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Abstract 

The purpose of this study was to develop and validate an assessment to measure 

college students’ inferential reasoning in statistics. This proposed assessment aims to help 

statistics educators guide and monitor students’ developing ideas of statistical inference.  

Within the two-stage cycle, the formative and summative stages, this study first 

built arguments for the use of assessment and score interpretations, and verified 

inferences made from those arguments. The five claims were used to examine the 

plausibility of the validity arguments: 1) The test measures students’ level of statistical 

inferential reasoning in two aspects—informal statistical inference and formal statistical 

inference; 2) The test measures statistical inferential reasoning in the representative test 

domains; 3) The test produces scores with sufficient precision to be meaningfully 

reported; 4) The test is functional for the purposes of formative assessment; and 5) The 

test provides information about students’ level of statistical inferential reasoning in the 

realms of informal and formal statistical inference.  

Using a mixed-methods study design, different types of validity evidence were 

gathered and investigated. Three content experts provided their evaluation of the test 

blueprint and assessment, based on their qualitative reviews. For the revised assessment 

resulting from the experts’ feedback, cognitive interviews were conducted with nine 

college students using think-aloud protocols, whereby the students verbalized their 

reasoning as they reached an answer. A pilot-test administered in a classroom provided 

preliminary information of the psychometric properties of the assessment. The final 

version of the assessment was administered to 2,056 students in 39 higher education 

institutions across the United States. For the data obtained from this large-scale 
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assessment, a unidimensional model in confirmatory factor analysis and the Graded 

Response Model in item response theory were employed to examine the arguments 

regarding the internal structure and item properties. The results suggest that the AIRS is 

unidimensional with appropriate levels of item difficulty and information. The 

pedagogical implications for the use of the AIRS test are discussed with regard to the 

areas where students showed difficulties in the domain of statistical inference. 
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Chapter 1 

Introduction 

Statistical Inference 

In David Moore’s textbook (2007), statistical inference is described as “moving 

beyond the data in hand to draw conclusions about some wider universe, taking into 

account that variation is everywhere and the conclusions are therefore uncertain” (p. 

xxviii). Garfield and Ben-Zvi (2008) grouped the topics of statistical inference into two 

categories, parameter estimation and hypothesis testing.  

The ability to draw inferences from data is a part of everyday life as people are 

confronted with situations where they need to critically review data-based claims 

(Garfield & Ben-Zvi, 2008). Understanding of statistical inference is important in 

scientific research since the concepts and processes in statistical inference are used in all 

empirical studies (Sotos, Vanhoof, Van den Noortgate, & Onghena, 2007).  

In introductory statistics courses, students learn hypothesis tests and confidence 

intervals as main methods of making conclusions for quantitative data. A learning goal of 

the college-level Guidelines for Assessment and Instruction in Statistics (GAISE; ASA, 

2005) is that students develop and evaluate inferences and predictions that are based on 

data. The GAISE report recommends that students should understand the basic idea of 

statistical inference, and emphasize the concept of a sampling distribution and how it 

applies to making statistical inferences. 

Difficulties Understanding Statistical Inference 

There seems to be an agreement about the importance of statistical inference (e.g., 

Aberson, Berger, Healy, & Romero, 2003; Garfield & Ben-Zvi, 2008). However, many 
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misunderstandings have been reported that people are confused about the concepts and 

processes in statistical inference (Falk & Greenbaum, 1997; Haller & Kraus, 2002; 

Wilkerson & Olson, 1997; Sotos, Vanhoof, Van den Noortgate, & Onghena, 2007). For 

example, Tverky and Kahneman (1971) showed that people believe that any sample must 

be similar to the population, regardless of its sample size. After this work, Kahneman and 

Tversky established a cognitive basis for common human errors people show in statistical 

inference. 

More recently, there have been studies about people’s difficulty understanding 

hypothesis testing. Specifically, research has revealed that students have difficulty 

understanding—the definition of the hypotheses (Vallecillos & Batanero, 1997), the 

definition of significance level and the p-value (Falk, 1986), and the logic of hypothesis 

testing (Vallecillos, 1999). Regarding students’ difficulties understanding formal 

statistical inference, research studies have been conducted on why people show those 

misunderstandings. Several studies have been conducted about difficulties students have 

understanding concepts in sampling distribution (e.g., Chance, delMas, & Garfield, 2004; 

Saldanha & Thompson, 2002), which is a foundational concept to understand statistical 

inference. Some studies have shown that students do not differentiate between the 

distribution of a sample and the sampling distribution of a statistics (e.g., Lipson, 2003). 

There are also studies that have revealed students’ difficulty understanding the concepts 

involved in the Central Limit Theorem (e.g., Batanero, Tauber, & Sanchez, 2004).  

Informal Statistical Inference (ISI) and Formal Statistical Inference (FSI) 

In the past few years, statistical educators have looked for new ways to help 

students build an understanding of statistical inference, in light of current research and 
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new developments in the practice of statistics. As a way to support a coherent 

understanding of the concepts and processes in statistical inference, Wild, Pfannkuch, 

Regan, and Horton (2011) suggest a learning pathway that introduces some of the “big 

ideas” behind inference before teaching formal statistical inference. Garfield and Ben-

Zvi (2008) address that ideas of inference should be introduced informally at the 

beginning of the course, such as having students become familiar with seeing where a 

sample corresponds to a distribution of sample statistics, based on a theory or hypothesis. 

They further argue that this may help students be less confused by the formal ideas, 

procedures, and language when they finally reach the formal study of this topic.  

The big ideas of inference that can be taught before formal inference, suggest two 

content areas in statistical inference—informal statistical inference (ISI) and formal 

statistical inference (FSI). In this paper, these terms are used to specifically refer to the 

content areas of statistical inference. The topics of ISI include: the concept of 

uncertainty; properties of aggregate data; recognizing sampling variability; the concept of 

unusualness; (informal) generalization from a sample to a population; (informal) 

comparison between two samples. The concepts involved in formal statistical testing 

(e.g., p-value, statistical significance, hypothesis tests, confidence intervals) are 

categorized as FSI. In addition, the topics of foundations of formal statistical inference 

(e.g., sample representativeness, sample variability, sampling distribution) are also 

included in this category given that they are foundational to understanding formal 

statistical inference (e.g., Chance et al., 2004).  

Although there has been increased attention given to informal ideas in statistics, it 

is only recently that researchers and educators attempted to characterize the distinctive 
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features of Informal Inferential Reasoning (IIR). For example, recent forums of the 

International Research Collaboration on Statistical Reasoning, Thinking and Literacy 

(SRTL-5, 6, and 7 in 2007, 2009, 2011, respectively), have gathered statistics education 

researchers to discuss and share their research on IIR. Particularly at SRTL-5 (2007), 

statistics education researchers put their efforts to characterize the nature of informal 

reasoning through exploratory studies. Published articles (Ben-Zvi, 2006; Pfannkuch, 

2006a; Pfannkuch, 2006b; Pratt, Johnston-Wilder, Ainley, & Mason, 2008; Zieffler, 

Garfield, delMas, & Reading, 2008) share a common understanding about IIR 

represented with three principles: (1) generalizations that go beyond describing the given 

data; (2) the use of data as evidence for those generalizations; and (3) conclusions that 

express a degree of uncertainty, quantified or not, accounting for the variability or 

uncertainty.  

New Instructional Approaches to Develop Students’ Understanding 

of Statistical Inference 

Accompanied with ongoing calls for reform in introductory statistics courses, 

different teaching methods for developing students’ inferential ideas have been proposed. 

For example, Cobb (2007) and Kaplan (2009) have suggested major changes in how 

statistical inference is taught in the introductory college course. Cobb (2007) challenges 

statistics educators to purposefully reconsider and the content of introductory statistics 

courses. Cobb (2007) argues, flexible and accessible technological tools now allow the 

logic of inference to be put at the core of introductory course instead of the normal 

distribution. Statistical inference can now be taught using a randomization approach (e.g., 

permutation tests) instead of asymptotic sampling distributions. Cobb (2007) suggests 
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that using permutation tests to learn statistical inference provides students with both a 

conceptually easier instruction to statistical inference and a modern, computational data 

analysis technique currently lacking in the first course in statistics. Similar to Cobb, 

Kaplan (2009) also suggested that resampling or permutation methods reflect more easily 

generalizable ideas and, for many students, they are more accessible conceptually. 

Inspired by Cobb (2007) and Kaplan (2009), recent NSP-sponsored projects have 

developed new curriculum to introduce students to ideas of statistical inference using 

randomization methods (e.g., The CSI project, headed by Rossman, Chance, Cobb, & 

Holcomb (http://statweb.calpoly.edu/csi); The CATALST course, developed by Garfield, 

delMas and Zieffler (http://www.tc.umn.edu/~catalst); The INCIST project, headed by 

West, 2011).  

Need for New Assessments 

Now that there is increasing attention to randomization-simulation based curricula 

to help students better understand statistical inference, there is a need to investigate the 

impact of these curriculum on student learning and understanding of statistical inference. 

In addition, despite increased interest in informal inferential reasoning and efforts to 

characterize IIR, there are no assessments of IIR or studies on how IIR relates to 

reasoning about formal statistical inference.  

There are existing instruments used in statistics education research and evaluation 

to measure students’ reasoning in statistics (e.g., The Statistical Reasoning Assessment 

(SRA), Garfield, 1998; The Statistics Concepts Inventory (SCI), Reed-Rhoads, Murphy, 

& Terry, 2006; and the Assessment Resource Tools for Improving Statistical Thinking 

(ARTIST), Garfield, delMas, & Chance, 2002). Although these instruments assess 
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important outcomes (e.g., assessing students reasoning, thinking, and conceptual 

understanding), the topics assessed in these instruments do not cover the full domain of 

reasoning about statistical inference. Thus, these existing instruments do not align with 

the current needs of an assessment: measuring informal inference in association with 

reasoning about formal inference; and assessing inferential reasoning of students taught 

with randomization-simulation methods.  

Moreover, the existing instruments have not been developed or validated using 

modern psychometric measurement models (e.g., item response theory) that provide 

ample information about properties of items (e.g., item difficulty, item discrimination, 

item information). Therefore, there is also a need for a new instrument that is developed 

and validated using modern psychometric theory so that the results from the assessment 

provide reliable and valid interpretations.  

Overview of the Study 

In response to the need for a new research instrument, this study was designed to 

develop a reliable and valid measure to assess college students’ inferential reasoning in 

statistics (IRS). In this study, IRS is defined as the way people draw conclusions from 

data at hand to a broader context using the concepts and ideas of statistical inference.  

This instrument will eventually allow several questions to be addressed in future 

studies: How do students use informal ideas to understand formal concepts in statistical 

inference? What kinds of informal ideas do students have before learning formal ideas? 

How are these two types of inference related each other in students’ reasoning process?  

This study attempts to build and support arguments for the use of the assessment 

of evaluating informal and formal statistical reasoning of students in introductory 
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statistics courses. An argument-based approach to validity (Kane, 1992, 2001, 2006a, 

2006b; Kane, Crooks, & Cohen, 1999) was employed as a way to justify its score-based 

interpretations and uses as an overarching logical framework. This approach guided the 

development of the assessment and validation of the interpretive arguments in an iterative 

process between test development and validation.  

This study was structured with two stages, following Kane’s framework: a 

formative and summative stage. In the formative stage, interpretive arguments were 

specified based on claims regarding the proposed test score interpretations and uses. A 

test blueprint and assessment were developed at this stage. A review of the literature was 

used to develop the preliminary versions of test blueprint and assessment. Expert reviews 

were used to revise the preliminary version of the test blueprint and the assessment. 

Those sources also provided theory-based evidence to support the interpretive arguments.  

At the summative stage, different types of empirical evidence were collected and 

examined. As evidence sources, cognitive interviews with an expert and students, pilot 

testing, and field-testing for large-scale assessment were gathered. Interpretative 

arguments were investigated in terms of their plausibility by examining the extent to 

which each kind of evidence supports the claims underlying the arguments. 

Overview of the Chapters 

This thesis includes five chapters. The current chapter, Chapter 1, provides 

background on current perspectives in statistics education, and an overview of the 

research problem, focusing on the research on difficulties understanding statistical 

inference and drawing on the need for an instrument to measure IRS. Chapter 2 reviews 

the literature related to IRS. This chapter provides the theoretical perspectives of major 
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inferential statistical concepts and tools (e.g., P-value, hypothesis tests), as well as 

controversies on the use of those tools. Relevant previous research studies on the topic of 

statistical inferential reasoning are examined. Research studies are reviewed on 

foundations of statistical inference and formal statistical inference. This chapter also 

reviews studies about IIR in terms of definition and components of IIR. Key findings 

from the major studies on the topic of IIR are also reviewed. Existing instruments to 

assess students’ reasoning in statistics are examined to inform the need for a new 

instrument to measure students’ inferential reasoning in statistics.  

Chapter 3 describes the methodology used in this study. A description of validity 

and validation methods (an argument-based approach to validation by Kane) is provided 

with a framework of the study. Claims regarding the proposed assessment are then 

provided specifying what to measure and how to use the test results. This set of claims 

plays an enabling role supporting an interpretative argument as different types of 

evidence are investigated. Different kinds of evidence to support validity arguments are 

described. This chapter describes the formative stage and summative stage of instrument 

development and validation, and in each stage, different kinds of evidence sources are 

explained with information on study participation, methods of data collection, and 

analysis methods.  

Chapter 4 reports the outcomes of the assessment development and validation. 

With the same structure as Chapter 3, the evidence sources collected in each stage are 

examined to evaluate the plausibility of the claims. After all the evidence sources are 

investigated, it synthesizes the research arguments, considering all aspects of the analysis 

results. Underlying inferences about test uses and score interpretations are evaluated by 
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judging the claims laid out in the formative stage. Finally, Chapter 5 provides a summary 

of the research findings and discusses the research and teaching implications. This 

chapter also includes a discussion of future research. 
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Chapter 2 

Review of the Literature  

This chapter describes the literature that is relevant to statistical inference. The 

review begins with definitions of inference and statistical inference. Historical paradigms 

of statistical inference are summarized with respect to how probability has been 

interpreted. Issues with the application and interpretation of statistical testing follow, 

including a discussion of two different approaches to hypothesis testing. Debates 

regarding null hypothesis statistical testing are then followed.  

Next, research studies about statistical inference are presented with two 

subsections: foundations of statistical inference and formal statistical inference. Studies 

on foundations of statistical inference are centered around literature on reasoning about 

sampling distribution considering that the concept of sampling distribution represents an 

important building block to a coherent understanding of statistical inference (Chance et 

al., 2004; Noll, 2011). Reviews on literature about the topics of formal statistical 

inference, such as hypothesis testing, are then described. Methodologies used, major 

findings, the inferences made from the results, and the implications are examined. A 

literature review about informal inferential reasoning is then presented in terms of its 

background, definitions and characteristics. Recent studies conducted on informal 

inferential reasoning are reviewed.  

From the research studies reviewed, a domain of statistical inference is 

categorized into two content categories—formal statistical inference (FSI) and informal 

statistical inference (ISI). Research questions are posed in order to inform what research 

has not yet answered.  
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What is Statistical Inference?  

Definition and Importance of Statistical Inference 

Moore (2007) states that statistical inference “moves beyond the data at hand to 

draw conclusions about some wider universe, taking into account that variation is 

everywhere and the conclusions are uncertain” (p.172). Moore’s perspective gives a 

general idea about statistical inference; making a conclusion about an uncertain, broader 

context from data.  

The ideas of statistical inference are used in all empirical sciences (Sotos et al., 

2007). Saldanha and Thompson (2007) note that ideas of sampling and statistical 

inference are important to understand “the degree to which data-based claims are 

warranted” and to understand that “conflicting claims are not necessarily a sign of 

confusion or duplicity” (p. 271). In the field of statistics education, it is clear that 

statistical inference is a necessary skill in everyday citizenship. Garfield and Ben-Zvi 

(2008) note that drawing inferences from data is a part of everyday life, and critically 

reviewing the results of statistical inferences from research is an important capability for 

all adults.  

The 2000 Curriculum standards for grades 6-12 mathematics state that all students 

should develop and evaluate inferences that are based on data. With regard to teaching 

statistical inference, the NCTM standards include recommendations for grades 9 to 12—

students should: 

• Use simulations to explore the variability of sample statistics from a 

known population and to construct a sampling distribution. 
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• Understand how sample statistics reflect the values of population 

parameters and use sampling distributions as the basis for informal 

inference. (p. 324, NCTM, 2000)  

The Guidelines for Assessment and Instruction in Statistics (GAISE) report 

(ASA, 2005), a document to provide a conceptual framework for K-12 statistics 

education, recommends that students develop and evaluate inferences and predictions that 

are based on data. In the GAISE report at the college level, statistical inference is 

considered to be more important. Understanding the ideas of statistical inference is 

regarded as the most important learning goal in introductory statistics course. The GAISE 

report emphasizes understanding the concept of a sampling distribution and how it 

applies to making statistical inferences, based on samples of data (including the idea of 

standard error); the concept of statistical significance, including significance levels and 

P-values; and the concept of confidence intervals, including the interpretation of 

confidence levels and the margin of error. Therefore, it is evident that reasoning about 

statistical inference is necessary skill in everyday life, and the concepts and ideas of 

statistical inference have been emphasized in school curricula.  

Paradigms of Statistical Inference 

The application of formal statistical methods stems from different historical 

paradigms as well as psychologists’ reconciliation between two different approaches to 

use of the methods (Halpin & Stam, 2006). Understanding of these historical 

backgrounds allows statistics educators to help students better learn and apply statistical 

concepts and methods with comprehensive view on the ideas.  
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There are three interpretations of probability that affect statistical inference: the 

classical, frequentist, and Bayesian approaches. In the classical approach, the probability 

is understood as the ratio of the number of alternatives favorable to that event to the total 

number of equally-likely alternatives (Konold, 1991). This approach has been criticized 

in that this interpretation is limited to trials with objects such as coins, dice and spinners, 

which are composed of equally-likely alternatives.  

The frequentist approach emerged as a way to address the paradoxes of the 

classical approach. In this view, a probability represents a long-run frequency by 

considering repeated sampling of datasets similar to the one at hand (Cox, 2005). Kyburg 

(1974) notes that the most desirable probability is one that tells us how to anticipate the 

future perfectly. In this sense, the most attainable and simplest rule is to ignore the 

arithmetic and act “as we feel like acting” (p.23). Kyburg addresses that the need for 

statistical inference comes from a situation where we are uncertain about how to behave 

under certain circumstances (Kyburg, 1974). Along the same lines, Lehman’s (1991) 

view on probability begins with uncertainty, and he addresses that data from observations 

provide guidance as to the best decision for the uncertain situation.  

The last paradigm in understanding formal statistical inference is the Bayesian 

approach. From this view, probability is “a degree of belief held by a person about some 

hypothesis, event, or uncertain quantity” (Phillips, 1973, as cited in Cox, 2005). Instead 

of using probability as representing a long-run frequency, the Bayesian approach attempts 

to attach a probability distribution to the unknown probability distribution. In other 

words, Bayesian inference uses available posterior beliefs as the basis for making 

statistical propositions.  
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Fisherian versus Neyman-Pearson  

The frequentist approach dominated the uses and application of statistics in 

scientific research between 1940 and1960, and many statistical methods were developed 

in this period. Halpin and Stam (2006) further discern this period by considering extant 

disagreements about the application and interpretation of statistical testing, represented 

by two opposing theories R. A. Fisher and J. Neyman-E. S Pearson propounded (Halpin 

& Stam, 2006). The debates between Fisher and Neyman-Pearson (N-P) come out from 

their different perspectives on hypothesis significance testing: a Fisherian test involves 

only one hypothesized model, whereas an N-P test involves two hypotheses, a null 

hypothesis and an alternative hypothesis. In Fisherian tests, the distribution of the data 

must be known, and this distribution is used both to determine the test and to evaluate the 

outcome of the test. On the other hand, in the N-P perspective, the researcher chooses a 

null hypothesis and tests the null against the alternative hypothesis (Christensen, 2005, p. 

121).  

Batanero (2000) notes that the test forms and results from the tests are nearly the 

same, but the underlying philosophy and the interpretation of the results are profoundly 

different. She states that the philosophical basis of a Fisherian test is “proof by 

contradiction” since Fisherians confront a null hypothesis with observations, and a P-

value indicates the strength of the evidence against the hypothesis. For this reason, the 

Fisherian approach is referred to as a “test of significance” rather than a “test of 

hypothesis.”  

In the procedure of significance testing, the P-value gives a measure of the extent 

to which the data do not contradict the model (Hubbard & Bayarri, 2003). Fisherians 
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interpret a P-value as the probability of seeing weird data rather than the probability of 

rejecting the null. On the contrary, in the N-P approach, a statistical test is a rule of 

“inductive behavior”—a criterion for decision-making that allows us to accept or reject a 

hypothesis (Christensen, 2005). In this case, the problem of statistical hypothesis testing 

occurs when we need to make a choice between two competing courses of action 

(Batanero, 2000).  

There have been extensive debates between these two approaches. The critics of 

Fisherians argue that, if the model is not rejected, the best interpretation for the result 

from significance testing is that “the data are consistent with the model” (Christensen, 

2005, p.122). In other words, since not rejecting the model certainly does not prove that it 

is correct, the interpretation of nonsignificant outcomes from significance testing is 

ambiguous in Fisherian approach (Halpin & Stam, 2006; Hubbard & Bayarri, 2003). The 

N-P approach has been criticized mostly because of its misuse and misinterpretation of 

results in practice. Critics of the N-P approach argue that it focuses on a small α-level; 

thus, it often leads to bad decisions between the two alternative hypotheses.  

Controversies about Null Hypothesis Statistical Testing (NHST) 

Null Hypothesis Statistical Testing (NHST) has arguably been the most widely 

used method of data analysis for the past 70 years (Nickerson, 2000). One great appeal of 

NHST is that it provides the use of “a straightforward, relatively simple method of 

extracting information from noisy data” (Wainer & Robinson, 2003, p. 28). It is also 

considered to be “an objective, scientific procedure of advancing knowledge” (Kirk, 

2001, p. 214). Although NHST has served an important purpose in the advancement of 

scientific study inquiry, there have been debates regarding the use of NHST.  
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Several statisticians, as well as educators, criticize NHST partly because of its 

nature (e.g., Cohen, 1994; Falk & Greenbaum, 1995; McDonald, 1997; Rosnow & 

Rosenthal, 1989) and also because of its misuse and misinterpretation (e.g., Cohen, 1994; 

Falk, 1986; Falk & Greenbaum, 1995; Gigerenzer, 1993; Sedlemeier & Gigerenzer, 

1989; Thompson, 1989, 1996). Cohen (1994) provides a review of the problems of 

NHST, as well as its misinterpretation. He points out the logical flaw of “deductive 

syllogistic reasoning” embedded in NHST. The basic structure of the NHST is—If the Ho 

is correct, then these data are highly unlikely. These data have occurred. Therefore, the 

Ho is highly unlikely (Ho is probably not true, and therefore, formally invalid). A 

misapplication of this “deductive syllogistic reasoning” is also pointed out by Falk and 

Greenbaum (1995). They call the logic behind NHST an “illusion of probabilistic proof 

by contradiction”. Cohen further argues that NHST does not tell us “what we want to 

know,” but rather tells us, “Given that Ho is true, what is the probability of these data?” 

