of fulfil these two aims. 

The instrument should be useful to assess in just one application the biases and 

misunderstanding related to conditional probability described in previous research and 

summarized in section 3.3 in addition to the conceptual and procedural knowledge included in 

the teaching of the topic in the training of psychologists in Spain. Below we briefly describe 

the process of building the questionnaire which is explained in detail in Chapters 4 and 5 of 

the thesis. This procedure includes the use of Bayesian methods to estimate difficulty and 

discrimination indexes (both as difference in averages and as item- total correlation, test-retest 

and split-half reliability coefficients) at different stages in the process. We use non 

informative priors in the first application of each estimation procedure; in next steps the 

previous final distributions are used as new informative priors. 

 

Steps in building the questionnaire 

The building of CPR questionnaire was based on a rigorous methodological process, 

which included the following steps: 

1. Semantic definition of the variable (Study 1). In educational measurement (e.g. Millman 

& Greene, 1989) a distinction is made between constructs (unobservable psychological 

traits, such as understanding of conditional probability) and the variables (e.g. score in a 

questionnaire) we use to make inferences regarding the construct. In order to achieve 

objectivity in defining our variable, we decompose the construct “understanding 

conditional probability” in semantic units. These semantic units were defined after a 

content analysis of 19 text books used in the teaching of statistics to psychologists. The 
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conditional probability content in the textbooks was analysed and the definitions, 

properties, relationships with other concepts and procedures were classified in a reduced 

number of categories by means of a systematic and objective identification (Ghiglione & 

Matalón, 1991). To select the books, the list of references recommended in statistics 

courses was requested to the 31 Faculties of Psychology in Spain. All the textbooks 

recommended by at least 4 different Universities were analysed, after discarding some 

books in which conditional probability was not included.  

2. Constructing an item bank. The aforementioned analysis was complemented with our 

revision of previous research on conditional probability reasoning, that also served to 

compile a sample of n=49 different items used in this research, some of which had been 

used by different authors. These items were translated into Spanish and reworded to make 

their format homogeneous and improve their understanding. 

3. Selection of items (Study 2). The item difficulty (percentage of correct answers) and 

discrimination (correlation with test total score) were estimated from the answers by 

different samples of psychology students (between 49 and 117 students answered each 

pilot item) by classical and Bayesian procedures. Final selection of items took into 

account these two parameters as well as results from expert judgment. Ten statistics 

education researchers from five different countries (Brazil, Colombia, Mexico, Spain and 

Venezuela) who had themselves carried out research related to conditional probability or 

independence were asked to collaborate. They were asked to value (in a 5-point scale) the 

adequacy of the content units to understanding conditional probability as well as the 

suitability of each item to assess understanding for each specific content unit. The final 

items in the questionnaire were selected in such a way that a) the intended content of the 

questionnaire was covered (see Table 1); b) there was an agreement from the experts 

about the item adequacy; and c) item difficulty and discrimination were suitable.  

4. Formatting and revising the items. We included two different formats: a) Multiple choice 

items with 3-4 possible responses were used to allow quick evaluation in the sample of 

some of the most pervasive biases described in the previous literature (e.g. item 3 taken 

from Tversky and Kahneman (1982a) which evaluates the base-rate fallacy, item 5 taken 

from Sánchez (1996) assesses the confusion between independent and mutually exclusive 

events and item 9 taken from Tversky and Kahneman (1982b) assesses the conjunction 

fallacy);  b) Open- ended items were also used to better understand students’ strategies in 

problem solving (e.g. item 16) and their understanding of definitions and properties (e.g., 

items 1, 2). 
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5. The pilot trial of the instrument (Study 3) took place in the academic year 2003-2004 with 

a small sample of n=57 Psychology students in order to make a preliminary estimation of 

the questionnaire reliability and validity. A second sample of n=37 students majoring in 

Mathematics was used to compare the performances in the two groups and to identify 

items with and without discriminative properties. Classical and Bayesian estimates of 

items difficulties and discrimination (both as item-total correlation and as difference of 

averages) were provided. A first estimation of internal consistency reliability provided a 

value Alfa= 0.787. Content validity was assessed through content analysis of items in the 

pilot questionnaire and through expert judgment of both content units and fitting of items 

to assess each content unit. 

6. Revising the pilot questionnaire (Study 4). After discarding those items with bad 

psychometric features, a new expert judgment served to improve the wording of the items. 

Thirteen expert methodology instructors were given three alternative wordings for each 

item and were asked to order the three versions, as regards methodology standards, as well 

as give the reasons for their choice. Rank statistics were used to summarise the data. Non 

parametric tests (Kendall & Friedman) showed clear agreement in the option selected by 

the experts for each item. This version was included in the final questionnaire and 

additional suggestions by the methodology instructors were used to still improve 

readability. 

 
Table 1. Primary content assessed by each item 

Content Item 
1. Defining conditional probability; giving appropriate examples 1 
2. Recognising that a conditional probability involves a restriction in the sample space 2 
3. Base rates fallacy 3 
4. Distinguishing conditional, simple and joint probabilities 6 
5. Distinguishing a conditional probability and its inverse (transposed conditional fallacy 6 
6. Conjunction fallacy 9 
7. Distinguishing independent and mutually exclusive events 4 
8. Computing conditional probabilities in a single experiment 8 
9. Solving conditional probability problems in a sampling with replacement setting 12  
10. Solving conditional probability problems in a sampling without replacement setting 5 
11. Computing conditional probabilities from joint and compound probabilities 7 
12. Solving conditional probability problems when the time axis is reverted 17 
13. Distinguishing conditional, causal and diagnosis situations 10 
14. Solving conditional probability problems in a diachronic setting 14 
15. Solving conditional probability problems in a synchronic setting 15 
16. Solving compound probability problems by applying the product rule to independent events 13 
17. Solving compound probability problems by applying the product rule to dependent events 18 
18. Solving total probability problems 11 
19. Solving Bayes problems 3, 16 
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The final questionnaire (see Appendix 1) is composed by 18 items, with some sub-items, 

which score independently and some open-ended items. In Table 1 we present the items 

primary contents that cover the content in the books analysed as well as main biases described 

in the literature. There is one item covering each content (item primary content); additionally 

each item also assesses some other secondary contents (described in detailed in Study 3). 

 

CPR reliability 

Once the questionnaire was finished we performed reliability and validity analyses 

(Studies 5 and 6).  

A first approach to the reliability of the instrument was carried out by computing the 

Alpha coefficient in a sample of n=591 students from 4 different Universities, that gave a 

moderate value (Alpha=0.797). This value is reasonable, given that the questionnaire tries to 

assess a wide range of knowledge (see Table 1), so that a particular student can understand 

some of these concepts and do not understand others (Thorndike, 1991; Melia, 2001). We also 

computed two reliability coefficient based on factor analysis (Barbero, 2003):  
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=0.82; was high, since the first eigenvalue explained a relatively high 

percentage of variance and most items contributed to that factor before rotation, which 

is an indication of an underlying construct being measured by the questionnaire. 
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; was still higher, according what is theoretically expected; 

this coefficient measures the commonalities (common factors) in the items. 

 

In the same sample (n=591) we also carried out a generalizability analysis (López Feal, 

1987; Feldt & Brennan, 1991; Martínez Arias, 1995), an approach that considers the different 

sources of error in measurement, analyses the component of these errors and provides 

different coefficients. In this method it is possible to fix some sources of errors and use the 

analysis of variance to estimate the different components in the total variance, including the 

variance of errors. We took into account two different sources of variations in the tests scores: 

1. Generalizability of results to other items (fixing the students and considering the items as 

the only source of variation). We obtained a coefficient Gi=0.799; very close to the 

Crombach’s Alpha value, as, in this case the generalizability coefficient coincides with 

Alpha; the small difference is due to round-off in the computations. 
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2. Generalizability of results to other students (fixing the items and considering the students 

as the only source of variation). We obtained a coefficient Gi=0.987, which indicates a 

very high possibility of extending the results to other students similar to those taking part 

in the sample, when the items are fixed. 