(p. 997). Kirk (2001) also criticizes NHST in that it does not tell us how large the effect 

is, or whether the effect is important or useful.  

In addition to these flaws in the nature in NHST, several researchers have 

considered the misuse and misinterpretation of NHST. The following are 

misunderstandings regarding the interpretation of NHST that have been most often 

addressed in a literature review of NHST uses.  

• Misbelief that failing to reject the null hypothesis is equivalent to 

demonstrating it to be true (Batanero, 2000; Nickerson, 2000).  
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• Misbelief that the P-value is the probability that the null hypothesis is true, 

and that (1-p) is the probability that the alternative hypothesis is true 

(Carver, 1978; Falk & Greenbaum; 1995; Nickerson, 2000). 

• Misbelief that a small P-value means a treatment effect of large magnitude 

(Cohen, 1994; Rosenthal, 1993).  

• Misbelief that a small P-value is evidence that the results are replicable 

(“replicability fantasy”; Carver, 1978; Falk & Greenbaum; 1995; 

Gigerenzer, 1993; Greenwald, 1975; Rosnow & Resenthal; 1989; 

Thompson, 1996).  

• Confusion between “significant” and “statistically significant” (Meehl, 

1997; Thompson, 1996; Schafer, 1993). 

Why are these confusions about NHST so pervasive? The most plausible 

explanation of this comes from two incompatible origins of statistical testing—Fisher and 

Neyman-Pearson—described in the previous section. Batanero (2000) argues that the 

current practice of statistical tests contains elements of decision procedures from N-P but 

elements of inferential procedures from Fisher. She notes that these two approaches “[are 

applied] at different stages of the process” (p. 87), although they are not comparable 

(Christensen, 2005; Gigerenzer, 1989). The significance of this hybridization of two 

different views has also been described as “a failure to understand the foundations of 

statistical inference” by Hubbard and Bayarri (2003, p.171). Similarly, Gigerenzer, 

Swijtink, Porter, Daston, Beatty, and Kruger (1989) maintain that the dispute between the 

two views has been hidden in applications of statistical inference in psychology and other 

experimental sciences, in which it has been assumed that there is only one statistical 
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solution to inference. Christensen (2005) provides a further argument on the 

incompatibility of the Fisherian and N-P approaches:  

Many of them [the N-P testers] tend to adopt the philosophy of Fisherian 

testing (involving P-values, using small alpha levels, and never accepting 

a null hypothesis) while still basing their procedure on an alternative 

hypothesis.…The motivation for using small alpha levels seems to be 

based entirely on the philosophical idea of proof by contradiction. Using a 

large alpha level would eliminate the suggestion that the data are unusual 

and thus tend to contradict Ho. However, N-P testing cannot appeal to the 

idea of proof by contradiction. (p. 123)  

With regard to incomparable ideas between the Fisherian and N-P approaches, 

Wainer and Robinson (2003) provide Fisher’s original idea of statistical testing: 

When p is small, [Fisher] declared that an effect has been demonstrated. 

When it is large, he concluded that, if there is an effect, it is too small to 

be detected with an experiment this size. When it lies between these 

extremes, he discussed how to design the next experiment to estimate the 

effect size. (p. 23) 

This indicates that the current practice of usage and interpretation of NHST is far 

from Fisher’s original idea, which considers a P-value as the strength of evidence against 

the hypothesis, as opposed to a decisive tool for making a decision between dichotomous 

hypotheses.  

In order to improve the current practices of NHST, some suggestions have been 

presented. First, NHST can be a valued tool when accompanied by effect sizes that 
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provide information regarding the trustworthiness of estimates of the effect size (e.g., 

Cohen, 1994; Wainer & Robinson, 2003). Kirk (2001) notes that the focus of research 

should be on “what the data tell us about the phenomenon under investigation” rather 

than on rejecting a null hypothesis and obtaining a small P-value (p. 213). Wainer and 

Robinson (2003) also note that NHST is most often useful as an adjunct to other results 

(e.g., effect sizes) rather than as a stand-alone result. Similarly, Schmidt (1996) argues 

that confidence intervals offer a solution for many problems associated with the use of 

NHST. In addition to combining information on location and precision, confidence 

intervals are considered as a tool to convey information on effect size (Schmidt, 1996; 

Cohen, 1994), as well as to reduce binary thinking (Hoekstra, Kiers, & Johnson, 2010). 

Furthermore, a confidence interval is considered to be easier to interpret, insofar as it is a 

visual representation of effect size and a measure of uncertainty (Schmidt & Hunter, 

1997); thus, both can be seen at a single glance (Hoekstra et al., 2010). 

Although there have been different historical paradigms of statistical inference 

(classical, frequentist, and Bayesian) and debates on the use of hypothesis testing, this 

study focuses on the methods currently being taught in most of the introductory statistics 

courses—Neyman-Pearson approach in frequentist perspective.  

Research Studies on Inferential Reasoning in Statistics  

A review of research literature is structured into two subsections—studies about 

foundations of statistical inference and studies about formal statistical inference. This 

structure is reflected in the content and order of topics shown in most textbooks of 

introductory statistics courses (e.g., Moore & McCabe, 2006). In these textbooks, 

samples and sampling distributions, and the central limit theorem are explained as 
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foundations to inferential statistics. Students then learn how to perform formal statistical 

testing such as hypothesis tests.  

Given that understanding sampling distributions is regarded as foundational to an 

understanding of formal statistical inference, review of the literature on the foundations 

of statistical inference is focused on studies about understanding sampling distributions. 

The second category of literature review includes studies about understanding statistical 

testing.  

Studies on Foundations of Statistical Inference 

In this section, the research is reviewed with regard to methodologies used and 

major findings.  

Methodologies. Most studies on people’s understanding foundational ideas of 

statistical inference conducted are one-group posttest only evaluations with some 

variations in terms of settings, subject levels, sample size, and tasks examined.  

First of all, most studies have been carried out in observational classroom settings 

(e.g., Carver, 2006; Lunsford, Rowell, & Goodson-Espy, 2006; Well, Pollastek, & 

Boyce, 1990, Study 1), with a few exceptions that included controlled conditions (e.g., 

Well et al., 1990, Study 3). Second, some studies included a specific course as a 

treatment (e.g., Konold, Pollastek, Well, & Lohmeier, & Lipson, 1993; Konold, 1994), 

but not always (e.g., Haller & Krauss, 2002). Third, researchers have used different 

methods for data collection—interviews (e.g., delMas & Liu, 2005; Kaplan, 2009; 

Konold et al., 1993) and a mixture of multiple-choice and open-ended questions (e.g., 

Haller & Krauss, 2002). Some researchers have used large-scale assessments (e.g., 

Carver, 2006; delMas & Liu, 2005, delMas, Garfield, Ooms, & Chance, 2006). They also 
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have also used think-aloud problem-solving protocols with a small number of 

questionnaires (e.g., Hertwig & Gigerenzer, 1999). Another factor that varies studies with 

regard to methodology is sample size—some studies have included a very small number 

of subjects (e.g., n<20 in Hertwig & Gigerenzer, 1999), while others have employed 

larger sample sizes (e.g., n>50 in Konold, 1994).  

Age levels of the subjects range from primary students to undergraduates and 

teachers. Sample sizes range from small (e.g., n=10 in Kaplan, 2009) to large numbers of 

subjects (e.g., n=114 in a pre- and post-tests in Chance et al., 2004). A summary of the 

studies’ characteristics (research design, sample size, subjects’ grade level, and data 

collection methods) is presented in the Appendix A.  

Findings. Most research on the topic of statistical inference has evolved from the 

early work of Daniel Kahneman and Amos Tversky. From studies about common human 

errors using heuristics and biases (Kahneman & Tversky, 1973; Tversky & Kahneman, 

1974), they established a cognitive basis for common human errors. They began their 

study with a detailed account of the representativeness heuristic, a tendency to assume 

that a sample represents the population regardless of its size. The following is a 

description of this heuristic shown in one of their instrumental papers, Belief in the Law 

of Small Numbers (Tversky & Kahneman, 1971):  

People view a sample randomly drawn from a population as highly 

representative, that is, similar to the population in all essential 

characteristics. Consequently, they expect any two samples drawn from a 

particular population to be more similar to one another and to the 
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population than sampling theory predicts, at least for small samples. (p. 

24) 

Kahneman and Tversky (1972) found this heuristic from university students and 

identified it as the law of small numbers, as opposed to the law of large numbers. Since 

their work, researchers have shown similar findings that people in general tend to look at 

a sample, just as a small part of a whole, and they place an excessive amount of 

confidence in small samples (e.g., Rubin, Bruce, & Tenny, 1991).  

In a later study, Kahneman and Tversky (1982) conjectured that people tend to 

focus their attention to individual samples ignoring distributional propensities of the 

samples when making judgments under uncertainty. Compelling evidence for this 

conjecture was presented by Konold (1989). Referred to as the outcome approach, 

Konold found that people tend to base predictions of uncertain individual outcomes on 

causal explanations instead of on information obtained from repeating an experiment. 

In a study by Rubin et al. (1991) with senior high school students, the researchers 

found that students have inconsistent models of the relationship between samples and 

populations. They also found that, for students who lack experience in thinking about a 

distribution of samples generated from a particular population, it is not easy to understand 

that “sample variability is the contrasting idea that samples from a single population are 

not all the same and thus do not all match the population” (p. 314).  

In understanding of the idea of sample representativeness and sampling 

variability, the concept of sample size becomes important. Several studies have shown 

that students appear to have difficulty taking into account sample size in association with 

sample distributions (Mokros & Russell, 1995; Sedlemeier & Gigerenzer, 1997; Tversky 
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& Kahneman, 1971; Vanhoof, Sotos, Onghena, & Verschaffel, 2007; Schwartz, 

Goldman, Vye, Barron, & The Cognition and Technology Group at Vanderbilt, 1998).  

Well et al. (1990) investigated how undergraduate students incorporate the 

information of sample size in sampling distributions. Four experiments differentiating 

different aspects of the problem revealed that students have incomplete conceptions of 

sample size. People appear to understand that the means of larger samples are more likely 

to resemble the population mean, but do not understand the implications of this fact for 

the variability of the sample mean, neglecting the effect of sample size in interpreting 

sampling variability.  

Sedlemeier and Gigerenzer (1997) investigated 46 university students’ 

understanding about frequency distributions and sampling distributions. They found that 

students did better at solving frequency distribution tasks than sampling distribution 

tasks, even when the participants fully understood the concepts given in sampling 

distribution tasks. Sedlemeier and Gigerenzer (1997) noted that students’ intuitions 

regarding the empirical law of large numbers apply directly to frequency distributions, 

but not to sampling distributions. As a plausible reason for this, the researchers 

suggested, whether objects or events, the units of frequency distributions can be 

experienced in daily life, whereas proportions and means, the units of sampling 

distributions, are rarely experienced directly in everyday life. 

Saldanha and Thompson (2002) conducted teaching experiments with senior high 

school students, and they found that students tend to focus on individual samples and 

statistical summaries of individual samples instead of looking at how collections of 

sample statistics are distributed. Saldanha and Thompson also found that students showed 
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a tendency to predict sample outcomes based on causal analyses instead of statistical 

patterns in a collection of sample outcomes. This finding is similar to the outcome 

approach studied by Konold (1989). 

Thompson (2004) examined students’ difficulty in understanding concepts of 

sampling distributions incorporating three major concepts: representativeness, variability, 

and sample size. He found that those students who seemed to understand the ideas and 

who used a margin of error for a sample statistic had developed what he called a 

“multiplicative conception of sample” (MCS)—a conception of sample that entailed 

variability among samples, the idea that each sample has an associated statistic that varies 

as samples vary. They argue that MCS enables students to understand the relationship 

between individual sample outcomes and distributions of a class of similar outcomes. In 

the same way, Saldanha and Thompson (2002) address that MCS empowers students to 

consider a sampling outcome’s relative unusualness.  

In terms of the misunderstandings students exhibit in reasoning about sampling 

distributions, results from studies tend to be consistent with the findings from studies. 

These include:  

• Students believe that the sampling distribution of a statistic should have 

the same shape and properties as the population distribution, indicating 

that students are confused about the population and the sampling 

distributions (e.g., delMas, Garfield, Chance et al., 1999a; 1999b).  

• Students do not differentiate between the distribution of a sample and the 

sampling distribution of a statistic (e.g., mean; e.g., Lipson, 2003; delMas 

et al., 1999a; 1999b). 
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• Students do not understand the idea of the law of large numbers (delMas 

et al., 1999a; 1999b; Innabi, 1999).  

• Students show misconceptions in understanding the concepts involved in 

the Central Limit Theorem (Batanero et al., 2004; Chance et al., 2004; 

delMas et al., 1999a, 1999b; Earley, 2001; Lunsford et al., 2006; Pfaff & 

Weinberg, 2009).  

delMas, Chance, and Garfield (Chance et al., 2004) examined how they develop 

students’ reasoning and in what ways instruction could help build students’ inferential 

reasoning. The researchers designed five studies to investigate about difficulties students 

experience when learning about sampling distributions. In the fourth study, Chance et al. 

(2004) interviewed college students to gain a more in-depth understanding about 

students’ conceptions of sampling distribution as well how they actually develop 

reasoning about sampling distributions. From the findings, they developed a framework 

to describe the development of students’ statistical reasoning about sampling 

distributions, based on the work of Jones and colleagues (Jones, Thornton, Langrall, 

Mooney, Perry, & Putt, 2000). This framework consists of the following five levels of 

reasoning:  

• Level 1—Idiosyncratic Reasoning: The student knows words and symbols 

related to sampling distributions, uses them without fully understanding 

them, often incorrectly, and may use them simultaneously with unrelated 

information.  

• Level 2—Verbal Reasoning: The student has a verbal understanding of 

sampling distributions and the implications of the Central Limit Theorem, 
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but cannot apply this to the actual behavior of sample means in repeated 

samples.  

• Level 3—Transitional Reasoning: The student is able to correctly identify 

one or two characteristics of the sampling process without fully integrating 

these characteristics.  

• Level 4—Procedural Reasoning: The student is able to correctly identify 

the three characteristics of the sampling process, but does not fully 

integrate them or understand the predictable long-term process.  

• Level 5—Integrated Process Reasoning: The student has a complete 

understanding of the process of sampling and sampling distribution, in 

which rules and stochastic behavior are coordinated.  

As seen in a study by Chance et al. (2004), use of simulation in research studies is 

not rare in studies in the topic of sampling distributions. Incorporating simulation in the 

curriculum by using either hands-on activity (e.g., Chance et al., 2004; Pfaff & Weinberg, 

2009) or computer software (delMas et al., 1999a; 1999b; Earley, 2001; Lane & Tang, 

2000; Lipson, Kokonis, & Francis, 2003; Lunsford et al., 2006), researchers have 

investigated its impact on students’ learning of sampling distribution concepts and 

analyzed in what specific areas students encounter difficulties.  

Lane and Tang (2000) studied the effectiveness of simulations for teaching 

statistical concepts, compared to the effectiveness of a textbook. One hundred and fifteen 

undergraduate students were randomly assigned to the conditions of a factorial 

combination of “Medium” (computer simulation versus textbook) and “Question” 

(Specific versus Non-specific). This study revealed that training by simulation led to 
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better performance than training by a traditional textbook approach. The researchers 

found that simulation was especially effective when coupled with questions that focused 

students’ attention to the relevant features or characteristics of the simulation.  

Contrary to the results found by Lane and Tang (2000), several studies have 

revealed that simulation is not a sufficient way for students to develop reasoning of 

sampling distributions (delMas et al., 1999a, 1999b; Lipson, 2003, Lipson et al., 2003; 

Lunsford et al., 2006; Vanhoof et al., 2007). In delMas et al. (1999a; 1999b), researchers 

developed a computer simulation, Sampling Distribution, to facilitate students’ learning 

of the concepts and ideas of the sampling process and distributions of samples. The 

researchers found that several students still did not appear to develop correct reasoning 

about sampling distributions, although there were some positive changes. Recognizing 

that simply showing students sampling distributions that are produced from random 

sampling does not improve students’ understanding, in the next study, the researchers had 

the students make conjectures first. Based on their predictions about different empirical 

sampling distributions from various populations, students were then provided correct 

distributions. As a result, students’ performance improved on the posttest when they were 

required to confront their misconceptions directly (delMas et al., 1999a; 1999b).  

Lunsford et al. (2006) replicated the study of delMas et al. using the same 

conditions (post-calculus introductory course, use of the same assessment, software, and 

interview), but adding a pre- and post-survey to ask about students’ reactions to specific 

instructional strategies. They found similar results to the previous researchers’: Many 

students still showed incomplete reasoning, specifically in reasoning about the Central 
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Limit Theorem, although they showed improvement in post-tests after experiencing the 

computer simulation activity.  

In summary, a number of studies provide many substantial works in research 

about people’s understanding of sampling distributions. Observational studies with large 

sample sizes in some research studies have provided robust findings in terms of 

misunderstandings of the concept of sampling distributions. Teaching experiments and 

the use of various qualitative data have provided a framework to understand how students 

develop their reasoning about sampling distributions. Research studies on student 

understanding of sampling distributions have tended to employ both quantitative and 

qualitative methods. With relatively large sample sizes, many studies have revealed 

robust findings. There are also studies that examined why students encounter difficulty, 

and in what ways instruction may be helpful in improving their reasoning beyond 

identifying the misconceptions. There are also researchers who have examined the impact 

of simulation using hands-on activity or computer software. 

Studies about Formal Statistical Inference 

Researchers agree that getting students to make sense of formal concepts and 

ideas in statistical inference is a very difficult goal for statistics instructors because of the 

persistence and deepness of misunderstandings held by learners (Daniel, 1998; Batanero, 

2000; Sotos et al., 2007). Although educators recognize that students struggle with 

understanding formal statistical inference—the concepts and the logic of hypothesis 

testing, empirical studies are sparse on this topic compared to studies on sampling 

distributions. Characteristics of research studies on this topic are described next. 
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Methodologies. Most of the studies on reasoning about formal statistical 

inference present only a one-group posttest evaluation with some exceptions: 

implementing pre- and posttest (e.g., Falk & Greenbaum, 1995) or tests at multiple times 

(e.g., Pfaff & Weinberg, 2009). Only a few studies have used control conditions (e.g., 

Lane & Tang, 2000), while most are observational. The number of subjects has varied, 

from a small sample (e.g., 10 subjects in Kaplan, 2009) to a large sample (e.g., 436 

subjects in Vallecillos, 2002). Although subjects are mostly college students, there are 

also some studies conducted with teachers (e.g., Haller & Krauss, 2002) or researchers 

(Mittag & Thompson, 2000). No studies were found that included subjects in primary or 

secondary school, supposedly because of the level of the topic. With regard to the 

methods of data collection, interviews (e.g., Williams, 1999a; 1999b), a mixture of 

multiple-choice and open-ended questions (e.g., Vallecillos, 1999), and surveys (e.g., 

Mittag & Thompson, 2000) have been used. 

Findings. Although there are limited research studies on students’ understanding 

of formal statistical inference such as hypothesis testing, researchers attempted to find 

difficulties and misunderstandings that students tend to show in learning the concepts of 

hypothesis tests. One of the studies found is by Liu and Thompson (2009). The 

researchers conducted a teaching experiment during professional development seminar. 

From the interviews with eight high school statistics teachers, the researchers identified 

the difficulties and conceptual obstacles that teachers experience in reasoning about the 

logic of hypothesis testing. The majority of the teachers failed to conceptualize a process 

of entailing a correct interpretation of unusualness. As an example, the following 

question was presented to the teachers:  
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Ephram works at a theater, taking tickets for one movie per night at a 

theater that holds 250 people. The town has 30,000 people. He estimates 

that he knows 300 of them by name. Ephram noticed that he often saw at 

least two people he knew. Is it in fact unusual that Ephram knows at least 

two people who attend the movie he shows? (p. 10)  

Teachers’ first responses to this question were mostly intuitive, such as, “It would 

not be unusual.” In subsequent discussions, only one teacher had a conception of 

unusualness that was grounded in an understanding of the distribution of sample 

statistics. Other teachers have shown various conceptions of unusual; none of their 

reasoning is conceptualized based on repeated sampling that allows them to quantify 

unusualness. From this study, Liu and Thompson (2009) concluded that teachers’ 

incomplete conceptions of probability results is a challenge when trying to understand 

inferences in hypothesis testing.  

In addition to the conceptual challenges under the logic of hypothesis testing, Liu 

and Thompson (2009) found that teachers had difficulty in conceiving the role of 

hypothesis testing as a tool for making a conclusion from inferences. In their study, 

teachers appeared not to internalize the functionality of hypothesis testing, showing a 

lack of understanding as to how hypothesis testing can be a useful tool for making 

decisions.  

Vallecillos (2002) found similar results from university students. Examining 436 

university students’ understanding of hypothesis testing, he found that students do not 

consider hypothesis testing as a process of decision making to accept or reject a 

hypothesis. Vallecillos identified four different conceptions regarding the type of proof 
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that hypothesis tests provide: a) conception of the test as a decision-making rule; b) 

conception of the test as a procedure for obtaining empirical support for the hypothesis 

being researched; c) conception for the test as a probabilistic proof of the hypotheses; and 

d) conception of the test as a mathematical proof of the hypothesis’ truth.  

Confusion about the logic of hypothesis testing was also shown in a study by 

Williams (1999a; 1999b). Conducting interviews with 18 students in an introductory 

statistics course, he investigated about students’ conceptual and procedural knowledge of 

significance level. A concept map was used to assess students’ conceptual knowledge, 

and formal hypothesis test tasks were used to assess procedural knowledge. Students 

were asked to talk aloud as they completed a concept map task and two formal 

hypothesis-testing tasks. On the conceptual test, students’ understandings about the 

definition of significance level varied from seeing it as representing a level for decision-

making, a measure of significance, or a level of confidence or error. On the procedural 

test, students demonstrated a confusion between P-values and significance level. 

Smith (2008) examined existing differences in students’ understanding between 

the concepts and procedures of hypothesis testing. In order to explore how undergraduate 

students develop an overall “big picture” of statistical hypothesis testing, she examined 

104 introductory students’ understanding of hypothesis testing using a 14-item multiple-

choice questionnaire. She also conducted follow-up interviews with 11 students who 

presented a range of performance patterns on the questionnaire. In this study, Smith 

found that students did not have high degrees of conceptual understanding or adaptive 

reasoning. Although students were able to perform the procedures, students did not have 
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strong understandings of the concepts, logic, and uses of the methods in hypothesis 

testing.  

While these researchers examined students’ understanding of methods of formal 

statistical inference as an entire process (e.g., process of decision making, or logic of 

hypothesis testing), some researchers have focused on specific topics involved in formal 

statistical inference (e.g., the meaning of statistical significance, P-values, or the role of 

sample size in hypothesis tests). Wilkerson and Olson (1997) surveyed 52 graduate 

students to investigate about students’ understanding of the relationships between 

treatment effect, sample size, and statistical significance. Results from the survey 

revealed that student responses placed more confidence in the results of studies with large 

sample sizes than in the results of studies with small sample sizes, regardless of the 

criterion on which that confidence was based. A significant number of respondents failed 

to recognize that a small sample requires a greater treatment effect than a large sample to 

obtain an equal level of statistical significance.  

A study conducted by Haller and Krauss (2002) showed people’s 

misunderstanding of significance tests and P-values. Methodology instructors, scientific 

psychologists, and psychology students in German universities were included as subjects. 

The researchers provided them with six true-false items representing “common illusions” 

of the meaning of a significant test result. In this study, many instructors and 

psychologists tended to show incorrect understanding about how to interpret a significant 

result from hypothesis testing. For those six statements of interpreting a significant result, 

nearly 90% of psychologists and 80% of methodology instructors showed at least one of 
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the false “meanings” of a p-value (e.g., “You have found the probability of null 

hypothesis being true”).  

From researchers’ effort to find empirical evidence of what specific 

misunderstandings occur, specific areas that people showed difficulties in understanding 

of formal statistical inference are identified in the literature and listed below: 

• The definition of the hypotheses (e.g. Vallecillos & Batanero, 1997)  

• The nature (role) of hypothesis tests (e.g., Mittag & Thompson, 2000) 

• The conditional logic of significance tests (e.g., Haller & Krauss, 2002)  

• The interpretation of P-values (e.g., Williams, 1999a; 1999b) 

• The evaluation and interpretation of statistical significance (e.g., 

Wilkerson & Olson, 1997) 

Although there seems to be an agreement on what misconceptions people show in 

formal statistical inference, there is little empirical research about where these 

misconceptions come from and how to improve students’ understanding of the concepts 

in hypothesis testing. A research study by Kaplan (2009) provides a possible explanation 

of why students show difficulty in inferences of hypothesis testing. She conducted a 

study about grounded conception, which prevents sound reasoning. She specially focused 

on the impact of “Belief Bias” discovered by psychologists, which is a tendency “to rate 

the strength of arguments based on the believability of the conclusions” (Kaplan, 2009). 

In interviews with ten undergraduate students, she asked about three scenarios, varying in 

degrees of believability (low, moderate, and high believability). Each task included a 

description of an experimental study with statistical conclusions, along with P-values and 

interpretations of the results of the hypothesis test. In the given tasks, students showed 
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three types of evidence as being convincing: 1) statistical results; 2) a preponderance of 

evidence; and 3) a justification or rationalization. In addition, students tended to be less 

convinced by the statistics when the conclusion suggested by statistical evidence was 

incongruent to a prior belief. In this case, students tried to search for a justification of the 

conclusion, or they relied on their preexisting opinions.  

Although Kaplan’s study provided one plausible explanation of students’ 

difficulty in understanding inferences involved in formal statistical inference, the sample 

size and type of tasks limit the generalization of results of this study to a larger context. 

Studies of other factors that could also influence people’s misunderstanding of formal 

statistical inference were not found in the literature.  

What is Informal Inferential Reasoning (IIR)?  

Given that students show consistent difficulties in understanding and reasoning 

about formal statistical inference, researchers and educators have been trying to find 

ways to develop students reasoning about statistical inference. One of the attempts is to 

expose them to situations where they use informal reasoning. Garfield and Ben-Zvi 

(2008) suggest that ideas of inference should be introduced informally at the beginning of 

the course, such as having students become familiar with seeing where a sample 

corresponds to a distribution of sample statistics, based on a theory or hypothesis. They 

further argue that this may help students be less confused by the formal ideas, procedures, 

and language when they finally reach the formal study of this topic.  

Ben-Zvi (2006) also argues that statistical inference is essentially informal, 

although teaching inference in statistics has focused on formal methods. Similarly, Pratt 

et al. (2008) maintain that conceptual struggle in statistics needs to take place for students 
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in order to engage in informal inferential reasoning from a constructivist stance. As 

noticed, these researchers consider informal inference as a way to support a coherent 

understanding of formal concepts in statistical inference. In addition, it appears that they 

are more interested in students’ naïve conceptions than identifying of students’ 

misunderstandings of reasoning about formal statistical inference.  

In the next section, the terms that are used about statistical inference are clarified. 

The section also presents definitions, describes characteristics of Informal Inferential 

Reasoning (IIR) and reviews research studies on IIR.  

Inferential Reasoning in Statistics (IRS) 

In literature about statistical inference, it appears that different terms are used 

interchangeably (e.g., statistical inference, inferential reasoning in statistics, and 

reasoning about statistical inference). Specifically, research literature seems to use the 

two terms without distinguishing between statistical inference and reasoning about 

statistical inference. For instance, in Sotos et al. (2007), the researchers use the term 

statistical inference as a content domain that includes several topics in it (e.g., “a core 

idea in the understanding the concepts in statistical inference”). However, in Zieffler et 

al. (2008) statistical inference refers to a reasoning process (e.g., “formal methods of 

statistical inference”).  

To clarify the uses of the terms, this study refers to the term statistical inference as 

a content domain that involves the concepts and ideas related to inferential statistics. As 

reviewed in previous sections, this includes foundations of statistical inference (e.g., 

sampling distribution) and formal statistical inference (e.g., hypothesis testing). Statistical 

inference also includes the topics regarding informal inference, which is described in this 
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section. Differentiating from statistical inference as a content domain, this study uses the 

term inferential reasoning in statistics (IRS) as reasoning that people use to understand 

the concepts and ideas of statistical inference. IRS is defined as the way people draw 

conclusions from data at hand to a broader context using the concepts and ideas of 

statistical inference. The relationships between the terms are illustrated in Figure 1.  

 

 

 

 

 

 

 

 

 

Figure 1. Conjectured relationships between the terms related to statistical inference. 

Definition and Components of IIR 

Rubin, Hammerman, and Konold (2006) describe IIR as a construct formed with 

multiple dimensions. In this perspective, IIR has properties of “aggregated rather than 

properties of the individual cases themselves, signals and noise, various forms of 

variability, sample size, controlling for bias, and tendency” (p. 2). The multi-faceted 

aspect of informal inference is also shown in the definition of IIR suggested by 

Pfannkuch (2006b). She explains that IIR is the ability to interconnect ideas of—

distribution, sampling, and center, within an empirical reasoning cycle. Makar and Rubin 
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(2009) also view informal inference as a multi-faceted construct, and provide a detailed 

description:  

By formal statistical inference, we refer to inference statements used to 

make point or interval estimates of population parameters or formally test 

hypotheses, using a method that is accepted by the statistics and research 

community. Informal statistical inference is a reasoned but informal 

process of creating or testing generalizations from data, that is, not 

necessarily through standard statistical procedures. (p. 85)  

Makar and Rubin’s (2009) description about informal inference seems to include 

two key components: (1) making an inference about a population or testing hypotheses, 

and (2) a process of inference that does not utilize (formal) statistical procedures. These 

two components are also seen in Rossman’s (2008) perspective on IIR where he 

describes IIR as “going beyond the data at hand” and “seeking to eliminate or quantify 

chance as an explanation for the observed data” through an argument with no formal 

method, technique, or calculation (as cited in Zieffler et al., 2008).  

Ben-Zvi (2006) includes an argumentation component to this definition of IIR. He 

describes argumentation is a “discourse for persuasion, logical proof, and evidence-based 

belief, and more generally, discussion in which disagreements and reasoning are 

presented” (p. 2). From Toulmin’s argumentation model (1958)—which consists of data, 

warrant, backing, qualifier, reservation and claim—Ben-Zvi notes that the integration and 

cultivation of informal inference and informal argumentation are essential in constructing 

students’ statistical knowledge and reasoning in rich learning contexts.  
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Incorporating different perspectives on IIR including Makar and Rubin’s (2009) 

and Ben-Zvi’s (2006), Zieffler et al. (2008) provide a working definition of informal 

inference: “the way in which students use their informal statistical knowledge to make 

arguments to support inferences about unknown populations based on observed samples” 

(p. 44). Zieffler et al. (2008) also provide components of an informal inferential 

reasoning framework. The components are:  

• Making judgments, claims, or predictions about populations based on 

samples, but not using formal statistical procedures or methods (e.g., P-

values, t-tests); 

• Drawing on, utilizing, and integrating prior knowledge (e.g., formal 

knowledge about foundational concepts; informal knowledge about 

inference, such as recognition that a sample may be surprising, given a 

particular claim; use of statistical language), to the extent that this 

knowledge is available; and  

• Articulating evidence-based arguments for judgments, claims, or 

predictions about populations based on samples. (p. 45)  

In summary, IIR is described as the way that people reason using interconnected 

informal knowledge or ideas to make claims about population and to support inferences 

from observed samples to the population. IIR is differentiated from formal statistical 

reasoning in that, in IIR, standard statistical procedure or concepts (e.g., hypothesis tests, 

p-value, or statistical significant) are not necessarily used.  
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Role of IIR in Reasoning about Statistical Inference  

In general, informal reasoning is useful when information is less accessible, or 

when the problems are more open-ended, debatable, complex, or ill-structured, especially 

when the issue requires individuals to build an argument to support a claim (Means & 

Voss, 1996). In statistics education, IIR is considered as “a potential pathway” for 

supporting students’ understanding of formal statistical concepts (Makar and Rubin, 

2009). A similar, but more detailed role of IIR is presented in Zieffler et al. (2008):  

[Because] statistical inference integrates many important ideas in 

statistics—such as data representation, measures of center and variation, 

the normal distribution, and sampling—introducing informal inference 

early and revisiting the topic throughout a single course or curriculum 

across grades could provide students with multiple opportunities to build 

the conceptual framework needed to support inferential reasoning. (p. 46)  

From this paragraph, it seems that the essential role of informal inference is that 

the IIR can be used to support students’ IRS as they learn important ideas in statistical 

inference. 

Makar and Rubin (2009) also advocate that IIR provides “new opportunities to 

infuse powerful statistical concepts very early in the school curriculum and return the 

focus of statistics to a tool for insight into understanding problems rather than only a 

collection of graphs, calculations, and procedures” (p.102), a notion that has also been 

addressed by other researchers (e.g., Ben-Zvi & Sharett-Amir, 2005; Sorto, 2006). 
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Studies on Informal Statistical Inference 

Given the role of IIR in reasoning in statistical inference, educators and 

researchers have attempted to define and characterize IIR. There have been also some 

empirical research studies on this topic.  

Pfannkuch (2005) conducted a case study in a grade 10 classroom after the 

teacher participated in a workshop to investigate about statistical thinking of teachers as 

well as students. The subjects’ attempts at informal inference with boxplots were 

examined from student bookwork, student responses to assessment tasks, and the 

teacher’s weekly audiotaped reflections, the researcher investigated students’ attempts at 

informal inference with boxplots. From an analysis of students’ responses, Pfannkuch 

found that students did not tend to explain how their analyses supported their conclusions 

even though their responses were appropriate in relation to the question and they drew a 

valid conclusion in the comparison of data sets. Pfannkuch (2005) proposed two 

conjectures as possible explanations for this result: (1) the current curriculum tended to 

compare only the features of boxplots and not drawing conclusions; and (2) the 

curriculum did not provide a teaching pathway to build students’ concepts of formal 

inference, nor did it provide learning experiences for the transition between informal and 

formal inferential thinking.  

Pfannkuch (2005) suggests a framework for developing the concepts of informal 

inference that includes—reasoning with measures of center, distributional reasoning, 

sampling reasoning, and drawing an acceptable conclusion, based on informal inference. 

Raising further questions as to what types of learning experiences would develop 

students’ inferential reasoning toward a more formal level, Pfannkuch conducted a larger 



 

41 

project (2006a; 2006b; 2007). Using an action research approach, Pfannkuch (2007) 

compared a teacher’s reasoning to students’ reasoning when drawing informal inferences 

from a comparison of boxplots. From a qualitative analysis of the teacher’s 

communication to her students during three teaching episodes, Pfannkuch (2007) 

extracted eight descriptors of informal reasoning—hypothesis generation, summary, shift, 

signal, spread, sampling, explanatory, and individual case. She found that the teacher’s 

view of the inferential task was multifaceted and incorporated all of the eight descriptors. 

Using the same descriptors, Pfannkuch (2007) analyzed students’ reasoning on the same 

tasks. Of 26 students, only 11 were reasoning beyond a descriptive view, and the 

sampling view was not present in the students’ responses. This finding indicates that the 

students found it difficult to verbally express, describe, and justify conclusions when 

comparing boxplots. Pfannkuch (2007) argues that the students were not given 

opportunities to have experiences involving sampling variability or sample size effects. 

She further argues that in order to develop students’ inferential reasoning from 

distributions, instruction needs to address and build concepts about sampling behavior.  

The results of students’ incomplete understanding about the boxplot comparison 

are consistent to a study by Biehler (2005). He found that students tended to reason with 

and compare five-number summary cut-off points when dealing with boxplots without 

considering the spread. He also found that students did not exhibit a shift view, where the 

majority of the data appears to shift positions from one dataset to another, nor did they 

have intuitions about sampling variability.  

Makar and Rubin (2009) developed a model to characterize informal statistical 

inference. They investigated the thought processes of primary schoolteachers’ learning in 
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teaching mathematics and statistics through inquiry in a problem-based environment. The 

subjects were four primary schoolteachers in Australia. Using data from videotapes of the 

teachers’ lessons, collections of lesson plans, student work, and interviews of the 

teachers, the researchers examined how teachers teach informal inferential reasoning. 

Three principles of informal inferential reasoning were proposed: generalizations beyond 

the data, data as evidence, and probabilistic language. 

Using a design experiment, the authors further investigated this framework to 

consider the way that students and teachers could employ inferential reasoning when 

working with data. In terms of generalization, the researchers found three elements 

missing from teachers’ descriptions of what they considered to be important in providing 

opportunities for students to tap into inferential reasoning: pose a driving question; 

include an engaging context; and ensure sufficient complexity in the data.  

With regard to data as evidence, the teachers focused on making generalizations 

from the data, which supported students in seeing the data as evidence for their 

conclusions. However, students’ attention to descriptive statistics (e.g., graphing skills) 

never got back to the problem, which would have allowed them to make the connection 

between the data they collected and their potential as evidence for drawing inferences. 

From this result, the researchers found that the use of data as evidence is a key principle 

of informal inference that reminds learners of: (1) the purpose of collecting and analyzing 

data; and (2) the importance of focusing on the problem and process of statistics in 

inquiry rather than merely a dataset as an isolated artifact.  

The third principle of informal statistical inference, probabilistic language, 

appeared to be the most apparent aspect of informal inference. In the context that students 
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used the data they had collected on handspans, students’ language changed to include 

notions of uncertainty and level of confidence once they made the connection between 

using their own data as evidence to make predictions. Articulating students’ uncertainty 

in making predictions allowed students to take a risk without worrying about possibly 

being “wrong” by using notions of uncertainty and levels of confidence. Encouraging the 

students’ ability to articulate their uncertainty by using their own dataset as evidence to 

make predictions can be a way to enhance students’ ability to express, describe, and 

justify their reasoning, which were shown to be difficulties in the study by Pfannkuch 

(2006a; 2006b).  

Another substantial study about students’ informal reasoning is a study by Ben-

Zvi (2006). Using developmental research, he investigated the emergence of fifth-grade 

students’ informal reasoning. Students’ learning processes were analyzed as they learned 

the growing samples instructional heuristic (Bakker & Gravemeijer, 2004) with the 

software TinkerPlots. From an analysis of the videotapes, observations, and interviews of 

selected students and teachers, he identified levels of changes in students’ statistical 

reasoning in multiple dimensions: progress from additive to multiplicative reasoning; 

consideration of aggregate views of data; acknowledgement of the important role of 

larger samples; and accounting for variability. He found that “the emergence of students’ 

statistical knowledge was accompanied by the growing ability to discuss their thoughts 

and actions, explain their inferences and argue about data-based claims” (p. 5).  

In terms of the factors that influence the development of students’ informal 

statistical reasoning, Ben-Zvi and Gil (2010) investigated the role of context in the setting 

of extended curriculum development with three sixth-grade students. They found that 
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context played a role of resolving conflicts between expectations and data by helping 

break through unclear or contradicting points in understanding graphs. 

In sum, research studies on the topic of informal statistical inference have 

identified the role of IIR in association with IRS, the components of IIR, and the role of 

context in IIR. While these studies offered information about fundamentals agreed upon 

by researchers, there are few empirical research studies, specifically, on the issues of—

how to improve students’ informal inferential reasoning, how students’ actual IIR relates 

to their IRS, and what instructional methods are effective in helping students to support 

IRS using their IIR. 

Content Domains of Statistical Inference 

Research studies and literature reviewed on the topic of IIR suggest that the 

content domain of IIR may be represented by two content areas: informal statistical 

inference (ISI) and formal statistical inference (FSI). These categories are used as the 

content domain of IRS, and thus, cover the contents of statistical inference. The contents 

of based on the literature review are listed below.  

• The concept of uncertainty (Makar and Rubin, 2009) 

• Properties of aggregates (Makar and Rubin, 2009; Pfannkuch, 1999; 

Rubin et al., 2006) 

• The concept of sampling variability (Rubin, Hammerman & Konold, 

2006; Pfannkuch, 1999; Wild et al., 2011; Zieffler et al., 2008) 

• The concept of unusualness (Liu and Thompson, 2009; Makar and Rubin, 

2009; Rubin et al., 2006; Zieffler et al., 2008) 

• Generalizing from a sample to a population (Zieffler et al., 2008) 
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• Comparison of two populations from two samples (Makar and Rubin, 

2009; Pfannkuch, 2005; Wild et al., 2011; Zieffler et al., 2008)  

FSI includes the methods and concepts used in formal inferential statistics. In 

addition, FSI also includes the fundamental concepts in formal statistical inference such 

as sampling distribution considering that those concepts represent an important building 

block to a coherent understanding of statistical inference. Thus, the topics of FSI have 

been identified following the same structure as in the literature review—foundations of 

statistical inference and formal statistical inference. Following are the foundations of 

statistical inference: 

• The concepts of samples and sampling (Saldanha and Thompson, 2002; 

Saldhanha, 2004; Rubin et al., 1991) 

• Law of Large Numbers (Sample representativeness; Kahneman and 

Tversky, 1972; Metz, 1999; Rubin et al., 1991; Saldanha & Thompson, 

2002; Watson & Moritz, 2000) 

• Population distribution and frequency distributions (delMas et al., 1999a, 

1999b; Lipson, 2003) 

• Population distribution and sampling distributions (delMas et al., 1999a, 

1999b) 

• Central Limit Theorem (Mokros and Russell, 1995; Sedlemeier & 

Gigerenzer, 1997; Tversky & Kahneman, 1974; Schwartz et al., 1998; 

Vanhoof et al., 2007; Wagner & Gal, 1991; Well, Pollastek, and Boyce, 

1990) 

Formal statistical inference: 
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• Definition, role, and logic of hypothesis testing (Batanero, 2000; Haller & 

Krauss, 2002; Liu & Thompson, 2009; Mittag & Thompson, 2000; 

Nickerson, 2000; Vallecillos, 2002; Williams, 1999a, 1999b) 

• Definitions of P-value and statistical significance (Carver, 1978; Falk & 

Greenbaum, 1995; Nickerson, 2000) 

• P-value as a numerical probability (Cohen, 1994; Rosenthal, 1993) 

• Sample size and statistical significance in hypothesis testing (Wilkerson & 

Olson, 1997) 

• Confidence interval (Fidler, Thomason, Cumming, Finch, & Leeman, 

2004) 

• Evaluation of hypothesis testing (Wilkerson & Olson, 1997) 

Need for an Instrument to Assess Inferential Reasoning in Statistics 

New Instructional Approaches to Develop Students’ Understanding of Statistical 

Inference 

Along with ongoing calls for reform in introductory statistics courses, different 

teaching methods for developing students’ inferential ideas have been proposed. Cobb 

(2007) and Kaplan (2007) have suggested a radical approach to statistical inference in the 

introductory course. Cobb (2007) argues that statistics educators need to reconsider both 

the pedagogy and the content of introductory statistics courses in that the approach from 

asymptotic sampling distributions centered around the normal distribution turned out to 

be cognitively complicated. Addressing that the logic of inference should be at the center 

of introductory course instead of the normal distribution, he argues that a randomization 

approach (e.g., permutation tests) should be used as a main method to teach statistical 
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inference. He further addresses that using permutation tests to teach statistical inference 

provides students with both conceptually easier instruction for statistical inference and a 

modern, computational data analysis technique currently lacking in the first course in 

statistics.  

Inspired by Cobb, recent NSF-sponsored projects have developed new curriculum 

to introduce students to ideas of statistical inference using randomization methods (The 

CSI project, headed by Rossman, Chance, Cobb, & Holcomb 

(http://statweb.calpoly.edu/csi); The CATALST course, developed by Garfield, delMas 

and Zieffler (http://www.tc.umn.edu/~catalst); The INCIST project, headed by West and 

Woodard). Given the current interest in randomization-simulation methods that are being 

currently implemented in some statistics courses, several questions need to be addressed: 

What is the impact of those curricula on students’ inferential reasoning? How do the 

students taught with statistics curricula based on randomization-simulation approaches 

differ from the students taught with traditional curricula (based on asymptotic sampling 

distributions)? How do we know how students are doing in these courses? In order to 

address these issues, there is a need for a research instrument to assess students’ 

outcomes with regard to this innovative approach. 

Existing Assessments  

There have been some studies on the development of assessments in statistics 

targeting college students. The Statistical Reasoning Assessment (SRA; Garfield, 2003) 

was designed to assess students’ ability to reason with statistical information (e.g., 

correctly interpreting probability, understanding independence and sampling variability, 

distinguishing between correlation and causation). The SRA has been used in different 
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contexts, and reasonable test-retest reliability and content validity have been established 

(Garfield, 1998b, 2003; Liu, 1998). However, it focuses heavily on probability and lacks 

items related to data production, data collection, and statistical inference (Garfield, 2003).  

The Statistics Concepts Inventory (SCI) was developed to assess statistical 

understanding, but it was written for a specific audience of engineering students in 

statistics (Reed-Rhoads, Murphy, & Terry, 2006). The Assessment Resource Tools for 

Improving Statistical Thinking (ARTIST) project was designed to develop an assessment 

instrument that would have broader coverage of both the statistical content typically 

covered in beginning, non-mathematical statistics courses, and would apply to the 

broader range of students who enroll in these courses (Garfield et al., 2002). This result 

was the Comprehensive Assessment of Outcomes in a First Statistics course (CAOS, 

delMas et al., 2007). The CAOS is a 40-item test that was designed to evaluate student 

attainment of desired outcomes in an introductory statistics course. The items focus on 

the big ideas and “the types of reasoning, thinking and literacy skills deemed important 

for all students across first courses in statistics” (Garfield et al., 2002).  

Why These Assessments Do Not Meet the Current Need 

While these instruments share some characteristics, such as assessing students 

reasoning, thinking, and conceptual understanding rather than procedural skills of 

problem, the existing instruments are not appropriate to measure students’ IRS. The 

existing instruments do not measure the full domains of inferential reasoning in statistics. 

Moreover, these existing instruments do not align with the use of randomization-

simulation methods in terms of the contents of a test designed specifically to target 

developing students’ reasoning about statistical inference. In addition, all of these 
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assessments are outcome-based assessments with formats similar to proficiency or 

achievement tests, which have limitations for providing educators with information for 

formative assessment.  