 

Another estimation of reliability using test- retest was carried out in a sample of 106 

students, each of which completed the questionnaire in two different occasions with about a 

month between the two applications. We obtained a test- retest reliability coefficient of 0.871 

(Pearson correlation) and 0.861 (Spearman Rho), which are quite high. The Pearson’s 

correlations coefficients between responses to same items in the two applications were all 

statistically significant and positive, ranging between 0.29 and 0.79. Split-half reliability 

coefficient (when considering each application as half the total questionnaire) gave very high 

values (0.91); the means, variances, inter-element covariances and correlations were very 

similar in the two occasions; all of which assures a high test-retest reliability. The 

computation of test-restest reliability was complemented with the estimation of confidence 

and credibility intervals for all the correlations coefficients.  

 

CPR validity 

We carried out different studies to provide evidences for the validity of the questionnaire 

that was considered a unitary construct according Messick (1989; 1995; 1998) and AERA/ 

APA/ NCME (1999): 

1. The theoretical analysis of the questionnaire content as well as the results from experts’ 

judgment served to justify content validity, by comparing the content evaluated by each 

item to the semantic units included in the semantic definition (Study 3). 

2. Studying the questionnaire capacity to discriminate between two groups of psychology 

students before and after studying conditional probability served to justify criteria validity 

(Study 6.1). We used discriminant analysis (Cuadras, 1981; Afifi y Clark, 1990) to 

compare results from 208 students without instructions and 177 students with instructions. 

Most items discriminated between the two groups (significant difference); the scarce 

exceptions were items measuring psychological biases. The canonical correlation was 

equal to 0.697 and the probability of correct classification was 82.34%, all of which 

suggest good criteria validity for the questionnaire. This study was complemented with 

statistical summaries, difference tests, confidence and credibility intervals for the mean of 

the total scores in the two groups that again favoured the group with instruction. 
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3. We analysed the structure of responses to the questionnaire in a sample of n=591 students 

and compared with the assumed structure of the construct (Study 6.2) to study the 

construct validity (Muñiz, 1994; Martínez Arias, 1995). We performed an exploratory 

factor analysis (Tabachnick & Fidell, 2001). We expected the analysis confirm a main 

underlying construct, but, at the same time we also expected to find other factors that 

included the biases described in the literature and that would not correlate with the 

mathematical problem solving competence of students. All of this was confirmed in the 

Factor analysis (main components extraction; varimax rotation), which lead to two 

different groups of interrelated factors, as described in Section 6.1. 

 

Details and statistical results of all the different steps in the process of building the 

questionnaire are included in Chapters 4 and 5 of the thesis. We applied Bayesian methods 

along all these steps, in order to fulfil the research objective 2. The result is the CPR 

questionnaire with reasonable reliability and validity that will be used in the next stage of the 

research and is also useful to other teachers and researchers. 

 

6. DESING AND VALIDATION OF DIDACTIC RESOURCES TO INTRODUCE 

ELEMENTARY BAYESIAN INFERENCE IN PSICHOLOGY 

Objective 3 in this research was assessing conditional probability reasoning in psychology 

students to decide the suitability of teaching Bayesian methods to these students. In Study 7 

we applied the CPR questionnaire to a sample of 413 psychology students and analysed their 

responses from different points of views. Students showed enough understanding of 

conditional probability to start the learning of Bayesian inference, but, at the same time, we 

found some widespread misconceptions that were taken into account in the next stage 

(designing a curricular proposal). 

Objective 4 in this research was preparing and assessing didactic resources to introduce 

elementary Bayesian inference to Psychology students that takes into account the previous 

assessment. To attain this aim we designed some teaching materials that were based on results 

of Study 7, some didactic principles and literature on teaching Bayesian inference. These 

materials were tried in Studies 8 and 9. Below we summarise these three studies, which are 

described in detail in Chapter 6 of the thesis. 

 

6.1. ASSESSING CONDITIONAL REASONING IN PSYCHOLOGY STUDENTS 

Once the CPR questionnaire was finished, we carried out an assessment study (Study 7). 
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Students from the Universities of Granada (4 different groups of students; n=308 students) 

and Murcia (two different group of students; n=106 students) took part in the sample (n=414). 

The students were enrolled in an introductory statistics course in the first year of University 

studies (typically, 18-19 year-olds). They had studied conditional probability at secondary 

school level and were taught conditional probability and the Bayes theorem with the help of 

tree diagrams, two-way tables and examples in the field of psychology, for about 2 weeks 

before they completed the questionnaire. The questionnaire was given to the students as an 

activity in the course of data analysis. Participation was optional and all the students were 

collaborative with the research.  

Once the data were collected, we analysed the response of each student in each item. The 

scoring for open-ended items took into account the completeness of response. In items 2, 8, 

11, 12, 13, 15 the students were given a point in case they identified correctly the problem 

data; correct built a tree diagram and identified the conditional probability, and 2 points for a 

totally correct solution. In item 1 and 16 the scoring ranged from 1 to 4 (see Table 4). The 

maximum possible scoring in the questionnaire was 34 points. The empiric distribution of 

scoring ranged between 3 and 30 with an average value of 19.12, a little higher than half the 

maximum possible score and the standard deviation was 5.91  

In computing several probabilities from a two-way table (item 1) 90% of the students 

correctly computed the simple probability, 61%, the joint probability and 59% and 56%, 

respectively the two conditional probabilities. This confirms Falk´s (1989) opinion that verbal 

ambiguity in linguistic expression of conditional probability still makes it difficult for the 

student to distinguish conditional and joint probabilities after instruction.  

Results in Table 2 suggest the existence of the following reasoning conflicts among the 

students in the sample: 

 
Table 2. Percentage of responses in multiple-choice items (n=414) 

 a b c d Blank 
I3 8 7 29 50(+) 5 
I4 28 15 29 20(+) 8 
I5 1 89(+) 10 (*) 0 
I7 35(+) 31 34 (*) 0 
I9 25(+) 9 62 (*) 4 

I10 6 32(+) 59 (*) 9 
I14 77 9 10 (+) 2 2 
I17a 6 17 69 (+) 7 1 
I17b 24(+) 25 9 36 6 
I18 9 13 76(+) (*) 2 

(*) Does not apply  (+) Correct 
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1. As regards independence: we found confusion of independence with mutual exclusiveness 

in 28 % of the responses to distractor a) in item 4; a bias also noticed by Sánchez (1996). 

The chronological conception of independence described by Gras and Totohasina (1995) 

was also shown in 29% of the responses to distractor b) in item 4. 

2. Concerning conditional probability: 31% of the students confused it with a joint 

probability (response b in item 7) or with a simple probability (34% responses c in item 

7). The conjunction fallacy was observed in 62% of the responses to item 9 and the 

confusion of the transposed conditional in 59% of the responses in item 10. Difficulties in 

computing probabilities when the time axis is inverted are suggested by the responses to 

items 14 and 17b, although the chronological conception of conditional probability 

described by Gras and Totohasina (1995) was not so clearly shown in these two items. 

3. The base rate fallacy was not as pervasive as suggested in previous research (Bar-Hillel, 

1983) as shown in the responses to distractors (a) and (b) in item 3; since the majority of 

students gave the correct response (d) in this item, then showing improvement of base rate 

with instruction. Item 18 was also very easy.  

 
Table 3. Completeness of solutions in open-ended items 

 I1 I2 I8 I11 I12 I13 I15 
Blank or totally wrong 29 15 47 18 21 30 24 
Partly correct 30 21 18 21 9 18 16 
Correct solution 41 64 35 61 70 52 60 

 

As regards responses in open-ended items, results in Table 3 suggest that students had 

difficulties in giving a sound definition and an example of conditional probability (item 1) but 

were conscious of the restriction of sample space (item 2). They had difficulties in solving a 

conditional probability problem in a single experiment (item 8) due to a lack of distinction of 

dependent and independent experiments in the context (synchronic situation), so that many of 

them did not appear to have completely reached Level 4 in the conditional probability 

reasoning scheme by Tarr and Jones (1997). 