Another limitation of the existing instruments is that they were not developed or 

validated using psychometric measurement models (e.g., item response theory) that 

provide ample information about properties of items (e.g., item difficulty, item 

discrimination, item information). Therefore, there is a need for a new instrument that 

will assess the content areas of informal and formal inference, be well-aligned with the 

new randomization-simulation based curriculum, and be developed and validated using 

appropriate psychometric theory.  

Summary of the Literature Reviewed  

A summary of the methods used in studies of statistical inference in different 

fields appears in Appendix A. Findings shown in research studies have suggested that 

many students taking introductory statistics courses do not seem to understand much of 

what they are studying. Students encounter challenges when they learn the formal 

processes and concepts in inferential statistics. Studies have documented many of these 

challenges and have tried to uncover the reasons why people have difficulty with 

statistical inference. Kahneman and Tversky’s early works on this topic have contributed 

to the literature of characteristics regarding people’s judgment under uncertainty. Studies 

have also revealed and identified common misconceptions people make in statistical 

inference, such as the representativeness heuristics, the law of small numbers, and 

misconceptions regarding P-values or the logic of hypothesis testing. Researchers have 
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tried to provide a framework to guide understanding of student’s development of 

reasoning about statistical inference.  

These findings have many implications for the teaching and assessing statistical 

inference. One such implication is in the curriculum, which is covered in the classroom. 

While current curriculum documents (e.g., NCTM 2000 and GAISE reports) provide 

suggestions of teaching concepts of statistical inference, research strongly suggests (e.g., 

Chance et al., 2004) that large numbers of students fail to comprehend formal statistical 

inference when they meet it in introductory statistics courses. Recent research reviews 

have pointed to the importance of building up “the staged development of the big ideas of 

statistical inference” (e.g., Wild et al., 2011, p.1) rather than presenting formal concepts 

directly. One way of building the big ideas of statistical inference suggested from 

research studies is to have students begin working with precursor forms of statistical 

inference. This idea is congruent with recommendations by Ben-Zvi (2006), Pfannkuch 

(2005, 2006a, 2006b), Makar and Rubin (2009) and Zieffler et al. (2008).  

Another implication concerns the use of technology in teaching statistical 

inference. The use of simulation to explore sampling distribution and hypothesis testing 

has shown that students can better capture the behaviors of sample statistics through a 

dynamic visual approach. Among many benefits of this approach is that technologies can 

create multiple and linked representations (e.g., boxplots of two datasets), and thus, it 

allows students to make a decision about whether one group is bigger than another by 

providing a big picture before using formal methods (e.g. t-test or permutation test).  
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Formulation of the Problem Statement 

Despite the influential contribution of the works, the studies that have been 

reviewed on statistical inference leave room for many new studies and research 

questions. For example, most of the studies used qualitative methods in nature. Although 

many of the qualitative studies provided substantial findings by examining subjects 

closely, there is a lack of quantitative evidence that could better answer some questions, 

such as which instructional methods in teaching formal concepts in statistical inference 

will improve students’ understanding of the ideas of statistical inference.  

A few studies have employed quantitative methods with large sample sizes. 

However, most of the quantitative studies used observational data with only a one-group 

posttest or quasi-experimental design with no randomization. The samples employed 

have usually been convenience samples. In addition, the instruments used to examine 

students’ reasoning have not been validated in terms of psychometric properties, such as 

reliability, validity, or discrimination.  

Most of the literature on students’ learning of inferential reasoning has examined 

partial aspects of statistical inference, such as, whether or not students can reason 

correctly for given specific questions or tasks. Many of the concepts of statistical 

inference in an introductory statistics course that students are expected to understand after 

taking the course are not explicitly addressed by the research. Studies are needed in areas 

where students show appropriate reasoning or misunderstanding in a systematic view in 

order to examine their inferential reasoning as an entire process.  

More studies are needed to find out the extent of student understanding and 

misconceptions for a wide variety of statistical inference concepts, but beyond looking at 
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whether they understand some specific concepts or not. Considering statistical inference 

as the ability to think “beyond the data at hand and to draw conclusions about some wider 

universe by taking account that variation is everywhere and the conclusions are 

uncertain” (Moore, 2007, p.172), students’ reasoning about statistical inference can be 

better captured by examining how they reason and how they make a decision in a well-

structured contextual frame.  

Taken together, there are several questions that have not yet been answered in the 

literature: What is the impact of an instructional approach designed to develop students’ 

inferential reasoning? Is there any structure in statistical inference distinguishable by 

informal and formal inferences? How do these two types of statistical inference relate to 

each other? What would be the best way to measure these two types of inferential 

reasoning? These questions lead to the need of an instrument that measures students’ 

reasoning about statistical inference in multiple aspects as a whole, so that statistics 

educators could guide and monitor students’ developing ideas of statistical inference. 

With a reliable and valid measure, the questions listed above could be meaningfully 

investigated.  

The research describes the development and the validation of an instrument to 

measure college students’ inferential reasoning in statistics. The research questions to be 

addressed are:  

1. To what extent are the scores on the proposed test precise? 

2. To what extent are the scores on the proposed test generalizable to a larger 

domain? 
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3. To what extent do the scores on the proposed test reflect students’ actual 

reasoning in statistics?  

4. To what extent do items reflect the structure of ISI and FSI? 
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Chapter 3 

Methods 

This chapter discusses the procedures for gathering and analyzing the data 

obtained in the study. The literature reviewed in the previous chapter suggests that there 

is a need to develop a new instrument to measure inferential reasoning in statistics (IRS) 

and that IRS be represented to two content categories—informal statistical inference (ISI) 

and formal statistical inference (FSI). In response to this need for a new instrument, this 

study developed and validated an assessment for measuring college students’ IRS in two 

areas—ISI and FSI. 

The argument-based approach to validity (Kane, 1992, 2006a, 2006b) was used as 

a theoretical framework to guide the process of test development and validation, which is 

described in the first section. The second section provides a framework of the study 

structured to formative stage and summative stage. Different sources of validity evidence 

gathered in each stage are described in the next section. Theoretical evidence obtained in 

formative stage is presented first. A description of empirical evidence collected in 

summative stage is followed. For each of the data sources are outlined in terms of the 

resources of data, participants and procedures of data collection. This section also 

explains the methods of data analysis including local item dependency (LID), 

dimensionality, and item response theory. 

Validity and Validation 

Validity  

Validity is the most fundamental consideration in developing and evaluating tests. 

According to the Standards for Educational and Psychological Testing (hereafter referred 
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to as Testing Standards; AERA, APA, NCME, 2002), validity “…refers to the degree to 

which evidence and theory support the interpretations of test scores entailed by proposed 

uses of tests” (p. 9). Messick's (1989) definition emphasizes the appropriateness of score-

based actions in addition to the appropriateness of inferences:  

Validity is an integrated evaluative judgment of the degree to which 

empirical evidence and theoretical rationales support the adequacy and 

appropriateness of inferences and actions based on test scores or other 

modes of assessment. (p. 13)  

Cronbach (1971) defines validity in terms of “the soundness of all the 

interpretations of a test.” All of the above definitions relate validity to the appropriateness 

of the inferences included in test score interpretations.  

Sireci (2007) describes the fundamental aspects of validity, as follows: 

• Validity is not a property of a test. Rather, it refers to the use of a test for a 

particular purpose. 

• Evaluating the utility and appropriateness of a test for a particular purpose 

requires multiple sources of evidence. 

• If the use of a test is to be defensible for a particular purpose, sufficient 

evidence must be put forward to defend the use of the test for that purpose. 

• Evaluating test validity is not a static, one-time event; rather, it is a 

continuous process.  

Sireci (2007) argued that an iterative process is necessary to evaluate the 

adequacy of test score interpretations from the proposed assessment. Therefore, 
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validation is, in itself, a process of collecting and accumulating multiple sources of 

evidence to evaluate inferences from test scores to various conclusions.  

In the Testing Standards (AERA et al., 2002), it is stated that the process of 

validation involves accumulating evidence to provide a sound scientific basis for the 

proposed score interpretations. The conceptual framework points to the kinds of evidence 

to be collected in order to evaluate the proposed interpretation in light of the purposes of 

testing.  

It is noted that different aspects of validity will be illuminated by various sources 

of evidence that will support validity as a unitary concept. As the Testing Standards notes, 

the different aspects of validity do not represent distinct types of validity. Rather, they 

represent diverse perspectives that are integrated to provide evidence that supports 

validity for the use of the proposed assessment. Following this suggestion, this study 

identifies each source of validity evidence according to the origin of the evidence. The 

sources of validity evidence identified in Testing Standards are described below.  

Evidence based on test content is obtained from an analysis of the relationship 

between a test’s content and the construct it is intended to measure. It is also obtained 

from a specification of the content domain. The evidence can include logical or empirical 

analyses of the adequacy with which the test content represents the content domain and of 

the relevance of the content domain to the proposed interpretations of test scores (AERA 

et al., 2002). 

Evidence based on response processes comes from analyses of individual 

responses. Theoretical and empirical analyses of the response processes of test takers can 



 

57 

provide evidence concerning the fit between the construct and the detailed nature of the 

performance or response actually engaged in by examinees (AERA et al., 2002). 

Evidence based on relationships with other variables indicates the degree to which 

the relationships among test items and test components conform to the construct on 

which the proposed test score interpretations are based. An analysis of the relationship of 

test scores to the variables external to the test provides another important source of 

validity evidence. According to the Testing Standards (AERA et al., 2002), external 

variables may include measures of some criteria that the test is expected to predict, as 

well as relationships to other tests hypothesized to measure the same constructs, and tests 

measuring related or different constructs.  

Evidence based on the internal structure of a test addresses questions about the 

degree to which these relationships are consistent with the construct underlying the 

proposed test interpretations. An estimate of score reliability or examination of 

differential item functioning is some examples of this validity evidence.  

Another source of evidence described in Testing Standards is evidence based on 

consequences of testing. Evidence based on consequences of testing concerns an issue of 

the incorporating the intended and unintended consequences of test use into the concept 

of validity. Claims are sometimes made for benefits of testing that go beyond direct uses 

of the test scores themselves (e.g., test uses to improve student motivation or changes in 

classroom instructional practices). The validations of such cases are then examined by 

evidence that the anticipated benefits of testing are being realized (AERA et al., 2002).  
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A Validation Method: An Argument-based Approach to Validation 

An argument-based approach to validation was suggested by Kane (1992, 2001, 

2002) by building on the work of Cronbach (1971, 1988), House (1980), and Messick 

(1989). Kane (1992) argued that test-score interpretation is associated with a chain of 

interpretive arguments, and that the validity of interpretation and uses of the test-score are 

determined by the plausibility of those arguments. In this approach, interpretive 

arguments establish a network of inferences from observations to score-based 

conclusions and decisions, and guide the collection of relevant evidence that supports 

those inferences and assumptions. Therefore, validity is an argument construed by an 

analysis of theoretical and empirical evidence instead of a collection of separate 

quantitative or qualitative evidence (Bachman, 1990; Chapelle, Enright, Jamieson., 2008, 

2010; Kane, 1992, 2001, 2002; Mislevy, 2003). In this sense, validity cannot be proved, 

but depends on the plausibility of interpretive arguments that can be critically evaluated 

with evidence.  

From the previous works by Cronbach (1971, 1988), House (1980), and Messick 

(1989), Kane (1992) addressed the importance of making proposed interpretations and 

uses explicit through an interpretive argument. This interpretive argument specifies the 

inferences and assumptions leading from test scores to the interpretations and decisions 

based on test scores (Kane, 2006a). This interpretive argument is articulated through a 

validation process that considers the reasoning from the test score to the proposed 

interpretations and the plausibility of the associated inferences and assumptions. This set 

of inferences and assumptions are then evaluated by examining the validity argument 

developed from the interpretive argument. The different types of validity evidence are 
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gathered to support the validity argument as claims, intended inferences, and 

assumptions. In this process, four inferences provide the framework that encompasses 

each inferential link based on an assumption that must be evaluated: 

1. Scoring: an inference from an observation of performance to a score. 

2. Generalization: an inference from the observed score on a particular test to 

a universe score, which assumes that the observed score is based on 

random or representative samples from the universe of generalization. 

3. Extrapolation: an inference from the universe score to a target score.  

4. Explanation/Implication: an inference explained about the estimated target 

score regarding a description of knowledge, skills, or abilities.  

The argument works if these inferences can be justified from validity evidence by 

addressing how convincingly the evidence supports the network of inferences. These 

inferential links in an interpretative argument are illustrated in Figure 2.  

 

 

 

 

 

This network of inferences forms the interpretive argument from an observed test 

performance to the conclusions; and the interpretive argument is examined in terms of 

Observation Observed 
score 

Universe 
score 

Target score 

Scoring  Generalization  Extrapolation  

Figure 2. Kane, Crooks, & Cohen (1999). 
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plausibility based on assumptions (e.g., theories, empirical generalizations, factual 

statements; Kane, 2006a).  

Framework of the Study 

With the framework of an argument-based approach to validation, this study was 

structured to two stages: a formative and summative stage, as Kane (1992) proposed. In 

the formative stage, a test blueprint and preliminary assessment were developed from a 

review of the literature and expert reviews. The test domains and a set of tasks were 

specified. This stage also involved formulating the interpretative argument by clarifying 

the inferences and assumptions regarding test score interpretations and uses. A set of 

proposed claims regarding the test score uses were derived from the intended purpose of 

the assessment. Since the purpose of the assessment is to examine and provide 

information about students’ current standing on IRS rather than to make decisions (e.g., 

placement or certification), interpretations of the test score were descriptive rather than 

decision-based or prescriptive (Kane, 2001, 2002). Therefore, this study involved 

descriptive interpretations regarding inferences from an observed score to a target score.  

In the summative stage, a set of interpretive arguments was evaluated as the 

different sources of validity evidence were gathered. The evidence sources were 

identified based on Testing Standards (e.g., evidence based on contents). The interpretive 

argument was examined in terms of plausibility of the associated assumptions specified 

by four inferences (scoring, generalization, extrapolation, and explanation/implication). 

The validity of the interpretive argument was strengthened to the extent which each type 

of evidence supports the inferences and assumptions regarding score interpretations and 

uses (Kane, 2006a, 2006b). A description of each stage is detailed in the next section. 
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Formative Stage: Formulating the Interpretive Argument 

and Assessment Development  

Developing the Interpretive Argument 

The initial interpretation of the test scores and uses of the proposed assessment 

was generated from the literature review considering the current need of the assessment. 

The following list of proposed claims was derived specifying what to measure and how to 

use the test results. This set of claims played an enabling role supporting an interpretive 

argument as types of evidence were investigated.  

Claims regarding the construct of IRS. 

1. The test measures students’ level of IRS in two subdomains—ISI 

(informal statistical inference) and FSI (formal statistical inference).  

2. The test measures IRS in the representative test domains. 

Claims regarding conclusions about the score interpretations and uses. 

3. The test produces scores with sufficient precision to be meaningfully 

reported.  

4. The test is functional for the purposes of formative assessment. 

5. The test provides information about students’ level of IRS in the areas of 

ISI and FSI.  

This set of claims laid out a sequence of the four inferences (scoring, 

generalization, extrapolation, and implication) leading from an observed test performance 

to the conclusions. The inferential network functioned as a framework encompassing all 

elements of the test design, development, and validation. Each of the four inferences is 
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described below, explaining what kinds of evidence were collected to support the 

inference. 

Scoring (the inference from observations of performance to an observed 

score). The degree of confidence about scoring inference provides information about the 

quality of the examinee’s responses. As evidence, experts’ judgments of the 

appropriateness of the answer key, testing conditions (e.g., how carefully and consistently 

the test was taken), and scoring methods in test specifications were gathered and analyzed. 

Item discrimination information from field-tests was also examined as a measure of score 

precision. 

Generalization (the inference from an observed score to the expected score on 

the universe of generalization). Validity of this inference can easily be evaluated in that 

the test was designed based on specified sub-domains with relatively homogenous items. 

The evidence supporting this inference included documentation of construct 

representation in a test blueprint, item discrimination, and item information function. 

Extrapolation (the inference from the universe score to the target score). This 

inference extrapolates from a narrowly defined universe of generalization to a score on a 

widely defined target domain beyond the test. The underlying assumption is that a score 

on the test reflects performance on a relevant target domain (students’ actual level of 

IRS). Evidence supporting this inference included the test blueprint documenting content 

coverage, expert reviews, and think-aloud interviews. An examination of dimensionality 

also provided evidence to evaluate the validity of this inference, as it indicates whether 

the universe scores represent the unidimensional target score (IRS) or two-dimensional 

scores (ISI and FSI), as hypothesized from the literature.  
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Explanation/implication (the inference from the estimated target score into a 

description of students’ reasoning in statistical inference). This inference links the 

construct measured in the assessment to the description of the reasoning. This inference 

can be evaluated from a theory-based perspective since it needs evidence to show the 

extent to which the construct and performance (actual reasoning) are relevant to a 

specific discipline. An expert review on the test blueprint, item information and test 

information functions were examined.  

The claims as assumptions and the list of inferences guided the set of 

comprehensive procedures in the test development and justification of score-based 

interpretations and uses. The procedures for the test development and validation are 

presented next.  

Developing a Test Blueprint from the Literature Review (Theoretical Evidence 1: 

TE1)  

In a well-designed test blueprint, it is ensured that there is a sound relationship 

between the test contents in the blueprint and the construct the proposed test is intended 

to measure. Then, the test blueprint itself provides evidence based on the test content 

when it represents the content domain (AERA et al., 2002). In order to make an 

agreement on the test score interpretation and uses, it is required to decide on the scope of 

domains that will be covered in the assessment. However, since there is no criterion 

reference of IRS, the literature of informal and formal statistical inference was reviewed 

first. After the content domains were chosen, the types of reasoning to be assessed in the 

domains were specified based on what the previous researchers considered as important 

to be captured, which resulted in a preliminary test blueprint. Misunderstandings and 
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difficulties in statistical interference found in research literature were also categorized. 

The preliminary test blueprint is shown in Appendix B. 

Expert Review of the Preliminary Test Blueprint (Theoretical Evidence 2: TE2)  

The preliminary test blueprint was reviewed by content experts, and evaluation 

reports were gathered to examine the adequacy of the test blueprint as a framework to 

represent the content domains. According to Testing Standards, qualified experts can 

judge the representativeness of the chosen test contents, and their judgments of the 

relationship between parts of the test and the construct also provide evidence based on 

test content (AERA et al., 2002). The experts who participated in the review process are 

described below, along with their credentials. The procedures of how they evaluated the 

preliminary blueprint follow. 

Participants. The preliminary test blueprint developed from the literature was 

reviewed first by two internal experts, and then by three external experts. The internal 

experts are professionals in the program of statistics education at the University of 

Minnesota. To recruit external experts, the author contacted eleven potential 

professionals of statistics educators to ask them to evaluate the test blueprint in early May 

2011. These reviewers were selected based on their background and research interests. It 

was also notable that the pool of reviewers has diversity in terms of their expertise and 

their level of teaching (Testing Standards 1.7, AERA et al., 2002). The email invitation 

letter and evaluation form were sent out to each of the potential reviewers, and three of 

them agreed to participate in the review process for both the test blueprint and assessment 

items. The consent form and invitation letter appear in Appendix C. All three reviewers 

were statistics educators who were actively engaged researchers in the area of statistics 
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education. The first reviewer has published many research studies about students’ 

statistical inference, specifically utilizing technological tools or hands-on activities at the 

secondary and undergraduate levels in New Zealand.  

The second reviewer’s expertise is the development of statistics curricula, 

technological tools, and resources for teaching statistics. He has published in many 

research journals, specifically about how people elicit and acquire statistical reasoning at 

work. He is working in the Netherlands. 

The third reviewer is an instructor in the Department of Statistics at a college in 

the Midwest area in the U.S. His expertise is in teaching rather than in research, but he 

has also been involved in several research projects about the topic of statistical inference. 

It was expected that his professional experience as a teacher of statistics would provide a 

valuable perspective in terms of a practical sense of assessing students’ inferential 

reasoning. In addition, he was an introductory statistics textbook author who designed an 

innovative curriculum focused on developing IRS.  

Procedures. During the entire process of developing a preliminary blueprint, the 

author had continuous discussions with the internal experts until an agreement was 

reached for the preliminary blueprint. Thus, only the reviews from the external experts 

are reported and analyzed in this paper.  

Feedback on the preliminary test blueprint was collected from the three experts in 

late May 2011. Each reviewer was provided with a preliminary test blueprint and an 

evaluation form. The reviewers were asked to provide ratings for their agreement that the 

test blueprint was adequate as a framework to develop an instrument to assess the IRS in 

general (See the evaluation form for the questions in Appendix C.3). Specific evaluation 
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questions were also provided, asking the reviewers to rate the degree to which they 

agreed that the topics and learning goals documented in the blueprint represent the 

content domain (AERA et al., 2002). The reviewers were also asked to provide 

suggestions for changes if an item received a rating of less than 2. Items were judged to 

have a sufficient level of validity evidence if they had a mean rating of 3 (agree) or 

higher. For items with mean ratings of less than 3, the reviewers’ suggestions for the item 

changes were carefully reviewed and discussed with an internal expert. In addition, the 

reviewers’ comments on the free-response evaluation questions (e.g., whether there was 

anything missing from the content of the blueprint related to the constructs of informal 

and formal statistical inference) were also considered in revising the blueprint.  

The feedback obtained from the reviewers was prioritized, restricting the topics 

and learning goals that would be included in the test blueprint. However, several times of 

individual meetings were held with the internal expert to discuss the reviewers’ 

suggestions. To decide whether or not the suggested changes would be made in the 

blueprint, several aspects of the blueprint development were considered such as the score 

of the domains (statistical inference, ISI and FSI) delineated from the literature review 

and topics taught in introductory statistics courses in the U.S. As a result, the final 

version of the test blueprint was produced (See Appendix D).  

Test Specifications (Theoretical Evidence 3: TE3) 

The author began test specifications by making a number of decisions regarding 

the test design. Most importantly, she attempted to develop measures of inferential 

reasoning in statistics, and not simply the contents described in textbooks. This 

corresponds to the reasoning and thinking explored mostly in the case study or qualitative 
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literature. Second, because no map of ISI or FSI existed in 2011, the researcher did not 

use any criterion reference of the instrument. Third, given projections regarding the size 

of the student sample to provide more accurate estimates of item properties, the author 

decided to use a multiple-choice (MC) format in the assessment items. While existing 

measurement tools such as observations, interviews, and discourse analyses would 

provide ample information in conceptualizing how students reason in given contexts, 

none were feasible for use in studies that would potentially include a large student 

sample. The items were designed to address a possible critique of the proposed 

assessment items—whether a multiple-choice format could measure cognitive and 

complex thinking, such as informal reasoning.  

The critique has been noted by several researchers (e.g., Haertel, 2006) pointing 

out that the activities of reasoning and responding to a multiple-choice question are quite 

unlike the activities required in professional practice, such as an in-depth interview to 

probe an interviewee’s reasoning (Haertel, 2006). Martinez (1999) also notes that scores 

on multiple-choice exams may reflect “test-wiseness”—an examinee’s ability to 

recognize cues, to deploy response elimination strategies or to utilize other information in 

the stem to arrive at a correct answer without employing their actual reasoning of the 

underlying content being assessed. These potential threats to validity are of concern to the 

proposed assessment development. Similarly, constructed response (CR) items are 

considered to be more appropriate than MC items in assessing some cognitive thinking 

processes (e.g., mathematical reasoning studied by Traub & Fisher, 1977). Thus, it is 

appropriate to provide a rationale for use of the MC format in the proposed assessment.  
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Rationale for MC format items in assessing cognitive thinking. According to 

Haladyna (2004), the choice of an item format mainly depends on the kind of learning 

outcome it is intended to measure. In other words, in the process of measure 

specifications, we need to focus on the content and cognitive process. The proposed 

assessment included all MC items and the rationale for using the MC format is described 

below.  

Validity arguments delineated from test scores and the score interpretation of the 

proposed assessment can be supported by examining the cognitive operations elicited by 

examinees (AERA et al., 2002). If the scores from MC and CR items provide the same 

degree of validity, either the MC format or the CR item could be used. If this is the case, 

then the MC format has advantages for several reasons: the MC format is more efficient 

in administration, objective scoring, automated scoring, and higher reliability (Haladyna, 

2004). 

An arguable issue is that CR and MC items elicit different mental behaviors: with 

higher levels of thinking, we feel comfortable using CR items because MC items are 

thought to elicit only lower levels of cognitive thinking. Martinez (1999) argues that this 

criticism has been aimed at the item writer, and not the test format. Haladyna (2004) also 

argues that with adequate training and practice, item writers can successfully write MC 

items with high cognitive demand. Hibbison (1991) provided empirical evidence that an 

MC test can capture higher levels of cognitive thinking, such as metacognitive, cognitive, 

and affective interactions. In terms of measuring the same construct with two different 

formats, Rodriguez (2003) provided a meta-analysis regarding the issue of the 

interpretability of test scores, either from the CR or MC format. He stated that MC and 
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CR item scores tend to be highly related when the content is intended to be similar. 

Therefore, it seems appropriate to use MC format in this assessment considering the 

intended uses of the proposed test.  

Developing an Item Pool (Theoretical Evidence 4: TE4) 

In order to develop the item pool, a set of items were examined from the six 

existing instruments—Statistical Reasoning Assessment (SRA, Garfield, 2003), the 

Comprehensive Assessment of Outcomes in a First Statistics Course (CAOS, delMas et 

al., 2006), Assessment Resource Tools for Improving Statistical Thinking Topic Scales 

on Test of Significance, Sampling Variance, and Confidence Intervals (ARTIST, Garfield 

et al., 2002), and R-PASS (Lane-Getaz, 2007). These instruments were selected since 

they include items assessing key types of conceptual understanding in statistical inference. 

After reviewing these instruments, some items assessing IRS were selected to be used as 

in the original resources or adapted from them.  

In order to fill the gaps where no items exist in the category of the blueprint, the 

author reviewed assessments created for two curriculum projects (Beckman et al., 2010; 

Garfield, delMas, & Zieffler, in review), and a Test Bank for a textbook (Moore, Notz & 

Miller, 2008). For the items that are not a MC format, a CR format was used. This 

resulted in the preliminary assessment with a total of 36 items (31 MC items and 5 CR 

items). 

Expert Review for the Preliminary Assessment (Theoretical Evidence 5: TE5) 

The three experts who participated in the blueprint review process were asked to 

evaluate the preliminary assessment items. One of them was not available, so another 

expert was contacted. His expertise was in the area of statistics, and he had much 
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experience in teaching statistics at the college level. These three experts were asked to 

review the assessment by rating the extent to which each item reflected IRS, and whether 

an item measured ISI or FSI. The evaluation forms are presented in Appendix E. The 

three experts were asked to complete the general test evaluation form. The experts were 

also asked to report ratings of the extent to which they agreed that each item measures the 

specified learning goal. They were asked to suggest changes for items, if any. Suggested 

changes were reviewed carefully and discussed with an internal expert. Revisions based 

on expert review on the preliminary assessment resulted in the first version of the 

Assessment of Inferential Reasoning in Statistics (AIRS-1). This AIR-1 was used in the 

first cognitive interview of the summative stage described next section. 

Summative Stage: Validating the Interpretative Argument  

In the summative stage, the validation process was focused on empirical checks of 

the inferences and assumptions in the interpretive argument. The validity of the 

interpretive argument was strengthened to the extent that the empirical checks support the 

inferences and assumptions made about score interpretations and uses. Different evidence 

sources were collected, and each of these is described below. 

First cognitive Interview Using Think-alouds (Empirical Evidence 1-1: EE1-1) 

Cognitive interviews were conducted at two different time points: before and after 

the pilot testing. These two interviews were conducted with two purposes: to change the 

CR items to MC items (the first cognitive interview), and to gather validity evidence 

based on response processes (the first and the second cognitive interviews). The first 

interview was conducted to capture variations of possible reasoning used by students to 

answer an item so that meaningful alternatives are constructed in a MC format. Students’ 
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verbalized reasoning obtained from the first interview was also used to examine if 

students used correct reasoning when they chose correct answer to MC items (AERA et 

al., 2002).  

It is necessary to verify that the assumed reasoning processes are actually elicited 

by test-takers, as opposed to contradictory processes (such as option elimination) that 

introduce construct-irrelevant variance into the scores (Messick, 1995). Ferrara et al. 

(2004) stated that mismatches between targeted and actual cognitive processing of test 

items undermine validity. Students’ verbalization through cognitive interviews was used 

as evidence based on response process.  

Participants: First cognitive interview. The participants were recruited in the 

middle of Summer 2011 from two sections of an introductory statistics course offered in 

Spring 2011. One of the two sections was taught online, and the other section was taught 

in a face-to-face environment. The researcher sent an email invitation letter to the 

students who had taken one of these two sections. The email invitation letter is presented 

in Appendix F.1. As an incentive for participation in a one-hour interview, a $20 Amazon 

gift card was provided. Three female students out of 58 students agreed to participate in 

the interview. Two of the three students were from the face-to-face class section, and the 

other one was from the online section. The first two students were sophomores, and the 

third student was a senior. All of the three students were enrolled in liberal arts.  

Interview procedures. As per the instructions contained in the email, the 

students called in for an appointment time. The author conducted the interviews by 

herself. At each of the think-aloud sessions, the author introduced herself and had the 



 

72 

student sign the consent form (see Appendix F.2). After the purpose and methods were 

briefly described, the author demonstrated the process of think-aloud.  

The standardized think-aloud process was used to capture students’ cognitive 

reasoning. Using the protocol developed by Ericsson and Simon (1993), two structured 

interview questions were asked before and after the student provided her/his reasoning—

“What do you think this question is asking?” and, “Why do you think like that?” Minor 

interventions (e.g., “Can you talk about what you are thinking now?”) were included to 

prompt students to think out loud if they appeared to be working on the problem, but not 

talking about it. The interview sessions were audiotaped.  

At the beginning, a warm-up question (“How many windows do you think are in 

this building?”) was first asked so that students could practice verbalizing their thinking 

processes when reaching an answer. The three students were interviewed with three 

different item sets of AIRS-1: the number of each item set ranged from 23 to 26 out of 35 

in total, including 20 common items that all three students answered, and all of the 35 

items were answered by at least one student. These three different item sets were 

provided in a counter-balanced presentation to control for test-taker fatigue (Schneider, 

Huff, Egan, Tully, and Ferrara, 2010). The common items asked of all three interviewees 

were—the CR items to be changed into the MC format; all of the items in the ISI part; 

and the items that require high cognitive demand in FSI. The 15 items presented only to 

one or two interviewees were either items asking for a simple understanding of a concept 

in inferential statistics or items that require a low cognitive demand in FSI—the items 

that are relatively obvious in terms of alignment between the response choice and 
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cognitive reasoning. Information obtained from think-aloud sessions was used to produce 

response choices in the MC format, resulting in the second version of the AIRS (AIRS-2).  

Framework used for analyzing the cognitive interviews. To examine the 

degree of alignment between intended reasoning and actual reasoning elicited by 

students, a framework by Ferrara et al. (2003) was used. The researchers developed a 

framework to compare three types of item response demands: the intended item response 

requirements that the test designer-developers intend; the enacted item response 

requirements that the item writers build into the test items; and the actual cognitive 

processes that examinees actually use when they respond to the items. Within this 

framework, the author proceeded to the following three steps: determining the intended 

reasoning requirements; conducting a think-aloud with an expert to ensure that the 

intended reasoning requirements were enacted in test items; and collecting evidence 

regarding the examinees’ actual cognitive thinking processes. An alignment between 

intended reasoning and students’ elicited actual reasoning was then examined using a 

coding framework described in the next subsection.  

An intended reasoning for each item was stated based on the learning goal 

developed in the item development stage. To verify that the intended reasoning was 

actually “enacted” in making a correct MC choice, one doctoral student in the statistics 

education program at the University of Minnesota was invited to perform a think-aloud 

from an expert view. She has been teaching introductory statistics for 2 years.  

The expert’s verbalized (enacted) reasoning and intended reasoning were first 

compared by examining whether the expert’s reasoning process was aligned to the 

intended reasoning for each item. The analysis of the expert’s reasoning from think-aloud 
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was conducted by the author using a holistic approach. Actual reasoning verbalized from 

the three think-aloud sessions was then compared to the intended reasoning.  

Coding framework. The actual reasoning for each item verbalized by the three 

students was examined and compared to the intended reasoning for the item. The 

alignment between the intended and actual reasoning was coded to one of the four 

different categories: true positive (TP: correct answer choice and actual reasoning aligned 

with the intended reasoning); true negative (TN: incorrect answer and actual reasoning 

misaligned with the intended reasoning); false positive (FP: correct answer, but actual 

reasoning misaligned with the intended reasoning); and false negative (FN: incorrect 

answer, but actual reasoning aligned with the intended reasoning). These categories were 

slightly modified from an item demand analysis framework developed by Ferrara et al. 

(2004) and Schneider et al. (2010).  

In the analysis of current study, TP indicates that the interviewee selected a 

correct MC response option and also the interviewee’s actual reasoning aligned with the 

intended reasoning. TN indicates that the interviewee selected an incorrect MC response 

option, and also the interviewee’s actual reasoning was misaligned with the intended 

reasoning. FP indicates that that the interviewee selected a correct MC choice, but the 

interviewee’s actual reasoning was incorrect. Finally, FN indicates that the interviewee 

selected an incorrect MC choice, but the interviewee’s actual reasoning matched the 

intended reasoning. Table 1 below simplifies this coding framework.  
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Table 1 

Think-aloud Coding Framework 

                     Actual reasoning 

Answer to MC 

Matched to Intended reasoning 

Yes No 

Correct choice True Positive (TP) False Positive (FP) 

Incorrect choice False Negative (FN) True Negative (TN) 

 

A Pilot-test (Empirical Evidence 2: EE2)  

A pilot test was administered to one online section (N=23) of an undergraduate 

introductory statistics course in the Department of Educational Psychology at the 

University of Minnesota at the end of Summer 2011. The course was delivered online, 

and the assessment was administered as a final exam in an online test environment. A 

total of 2 hours was allowed to complete the assessment, and the time that each student 

took to complete the test was recorded in the online test system. Student response 

patterns were analyzed by examining the summary statistics of the correct-total scores. 

Item difficulties and item-total correlations were obtained as measures to examine the 

preliminary psychometric characteristics. Information drawn from the analysis of the 

pilot data was used for minor item revisions of the AIRS-2, and resulted in the AIRS-3. 

Second Cognitive Interview Using Think-alouds (Empirical Evidence 1-2: EE 1-2) 

Additional cognitive interviews were needed, since the CR items were changed to 

MC formats, and these items were not evaluated. In addition, the number of participants 

in the first cognitive interview was not representative of the general population, in that 

the students were recruited during the summer, when many students are out of town. 
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Moreover, the coding results for the alignment of the MC items revealed that most of 

these students showed a number of “True Negative” codes in alignment between their 

actual and intended reasoning, thereby indicating the interview participants’ lack of 

understanding of the concepts assessed by the test.  

Participants. Two additional groups of students were contacted for the second 

cognitive interviews late in September 2011: one group from the same statistics class 

who participated in the pilot testing, and the other group from four sections of the same 

introductory statistics courses taught in fall 2011. For the first group, the author sent 

invitation letters to five students who got the five highest scores on the pilot test. 

Selecting the students with high scores was done to have a diverse group of interviewees 

in terms of ability level, given that the interviewees in the first interview setting did not 

provide good information for several items coded TN for all three previous interviewees.  

One female student from the first group agreed to participate in the interview. 

This student’s score on the pilot test was within the highest 10%. Since the student had 

already taken the AIRS test during the pilot, a retrospective think-aloud was used 

(Ericsson & Simon, 1993). Five students from the second group participated in the 

second cognitive interview. These students were diverse in terms of their performance in 

the statistics course.  

Procedures and analysis. The six students were asked with different item sets of 

AIRS-2: each interviewee answered between 23 and 26 (out of 34) items considering the 

limited time allowed and student fatigue. The procedures and the interview protocol for 

the think-aloud and the coding framework were similar to those conducted in the first 

interview (EE 1-1). The six item sets have 13 common items; these items were mostly the 
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items that showed TN coding in the first cognitive interviews in order to capture students’ 

positive reasoning (either TP or FP). Each student’s verbalized reasoning for each item 

was coded into one of the four categories (TP; TN; FP; FN).  

Inter-rater reliability analysis . To examine inter-rater reliability, two other 

raters were invited to determine the accuracy (reliability) of the codes the author made. 

Both were doctoral students in the statistics education program at the University of 

Minnesota. One of the raters had been teaching introductory statistics courses for three 

semesters. The other rater has a master’s degree in statistics and had taught an 

introductory statistics course for 2 years before coming to the statistics education 

program.  

Since the nine students interviewed were asked different item sets, there were 

variations in the number of items interviewed. The range of the number of students 

interviewed for each item was between two and eight. For each item out of 34, two 

student-interviews conducted for that item were randomly selected without replacement, 

resulting in two interview sets, each consisting of 34 items. These two sets of interviews 

were randomly assigned to the two raters. The raters were trained to code items following 

the coding framework described above. After practicing with a couple of example items, 

the two raters completed the coding independently for their set of 34-items in one sitting. 

The codes the two raters made for each item set were then compared to the author’s 

codes. For each set of interviews coded, two inter-rater agreement statistics were 

calculated: the percent of agreement between the two raters and Cohen’s Kappa. 

Results from the cognitive interviews and pilot testing informed further 

modifications on the items, mostly about wordings for clarification and formats. As a 
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result, a final version of the AIRS (AIRS-3) with 34 MC items was produced, and this 

was administered in a field test. Table 2 summarizes the major changes, the sources for 

changes made in each version of the assessment, and where the version was administered.  

Table 2 

Changes in the AIRS Versions 

 

Total number of 
items (# of MC 
items; # of CR 
items) 

Changes made 
from: 

Major changes 
implemented from the 
previous version Administered for  

Preliminary 
assessment 

36 (31; 5)   Expert reviews 

AIRS-1 35 (29; 6) Expert reviews 3 MC items removed; 2 
MC items added 

An expert’s interview 
and 1st cognitive 
interviews 

AIRS-2 34 (34; 0) 1st cognitive 
interviews 

All CR items changed to 
MC items 

Pilot testing and 2nd 
cognitive interviews 

AIRS-3 34 (34; 0) Pilot testing and 
2nd cognitive 
interviews 

Wording changes for 
clarification 

A large-scale 
administration 

 

Field-testing (Empirical Evidence 3: EE3)  

The 34 items of the AIRS-3 assessment were embedded in an online assessment 

tool that gave participants easy access to the test. A consent form and detailed 

instructions for the test were integrated into the online instrument (see Appendix G). 

Participants and detailed procedures of the online test are described below. 

Recruitment of instructors and test administration. To recruit instructors to 

administer the online test, AIRS-3, the author sent invitation emails out to people who 
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were registered in one of three associations: AP statistics readers; the Consortium for the 

Advancement of Undergraduate Statistics Education (CAUSE) website 

(http://www.causeweb.org); and the Isolated Statisticians list serve (isoStat; 

http://www.lawrence.edu/fast/jordanj/isostat.html). A total of 46 statistics instructors 

agreed to administer the online test to their students for either part of the course grade or 

extra credit. A link to the online test was provided to the instructors with a unique code 

for their class. This unique code was given to identify the student scores for each 

instructor. One-hour was allowed for the students to complete the test, but the test was 

not timed. The online AIRS test was administered around the time of the final exam of 

each instructor’s course in fall 2011.  

Participants: Students. A total of 2,056 students took the AIRS test, and 1,978 

students completed the test. These students were taught by 46 instructors in 39 higher 

education institutions across the United States. The majority of the students were enrolled 

at a university of a 4-year college, with about 17% of the students enrolled in 2-year 

colleges (see Table 3). Fifty-six percent of the students were female students, 37% were 

male students (nonresponse rate of 7%). Sixty-two percent of the students were 

Caucasian. Table 4 shows the pre-requisite mathematics courses for the statistics course 

in which students were enrolled. The largest group was represented by students enrolled 

in courses with a high school algebra requirement.  
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Table 3 

Types of Institution in a Large-Scale Assessment 

Institution Type 
Number of Institutions 

(N=39) 
Number of Instructors 

(N = 46) Number of Students (%) 

2-year college  8 10  244 (12.3%) 

4-year college 10 12  407 (20.6%) 

University  21 24  1327 (67.1%) 

Total 39 46  1978 (100.0%) 

 

Table 4 

Mathematics Pre-requisites for the Statistics Course 

Mathematics prerequisite Number of instructors (%) Number of students (%) 

None  8 (17.4%)  553 (28.0%) 

Algebra  17 (37.0%)  685 (34.6%) 

College algebra   8 (17.4%)  334 (16.9%) 

Pre-calculus   5 (10.9%)  157 (7.9%) 

Others   3 (6.5%)  136 (6.9%) 

Non-response  5 (10.9%)  113 (5.7%) 

 

Data analysis. The response data obtained from field-testing were analyzed with 

respect to the different types of empirical evidence. First of all, since several items in the 

AIRS are in context-dependent item sets (24 items are in 8 contexts and 10 items are 

discrete), it is possible that items are not independent of each other. Thus, local item 

dependence (LID) was examined to determine an appropriate scoring method, as well as 
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to properly apply statistical techniques. Second, dimensionality in item responses was 

examined to determine if responses revealed the hypothesized structure of the assessment 

(two-factor structure with ISI and FSI), as developed from the literature and verified from 

expert reviews. Third, the item responses were fitted to an appropriate IRT model 

selected from the results of the previous two analyses—examination of LID and 

dimensionality. Each of these analyses is detailed below.  

Local item dependence (LID). The AIRS test has some context-based items that 

include a component of variation that is attributable to the contexts. That component of 

variation induces local dependence among the items that follow each context. Local item 

dependence (LID) occurs when respondents’ answers to a particular item depend not only 

on their standing on the latent trait, but also on their responses to other items (de Ayala, 

2009). There are several potential reasons that LID arises: sharing a common passage, 

content, knowledge, item chaining, speediness, fatigue, practice effects, and item or 

response format (Yen, 1993); the physical layout of the test booklet (Muraki & Lee, 

2001). An examination of LID is necessary before conducting other statistical analyses, 

since the presence of LID may result in an inaccurate estimation of item parameters, test 

statistics and examinee proficiency (Fennessy; 1995; Sireci, Thissen, & Wainer, 1991; 

Thissen, Steinberg, & Mooney, 1989), thus introducing an additional (unintended) 

dimension into the test (Wainer & Thissen, 1996), and overestimating reliability 

estimates and test information functions (Thissen et al., 1989; Sireci et al., 1991). When 

seemingly distinct items related to a context exhibit dependency, grouping them together 

into a testlet more properly models the test structure. Using this strategy, local item 

independence holds across testlets, since the testlet is modeled as a unit (i.e., a 
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polytomous item). Moreover, considering that the responses will be scored using IRT 

analysis, fitting sets of locally dependent items as testlets models the testlet-based 

structure of the test in a way that meets the local independence assumption of IRT. 

Among several different methods for assessing LID in dichotomous data, two 

methods were employed: reliability analysis and Local Dependence indices for item pairs 

(LD indices, Chen & Thissen, 1997). The two methods are described in detail below.  

Reliability analysis to detect LID. In a reliability analysis, context-dependent item 

sets were modeled using testlets so that each testlet includes all of the dependent items in 

terms of the context. However, the first testlet (TL1) is divided to two different testlets 

(TL1-1 having items 3 to 6 and TL 1-2 having items 7 and 8) based on the learning 

outcomes that the questions of each testlet measure. This was also done to address the 

possible loss of information when one “large” testlet is created, since many “small” 

testlets are likely to retain more information than one “large” testlet (Yen, 1993). In the 

reliability analysis, two coefficient-alphas were compared between the one when the test 

is considered to only comprise locally independent (dichotomous) items, and the other 

one for testlet-based items (Green, Bock, Humphreys, Linn, & Reckase, 1984; Zenisky, 

Hambleton, & Sireci, 1999). For dichotomous data, traditional scoring was used by 

treating all items as discrete, and thus, independent. For the testlet polytomous data, an 

examinee’s score on a testlet was computed by adding up the number of items within the 

testlet that the person answered correctly. Table 5 summarizes the structure of the testlet-

based test format in terms of the number of items. 
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Table 5 

Structure of the Testlet-Based Test 

Testlets (TL) Item Number Number of Items 

TL1-1 Item 3-6 4 

TL1-2 Item 7 – Item 8 2 

TL2 Item 9 – Item 11 3 

TL3 Item 12 – Item 13 2 

TL4 Item 15 – Item 16 2 

TL5 Item 19 – Item 20 2 

TL6 Item 21 – Item 22 2 

TL7 Item 24 – Item 26 3 

TL8 Item 27 – Item 30 4 

Ten discrete items Item 1, 2, 15, 17, 18, 23, 31, 32, 33, 34 10 

Total items 9 testlets and 10 discrete items 34 

 

In comparing the coefficient-alpha, a lower reliability coefficient for the testlet 

data compared to the one for the dichotomous data might indicate an overestimate of the 

latter coefficient (Sireci et al., 1991, Thissen et al., 1989). However, lower reliability of 

testlet data could be due to the fact that the number of items in the testlet data is less than 

those in dichotomous data. Therefore, the Spearman-Brown formula was employed as a 

way to compare the reliability of discrete 34 item responses and the reliability of testlet 

responses with respect to the effect of test length on the reliability (Sireci et al., 1991; 

Wainer, 1995). This statistic is commonly used to predict the reliability of a test after 

changing the test length. This relationship is particularly useful in examining the presence 
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of LID in that it allows us to determine whether the overestimate of the reliability in 

discrete response data is due to the presence of LID or due to the greater number of items. 

It also provides information of which scoring method is more reliable and useful. The ltm 

package and the CTT package in R were used to obtain reliability estimates and the 

spearman-brown coefficients.  