Solving total probability (item 15) and solving conditional probability problems with 

replacement problems (item 12) and computing compound probability in the case of 

independent (item 11) events were easier than computing compound probability in dependent 

(item 13) events.  

 

 



 34

 
Table 4. Completeness of solutions in solving a Bayes problems (Item 16) 

 Percentage 
Blank or totally wrong 16 
Correct identification of data  15 
Identifies the inverse conditional probability, 16 
Correct computation of denominator (total probability) 7 
Correct solution 46 

 

As regards solving an open Bayes problem (item 16), more than half the students were 

able to compute the total probability and a little less gave the complete solution; the majority 

was at least capable of correctly identifying the data and even identifying the probability to be 

computed although 16% failed in developing the total probability formula. We remark that 

data were given in the percentage format, which is considered harder than absolute frequency 

formats in Gigerenzer (1994) and Gigerenzer and Hoffrage´s (1995) research. We can 

conclude that, in general, the instruction was successful as regards problem solving 

capabilities, whenever there were no psychological biases involved in the situation. However, 

part of the biases described in the literature seemed not to be overcome with instruction. 

To explore our conjecture that biases on conditional probability reasoning are unrelated to 

mathematical performance in the tasks, we carried out a factor analysis of the set of responses 

to the items (correct-incorrect responses to each item by the different students) using the 

SPSS software. The factor extraction method was principal components, which is the most 

conservative method, as it does not distort the data structure. In Table 5 we present the factor 

loadings (correlations) of items with the different factors after Varimax rotation (orthogonal 

rotation; maximizing variance of the original variable space). We found 7 factors with 

eigenvalue higher than 1 that explained the following percentages of the total variance: 21% 

(first factor), 7 % (second factor), and about 6% in the remaining factors; that is, a total of 

59% of the variance was explained by the set of factors, which suggests the specificity of each 

item, and the multidimensional character of the construct, even when there is a common part 

shared by all of the items. 

These percentages of variance also revealed the greater importance of the first factor, to 

which most of the open- ended problems contribute, in particular solving Bayes’ problems 

had the higher contribution, followed by solving total probability and compound probability 

problems. All of these problems require a solving process with at least two stages, in the first 

of which a conditional probability is computed, which is used in subsequent steps (e.g. 

product rule). We could interpret this factor as solving complex conditional probability 



 35

problems ability. 

 
Table 5. Factor Loadings for Rotated Components in Exploratory Factor Analysis of Responses to Items 

Item Component 
  1 2 3 4 5 6 7 
Item 16. Bayes rule .76       
Item 11. Total probability .76       
Item 15. Product rule in dependent, synchronic events .75       
Item 13. Product rule in independent events .67       
Item 12. Conditional probability with replacement .43  .42     
Item 6b. Conditional probability. Table  .79      
Item 6c. Joint probability. Table  .77      
Item 6a. Simple probability. Table .32 .61      
Item 6d. Conditional probability. Table  .61      
Item 8. Conditional probability in single experiment   .67     
Item 1. Definition   .59     
Item 2. Sample space .40  .45     
Item 17b. Time axis fallacy, diachronic experiment    .71    
Item 14. Time axis fallacy, diachronic experiment    .70    
Item 7. Cond prob. from joint and compound probability, synchronic     .66   
Item 9. Conjunction fallacy     .62   
Item 5. Conditional probability, without replacement, diachronic   .39  .44   
Item 17a. Conditional probability, without replacement      .66  
Item 10. Transposed conditional /causal-diagnostic      -.65  
Item 3. Independence /mutually exclusiveness       .68 
Item 3. Base rates/ Bayes rule .34      .48 
Item 18. Product rule dependence, diachronic    .35   -.46 

 

Computing simple, joint and conditional probability from a two-way table (item 6) 

appeared as a separate component, probably because the task format affected performance, a 

fact which has also been noticed by Ojeda (1996) and Gigerenzer (1994), among other 

researchers. A third factor showed the relationships between definition, sample space and 

computation of conditional probabilities in, with and without replacement situations; that is, 

we interpreted this factor as Level 4 reasoning in Tarr and Jones (1997) classification.  

The remaining factors suggested that the different biases affecting conditional probability 

reasoning that are described in the justification, appeared unrelated to mathematical 

performance in problem solving, understanding, building the sample space and computing 

conditional probability, and to Tarr and Jones’s (1997) level 4 reasoning (as related items 

were not included in the three first factors). Each of the biases (transposed conditional, time 

axis fallacy, conjunction fallacy, independence/mutually exclusiveness/synchronic setting) 

also appeared unrelated to one another; in some cases some of them were opposed or related 

to some semantic units in the mathematical component of understanding conditional 

probability. For example, independence was linked to the base rate fallacy (where people have 

to judge whether if the events are independent or not) and opposed to the idea of dependence. 
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In summary, these results supported our previous hypotheses that biases in reasoning 

about conditional probability are unrelated to mathematical performance in problem solving 

and, at the same time, support construct validity evidence for the questionnaire. At the same 

time it provides information about potential biases students might hold that were used in the 

design of the teaching experience in the next step of this research. 

 

6.2. EVALUATION OF A TEACHING EXPERIENCE 

There is nowadays a tendency to recommend that teaching of Bayesian inference might be 

included in undergraduate statistics courses as an adequate and desirable complement to 

classical inference (Lecoutre, 1999; 2006; Lecoutre, Lecoutre & Poitevineau, 2001; Iglesias, 

Leiter, Mendoza, Salinas & Varela, 2005). Situations where available a priori information can 

help making an accurate decision and software that facilitates the application of these methods 

are becoming increasingly available, 

Some excellent textbooks whose understanding does not involve advance mathematical 

knowledge and where basic elements of Bayesian inference are contextualized in interesting 

examples (e.g., Berry, 1995 or Albert & Rossman, 2001) can help follow these 

recommendations. There are also a great number of Internet didactic resources that might 

facilitate the teaching of these concepts (e.g. those available from Jim Albert’s web page at, 

http://bayes.bgsu.edu/). These and other authors (Bolstad, 2002) have incorporated Bayesian 

methods to their teaching and are suggesting that Bayesian inference is easier to understand 

than classical inference. This is however a controversial question (see Moore, 1997) and 

moreover empirical research that analyze the learning of students in natural teaching contexts 

is still very scarce. 

The aim of Study 8 in this thesis was to explore the possibility of introduce basic ideas of 

Bayesian inference to undergraduate psychology students and report the extent to which the 

learning goals were achieved. The goal of Study 9 was identifying groups of related concepts, 

as well as implications between learning objectives with the aim of providing some 

recommendations about how best organised the teaching of the topics. In both studies we 

took into account the results of the previous assessment Study 7. 

The sample taking part in this research included 78 students (18-20 year-olds) in the first 

year of the Psychology Major at the University of Granada, Spain. These students were in the 

introductory statistics course and volunteered to take part in the experiment. The sample was 

composed by 17.9% boys and 82.1% girls, which is the normal proportion of boys and girls in 

the Faculty. These students scored an average of 4.83 (in a scale 0-10) in the statistics course 
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final examination with standard deviation of 2.07.  

The students were organized into four groups of about 15-20 students each and attended a 

short 12 hours long course given by the same lecturer with the same material. The 12 hours 

were organized into 4 days. Each day there were two teaching sessions with a half-an hour 

break in between. The first session (2 hours) was devoted to presentation of the materials and 

examples, followed by a short series of multiple choice items that each student should 

complete, in order to reinforce their understanding of the theoretical content of the lesson.  

In the second session, students in pairs worked in the computer lab with some Excel 

programs provided by the lecturer to solve a set of inference problems. The Excel programs 

were as follows: 

1. Program Bayes: This program computes posterior probabilities from prior probabilities and 

likelihood (that should be identified by the students from the problem statement). 

2. The program Prodist transforms a prior distribution P(p=p0) for a population proportion p 

in the posterior distribution P(p=p0|data), once the number of successes and failures in the 

sample are given. Prior and posterior distribution is represented graphically. 