Likelihood Ratio G2 statistic: Local dependence indices for item pairs. The 

reliability analysis to detect LID described above is useful to examine the presence of 

LID in the item responses as a whole. However, this method does not provide 

information about which pairs of items are dependent, a necessary step to confirm that 

the items within the same passage show high correlations, and also to determine which 

items need to be clustered as a testlet in scoring. Chen and Thissen (1997) proposed the 

LD index, which provides a straightforward analysis of pair-wise measures of association 

between responses to item pairs. These pair-wise measures have been found to be more 

powerful than test- and item-level measures in detecting misfits for unidimensional IRT 

models. The LD indices are based on 2X2 contingency tables. For each pair of 

dichotomous items i and j, the following two contingency tables can be constructed. In 

Table 6, Opq is the observed frequency and Epq is the expected frequency, where 1 and 0 

present the correct and incorrect responses, respectively, and Epq is predicted by the IRT 

model.  
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Table 6 

Contingency Tables of Observed- and Expected Frequency 

  Item j 

  0 1 

Item i 0 O11 O12 

1 O21 O22 

  Item j 

  0 1 

Item i 0 E11 E12 

1 E21 E22 

 

A Pearson’s χ2 index is then computed as: 
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These two LD indices are distributed as χ2 with degrees of freedom of 1 when the 

assumption of local dependence is held. Chen and Thissen (1997) found the observed 95th 

percentiles of the χ2 and G2-LD indices under the null condition (local independence), 

and suggested 3.84 as a critical value to flag item pairs as locally dependent if the 

obtained index exceeds 3.84.  
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This method is particularly useful in this study in that the results of LD indices 

would provide information of how items should be combined into testlets. This would 

then allow the same IRT technique to be used for test scoring. Chen and Thissen’s LD 

indices for 34 dichotomous response data were computed fitting the full-information 

unidimensional factor model. The mirt package in R was used to fit the IRT model and to 

obtain LD indices.  

Dimensionality. Confirmatory Factor Analysis (CFA) was conducted to assess the 

dimensionality of the AIRS response data. The AIRS items were decomposed after 

specifying a theoretical structure in terms of ISI and FSI. Mplus (Muthén & Muthén, 

2010) was used for the CFA. For the two data sets (discrete response data and testlet-

based data), two factor models (a unidimensional model and a two-factor model) were 

examined and compared in terms of standardized regression weights (factor loadings) and 

fit indices.  

IRT analysis. The results obtained from the analysis of LID indicated that testlet-

based polytomous data were more appropriate due to the presence of LID in the original 

dichotomous data. Thus, analyses of item parameters and item information were 

performed with the polytomously scored testlet-based responses. Item response theory 

was employed in the analysis, and it is detailed below. 

Item response theory. In examining item quality, as well as test performance, item 

response theory (IRT) is considered as the standard, if not preferred method of 

conducting psychometric evaluations of new and established measures (Embretson & 

Reise, 2000; Fries, Bruce, & Cella, 2005; Lord, 1980). Among the many advantages of 

IRT over classical test theory (CTT), IRT addresses three problems inherent in CTT. 
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First, IRT overcomes the problem of item-person confounding found in CTT. IRT 

analysis yields estimates of item difficulties and person-abilities that are independent of 

each other, whereas in CTT, item difficulty is assessed as a function of the abilities of the 

sample, and the abilities of respondents are assessed as a function of the item difficulty 

(Bond & Fox, 2001). Second, the use of categorical data may violate the scale and 

distributional assumptions of CFA (Wirth & Edwards, 2007), which may result in biased 

model parameters. Third, the IRT approach to the standard error of measurement has 

several benefits: (a) the precision of measurement can be evaluated at any level of the 

latent trait instead of averaged over trait levels as in CTT; and (b) the contribution of each 

item to the overall precision of the measure can be assessed and used in item selection 

(Hambleton & Swaminathan, 1985).  

Model identification and estimation method. The GRM is a type of polytomous 

IRT model, an extension of Thurstone’s (1928) method of successive intervals to the 

analysis of graded responses on educational tests. This model was first discussed by 

Samejima (1969).  

The GRM specifies the probability of a person responding with a category score xj 

or higher versus responding in lower category scores. In other words, the GRM specifies 

the probability of a person responding in category k or higher versus responding in 

categories lower than k. Responses to item j are categorized into mj+1 categories, where 

higher categories indicate more of the latent trait. According to the GRM, the probability 

of obtaining xj or higher is given by  
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where θ is the latent trait, αj is the discrimination parameter for item j, δxj is the category 

boundary location for the category score xj, and xj = {0, 1, … , mj}.  

In the GRM, score categories are separated by category boundaries: for the case 

that testlet-based responses have five categories (resulting from combining 4 discrete 

items), the five score levels are separated by four category boundaries: the boundary 

between score level 1 and 2, 2 and 3, 3 and 4, 4 and 5, respectively. Under the GRM 

model, each item has a discrimination parameter and a set of m threshold parameters 

when there are m+1 categories. Therefore, the subsequent threshold parameters 

distinguish the probabilities of scoring less than score category k and greater than or 

equal to score category k.  

For the testlet-based response data in this study, the GRM was employed for 

hierarchically ordered response categories by allowing the discrimination parameter to 

vary across items (or testlets) and between response categories. The ltm and irtoys 

packages in R were used to estimate item parameters. Package ltm fits the GRM under 

the logit link using Marginal Maximum Likelihood Estimation (MMLE). The estimates 

of item parameters (discrimination, category threshold), item (testlet) information, and 

item (category) characteristic curves were provided. Table 7 summarizes the study phases 

and timeline.
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Table 7 

Summary of Data Collection Phases 

Phase 
Sources of Validity 

Evidence Participants Product and Analysis Time Line 

Formative 
Stage:  
Theory-
based 
evidence 

TE1. Literature review to 
develop a test blueprint 

Author Preliminary test blueprint Fall 2010 

TE2. Expert review on the 
preliminary test blueprint 

Three reviewers  Final version test blueprint  March, 2011 

TE3. Test blueprint and test 
specifications  

Author Item specifications 

TE4. Literature review to 
develop an item pool  

- Existing instruments assessing statistical 
reasoning 
- Test blueprint 

Preliminary assessment (36 items: 31 
MC type and 5 CR type) 

TE5. Expert reviews on the 
preliminary assessment 

Three content experts  1st version assessment (AIRS-1: 35 
items, 29 MC type and 6 CR type)  

April, 2011 

Summative 
Stage: 
Empirical 
evidence 

EE1-1. First cognitive 
interview  

One expert’s cognitive interview; 
Undergraduates in introductory statistics 
courses at the U of M (N=3); Sample 1 

2nd version assessment (AIRS-2: 34 MC 
items)  

Early May, 
2011 

EE2. A pilot test  Students who have taken an introductory 
statistics course at the U of M (N=23) 

3rd version assessment (AIRS-3: 34 MC 
items) 

Summer, 
2011 

EE1-2. Second cognitive 
interview  

Sample 1 in EE1-1 (N=3); 
Undergraduates in intro stat courses at the 
U of M (N=6) 

Alignment between intended reasoning, 
enacted reasoning, and actual reasoning.  

Summer and 
Fall, 2011 
 (cont.) 
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Phase 
Sources of Validity 

Evidence Participants Product and Analysis Time Line 

Table 7, cont.    

EE3.Field test Undergraduates who are taking statistics 
courses in U.S institutions (N = 1,978 )  

Factor analysis, Examination of local 
independence, IRT analysis 

Fall, 2011 
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Chapter 4 

Results  

This chapter discusses the results of the study. The data analysis is described 

along with the structure used in data collection procedure—a formative stage and a 

summative stage. The first section presents the analysis results of theoretical evidence 

obtained from formative stage. Developmental process of test blueprint and assessment is 

also presented in terms of the changes made in the previous version of the instrument. 

Results of the analysis for empirical evidence gathered in summative stages are 

examined. This chapter ends up with synthesis of the study results integrating all of the 

theoretical and empirical evidence sources. Underlying inferences about test uses and 

score interpretations are evaluated by judging the claims laid out in the formative stage. 

The four inferences (scoring, generalization, extrapolation, and explanation) are revisited 

and examined by evaluating the plausibility of the claims.  

Analysis Results for the Data Obtained in the Formative Stage 

Results from the Literature Review to Create the Test Blueprint: Theoretical 

Evidence 1 (TE1)  

A test blueprint developed from the literature review. The initial test blueprint 

was built from the literature about IRS. Representing the content domains of IRS, the 

literature was centered around two areas: Informal statistical inference (ISI) and Formal 

statistical inference (FSI). These two content areas were used as hypothetical structure of 

a construct IRS providing the scope of the content to be covered in the assessment.  

The definitions of the construct IRS, and two content domains ISI and FSI, which 

have been clarified in the previous chapter, were revisited. In this study, ISI was defined 
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as a domain of statistical inference that involves informal processes of making arguments 

to support inferences about unknown populations based on observed samples not 

necessarily using standard statistical procedures. FSI was defined as a domain of 

statistical inference that involves making a conclusion about population from samples or 

to formally test hypotheses, using standard statistical methods. As reviewed in Chapter 2, 

the topic category of sampling distribution was considered to represent foundations of 

statistical inference. The topic of hypothesis testing was used as the second category 

representing the concepts and ideas of formal statistical inference. Therefore, two content 

areas of FSI were considered as the main topics in this domain—sampling distributions 

and hypothesis testing. As a result, the domains of the blueprint were categorized into 

three areas: informal inference (Inf), sampling distribution (SD), and hypothesis testing 

(HT).  

For the topic of sampling distributions, five content domains were culled from the 

literature: the concepts of samples and sampling; the Law of Large Numbers; population 

distribution and frequency distribution; population distribution and sampling distribution; 

and the Central Limit Theorem. The literature review resulted in a preliminary test 

blueprint. Table 8 presents some examples of the content domains, topics, and learning 

goals of ISI and FSI. The preliminary test blueprint is shown in Appendix B. 
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Table 8 

Examples of the Preliminary Blueprint 

Test blueprint to assess informal inference 

Category  Content Domains Learning Goals Literature 

Informal 
Inference (Inf-
1) 

Uncertainty Being able to express uncertainty in making inference using 
probabilistic (not deterministic) language 

Makar and Rubin (2009), Zieffler et 
al. (2008) 

Inf-2 Aggregates Being able to able to reason about a collection of data from 
individual cases as an aggregate 

Makar and Rubin (2009); 
Rubin, Hammerman, & Konold 
(2006); Pfannkuch (1999) 

Test blueprint to assess formal inference 

Category Content Domains Learning Goals Misconceptionsa  Literature 

Sampling 
distribution 
(SD-1) 

Samples and sampling  -Understanding the definition 
of a sampling distribution 
-Understanding the role of 
sampling distributions 

A tendency to predict sample 
outcomes based on causal 
analyses instead of statistical 
patterns in a collection of 
sample outcomes 

Saldanha and Thompson (2002); 
Saldhanha (2004); Rubin, Bruce, 
and Tenney (1991) 

SD-2 Law of Large Numbers 
(Sample 
representativeness)  

Understanding that the larger 
the sample, the closer the 
distribution of the sample is 
expected to be to the 
population distribution 

A tendency to assume that a 
sample represents the 
population, regardless of 
sample size 
(representativeness heuristic) 

Kahneman and Tversky; Rubin et 
al. (1991); Saldanha & Thompson 
(2002); Metz (1999); Watson & 
Moritz, (2000a, 2000b) 
 (cont.) 
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Category Content domains Learning goals Misconceptionsa Literature 

Table 8, cont.     

Hypothesis testing 
(HT-1) 

Hypothesis testing  -Being able to describe the null 
hypothesis 
-Understanding the logic of a 
significance test  

-Failing to reject the null is 
equivalent to demonstrating it to 
be true (Lack of understanding 
the conditional logic of 
significance tests) 
-Lack of understanding the role of 
hypothesis testing as a tool for 
making a decision  

Batanero (2000); Nickerson 
(2000); Haller & Krauss 
(2002); Liu & Thompson 
(2009); Vallecillos (2002); 
Williams (1999); Mittag & 
Thompson, 2000 

HT-2 P-value and statistical 
significance  

Being able to recognize a correct 
interpretation of a P-value 

Misconception: P-value is the 
probability that the null 
hypothesis is true and that (1-p) is 
the probability that the alternative 
hypothesis is true 

Carver (1978); Falk & 
Greenbaum (1995); 
Nickerson (2000) 

aNote. Misconceptions of the topic of ISI have not been found in the literature since empirical research on the topic of informal statistical inference has not 
been investigated.  
 



 

95 

Expert Review of the Preliminary Test Blueprint: Theoretical Evidence 2 (EE2) 

Results of evaluation ratings. Three professionals in statistics education 

provided their feedback and suggestions on the preliminary test blueprint. Table 9 

presents the results of the experts’ ratings for each evaluation question.  

As shown in the table in the next page, the experts generally agreed that the 

content domains and learning goals listed in the preliminary blueprint represent the target 

domains of ISI and FSI. It also appeared that the learning goals identified are adequate to 

assess students’ ISI and FSI. However, there are two evaluation questions that one expert 

assigned to “disagree”: question 4 and question 8. The expert provided comments for 

these ratings, and these are detailed below along with the general and specific comments. 
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Table 9 

Results of Expert Review on Test Blueprint 

Item Evaluation Questions 

Ratings Made by Experts 

Strongly 
Agree Agree Disagree 

Strongly 
Disagree 

1 The topics of the blueprint represent the 
constructs of informal statistical 
inference. 

X XX   

2 The topics of the blueprint represent the 
constructs of formal statistical inference 

X XX   

3 The learning goals of the blueprint are 
adequate for developing items to assess 
students’ understanding of informal 
statistical inference. 

X XX   

4 The learning goals of the blueprint are 
adequate for developing items to assess 
students’ understanding of formal 
statistical inference. 

X X X  

5 The set of learning goals is well 
supported by the literature. 

X XX   

6 The learning goals are clearly described.  XXX   

7 The categories of the blueprint are well 
structured. 

 XXX   

8 The blueprint provides a framework of 
developing a test to assess informal and 
formal statistical inference. 

X X X  

 

Results of the suggestions and comments. In addition to the ratings for the 

validity questions to evaluate the test blueprint, the experts were also requested to 

identify any important content domains in ISI and FSI not listed in the blueprint. It was 

asked to comment about any redundancy, and to provide additional suggestions to 

improve the test blueprint.  
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There were common suggestions made from two reviewers. First of all, reviewers 

1 and 2 suggested including real world applications in the blueprint. Reviewer 1 

commented, “There is no attention to the inferences about the real world or contextual 

knowledge” in the current version. It was also suggested that the current blueprint had too 

much focus on the “limited population” in the categories of SD (sampling distribution) 

and HT (hypothesis testing; Reviewers 1 and 3). One of the reviewers noted, “One can 

conceptualize a process as an infinite, undefined population.” Similarly, another reviewer 

commented that there is no content from an experimental perspective saying, “It only 

talks about samples from limited populations.” Another common suggestion was 

provided about the topic of “effect size” (Reviewers 2 and 3). In the category of HT-2, 

the topic covers definitions of P-value and statistical significance. In addition to the P-

value, a reviewer suggested to include consideration of “how large is the effect,” which is 

related to the concept of the effect size. A similar comment was made by another 

reviewer with a suggestion of adding the “data quality or soundness of the method” to the 

current blueprint. 

Specific suggestions were also provided regarding additional topics to be included 

in the test blueprint. The topics are:  

• Correlation and regression (Reviewer 1) 

• Using models in ISI (Reviewer 1) 

• Using meta-cognitive awareness of what inference is as opposed to 

performing procedures (Reviewer 1) 

• Confidence intervals (Reviewer 2) 
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• In the category of HT-6, add designing a test to compare two groups in an 

experiment, not just from populations (Reviewer 2) 

• Consider including randomization and bootstrapping methods (Reviewer 

2) 

• In the category SD-2, include “biased sampling” for sampling 

representativeness (Reviewer 3)  

These suggestions were reviewed carefully by the author, and were also reviewed 

with an internal advisor. Discussion between the author and internal advisor centered 

around whether or not these topics should be included. The definition and the domains 

that the proposed assessment targets were prioritized for the decision. Table 10 

summarizes the changes implemented from the reviewers’ comments. The rationale for 

whether those comments were implemented or not appears in Appendix H.  
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Table 10 

Changes to Test Blueprint Implemented from Expert Reviews 

Category Changes Suggested Changes Made in the Blueprint 

Inf Include real world or contextual 
knowledge 

Added some learning goals to inferential reasoning in a given context  

Inf Include learning goals about “Using 
models in informal inferential 
reasoning” 

In two categories, informal inference and formal inference, the learning goals of setting 
up the null model in a given context was added 

Inf Include using meta-cognitive awareness 
of what inference is as opposed to 
performing some techniques 

Not included in the blueprint  

SD and HT Too focused on the limited population: 
Add a process as an infinite (undefined) 
population; Add statistical testing in 
experiments  

Added the topic categories, DE (designs of study) and EV (evaluation of study) to capture 
students’ understanding of the characteristics of different types of studies 

HT Include the learning goals about an 
understanding of effect size  

In a new category of EV, added the learning goal, “Being able to evaluate the results of 
hypothesis testing considering —sample size, practical significance, effect size, data 
quality, soundness of the method, etc.”  

HT Include data quality, soundness of the 
method etc.  

The topic category, “Evaluation of HT (EV),” was separated out from the Hypothesis 
Testing categories since this topic is more about assessing how to interpret and evaluate 
the results from statistical testing by integrating different kinds of information in a given 
study (e.g., random assignment, sample size, data quality). The learning goal about, 
“Being able to evaluate the results of hypothesis testing (considering sample size, 
practical significance, effect size, data quality, soundness of the method, etc.),” was 
included in this EV category. (cont.)
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Category Changes Suggested Changes Made in the Blueprint 

Table 10, cont.  

SD or HT Include a topic category on Confidence 
Intervals 

The topic category, “Inference about Confidence Interval, CI” was added.  

SD -2 Add a topic of recognizing “biased 
sampling” for sampling 
representativeness 

The topic of the “Law of Large Numbers” was changed to “sample representativeness” to 
assess whether students realize the importance of unbiased sampling (quality of samples), 
in addition to a large sample (sample size)  

HT-6 Add designing a test to compare two 
groups in an experiment  

In ST-3 (changed from a category of HT), the learning goal, “designing a statistical test to 
compare two groups in an experiment,” was added.  

HT Include randomization and 
bootstrapping methods 

Not included as a separate learning goal, but will be assessed in a way so that items get at 
students’ reasoning about the ideas involved in randomization and bootstrap methods.  

Considering that hypothesis testing based on a normal distribution-based approach is not 
the only way of statistical testing, the original category about hypothesis testing (HT) was 
changed to statistical testing (ST), which includes randomization or bootstrap methods.  

In general Add the topics, correlation and 
regression 

Not included in the blueprint since the suggested topics were considered as not being in 
IRS defined in this study.  
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There were topics that the reviewers suggested to include that were not 

implemented in the blueprint. For example, one reviewer suggested adding content about 

“correlation and regression.” However, these were considered as literacy or part of 

descriptive statistics rather than a topic of inferential reasoning. Another reviewer 

commented that ISI might also include “meta-cognitive awareness”, but we decided that 

the topic of meta-cognition does not fit the definition of ISI. In addition, there was no 

literature found regarding this topic as part of ISI. The changes made from the expert 

reviews resulted in the final version of the blueprint (See Appendix D). In the last review 

process of the blueprint, the acronyms representing the topic categories, SD (sampling 

distribution) and HT (hypothesis tests), were changed to SampD and Stest, respectively, 

to avoid confusion: in statistics, the acronym of SD is mostly used to represent standard 

deviation. The final version of the blueprint was used to develop the preliminary version 

of the assessment. 

Test Specifications: Theoretical Evidence 3 (TE3)  

In the Testing Standards, it is recommended that test specifications are detailed 

before the test development, and items are developed along with the test specifications 

(AERA et al., 2002). Decisions on the specifications were made primarily from the 

previous steps—literature review, test blueprint, expert reviews on the blueprint, and final 

review and discussion with an internal expert. The following list presents the test 

specifications made from the previous steps. From the review of literature and experts, it 

was decided that the content domains of IRS include the content categories of—sampling 

distribution (SampD), statistical testing (Stest), confidence interval (CI), and evaluation 

of the study (EV). Considering the scope of the content coverage, item format, and 
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feasibility of the test administration, 30 to 35 items were proposed as an appropriate 

number of test items. As the item format of the final version assessment, a MC format is 

used given the topic coverage, the desired sample size to be collected, and efficiency and 

accuracy of scoring. It was also considered that item responses obtained from a MC 

format item can be analyzed using modern psychometric theory providing ample 

information about item quality as well as test information. As appropriate amount of time 

for taking the test, 60–90 minutes will be given to students considering the feasibility of 

the test administration for instructors, desired difficulty, and student fatigue. The test will 

be administered online, with instructions presented on the front page. Individual scores 

will be scored automatically and these scores will be reported as a correct-total score.  

Examining Existing Instruments and Literature for Developing Preliminary Test: 

Theoretical Evidence 4 (TE4) 

From existing instruments (SRA, ARTIST topic scales, CAOS, and RPASS), 10 

items were selected that matched the learning goals in the blueprint. Two items were 

selected from the Sampling Variability topic scale from the ARTIST website, and 8 items 

were selected from the CAOS test. Although there are some items asking about statistical 

inference in the other instruments—SRA, RPASS, and the other topic scales from 

ARTIST (Confidence Interval topic scale, Test of Significance topic scale)—these items 

were judged to not be assessing inferential reasoning.  

Of the 10 items adopted from existing instruments, 5 items were used as in the 

original instruments. For the other 5 items, 2 items modified by Ziegler (2012) were used. 

The other 3 items were revised by the author and Robert delMas adopting the contexts 

from CAOS. These 10 items were matched to the 13 learning goals (out of 38 learning 
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goals total) listed in 9 topic categories (out of 18 topic categories). Details for the changes 

made from the original items and the rationale for the changes are appeared in Appendix 

N.  

The gaps shown in the blueprint (25 learning goals in 9 topic categories) were 

filled from reviews on two research projects and a test bank of a textbook. Nine items 

were made from revisions of interview questions used in the CATALST project (Garfield 

et al., in review). Six items were adopted from the assessment developed for a curriculum 

evaluation at UCLA (Beckman et al., 2010). Ten items were adapted from the test bank 

written by textbook authors (Moore et al., 2008). One item was created by the author 

from a discussion with Robert delMas. The original resources for the preliminary test are 

summarized in Table 11.  
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Table 11 

Resources of Items in a Preliminary Version 

Type of Resource 

Item Numbers 
(in preliminary 
assessment, 
Appendix I.1) Original Resources 

Number 
of Items 

Existing 
instruments  

ARTIST 13 Adapted items from ARTIST Sampling 
variability topic scale 

1 

CAOS 2, 14, 15, 36 Adapted items from CAOS 7,17, 34, 35 9 

16, 22 Adapted contexts from CAOS 32 and 37 and 
2 items created by the author and an advisor 

10 Adapted and merged from three items in 
CAOS 11-13 

18-19 Adapted from a research study by Ziegler’s 
research project as adapted from CAOS 23, 
24 

Other 
resources 

Research 
project or 
a textbook 

1 Adapted from Konold & Garfield (1993) as 
adapted from Falk 1993 (problem 5.1.1, p. 
111) 

26 

3-9, 11-12 Adapted and revised from CATALST project   

20-21 Adapted from UCLA Evaluation project 
(Robert Gould) 

 

23-25 Adapted from CSI project (Rossman & 
Chance) as adapted for use in Robert Gould 
Evaluation project (Beckman et al.) 