3. The program Beta computes probabilities and critical values in the Beta distribution B(s,f), 

where s and f are the successes and failures in the sample. 

4. The program Mean computes the mean and standard deviation in the posterior distribution 

for the mean of a normal population, when the mean and standard deviation are given in the 

sample and prior population. 

 

In table 1 we present a summary of the teaching content. Students were given a printed 

version of the didactic material that covered this content. Each lesson was organized in the 

following sections: a) Introduction, describing the lesson goals and introducing a real life 

situation; b) theory development, using the situation previously presented; c) additional 

examples of other situations where the same procedures and concepts could be applied, d) 

some solved exercises, with description of main steps in solving the exercises; e) new 

problems for students to solve in the computer lab; and f) self assessment. All this material 

together with the Excel programs was also made available to the students on the web site 

(http://www.ugr.es/~mcdiaz/bayes) and is also included as Appendix 7 to 9 in the thesis. We 

added a forum, so that students could consult the teacher or discuss themselves their 

difficulties, if needed.  
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Table 6. Teaching content and its organization 

Lesson Content In classroom Session 1 Computer lab Session 2 
1 Bayes theorem in 

the context of 
clinical diagnose 

Prior and posterior probabilities; 
likelihood; Bayes theorem Subjective 
probability. Comparison with classical 
and frequentist probability. Revision of 
beliefs; sequential application of 
Bayesian procedures  

Solving Bayes Problems: (Program 
Bayes) 

2 Inference for 
proportion. Discrete 
case in the context 
of voting 

Sample and population; parameters and 
statistics; Parameter as random variable; 
Prior and posterior distribution; 
Informative and non informative prior 
distribution. Credible intervals 

Computing credible intervals for 
proportion; assigning non 
informative and informative prior 
distributions (Program Prodist) 

3 Inference for 
proportion. 
Continuous case in 
the context of 
production 

Generalization to continuous case. Beta 
distribution, its parameters and shape. 
Credible intervals; Bayesian tests 

Assigning non informative and 
informative prior distributions 
Computing credible intervals for 
proportion; testing simple 
hypotheses (Program Beta) 

4 Inference for the 
mean of a normal 
population in the 
context of 
psychological 
assessment 

Normal distribution and its parameters; 
credible intervals and tests for the mean 
of a normal distribution with known 
variance; non informative and 
informative prior distributions 

Assigning non informative and 
informative prior distributions 
Computing credible intervals for 
means; testing simple hypotheses 
(Program Mean) 

 

Two weeks after the end of the teaching, the students were given a questionnaire to assess 

their understanding of the topic. They were warned to study the topic and prepare for the 

assessment and were motivated to get a good result in the test.  

 

Questionnaire. A-priori analysis 

The BIL (Bayesian Inference Learning) questionnaire (which is presented in Appendix) 

was made of multiple choice and some open ended items that were developed by the author 

with the specific aim to cover the most important contents in the teaching. In table 7 we 

describe the contents assessed by the different items in the BIL questionnaire. (In item I18 we 

considered three different scores). The aim was to assess learning in the following groups of 

concepts, which in our a-priori analysis were assumed to be the core content of basic 

Bayesian inference and might cause different types of difficulties to students. We also 

assumed learning of one of these groups of concepts would not automatically assure the 

learning of the other groups: 

1. Conditional probability and the Bayes’ theorem. As was argued before, different authors 

pointed to students’ difficulties in understanding conditional probability: fallacy of the 

transposed conditional; causal and chronological conception of conditional probability; 

confusion between simple, joint and conditional probability. All these errors might cause 

difficulties in computing different types of probabilities (item2), understanding of the 
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differences between prior and posterior probability and likelihood (items 1 and 18), and 

using the Bayes’ theorem as a tool to transform prior into posterior probabilities (item 7 

and 18).  

 
Table 7. Contents assessed in the BLI Questionnaire 

Item Content assessed 
I1 Likelihood, conditional probability 
I2a Simple probability 
I2b Conditional probability 
I2c Conditional probability of contrary event 
I2d Joint probability 
I3 Parameter as random variable 
I4 Prior distribution 
I5 Parameter as random variable; difference with statistics 
I6 Correct assignment of a non informative prior distribution for proportion 
I7 Using the Bayes’ theorem as a tool to transform prior into posterior probabilities; table given 
I8 Parameters in Beta distribution, defining prior informative distribution for proportion 
I9 Parameters in Beta distribution, 
I10 Computing credible intervals for proportion; reading Beta tables 
I11 Testing simple hypotheses for proportion; reading Beta tables 
I12 Properties of credible intervals 
I13 Posterior distribution of mean; non informative prior. Known variance 
I14 Testing simple hypotheses for means 
I15 Posterior distribution of mean; non informative prior. unknown variance 
I16 Credible intervals for means 
I17 Posterior distribution for mean, informative prior 
I18.1 Identifying prior probabilities from a problem statement 
I18.2 Identifying likelihood from a problem statement 
I18.3 Using the Bayes’ theorem as a tool to transform prior into posterior probabilities;  
I19 Meaning of likelihood 
I20a Parameters in Beta curve. Spread 
I20b Parameters in Beta curve. Centre 
 

2. Parameters as random variables, their distribution, distinction between prior and 

posterior distribution. In Bayesian inference, parameters are considered to be random 

variables with a prior distribution, while in frequentist inference they are assumed to be 

unknown constants (items 3, 5), a distinction which is not too clear for some students 

(Bolstad, 2002). Moreover, the aim of Bayesian inference is to transform the prior into a 

posterior distribution via the Bayes’ theorem (item 18). A prior distribution provides all 

the information for the parameter before collecting the data (item 4), non informative 

priors are given by uniform distributions and are used when no previous information is 

available for the parameter (item 6).  

There are different models to represent prior distributions. The Beta distribution was 

introduced in the teaching, and students had to learn the meaning of its parameters (item 

8, 20) and how to select a specific Beta distribution in a particular inference problem (item 

9). Students knew the normal distribution from previous lessons. However, they had to 
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learn the rule to compute the posterior distribution for a mean when the prior distribution 

is normal (item 13; 14, 15, 16). In managing all these distributions, Bayesian statistics 

uses the rules of probability to make inferences, and that requires dealing with formulae, 

but actual calculus used is minimal as students only have to understand that probability is 

given by different types of areas under a density function (Bosltad, 2002). However, the 

extent to which all of this is grasped by psychology students has still to be assessed. 

3. Logic of Bayesian inference. The aim of Bayesian inference is updating the prior 

distribution via the likelihood to get the posterior distribution, which provides all the 

information for the parameter, once the data have been collected (Bolstad, 2004). 

However, it is also possible to carry out procedures similar to those used in frequentist 

statistics, although the interpretation and logic is a little different (Berry, 1995; Lecoutre, 

2006). Credible intervals provide the epistemic probability that the parameter is included 

in a specific interval of values, for the particular sample, while confidence intervals 

provide the frequentist probability that in a percentage of samples from the same 

population the parameter will be included in intervals of values computed in those 

samples. Credible intervals are computed from the posterior distribution (item 17) and 

students should be able to compute them by using the tables of different distributions 

(items 10, 16); they should understand that the interval width increases with the credibility 

coefficient and decreases with the sample size (item 12).  

In Bayesian inference we can compare at the same time different hypotheses; in this case 

we compute the probabilities for those hypotheses given the data by using the posterior 

distribution and select the hypothesis with higher probability (item 11). In testing only one 

hypothesis we either compute the probability for the hypothesis or for the contrary event 

(item 14); acceptance or rejection will depend on the value of that probability. So, there 

are some conceptual and interpretative differences between classical and frequentist 

approaches, but, since both approaches often lead to approximately the same numerical 

results, students might not understand these differences and confuse both approaches 

(Iversen 1998) 

 

Results 

There were only 4 difficult tasks (percentage of correct responses under 50%). These 

tasks were (See table 8) the following: In item 14 (testing hypothesis about the mean) students 

either made an error in the reasoning by contradiction (choosing distractor c) or did not 

understand the standardization operation and choose distractor a). Of course this is a highly 
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complex item, where the logic of testing hypotheses is mixed with knowledge of probability 

calculus and standard Normal distribution. Students also found much difficulty in items 2b, 

and 2c where they confused a conditional probability and its inverse, a problem that have 

been repeatedly denounced (Bar-Hillel & Falk, 1982; Falk, 1986). We remark that distractors 

in this item are given only by formulas (instead of using a verbal description such as in item 

1) while we found a high percentage of correct responses in item 1 and 7, in spite of the many 

difficulties and misconceptions described for conditional probability (see Batanero & 

Sánchez, 2005 for a survey). We conclude that the expressions prior and posterior 

probabilities and likelihood helped students to better distinguish a conditional probability and 

its inverse in these items. Finding a posterior distribution for the mean (item 15) was also 

difficult because students forgot to divide by the square root of the sample size to find the 

standard deviation in the posterior distribution. All the other tasks had a medium difficulty 

(between 50-60% correct responses). 

 
Table 8. Results in BIL questionnaire 

 
% Correct 
responses 

Confidence 
interval 95% 

Credible interval 
95% 

  Lim inf Lim inf Lim sup Lim sup 
1 88.7 0.808 0.966 0.784 0.943 
2a 79.0 0.689 0.891 0.673 0.872 
2b 38.7 0.266 0.508 0.276 0.511 
2c 29.0 0.177 0.508 0.192 0.412 
2d 51.6 0.392 0.639 0.394 0.635 
3 66.1 0.543 0.779 0.537 0.766 
4 58.1 0.458 0.779 0.456 0.695 
5 61.3 0.492 0.734 0.488 0.723 
6 50.0 0.376 0.624 0.366 0.604 
7 93.5 0.874 0.996 0.845 0.973 
8 53.2 0.408 0.656 0.409 0.650 
9 85.5 0.767 0.943 0.746 0.921 

10 64.5 0.526 0.764 0.520 0.752 
11 58.1 0.458 0.704 0.456 0.695 
12 53.2 0.408 0.656 0.409 0.650 
13 69.4 0.579 0.809 0.570 0.793 
14 30.6 0.191 0.421 0.206 0.429 
15 40.3 0.281 0.525 0.290 0.527 
16 69.4 0.579 0.809 0.570 0.793 
17 69.4 0.579 0.809 0.570 0.793 
18 79.0 0.689 0.891 0.673 0.872 
19 58.1 0.458 0.704 0.456 0.695 
20a 82.3 0.728 0.918 0.709 0.897 
20b 72.6 0.615 0.837 0.582 0.800 

 

 

 
Table 9. Results in problem solving in lesson 4 (Inference about a mean) (n=78) 
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% Correct 
responses 

95% Conf, interval 95% Credible interval

   Lim inf Lim inf Lim sup Lim sup 
Correct solution 78.2 0.690 0.874 0.678 0.858 
Typify 83.3 0.750 0.916 0.724 0.891 
Identify the Z interval / Define hypothesis 84.6 0.766 0.926 0.750 0.909 
Compute final distribution 85.9 0.782 0.936 0.765 0.919 

Ej.1 

Identify data 88.5 0.814 0.956 0.795 0.937 
Correct solution 67.9 0.575 0.783 0.569 0.772 
Typify 87.1 0.797 0.945 0.780 0.928 
Identify the Z interval / Define hypothesis 88.5 0.814 0.956 0.795 0.937 
Compute final distribution 82.0 0.735 0.905 0.721 0.889 

Ej.2 

Identify data 78.2 0.690 0.874 0.678 0.858 
 

We also gave students problem solving activities and short self-assessment questionnaires 

in each lesson. In Table 9 we show results of solving problems related to inference in a mean 

(normal population). Details of results in the other intermediate assessment are included in 

Chapter 8 of the thesis and again show that students were capable of solve simple activities of 

Bayesian inference for proportions and means, including computing credible intervals and 

carrying out hypotheses tests. 

 

6.3. INTERRELATIONSHIP BETWEEN CONDICIONAL PROBABILITY 

REASONING AND LEARNING OF BAYESIAN INFERENCE 

To study the interrelations and implications between learning objectives we carried out 

several multivariate analyses, using the CHIC software, Classification Hierarchical, 

Implicative et Cohesive (Couturier and Gras, 2005). The implication index between two 

dichotomous variables a and b in a population is defined by  

( ) ( )( )
( , )

( ) ( )

c a r d A c a r d Bc a r d A B
nq a b

c a r d A c a r d B
n

 
 ∩ −
 =
 
 
    

 

where A and B are the population subgroups where a and b take the value 1 (Gras, 1993; 

1996; Gras & Ratsima-Rajohn, 1996). This index follows the normal distribution N(0,1), and 

from there an intensity for the implication a b⇒  is defined by 

( , ) Pr [ ( ) ( )]a b ob car X Y card A Bϕ = ∩ ≤ ∩ , 

where X and Y  are dichotomous independent random variables having the same cardinal 

than A and B  respectively (Lerman, Gras & Rostam, 1981a & b). In our study we have a total 

of C21, 2 implication indexes among the 21 subítems in the LBI questionnaire. The software 
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CHIC computes these indexes and provides a graph with all the implications which are 

significant to a given significance level.  

The implication a b⇒  in our study is interpreted in the sense that when a students 

correctly solves item a there is higher probability for him /her to solve item b. In this sense 

the implicative graph provides a possible order to introduce different concepts and procedures 

whose understanding is assessed in those items in the teaching of the topic. Before carrying 

out the implicative analysis we checked the assumptions of the method; experimental units of 

variables, and independence of responses by different students. We assumed a binomial 

model for the responses; that is, we assumed each student having same likelihood to correctly 

solve the items (Lerman, 1991), as in fact these are the hypotheses assumed in classical theory 

of tests. 

In Figure 2 we present the implicative graph with all the relationship that were significant 

at 99% level (red) or 95% level (blue), We observe that the implication relationship is 

asymmetrical and the sense of implication is showed by the arrows in the graph.  

If we study the relationships higher than 99% in the graph, we observe that students who 

correctly answer item I18_2 (correct identification of likelihood, which is given by a 

conditional probability) have better likelihood to answer I18_1 (correct identification of prior 

probabilities, which are given by simple probabilities). Correct performance in I10 

(identifying probabilities and critical values from the Beta distribution table and computing 

credible intervals for a proportion) facilitate correct computation of posterior probabilities 

with Bayes theorem (I18_3). Both tasks involve computing probabilities but the first one is 

more complex. Then correct computation of conditional probabilities implies correct 

computation of join and single probabilities (I2_1, I2_2, I2_4). 

As regards implications higher than 95% (blue in the diagram) we observe that students 

who correctly perform a Bayesian hypothesis test (I14 or I11) increase their likelihood to 

correctly interpret credible intervals (I12), possibly because all the ideas in understanding the 

second task are involved in the first one, which adds the need to understand the logic of proof 

by contradiction. I14 implies I2_3, the computation of conditional probability for a contrary 

event, but, again mastering the idea of proof by contradiction involves correct reasoning on 

both conditional reasoning and complementation. Students who visualize parameters as radon 

variables (I3) or compute probabilities for Beta function and credible intervals for proportions 

(I10) perform better in correctly assigning a Beta informative prior distribution (I8), a task 

that is also facilitated by I14. 
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Figure 2. Implicative graph with significant implications at 99 and 95% 

 

 

 

 

 

 

 

 

 

 

I2_3 (computing the conditional probability for the contrary event) or I2_2 (computing 

conditional probability) facilitates I1, distinguishing prior and posterior probabilities and 

likelihood (all these ideas are supported on correct conditional reasoning); I2_2 facilities 

computing simple probability (I1) and both of them together facilitate the computation of join 

probabilities (I2_4), another task which is easier for those who succeeded in I14 (testing 

hypotheses). 