 

17, 26-29, 30-31, 
33, 34, 35 

Adapted from Instructor’s Manual and Test 
Bank for Moore and Notz’ (Moore et al., 
2008) 

 

32 Created by the author and an Robert delMas Total 36 
items 
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Expert Review for the Assessment Items: Theoretical Evidence 5 (TE 5)  

The three expert reviews on the preliminary version of the assessment were 

examined. Data from experts’ reports on two item evaluation forms were analyzed: one 

for general evaluation of the test, and the other for evaluation of each item in the test. 

Table 12 presents a summary of evaluations that three reviewers reported for the test. For 

item evaluation, two questions were asked for each item: 1) the extent to which the 

specified learning goal that the item assesses is related to informal (or formal) statistical 

reasoning; and 2) the extent to which the item is appropriate to assess the targeted 

learning goal. Table 12 shows the items that at least one expert rated either “Strongly 

Disagree” or “Disagree”.  

Table 12 

Items rated "Strongly Disagree" or "Disagree" by at least One Reviewer 

Learning Goals 

Please check the extent to which you 
agree or disagree with each of the 

following statements. 
Items that at least one expert rated either 

“Strongly Disagree” or “Disagree” 

Evaluation 
question 

This learning goal that this item gets 
at is related to informal (or formal) 
statistical reasoning. 

Item 5, 7, 12, 13, 20, 21, 28, 33 

This item is appropriate to assess the 
learning goal aimed. 

Item 7, 9, 12, 21, 28  

 

In addition to the quantitative ratings to the Likert-scale evaluation questions, 

changes were suggested for the items rated either as “strongly disagree” or “disagree.” 

Table 13 presents the original item, the reviewer’s comment, and the changes made for 
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the item, for the items that had at least one rating of “disagree” or “strongly disagree”. 

(See Appendix J for detailed description of the reviewers’ suggestions and comments).  
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Table 13 

Changes made for the Items Rated "Strongly Disagreed" or Disagreed" 

[Original item 5] A statistician wants to set up a probability model to examine how often the result of 5 B’s out of 10 spins could happen with the 
spinner just by chance alone. What would be the probability model the statistician can use to do a test? Please describe the null model.  

a. The probability for each letter is p(A)=1/4, p(B)= 1/4, p(C)=1/4, p(D)=1/4.  
b. The probability for letter B is 1/2 and the other three letters each have probability of 1/6.  
c. The probability for letter B is 1/2 and the probabilities for the other letters sum to 1/2.  

[Experts’ comment on item 5]  
Expert 1: The distracters seem to be very implausible. Might need to have pilot testing using a free-response format.  
Expert 2: Add this: “trials are independent of each other.” 
[Changes made for item 5 ] This item was changed to a CR format to recreate plausible alternatives.  (cont.) 
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Table 13, cont. 

[Original item 10]  
A drug company developed a new formula for their headache 
selected from a larger population of patients with headaches.
medication when they had a headache, and the other 150 people received the old formula medication.
no longer have a headache was recorded. The results from both of these clinical trials are shown below.
valid?  

a. The old formula works better. One person who took the old formula felt relief in less than 20 minutes, compared to none wh
formula. Also, the worst result - near 120 minutes 
b. The average time for the new formula to relieve a headache is lower than the average time for the old formula. I would conclude that people 
taking the new formula will tend to feel relief on average about 20 minutes sooner than those taking the old formula.
c. We can’t conclude anything from these data. The number of patients in the two groups is not the same, so there is no fair way to compare 
two formulas. 

[Expert’s comment on item 10] The CAOS test has these as three separate items, and students indicate if they thin
You get more information about the students’ thinking if you have them respond to the validity of each statement. You could a
score based on their responses to all three items provides more info

[Changes made for item 10] This item was separated as three MC items; two items were added. 

A drug company developed a new formula for their headache medication. To test the effectiveness of this new formula, 250 people were randomly 
selected from a larger population of patients with headaches. One-hundred of these people were randomly assigned to receive the new formula 

che, and the other 150 people received the old formula medication. The time it took, in minutes, for each patient to 
no longer have a headache was recorded. The results from both of these clinical trials are shown below. Which statement do you think is the

 
a. The old formula works better. One person who took the old formula felt relief in less than 20 minutes, compared to none wh

near 120 minutes - was with the new formula. 
for the new formula to relieve a headache is lower than the average time for the old formula. I would conclude that people 

taking the new formula will tend to feel relief on average about 20 minutes sooner than those taking the old formula. 
clude anything from these data. The number of patients in the two groups is not the same, so there is no fair way to compare 

CAOS test has these as three separate items, and students indicate if they think each statement is Valid or invalid. 
You get more information about the students’ thinking if you have them respond to the validity of each statement. You could a
score based on their responses to all three items provides more information than a separate score for each item.  

[Changes made for item 10] This item was separated as three MC items; two items were added.  

medication. To test the effectiveness of this new formula, 250 people were randomly 
hundred of these people were randomly assigned to receive the new formula 

The time it took, in minutes, for each patient to 
Which statement do you think is the most 

a. The old formula works better. One person who took the old formula felt relief in less than 20 minutes, compared to none who took the new 

for the new formula to relieve a headache is lower than the average time for the old formula. I would conclude that people 

clude anything from these data. The number of patients in the two groups is not the same, so there is no fair way to compare the 

k each statement is Valid or invalid. 
You get more information about the students’ thinking if you have them respond to the validity of each statement. You could also then see if a single 

(cont.) 
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Table 13, cont. 

Original item 13] A random sample for different courses taught at a University is obtained, and the mean textbook price is computed for the sample. 
To determine the probability of finding another random sample with a mean more extreme than the one obtained from this random sample, you 
would need to refer to: 

a.  the distribution of textbook prices for all courses at the University.  
b.  the distribution of textbook prices for this sample of University textbooks.  
C.   the distribution of mean textbook prices for all samples from the University.  

[Expert’s comment] You need to add “of size 25” to this part. 
[Change made for item 13] In option C, the distribution of mean textbook prices for all samples of size 25 from the University. 

[Context of original items 20 -21] Read the following information to answer questions 20 and 21: 
Data are collected from a research study that compares performance for professionals who have participated in a new training program with the 
performance for professionals who haven’t participated in the program. The professionals are randomly assigned to one of two groups, with one 
group being given the new training program, and the other group being not given. For each of the following pairs of graphs, indicate what you would 
do next to determine if there is a statistically significant difference between the training and no training groups. 
[Expert’s comment] You need to give the sample sizes for both groups and state what the time is measuring.  
[Change made for items 20-21] … The professionals are randomly assigned to one of the two groups, with one group receiving the new training 
program (N=50) and the other group not receiving the training (N=50).  

[Original item 28] The report of the study states, “With 95% confidence, we can say that the average score for students who take the college 
admissions test a second time is between 28 and 57 points higher than the average score for the first time.” By “95% confidence” we mean: 

a. 95% of all students will increase their score by between 28 and 57 points for a second test.  
b. We are certain that the average increase is between 28 and 57 points. 
c. We got the 28 to 57 point higher mean scores in a second test in 95% of all samples.  
d. 95% of all adults would believe the statement.  

[Expert’s comment] Option C should be reworded to better capture ideas about population differences. 
[Change made for item 28]  

c. 95% of all students who take the college admissions test would believe the statement. 
d. We are 95% certain that the average increase in college admissions scores is between 28 and 57 points. 

 



 

110 

The suggested changes were reviewed and implemented resulting in the first 

version of the assessment, titled Assessment of Inferential Reasoning in Statistics (AIRS-

1). This version consisted of 35 items (29 MC items and 6 CR items). AIRS-1 was used 

in the first cognitive interview of the summative stage. 

Analysis of Results in the Summative Stage 

Evidence gathered in the summative stage was used for empirical checks of the 

inferences and assumptions in the interpretive argument structured in the formative stage. 

The cognitive interview results from an expert are first described in terms of whether or 

not the expert’s elicited reasoning matched the intended reasoning for each item. 

Cognitive interviews with students were conducted at two different time points with two 

different purposes, respectively: to change CR items to MC items based on student 

response variations, and to collect validity evidence based on response processes. The 34 

MC items were piloted to gather preliminary information about item quality, 

appropriateness of test specifications, and response patterns. Results from the test pilot 

were used to produce the final version of the assessment, which was administered as a 

large-scale assessment.  

First Cognitive Interview: Empirical Evidence 1 (EE1)  

Results from cognitive interview with an expert. A cognitive interview was 

conducted with an expert to verify that the intended reasoning will actually be enacted by 

a student if (s)he is at a certain level of IRS. Seventeen out of 35 items in AIRS-1 were 

asked to examine the expert’s enacted reasoning. These 17 items were: (a) the items 

revised from the preliminary version of AIRS based on the experts’ reviews; and (b) the 

items requiring high cognitive skills. It appeared that for all 17 items, the experts’ verbal 
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reasoning matched well enough with the reasoning statement (intended reasoning). Table 

14 presents some examples of the interview excerpts. The first three columns present the 

item number with the problem context, intended reasoning and the enacted reasoning 

(verbal script of the expert). The last column of the table presents the author’s argument 

for why the expert’s enacted reasoning was considered to be aligned with the intended 

reasoning. The reasoning statement and the expert’s enacted reasoning for all 17 items 

are presented in Appendix K. 

Results from the first cognitive interview for item revision. Item revisions 

were conducted based on results from the first cognitive interview with three students. 

Item revisions were made mostly to change the CR items to MC items. The response 

choices were constructed based on variations of the students’ reasoning. Some items were 

revised in wording, specifically for items that students asked for clarification. Students’ 

responses were analyzed focusing on—how they interpreted a question and how they 

reached an answer. 
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Table 14 

Excerpts of Expert’s In-depth Cognitive Interview: Selected Notes 

Items (AIRS-1) Intended Reasoning 
Interview Excerpts: 

Enacted Reasoning (expert’s reasoning) Argument of Alignment 

Item 5 (Spinner 
problem set: Null 
model)  

The null hypothesis is the one that will 
happen assuming the spinner is fair: each 
letter has an equal chance of a quarter if 
we repeat spinning this spinner.  

Since we have 10 spins, and we want to 
have a probability model, and we want to 
count the number of B’s, based on the set-
up of the spinner, it looks like each letter 
has an equal probability of being chosen, 
and because it’s fair. The probability 
model is gonna be based on the fair 
spinner. Each letter would have to have an 
equal probability. This is a fair spinner in 
the long run; the probability of each letter 
would come out to be about one quarter.  

The expert recognizes that the null 
model is the probability model that 
represents the probability of each 
letter appearing in the long run. She 
also understands that the spinner 
has an equal probability of showing 
up if this spinner is fair.  

Item 10 (A drug 
company problem 
set)  

Invalid. We need to see in which group the 
chunk of people has less time to get relief. 
This statement focuses only on some of the 
data, not about the general tendency of the 
data. (Students are expected to see the data 
as aggregates, not as individual data). 

This statement is not valid. Because it 
looks to me like…if you look at the overall 
shape of these data, the overall average of 
the old formula would be larger than the 
overall average of the new formula, which 
means that the new formula works better.  

The expert understands data as 
aggregates, not focusing on some of 
the individual data. She also looks 
at the “overall shape” and the 
“overall mean” to compare the two 
different samples of data.  

Item 12 (A drug 
company problem 
set)  

Invalid. Although the sample sizes are 
different for two groups, we can make a 
conclusion because both sample sizes are 
fairly large.  

That is not valid. Two groups were chosen 
randomly; the number of samples is fairly 
large, so I think we can make some 
conclusion on the comparison.  

The expert’s verbal reasoning is 
perfectly matched to the intended 
reasoning statement.  
 (cont.) 
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Items (AIRS-1) Intended Reasoning 
Interview Excerpts: 

Enacted Reasoning (expert’s reasoning) Argument of Alignment 

Table 14, cont.    

Item 13 (Biology 
and Chemistry) 

Since the sample size and a difference 
between two samples look the same, we 
need to look at the distribution of the two. 
Biology has a narrower distribution 
indicating that the difference between the 
two groups is more consistent (or reliable), 
so it has stronger evidence that there is a 
difference between the two groups. 

In both of the boxplots, the boxes overlap 
quite significantly. And the tails also 
overlap. For the chemistry, there is same 
amount of variability between the two 
strategies. And for the biology, there are 
fewer variations than the chemistry for 
both strategies. So I would say the less 
variability means the scores are more 
consistent in Biology. Given that the 
difference between the two strategies is 
almost the same in the two groups 
(Biology and Chemistry), the less 
variability gives stronger evidence against 
the claim.  

The expert recognizes that the 
smaller the variability, the more 
consistent the data are. In 
comparing the two samples, she 
further understands that the data 
with less variability have stronger 
evidence of difference between the 
two groups, given that the observed 
difference is similar.  
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All six CR items were in the ISI part. For the first CR item in the Spinner problem 

set, “Which person do you think is correct and why?” the three students showed different 

reasoning. Student 1 answered, “I would say Person 2 is correct [5 Bs out of 10 spins is 

not unusual] because the sample size is not enough to say Person 1 is correct. We can’t 

say this is unusual.” The reasoning of student 2 was similar in that she also mentioned 

that the sample size was too small, but she chose C (Both are correct) because “there is 

no way to know which person is correct.” It is noted that students 1 and 2 chose different 

answers (B and C), but the reasoning behind their choices was the same. On the other 

hand, student 3 also chose answer C, but showed slightly different reasoning. She first 

considered the sampling distribution of statistics (the number of Bs in 10 spins) and then 

described where the observed sample statistic (5 Bs out of 10 spins) will be located in the 

distribution. She reasoned that each person is correct, offering a justification for each one. 

From the responses of student 2 and student 3, it is also noted that both chose answer C, 

but their justifications are different for why they thought both persons are correct.  

It is debatable whether this item captures the original learning goal: being able to 

understand and articulate whether or not a particular sample of data is likely, given a 

particular expectation or claim. As seen above, the students’ reasoning did not match the 

intended reasoning behind the answer choice. More importantly, it appeared that each of 

the students showed reasonable justifications for their choices, indicating that all three 

response options are plausible. This indicates that this item is not properly assessing the 

learning goal, and that there are variations of correct reasoning that do not agree with the 

intended reasoning. Because of these issues, this item was removed. In terms of the 
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learning goal for this item, removing it did not affect the content coverage of the original 

test blueprint (items 3 and 5 assess similar learning goals).  

For the other five CR items, alternatives were made from the students’ responses. 

Question 5 shown below was originally an MC format item in the preliminary version, 

but it was changed to a CR format following the reviewers’ comments, as described in 

Table 13 (not plausible alternatives). Students’ answers about the null hypothesis were 

diverse, but all of the three students showed incomplete reasoning. Student 1 answered 

that the null hypothesis to test the fairness of the spinner, “5 or more B’s out of 10 spins” 

and the alternative, “less than 5.” A distractor was constructed from this incorrect 

reasoning: “The probability for letter B is 1/2 and the probabilities for the other letters 

sum to 1/2.” Student 2 said, “The null would be that you would get 5 B’s out of 10 spins, 

and the other letter would have the same spins,” and another distractor was made from 

this reasoning: “The probability for letter B is 1/2 and the other three letters each have a 

probability of 1/6.” Student 3 answered, “Five out of 10 could not happen just by 

chance,” which was judged not to represent meaningful reasoning, and therefore, was not 

used to create a distractor for the MC format item.  

 



 

Questions 3 to 9 refer to the following:
D.  

 
Let’s say you used the spinner 10 times, and each time you wrote down the letter that the spinner lands 
on. Furthermore, let’s say when you looked at the results, you saw that the letter 
out of the 10 spins.  
Suppose a person is watching you play the game, and they say that it seems like you got too many 
 
A second person says that 5 B’s would not be unusual for this spinner.

 
5. [Spinner problem set] A statistician wants to set up a probability model to examine how often 

the result of 5 B’s out of 10 spins could happen with the spinner just by chance alone. What 
would be the probability model the statistician can use to do a test? Please describe the null 
model.  

 

A summary of student responses on each of the questions is presented in 

15. Students’ response choices are also shown. 

three think-aloud interviews resulted in the second version of the assessment (AIRS

which consisted of 34 MC items. Results from piloting AIRS

section. 
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Questions 3 to 9 refer to the following: Consider a spinner shown below that has the letters from 

Let’s say you used the spinner 10 times, and each time you wrote down the letter that the spinner lands 
on. Furthermore, let’s say when you looked at the results, you saw that the letter B showed up 5 times 

g you play the game, and they say that it seems like you got too many 

’s would not be unusual for this spinner. 

[Spinner problem set] A statistician wants to set up a probability model to examine how often 
5 B’s out of 10 spins could happen with the spinner just by chance alone. What 

would be the probability model the statistician can use to do a test? Please describe the null 

A summary of student responses on each of the questions is presented in 

. Students’ response choices are also shown. Incorporating the revisions made 

aloud interviews resulted in the second version of the assessment (AIRS

which consisted of 34 MC items. Results from piloting AIRS-2 are discusse

Consider a spinner shown below that has the letters from A to 

Let’s say you used the spinner 10 times, and each time you wrote down the letter that the spinner lands 
showed up 5 times 

g you play the game, and they say that it seems like you got too many B’s. 

[Spinner problem set] A statistician wants to set up a probability model to examine how often 
5 B’s out of 10 spins could happen with the spinner just by chance alone. What 

would be the probability model the statistician can use to do a test? Please describe the null 

A summary of student responses on each of the questions is presented in Table 

Incorporating the revisions made from the 

aloud interviews resulted in the second version of the assessment (AIRS-2), 

2 are discussed in the next 
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Table 15 

Excerpts of Students' 1st Cognitive Interview: Selected Notes 

Item Student Reasoning in Think-alouds Alternatives 

5. [Spinner problem set] A statistician 
wants to set up a probability model to 
examine how often the result of 5 B’s 
out of 10 spins could happen with the 
spinner just by chance alone. What 
would be the probability model the 
statistician can use to do a test? Please 
describe the null model.  

Student 1: “I am not exactly sure what the null model is. 
When it is the null hypothesis, it will be 5 or more 
out of 10; the alternative would be less than 5 out of 
10.”  

Student 2: “The null would be that you would get 5 B’s 
out of 10 spins, and the other letter would have the 
same spins. And the alternative [hypothesis] is that 
you would not get 5B’s out of 10.”  

Student 3: “A null model was the likelihood that 
something happens just by chance. The null 
hypothesis is kind of the opposite of the alternative 
hypothesis. The null hypothesis is that whatever 
you’re suspecting is not true…I’m not being very 
clear. The null would be just the thing that did not 
happen. The null hypothesis would be that five out of 
10 could not happen just by chance.”  

a. The probability for each letter is the same—
1/4 for each letter.  
b. The probability for letter B is 1/2 and the 
other three letters each have a probability of 
1/6.  
c. The probability for letter B is 1/2 and the 
probabilities for the other letters sum to 1/2.  

 

 

 

 

 

(cont.) 
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Item Student Reasoning in Think-alouds Alternatives 

Table 15, cont.   

6. [Spinner problem set] Are 5B’s 
unusual or not unusual? Why?  

Student 1: “I do not think there is enough information 
because we do not have a small sample size. I guess 
5 B’s is unusual because it’s supposed to be 25%.”  

Student 2: “5B’s are unusual. Because 5B’s is in the tail; 
it didn’t occur most often. A very low number 
happened.”  

Student 3: “5 B’s are unusual because it’s well above the 
average number of (2 or 3) landing on B’s.  

a. 5 B’s are not unusual because 5 or fewer B’s 
happened in more than 90 samples out of 
100.  

b. 5 B’s are not unusual because 5 or more B’s 
happened in four samples out of 100. 

c. 5 B’s are unusual because 5B’s happened in 
only three samples out of 100.  

d. 5 B’s are unusual because 5 or more B’s 
happened in only four samples out of 100. 

e.  There is not enough information to decide if 
5 B’s are unusual or not. 

11. [Exam preparation problem set] 
…Select either Biology or Chemistry 
and explain your choice. 

Student 1: “Chemistry. Because the boxplots are almost 
identical, and I see that the people in Biology, two 
groups (A and B strategies) look similar to each 
other. But in Chemistry, the range of strategy A is 
higher than B, so it does say that one strategy is 
better than the other.” (faulty reasoning) 

Student 2: “First, I look at the ranges. The black lines 
are the medians, and it looks like both biology and 
chemistry are about the same. But biology has much 
narrower ranges. This means that the scores are 
closer together. So, I think biology.  

Student 3: I think chemistry has the stronger evidence 
against the claim that neither strategy is better than 
the other. Because in Chemistry, somebody could 
argue that in chemistry somebody got almost 100 
points for strategy A, but for strategy B, somebody 
only got 80 points. I guess for biology, you could do 
the same thing, but the range is bigger in Chemistry.”  

a. Biology, because scores from the Biology 
experiment are more consistent, which 
makes the difference between the strategies 
larger relative to the Chemistry experiment.  

b. Biology, because the outliers in the boxplot 
for strategy A from the Biology experiment 
indicate that there is more variability in 
scores for strategy A than for strategy B. 

c. Chemistry, because scores from the 
Chemistry experiment are more variable, 
indicating that there are more students who 
got scores above the mean in strategy B.  

d. Chemistry, because the difference between 
the maximum and the minimum scores is 
larger in the Chemistry experiment than in 
the Biology experiment.  

(cont.) 
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Item Student Reasoning in Think-alouds Alternatives 

Table 15, cont.   

12. [Exam preparation problem set] 
…Select either Psychology or 
Sociology and explain your choice. 

Student 1: “Sociology. Because it has a larger sample, 
but the other ones are the same; we could better 
believe that there is a difference.”  

Student 2: “Psychology, because there is a lot variability 
in psychology. The smaller the sample size, the 
larger the variability.”  