 

Implicative hierarchy of learning outcomes 

Once the isolate implications between items were studied we carried out an implicative 

classification analysis. This is an algorithm, which uses the implicative indexes in a set of 

variables to study the internal cohesion of some variables subsets (Lahanier-Reuter, 2001; 

Couturier, Gras & Guillet, 2004). The cohesion between two variables a and b is defined by 

2( , ) 1c a b H= − where H is the entropy for the two variables, and varies between 0 and 1. 

The cohesion for a class of variables is defined by (Gras, Kuntz & Briand, 2001): 
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Then, given two sets of variables A  and B  the strength of implication from A  to B  is 

defined by (Couturier, 2001): 
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The software CHIC builds an implicative hierarchy in the set of variables, taking into 

account both the maximal cohesion into each class and the higher implication from a class to 

another. In Figure 3 we present the hierarchy produced. There are four significant clusters: 

  
Figure 3. Implicative hierarchy with 95% node 
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− Group 1. Items (I2_2) and (I2_1) which join to (I2_4), all of them related to probability. 

The student who correctly computes conditional probabilities (I2_2), correctly perform 

simple (I2_1) and compound probability (I2_4). The higher difficulty of conditional 

probability as regards simple and compound is then confirmed. 

− Group 2: Prior and posterior distributions and Beta curves. Item I9, I7, I10, I17, I8 and the 

two parts of I20. Students who are able to interpret the parameters in the Beta curve (I9) 

and understand how posterior distributions are get from prior distributions and likelihood 

through Bayes theorem (I7) succeeded better in getting a credible interval for proportions in 

the continuous case; a task that requires interpreting probabilities of Beta curves, and 

understanding the concept of posterior probability, as well as the concept of credible 

interval. They also performed better in discriminating prior and posterior distribution of the 

mean (I17). All of this lead to better choosing a non informative prior distribution for 

proportion in the continuous case through the Beta Curve (I8) and graphically interpreting 

the parameters in Beta curves (I20). 

− Group 3 (Items I11, I12, I14 and I 16) group a set of Bayesian inference tasks. Being able 

of correctly test a hypothesis for proportions (I11) increases the likelihood of correctly 
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interpret credible intervals (I12); and these two task are associated with correctly testing a 

hypothesis about the mean (I14), and correctly computing a credible interval for the mean 

(I16). All these are knowledge specifically related to the Bayesian methods which are based 

on conditional probability and also in the logic of scientific inference. 

− Group 4: Moreover there is a second group of tasks related to conditional probability (the 

different parts of Item 18, I2-3 and I1). Correct identification of likelihood from a problem 

statement (I18_2) facilitates correct identification of prior probability (I18-1) and this lead 

to correct computation of posterior probabilities (I18_3). These three abilities lead to better 

identification of conditional probabilities for the contrary event (I2-3) and discrimination 

between prior probability, likelihood and posterior probabilities in the context of a problem 

(I1). 

 

Other groupings of items that are non significant were as follows: 

− Group 5: Items I6 (assigning adequate prior distribution for the non informative case to 

proportions in the discrete case), I3 (understanding parameters as random variables) and I5 

(discrimination between parameters and statistics); all these tasks are related to 

understanding parameters from a Bayesian point of view. 

− Group 6: Items I13 (Posterior distribution of mean when variance is known) and I15 

(posterior distribution of mean when variance is unknown: related to specific knowledge 

the students should remember. 

− Group 7: I4 (concept of prior distribution) and I19 (concept of likelihood). 

 

In summary these implications point to three groups of concepts relevant for students’ 

introduction to the elementary ideas of Bayesian inference and that should be taken into 

account in planning the teaching and support our previous a-priori analysis of the BIL 

questionnaire: 

1. Conditional probabilistic reasoning (as shown in groups 1 and 4), a theme where many 

biases have been described in the literature, but which is basic in defining posterior 

probabilities and distributions and likelihood, as well as in understanding the logic of 

credible intervals and hypothesis testing. Results also suggested that formulas for different 

types of probability were harder than verbal expressions for students to understand. Perhaps 

we should take into account Feller’s suggestion (1973, p. 114) that “conditional probability 
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is a basic tool of probability theory, and it is unfortunate that its great simplicity is 

somewhat obscured by a singularly clumsy terminology”. 

2. Probability distributions, its parameters (visualized as random variables), the distinction of 

prior and posterior distribution of parameters and assignment of prior distributions for 

informative and non informative cases (Groups 2, 5, 6 and 7). In our teaching we limited to 

Beta and Normal distributions, since the time available for teaching was restricted, but still 

so, the understanding of Beta curves appeared as a separated subgroup, as well as 

remembering the rules for known and unknown variance in inference about normal 

distributions. The difficulties to understand the different conception of parameters in 

Bayesian and frequentists statistics also appeared as a separated subgroup. 

3. Logic of Bayesian inference (Group 3), that is, understanding the logic for computing and 

interpreting credible intervals and testing simple hypothesis. Performance in these tasks is 

in fact supported in understanding the previous two groups of concepts, most of which are 

not specific to Bayesian reasoning. However, limitation of teaching time leads some 

lecturers to reduce the teaching of the same and to try to pass directly from data analysis to 

inference. Teaching of Bayesian inference therefore should only be started when previous 

groups of concepts are well understood by students. 

 

7. SUMMARY AND MAIN CONTRIBUTIONS 

In this Thesis we focus on the use of Bayesian inference in the field of Psychology from 

different perspectives. Below we summarise these perspectives and the main conclusions 

/contributions achieve for each of them. 

 

Current practice of statistics 

We produced a synthesis of main criticisms of current statistical practices in psychology, 

the reported errors and the possible contribution of Bayesian inference to solve part of the 

denounced errors. As a consequence we suggested the need to introduce the teaching of 

elementary Bayesian methods in psychology and to carry out empirical research to assess the 

suitability of this teaching. 

 

Application of Bayesian methods in psychometrics 

We analysed the implications of a Bayesian approach to Classical Tests Theory and 

deduced estimation procedures for some of the psychometrics features of items and 

questionnaire. These procedures were applied in the process of building a questionnaire to 
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assess conditional probability reasoning (CPR), which is also justified in the thesis. We also 

developed some Excel programmes to carry out the main computations. 

 

Assessing conditional probability reasoning in undergraduates 

We used the CPR questionnaire to carry out a detailed evaluation in a sample of 414 

students after teaching of the topics. The complex relationship between probabilistic concepts 

and intuition was shown in our study, where probabilistic biases were widespread in students, 

even in those with good problem solving probability. Consequently, our research suggest the 

need of reinforcing the study of conditional probability in the teaching of data analysis at 

University level, although it also provides arguments for a change of approach in this 

teaching. Following Nisbett and Ross’ recommendations (1980, p. 280) students should be 

“given greater motivation to attend closely to the nature of the inferential tasks that they 

perform and the quality of their performance” and consequently “statistics should be taught 

in conjunction with material on intuitive strategies and inferential errors” (p. 281) of the kind  

presented in their book. In this sense we support Rossman and Short (1995), who suggest 

conditional probability can be taught in line with new statistics education ideas, in presenting 

a variety of applications to realistic problems, proposing interactive activities and using 

technology to facilitate learning. 

 

Studying the suitability of teaching elementary Bayesian inference to undergraduates 

We developed a teaching material that takes into account the previous analyses, as well as 

previous research in statistics education and the type of students. This material was trailed 

with a sample of 78 students, and data on the students’ learning at the end of the experience 

showed that most instructional objectives were achieved by the students. 

The implicative and cohesive classification analyses also supported the interrelationship 

between learning Bayesian inference and understanding conditional probability as it was 

previously assumed. On the other hand, the obtained classes in the implicative hierarchy 

provided us with information about the concepts whose understanding is related and their 

relative difficulty. This is a potential help to prepare didactic materials and to organize the 

teaching of the topic.  

 

In summary, we think that this thesis opens a new perspective for research in the 

Behavioural Sciences Research Methods, both from the strictly methodological point of view 

(implementing and applying Research Methods) and from the didactic point of view. Partial 
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results of each of the mentioned contributions have been published in diverse journals and 

international conferences (See appendix 3). 

In the present convergence process to the European Space of Higher Education, it is not 

only possible, but required that lecturers in this area carry out research on the didactics of 

research methods, including non-traditional topics. Only by means of systematic research we 

can enrich our educational practice and contribute to improve the application of research 

methods. It is therefore expected that new studies continue the research started in this Thesis. 

 

 

APPENDIX 1. CPR QUESTIONNAIRE 
 

Item 1. Explain in your own words what a simple and a conditional probability is and provide an example for 
each. 
 
Item 2. Complete the sample space in the following random experiments: 
a) Observing gender (male/female) of the children in a three children family (e.g. MFM,...) 
b) Observing gender (male/female) of the children in a three children family when two or more children are 
male. 
 
Item 3 (Tversky & Kahneman, 1982a) 
A witness sees a crime involving a taxi in a city. The witness says that the taxi is blue. It is known from previous 
research that witnesses are correct 80% of the time when making such statements. The police also know than 
15% of the taxis in the city are blue, the other 85% being green. What is the probability that a blue taxi was 
involved in the crime? 
a. 80/100 
b.  b) 15 /100 
c. (15/100) X (80/100) 

d.  
1 5 8 0

8 5 2 0 1 5 8 0
×

× + ×  
  

Item 4. (Sánchez, 1996) 
A standard deck of playing cards has 52 cards. There are four suits (clubs, diamonds, hearts, and spades), each of 
which has thirteen numbered cards (2,..., 9, 10, Jack, Queen, King, Ace). We pick a card up at random. Let A be 
the event “getting diamonds” and B the event ·getting a Queen”. Are events A and B independent? 
a. They are not independent, since there is the Queen of diamonds 
b. Only when we first get a card to see if it is a diamond, return the card to the pack and then get a second card 

to see if it is a Queen. 
c. They are independent, since P(Queen of diamonds)= P(Queen)) x P(diamonds), 
d. They are not independent, since P(Queen /diamonds) ≠  P(Queen). 
 
Item 5.  
There are four lamps in a box, two of which are defective. We pick up two lamps at random from the box, one 

after another, without replacement. Given that the first lamp was defective: 
a. The second lamp is more likely to be defective 
b. The second lamp is most likely to be correct. 
c. The probabilities for the second lamp being either correct or defective are the same. 
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Item 6. (Estepa, 1994) 
In a medical centre a group of people were interviewed with the following results: 
 55 years-old or younger Older than 55 Total
Previous heart stroke 29 75 104 
No previous heart stroke 401 275 676 
Total 430 350 780 
 
Suppose we select at random a person from this group:  
a. What is the probability that the person had a heart stroke?  
b. What is the probability that the person had a heart stroke and, at the same time is older than 55?  
c. When the person is older than 55, what is the probability of having had a heart stroke?  
d. When the person had a heart stroke, what is the probability of being older than 55? 
 
Item 7. Eddy (1982) 
10.3 % of women in a given city have a positive mammogram. The probability that a woman in this city has both 
positive mammogram and a breast cancer is 0.8%- A mammogram given to a woman taken at random in this 
population was positive. What is the probability that she actually has breast cancer? 

a. 0.8 0.0776
10.3

= , 7.76% 

b.  10.3 0.8 8.24× = , 8.24% 
c.  0.8 % 
 
Item 8.  
In throwing two dice the product of the two numbers was 12. What is the probability that none of the two 
numbers is a six (we differentiate the order of numbers in the two dice). 
 
Item 9. (Tversky & Kahneman, 1982 b) 
Suppose a tennis player goes to the Roland Garros posterior in 2005. He has to win 3 out of 5 sets to win. Which 
of the following events are more likely? 
a. The player wins the first set 
b. He wins the first set but looses the match 
c. Both events a) and b) are equally likely 
 
Item 10. (Pollatsek at al. 1987) 
A cancer test was given to all the residents in a large city. A positive result was indicative of cancer and a 
negative result of no cancer. Which of the following results is more likely? 
a. That a person had cancer if they got a positive result 
b. Having a positive test if the person had cancer. 
c. The two events are equally likely. 
 
Item 11.  
60% of the population in a city are men and 40% women. 50% of the men and 35% of the women smoke. If we 
pick a person from the city at random, what is the probability that the person is a smoker? 
 
Item 12. 
A person throws a die and writes down the result (odd or even). It is a fair die (that is all the numbers are equally 
likely). These are the results after 15 throws: 
Odd, even, even, odd, odd, even, odd, odd, odd, odd, even, even, odd, odd, odd 
The person throws once more. What is the probability to get an odd number this time? 
 
Item 13. 
A group of students in a school take a mathematics test and an English test.80% of the students pass the 
mathematics test and 70% of the students pass the English test. Assuming the two subjects score independently, 
what is the probability that a student passes both tests (mathematics and English)? 
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Item 14. Ojeda (1996) 
We throw a ball in the entrance E of a machine (see the figure).  
If the ball goes out through R, what is the probability of having passed by 
channel I?  
a. 1/2 
b. 1/3 
c. 2/3 
d. Cannot be computed 
 
Item 15.  
According to a recent survey, 91% of the population in a city usually lie and 36% of them usually lie about 
important matters. If we pick a person at random from this city, what is the probability that the person usually 
lies about important matters? 
 
Item 16. Totohasina (1982) 
Two machines M1 and M2 produce balls. Machine M1 produces 40 % and M2 60% of balls. 5% of the balls 
produced by M1 and 1% of those produced by M2 are defective. We take a ball at random and it is defective. 
What is the probability that that ball was produced by machine M1? 
 
Item 17. (Falk, 1986, 1989) 
Two black marbles and two white marbles are put in an urn. We pick a white marble from the urn. Then, without 
putting the white marble in the urn again, we pick a second marble at random from the urn.  
1. If the first marble is white, what is the probability that this second marble is white? P (N2/ N1) 
a. 1/ 2 
b. 1/ 6 
c. 1/ 3 
d. 1/ 4 
 
2. If the second marble is white, what is the probability that the first marble is white? P (N1/ N2) 
a. 1/ 3 
b. Cannot be computed 
c. 1/ 6; 
d. 1/ 2 
 
Item 18.  
An urn contains one blue marble and two red marbles. We pick up two marbles at random, one after the other 
without replacement. Which of the events below is more likely?  
a. Getting two red marbles. 
b. The first marble is red and the second is blue 
c. The two events a) and b) are equally likely. 
 

 

APPENDIX 2. LBI QUESTIONNAIRE 
Item1. 10 out of every 100 students in a Faculty study mathematics; 30 out of every 100 students doing 
mathematics share an apartment with other students. Let S be the event “sharing the apartment” and M the event 
the student is doing mathematics course. If we pick a student at random and the student is doing mathematics, 
the probability that he shares the apartment is: 
1. A prior probability P (S) 
2. A posterior probability P(S|M) 
3. A likelihood P(M|S) 
4. A joint probability P (M∩S) 

 
Item 2. Imagine you pick 1000 people at random. You know that 10 out of every 1000 people get depression. A 
depression test is positive for 99 out of every 100 depressed people as well as for 2 out of every 100 non 
depressed people. Given that D means depression and + means a positive test, compute the following 
probabilities: 
1. P(D)= 2. P(+|D)= 3. P(-|D)= 4. P( D∩+)= 
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3. The mean value µ for a variable (for example height) in a population: 
1. Is a constant in Bayesian inference 
2. Is a random variable in classical inference 
3. Is a random variable in Bayesian inference 
4. Could be constant or variable, depending on the population 

 
Item 4. The prior probability distribution for a parameter: 
1. Provides all the information about the population before collecting the data 
2. Is computed from the posterior distribution by using the Bayes theorem. 
3. It can be used to compute the credible interval for the parameter 
4. Is an uniform distribution 

 
Item 5. 1000 young Spanish people were interviewed in a survey. On average they spent 3 hours a week in 
practicing some sports. In Bayesian inference: 
1. 3 hours is a parameter in the population of young Spanish people 
2. The average in this population is a random variable; the most likely value is about 3 hours. 
3. The average in this population is an unknown constant. 
4. Each young Spanish person spends 3 hours a week in doing some sport. 
 
Item 6. In a factory lamps are sold in boxes of four lamps. We have no information about the proportion of 
defective lamps. Which of the distributions A, B. C or D better describes the prior distribution for the proportion 
of defective lamps in a box? 
 

(A) (B) (C) (D) 
Values of 
Proportion 

Probability 
 

Values of 
proportion 

Probability
 

Values of
proportion

Probability
 

Values of 
Proportion 

Probability 
 

0.00 0.1 0.00 0.2 0.00 0.00 0.00 1/4 
0.25 0.1 0.25 0.2 0.01 0.25 0.25 1/4 
0.50 0.1 0.50 0.2 0.02 0.50 0.50 1/4 
0.75 0.1 0,75 0.2 0.03 0.75 0,75 1/4 

1 0.1 1 0.2 0.04 1 1 1/4 
 
 
Item 7. In trying to estimate a proportion a student filled three columns in the Bayes table. He got these data: 
 
Values of proportion Prior Probability Likelihood -------- ---------

0.0000 0.0000 0.0000   
0.1000 0.1000 0.0000   
0.2000 0.1000 0.0233   
0.3000 0.1000 0.1239   
0.4000 0.1000 0.0682   
0.5000 0.1000 0.0065   
0.6000 0.1000 0.0001   
0.7000 0.1000 0.0000   
0.8000 0.1000 0.0000   
0.9000 0.1000 0.0000   
1.0000 0.1000 0.0000   
Sum   0.0222  

  
The posterior probability that the true value of proportion in the population is 0.4 would be: 
1. 0.00682 2. 0.1000 3. 0.3072 4. 0.00015 

 
Item 8. A clinical survey showed a 15% incidence of tobacco addition in young women. A possible prior 
distribution to approximately describe this proportion is: 
1. B (15, 100) 2. B (15, 85) 3. B (85,15) 4. B (100, 15) 
 
Item 9. The mean for a Beta B(a,b) distribution is: 
1. a/b  2. (a+1)/(a+b)  3. (a+1)/(b+1)  4. a/(a+b)  
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Item 10. In the following table probabilities and critical values for the B(30,40) distribution are given 
 

Probabilities  Critical values 
p0 P(0<p<p0) P (p0 <p<1)  P(0<p<p0) p0 
0 0.000 1.000  0.000 0.000 

0.05 0.000 1.000  0.005 0.296 
0.1 0.000 1.000  0.010 0.304 

0.15 0.000 1.000  0.015 0.311 
0.2 0.000 1.000  0.020 0.316 

0.25 0.001 0.999  0.025 0.320 
0.3 0.012 0.988  0.030 0.324 

0.35 0.090 0.910  0.035 0.327 
0.4 0.318 0.682  0.040 0.330 

0.45 0.645 0.355  0.045 0.330 
0.5 0.886 0.114  0.050 0.333 

0.55 0.979 0.021  0.950 0.526 
0.6 0.998 0.002  0.955 0.529 

0.65 1.000 0.000  0.960 0.533 
0.7 1.000 0.000  0.965 0.536 

0.75 1.000 0.000  0.970 0.541 
0.8 1.000 0.000  0.975 0.545 

0.85 1.000 0.000  0.980 0.551 
0.9 1.000 0.000  0.985 0.558 

0.95 1.000 0.000  0.990 0.567 
1 1.000 0.000  1.000 1.000 

 
The 98 % credible interval for the proportion in a population described by a posterior distribution B (30, 40) is 
about: 
1. (0.316 <p < 0.551) 2. ( 0.304<p < 0.567) 3. (0.3 <p < 0.6)  4. (0.1 <p < 0.9) 

 
Item 11. The posterior distribution for the proportion of voters favorable to a political party is given by the B (30, 
40) distribution. From the above data table, the most reasonable decision is accepting the following hypothesis 
for the population proportion 
1. H: p<0.25 
2. H: p > 0.55 
3. H: p> 0.25 
4. H: p >0.45 

 
Item 12. For the same posterior distribution of the parameter in a population the r% credible interval for the 
parameter is: 
1. Wider if r increases 
2. Wider if the sample size increases 
3. Narrower if r increases 
4. It depends on the prior distribution  

 
Item 13. In a normal population with standard deviation σ=5 and with no prior information about the population 
mean, we pick a random sample of 25 elements and get a sample mean x =100. The posterior distribution of the 
population mean is: 
1. A normal distribution N (100, 0,5) 
2. A normal distribution N (0,1) 
3. A normal distribution N (100,5) 
4. A normal distribution N (100, 1) 
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Item 14. To test the hypothesis that the mean µ in a normal population with standard deviation σ=1 is larger than 
5, we take a random sample of 100 elements. To follow the Bayesian method: 

1. We compute the sample mean 
_ _

x and then compute 
_ _

5( 5 )
0 ,1

xP −
< ; when this probability is very small, we 

accept the hypothesis. 

2. We compute the sample mean 
_ _

x  and then compute 
_ _

5( )
0 ,1

xP Z−
< ; when Z is the normal distribution 

N (0,1); when this probability is very small, we accept the hypothesis. 

3. We compute the sample mean _ _

x  and then compute 
__

5( )
0,1

xP Z−
>  when Z is the normal distribution N 

(0,1); when this probability is very small, we accept the hypothesis. 

4. We compute the sample mean 
_ _

x and then compute 
_ _

5( 5 )
0 ,1

xP −
>  when this probability is very small, we 

accept the hypothesis. 
 

Item 15. In a sample of 100 elements from a normal population we got a mean equal to 50. If we assume a prior 
uniform distribution for the population mean, the posterior distribution for the population mean is: 
1. About N (50, s), where s is the sample standard estimation. 
2. About N (50, s/10), where s is the sample standard estimation. 
3. We do not know, since we do not know the standard deviation in the population 
4. About N (0,1) 

 
Item 16. The posterior distribution for a population mean is N (100, 15). We also know that P (-1.96 < Z < 1.96) 
=0.95, where Z is the normal distribution N (0,1). The 95% credible interval for the population mean is: 
1. (100-1.96 x 1.5; 100 + 1.96 x1.5) 
2. (100-1.96; 100+1.96)  
3. (100 x 1.5 –1.96; 100 x 1.5 + 1.96) 
4. (100-1.96 x 15; 100 +1.96 x 15) 

 
Item 17. In a survey to 100 Spanish girls the following data were obtained: 

Mean Standard dev. 
Sample 160 10 
Prior distribution 156 13 
Posterior distribution 158.5 7.9 

 
To get the credible interval for the population mean we use: 
1. The normal distribution N(160,10) 
2. The normal distribution N (156,13) 
3. The normal distribution N (158.5; 7.9) 
4. The normal distribution N(160, 0.5) 

 
Item 18. 20 % of boys and 10% of girls in a kindergarten are immigrant. There are about 60% boys and 40% 
girls in the center. Use the following table to compute the probability that an immigrant child taken at random is 
a boy. 

 
Events Prior probabilities Likelihoods Product Posterior probabilities
     
     
Sum 1   1 
 
Item 19. In a geriatric center we want to estimate the proportion of residents with cognitive impairment. 2 out of 
10 residents taken at random in the residence showed cognitive impairment. The likelihood for the parameter 
p=0.1 is 0.1937. What is the meaning of this value? 
1. P (data), that is, probability of getting this sample. 
2. P (data « p=0.1), that is, probability of getting the sample and that, in addition, the population proportion is 

0,1. 
3. P (p=0.1|data), that is, probability of a population proportion is 0.1. given the sample 
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4. P (data| p=0.1), that is, given than p= 0.1, probability of getting this sample. 
 
Item 20. Observe the following Beta curves  
a) Which of them has a greater spread?  

a = 5 ,  b = 5  

 

 

 

  

a = 5 0 ,  b = 5 0  

 

 

 

 

 
b) Which of them predict a greater value of proportion in the population? 

a = 7 ,  b = 3  

 

a = 2 ,  b = 8  
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