Student 3: “So it’s the same type of question? So, 
sociology has a bigger sample size. Sociology has a 
smaller sample size, so it has more outliers. For 
sociology, it’s clearer that every single line (outlier) 
in strategy B is higher than in strategy A. And that’s 
also true for psychology, but the differences are less 
clear. This is also the same for Psychology, but in 
psychology, since it has a smaller sample size, we 
can’t be so sure. Sociology has a larger sample, so 
it’s more reliable.”  

a. Psychology, because there appears to be a 
larger difference between the medians in the 
Psychology experiment than in the Sociology 
experiment.  

b. Psychology, because there are more outliers 
in strategy B from the Psychology 
experiment, indicating that strategy B did not 
work well in that course. 

c. Sociology, because the difference between 
the maximum and minimum scores is larger 
in the Sociology experiment than in the 
Psychology experiment.  

d. Sociology, because the sample size is larger 
in the Sociology experiment, which will 
produce a more accurate estimate of the 
difference between the two strategies.  
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Analysis of pilot data. The AIRS-2 was piloted to an introductory statistics 

course taught by a doctoral student in the summer of 2011. This assessment of 34 MC 

administered to 23 undergraduate students as a final exam. Students took the 

The primary purpose of the pilot test was to identify potential deficiencies in 

the design, procedures, or specific items prior to a large-scale administration. 

mean for the total score was 23.26, with standard deviation of 4.93. A 

graphical representation of the distribution of the scores is presented in Figure 3

difficulties as a proportion correct are presented in Table 16.  
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Table 16 

Item Difficulties (Proportion Correct) of AIRS Items 

Item 
Proportion 

Correct SD Item 
Proportion 

Correct SD 

1 0.43 0.51 18 0.78 0.42 

2 0.87 0.34 19 0.7 0.47 

3 1 0 20 0.65 0.49 

4 0.96 0.21 21 0.96 0.21 

5 0.61 0.5 22 0.87 0.34 

6 0.22 0.6 23 0.57 0.51 

7 0.65 0.49 24 0.91 0.29 

8 0.87 0.34 25 0.22 0.42 

9 1 0 26 0.57 0.51 

10 0.87 0.34 27 0.52 0.51 

11 0.74 0.45 28 0.39 0.5 

12 0.48 0.51 29 0.87 0.34 

13 0.87 0.34 30 0.78 0.42 

14 0.35 0.49 31 0.91 0.29 

15 0.57 0.51 32 0.65 0.49 

16 0.48 0.51 33 0.65 0.49 

17 0.87 0.34 34 0.43 0.51 
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displays the Q-Q plot to examine whether the distribution of the correct

total scores is normal. As seen in the plot, the distribution does not fundamentally depart

The correct-total scores have a mean of 23.26 and a standard deviation of 

4.93. Looking at the proportion correct (index of item easiness), it seems that item 

difficulties are distributed evenly across the 34 items. However, there are two items that 

all students answered correctly (item 3 and item 9), indicating these items may be easy 

and thus, may not perform well in discriminating students by ability.  
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information regarding the students’ level of IRS. If these two items are treated as one 

item in the testlet, the problem may be resolved since a testlet-score is produced by 

summing the scores for all items in a testlet.  

The coefficient alpha for the pilot data was 0.84. As an indicator of strength of the 

relationship between the item score and total score, polyserial correlations based on 

tetrachoric correlations were obtained for each dichotomous item score (either 0 or 1). 

The correlations ranged from -.27 to 1. Results of a reliability coefficient analysis and 

polyserial correlations are shown in Appendix L.  

There were three items with negative correlations between the item score and the 

correct-total score (item 4: r=-.27; item 14; r=-.12; item 29; r=-.14). This indicated that 

these items do not function well in discriminating students who have high correct-total 

scores from those who have low correct-total scores. The author reviewed these items 

along with answer keys, item difficulties, and learning goals to investigate reasons for the 

negative item-total correlations. She decided to retain item 4 and item 29 without 

modifications, considering that the items (and alternatives) were carefully written to 

reflect students’ reasoning during the cognitive interviews, and that these items are 

intended to measure important learning goals. Only item 14 was modified, which is 

shown in Table 17.  
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Table 17 

Changes Made in AIRS-3 from Pilot-testing 

Item in AIRS-2 
Changes Made in AIRS-3 
and Reason for the Change 

14. A random sample of 25 textbooks for 
different courses taught at a University is 
obtained, and the mean textbook price is 
computed for the sample. To determine the 
probability of finding another random sample of 
25 textbooks with a mean more extreme than the 
one obtained from this random sample, you 
would need to refer to: 

a. the distribution of textbook prices for all 
courses at the University.  

b. the distribution of textbook prices for this 
sample of University textbooks.  

c. the distribution of mean textbook prices for all 
samples of size 25 from the University.  

The sample size 25 was changed to 10. 

Option a is the distribution for the population of 
textbook prices. If we know this, it is reasonable to 
assume that we know the mean and SD for the 
population. Given that, we could approximate the 
distribution of sample means from random samples 
of size n = 25 as N(µ,s/√25). This is because with 
samples of size n = 25 or larger, regardless of the 
shape of the population distribution, the distribution 
of sample means is approximately normal. In that 
sense, if we know a, we also know c (the distribution 
of mean textbook prices for all samples of size n = 
25). If the sample size is small, there might not be a 
strong argument for a, and the best answer would be 
c.  

 

Second Cognitive Interview: Empirical Evidence 3 (EE3) 

Result of coding on think-aloud interviews. This section presents the results of 

both the first and second cognitive interviews. There were three students in the first 

interview and six students in the second interview. A different item set was given to each 

student. Since there were six CR items (items 4, 5, 6, 7, 11, and 12) asked in the first 

interview, these items could not be coded into any of the four categories. Thus, these six 

items were not included in the coding process. Table 18 displays the coding results 

obtained from the first and second cognitive interviews. It includes counts of each code 

among four categories: true positive (TP), true negative (TN), false positive (FP), and 

false negative (FN). TP indicates that the interviewee selected a correct MC response 

option, and his (her) actual reasoning aligned with the intended reasoning. TN indicates 
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that the interviewee selected an incorrect MC response option, and his (her) actual 

reasoning was misaligned with the intended reasoning. FP indicates that that the 

interviewee selected a correct MC choice, but his (her) actual reasoning was incorrect. 

Finally, FN indicates that the interviewee selected an incorrect MC choice, but his (her) 

actual reasoning matched the intended reasoning.  

The two categories, TP and TN, were considered to indicate “matched” in that 

these two codes indicate that a student’s response to an MC item matched the student’s 

actual reasoning. Similarly, FP and FN codes were considered to indicate “mismatched,” 

since a student’s MC response did not match the student’s actual reasoning. Table 18 

presents the percentages of each category. Most of the items (30 out of 34) have a perfect 

match rate in terms of the relationship between the students’ actual reasoning and the MC 

response. These high rates provide evidence that a student’s score for each item 

represents the correctness of the student’s actual reasoning.  



 

126 

Table 18 

Coding Categories Made for Cognitive Interviews 

Item 
# of Students 
Interviewed 

Matched Mismatched 
Matched 

(%) 
Mismatched 

(%) TP TN FP FN 

1 6 2 4 0 0 100 0 

2 6 5 1 0 0 100 0 

3 7 7 0 0 0 100 0 

4 5 3 2 0 0 100 0 

5 5 4 1 0 0 100 0 

6 5 2 2 1 0 80 20 

7 3 2 1 0 0 100 0 

8 7 5 2 0 0 100 0 

9 2 2  0 0 100 0 

10 4 4  0 0 100 0 

11 2 1 1 0 0 100 0 

12 4 2 2 0 0 100 0 

13 7 6 1 0 0 100 0 

14 4 4  0 0 100 0 

15 2 2  0 0 100 0 

16 2  2 0 0 100 0 

17 4 3  0 0 100 0 

18 5 2 3 0 0 100 0 

19 6 3 3 0 0 100 0 

20 7 3 2 2 0 71.4 28.6 

21 5 5  0 0 100 0 

       (cont.) 
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Item 
# of Students 
Interviewed 

Matched Mismatched 
Matched 

(%) 
Mismatched 

(%) TP TN FP FN 

Table 18, cont.       

22 7 6 1 0 0 100 0 

23 3 2 1 0 0 100 0 

24 8 6 2 0 0 100 0 

25 6 4 2 0 0 100 0 

26 6 4  2 0 66.7 33.3 

27 4 2 1 1 0 75 25 

28 3 2 1 0 0 100 0 

29 3 2 1 0 0 100 0 

30 2 2  0 0 100 0 

31 2 2  0 0 100 0 

32 2 1 1 0 0 100 0 

33 2 2  0 0 100 0 

34 2  2 0 0 100 0 

 

Inter-rater reliability analysis . Table 19 shows the results of coding for the 

interviews. The codes for 30 of the 34 items (88%) were aligned between the author and 

each rater. Cohen’s Kappa for the codes made on the two interview sets were 0.722 and 

0.793, respectively. These values represent good inter-rater agreement, according to the 

cutoffs suggested by Landis & Koch (1977) and Altman (1991). 



 

128 

Table 19 

Results of Coding Cognitive Interviews 

 
# of Item Total: 

34 TP TN FP FN 

Alignment 
between the 
author and 
rater 1 

Number of items 
agreed between 
the codes 
between author 
and rater 1 

22 8 0 0 

Agreed total 30 (88%) 0 (0%) 

Disagreed total 4 (12%): item 2; item 7; item 23; and item 26 

Cohen's Kappa 
for 2 Raters 
(unweighted) 

Kappa = 0.722 

z = 4.45 

p-value = 8.64e-06 

Alignment 
between the 
author and 
rater 2 

Number of items 
agreed between 
the codes 
between author 
and rater 1 

17 12 1 0 

Agreed total 30 (88%) 

Disagreed total 4 (12%); item 12, item 16, item 18, item 20 

Cohen's Kappa 
for 2 Raters 
(unweighted) 

Kappa = 0.793 

z = 5.93 

p-value = 2.97e-09 

 

Results from Field-testing: Empirical Evidence 4 (EE4)  

The analyses results for the responses obtained in a large-scale test administration 

are presented in the next three sub-sections: Local Item Dependence (LID), 

dimensionality, and IRT analysis. These analyses were based on the data collected from a 

large-scale administration with a representative sample of 1,978 students.  
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Local Item Dependence (LID). The presence of LID was investigated employing 

two methods: reliability analyses from the classical test theory (CTT) perspective and 

Chen and Thissen’s (1997) G2 local dependence (LD) indices from the item response 

theory (IRT) perspective.  

Reliability analyses. Reliability of scores obtained from the 1,978 responses was 

evaluated using the CTT method. Two sets of reliability estimates are provided for each 

of the two forms of the response data: dichotomous data and testlet-based data. The 

Spearman-Brown formula was employed as a way to compare the reliability of the 

34discrete item responses and the reliability of testlet responses with respect to the effect 

of change of test length on the reliability (Sireci et al., 1991; Wainer, 1995). A summary 

of the coefficient-alpha and Spearman-Brown statistics is presented in Table 20. 

Table 20 

Coefficient-alpha Reliabilities 

Test Format 

Original 
Coefficient-alpha 

Reliability 

Predicted Coefficient-
alpha by Spearman-

Brown Formula for 34 
Items Original Test Length 

Dichotomous response data  0.805 0.805 34 items 

Testlet-based data 0.771 0.857 19 items (9 testlet items 
and 10 discrete items) 

 

The coefficient-alpha was lowered from .805 to .771, when the dichotomously 

scored data were aggregated into testlet-based data indicating the presence of LID. 

However, as Sireci et al. (1991) pointed out, lower reliability in testlet-based data could 
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be due to the reduced test length. Therefore, the Spearman-Brown coefficient of 

reliability was employed to estimate the predicted reliability when the test length is 

increased by adding items with the same properties as those in the current test form. As 

shown in Table 20, the expected coefficient alpha is .857 when the number of items is 

increased to 34 from 19 in the original testlet test. The higher reliability for the testlet-

based test confirms the overestimated size of the reliability in the 34-item test, and thus, 

the presence of LID. Moreover, this result suggests that use of testlet-based scoring 

provides more reliable and consistent score information.  

Local Dependence (LD) index. For the 34 dichotomous items, Chen and 

Thissen’s Local Dependence (LD) indices were examined. Fitting a unidimensional CFA 

model, an LD index matrix was obtained for each pair of 34 items (see Appendix M). 

Using this matrix, the mean of the absolute LD indices for each item with the other 33 

items was computed (see Table 21). For the items given in a testlet, the LD index mean 

with the other items in the same testlet was computed. The LD index mean with the other 

items that are not in the testlet was also obtained for a comparison. As shown in Table 21, 

with respect to the testlet items, the mean LD indices for the testlet item pairs (row (b)) 

were quite large relative to the mean LD indices for all item pairs (row (a)), showing 

dependency of the items in the same context. This pattern becomes clearer when 

comparing the mean LD index between a testlet item and items in the same testlet (row 

(b)) to the mean LD index between the item and other items not in the same testlet (row 

(c)). Large differences in the magnitude of the mean indices between the two different 

circumstances (within the same passage or not) are evidence of the existence of LID. This 
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indicates that a pair or cluster of items in the same passage may need to be aggregated 

into a single unit-testlet.  
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Table 21 

Mean LD Indices of Each Item 

            Item 
:Testlet 

Mean LD 
index  1 2 

3: 
TL1 

4: 
TL1 

5: 
TL1 

6: 
TL1 

7: 
TL1 

8: 
TL1 

9: 
TL2 

10: 
TL2 

11: 
TL2 

12: 
TL3 

(a)With other 
33 items 2.02 4.71 2.93 1.99 1.65 2.4 6.13 2.01 5.04 6.07 5.41 1.22 

(b)With the 
items in the 
testlet   4.75 4.25 2.6 2.92 5.24 4.82 15.15 52.55 43.83 6.23    

a(c)With the 
items not in the 
testlet   2.61 1.59 1.48 2.31 6.28 1.5 4.39 3.07 2.93 1.06 

 

            Item 
:Testlet 

Mean LD 
index  

13: 
TL3 

14 
 

15: 
TL4 

16: 
TL4 

17 
 

18 
 

19: 
TL5 

20: 
TL5 

21: 
TL6 

22: 
TL6 

23 
 

24: 
TL7 

(a)With other 
33 items 2.75 1.8 3.14 3.44 3.12 1.7 1.82 2.88 11.9 11.9 1.85 1.94 

(b)With the 
items in the 
testlet 6.23  56.1 56.1   4.94 4.94 311.9 311.9  0.26 

a(c)With the 
items not in the 
testlet 2.64  1.49 1.79   1.72 2.81 2.53 2.54  2.05 

 
            Item 

:Testlet 

Mean LD 
index  

25: 
TL7 

26: 
TL7 

27: 
TL8 

28: 
TL8 

29: 
TL8 

30: 
TL8 

31 
 

32 
 

33 
 

34 
   

(a)With other 
33 items 3.97 2.7 5.31 5.23 1.76 2.88 3.3 2.71 1.99 3.3   

(b)With the 
items in the 
testlet 19.3 19.3 33.4 5.23 2.73 1.14       

a(c)With the 
items not in the 
testlet 2.98 1.63 2.51 2.55 1.67 2.6       

aThis mean index was computed by averaging the LD indices between each item in a testlet and the items 
not in the testlet.  
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Dimensionality. To investigate the dimensionality of the item responses, 

Confirmatory Factor Analysis (CFA) was conducted using Mplus (Muthén & Muthén, 

2010). Two factor models (a unidimensional model and a 2-factor model) were examined 

and compared. The factor structure of the 2-factor model was specified to reflect the 

hypothesized structure—one factor consisting of the items assessing ISI, and the other 

factor of the items measuring FSI.  

In conducting CFA, weighted least squares with mean and variance adjustment 

(wlsmv) was used as an estimation method due to the fact that the responses are 

categorical (Muthén, DuToit, & Spisic, 1997). An assessment of model quality was based 

on the evaluation of parameter estimates (e.g., factor loadings, variances) and fit indices. 

In assessing the factor structure of a model, high and statistically significant factor 

loadings and a combination of fit indices were considered to comprehensively evaluate 

model fit and corroborate results (Hoyle, 1995; Thompson, 2004).  

Table 22 displays the results of the unidimensional and two-factor model 

solutions of fitting two data sets (34 dichotomous item scores and 19 testlet-based scores 

per participant). For both models, all factor loadings were significant at α = 0.05. Out of 

34 items in the dichotomously scored data, 29 items had factor loadings above the 

specified .30 cutoff (McDonald, 1997). For the testlet-based data, 16 out of 19 testlets 

(including 10 discrete items) had factor loading greater than .30. This indicates that a 

high percentage of the variance in the responses for 29 items was explained by the model.  

A summary of fit indices across the four factor models is shown in Table 23. The 

two-factor model was better fitted to data for both test formats. However, these measures 

are not much different than those for the unidimensional model. Moreover, the fit indices 
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indicated a moderate to good model fit for all four models, according to the cutoffs 

suggested by Hu and Bentler (1999; CFI and TLI more than .85) and Browne and Cudeck 

(1993; RMSEA index less than .05). Given that the presence of LID suggested using 

testlet-based scores, the results indicate that the item responses are unidimensional. 

Moreover, from the comparison of fit indices for the two models, it appeared that the 

change of the Chi-square from the unidimensional testlet model to the 2-factor model is 

not statistically significant (∆χ2(1) = 1.89, p = .169), thus supporting the unidimensional 

model in terms of parsimony. Therefore, the assessment measures one unitary construct 

of IRS, as opposed to the hypothesized structure with two constructs, ISI and FSI. 



 

 

135 

Table 22 

Factor Loadings 

34 Dichotomous Item Response Data 19 Testlet-based Response Data 

 
Unidimensional 

Model 2-factor Model  Unidimensional Model 2-factor Model 

Item Estimate (S.E.) Factor Estimate (S.E.) Testlet Estimate (S.E.) Factor Estimate (S.E.) 

1 0.253 (0.030) ISI 0.263 (0.031) 1 0.258 (0.030) ISI 0.260 (0.030) 

2 0.531 (0.025) 0.550 (0.026) 2 0.555 (0.025) 0.561 (0.025) 

3 0.647 (0.029) 0.670 (0.030) TL1-1 0.503 (0.021) 0.508 (0.021) 

4 0.380 (0.031) 0.393 (0.032) 

5 0.339 (0.030) 0.351 (0.031) 

6 0.236 (0.034) 0.242 (0.035) 

7 0.436 (0.026) 0.453 (0.027) TL1-2 0.581 (0.021) 0.587 (0.021) 

8 0.599 (0.022) 0.622 (0.023) 

9 0.730 (0.021) 0.758 (0.021) TL2 0.645 (0.019) 0.652 (0.019) 

 

 

(cont.) 

10 0.555 (0.027) 0.576 (0.028) 

11 0.608 (0.022) 0.630 (0.023) 
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34 Dichotomous Item Response Data 19 Testlet-based Response Data 

 
Unidimensional 

Model 2-factor Model  Unidimensional Model 2-factor Model 

Item Estimate (S.E.) Factor Estimate (S.E.) Testlet Estimate (S.E.) Factor Estimate (S.E.) 

Table 22, cont.     

12 0.302 (0.029) 0.311 (0.030) TL3 0.449 (0.023) 0.453 (0.023) 

13 0.466 (0.025) 0.482 (0.026) 

14 0.454 (0.026) FSI 0.462 (0.027) 14 0.465 (0.027) FSI 

 

0.467 (0.027) 

15 0.136 (0.031) 0.139 (0.031) TL4 0.271 (0.026) 0.272 (0.026) 

16 0.332 (0.028) 0.338 (0.029) 

17 0.703 (0.021) 0.715 (0.021) 17 0.710 (0.022) 0.713 (0.022) 

18 0.499 (0.026) 0.507 (0.026) 18 0.517 (0.026) 0.519 (0.026) 

19 0.364 (0.028) 0.370 (0.029) TL5 0.463 (0.023) 0.465 (0.023) 

20 0.384 (0.027) 0.390 (0.027) 

21 0.688 (0.027) 0.703 (0.027) TL6 0.321 (0.028) 0.322 (0.028) 

22 0.336 (0.032) 0.344 (0.032) 

23 0.367 (0.027) 0.371 (0.028) 23 0.377 (0.027) 0.378 (0.028) 

     (cont.) 
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34 Dichotomous Item Response Data 19 Testlet-based Response Data 

 
Unidimensional 

Model 2-factor Model  Unidimensional Model 2-factor Model 

Item Estimate (S.E.) Factor Estimate (S.E.) Testlet Estimate (S.E.) Factor Estimate (S.E.) 

Table 22, cont.     

24 0.522 (0.024) 0.531 (0.024) TL7 0.447 (0.022) 0.448 (0.022) 

25 0.080 (0.032) 0.081 (0.032) 

26 0.391 (0.026) 0.398 (0.027) 

27 0.530 (0.024) 0.540 (0.024) TL8 0.613 (0.018) 0.616 (0.018) 

28 0.369 (0.027) 0.376 (0.027) 

29 0.510 (0.024) 0.519 (0.024) 

30 0.459 (0.025) 0.466 (0.026) 

31 0.726 (0.019) 0.741 (0.019) 31 0.735 (0.020) 0.738 (0.020) 

32 0.401 (0.027) 0.409 (0.027) 32 0.414 (0.027) 0.415 (0.027) 

33 0.433 (0.026) 0.439 (0.027) 33 0.447 (0.026) 0.448 (0.027) 

34 0.158 (0.040) 0.161 (0.041) 34 0.189 (0.041) 0.190 (0.041) 

Note. The bold fonts indicate items with factor loadings of less than 0.3.  
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Table 23 

Fit Indices for Factor Models 

Data Format Model (N=1,978) 

Fit Index 

Chi-square 
(df; P-value) TLI CFI 

RMSEA 
(90% CI) WRMR 

Dichotomous response 
data 

Unidimensional model 2492.979 
(527, <0.001) 

0.837 0.847 0.043 
(0.041, 0.045) 

1.961 

2-factor model 2400.960 
(526, <0.001) 

0.841 0.851 0.042 
(0.041, 0.044) 

1.940 

Testlet-based data Unidimensional model 472.742 
(135, <0.001) 

0.953 0.958 0.033 
(0.029, 0.036) 

1.337 

2-factor model 470.883 
(134, <0.001) 

0.958 0.966 0.033 
(0.028, 0.036) 

1.334 
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As a result, the 19 testlet-based response data were used in the remaining analyses 

(examining item properties, item- and test-information functions using item response 

theory), which are described next. 

IRT model for polytomous data and assumptions. This section presents the 

results of fitting response data to an IRT model to evaluate item properties, item- and test 

information. The assumptions for applying an IRT model are first examined. The results 

of fitting the graded response model (GRM, Samejima, 1969) are described next.  

The assumptions for IRT models. The major two assumptions in applying an IRT 

model to response data are local independence and unidimensionality. Local 

independence in a test means that there is no relationship between examinee responses to 

different items after accounting for trait abilities measured by a test. IRT models are not 

robust to the violation of the local independence assumption. Since applying an IRT 

model to local dependence response data could cause serious problems (e.g., biased 

parameter estimates and overestimated test information (Yen, 1993)), it is important to 

check these assumptions before applying an IRT model.  

Unidimensionality of a test indicates that a single latent trait is measured from the 

entire set of items. However, the latent traits measured in many performance assessments 

are very likely to be multidimensional, mainly due to various factors such as planned test 

construct structure, unintended nuisance or construct-irrelevant variances, and mixed 

item format. When unidimensional IRT models are employed to fit multidimensional 

data, several issues arise: biased IRT parameter estimates (de Ayala, 1994; 1995); 

threatening the validity of any inferences from the single ability estimate (Reckase, 
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1985); and biased results in the analysis of differential item functioning (DIF; Ackerman, 

1992).  

Given the evidence above indicating that the testlet-based response data are 

essentially unidimensional and that those data address the presence of LID in the discrete 

34-item response data, the IRT assumptions were met.  

Item parameter estimates. Table 24 shows the estimated item parameters and 

standard errors obtained by applying the GRM. In this model, discrimination parameters 

were allowed to be unconstrained for each item. The parameter estimates are under the 

usual IRT parameterization shown below:  

)β(β)
r-1

r
log( *

ik

ik
iki z −=  

 

where 
i

ik
ik

β

β
β* =  (Rizopoulos, 2012).  

In the GRM model, score categories are separated by category boundaries: for 

cases where the testlet-based responses have five categories (resulting from combining 4 

discrete items), the five score levels are separated by four category boundaries: the 

boundary between score level 1 and 2, 2 and 3, 3 and 4, 4 and 5, respectively. In the 

example of testlet 1.1 created from four items (item 3 to 6), each score level from 0 to 4 

indicates the number of items correct, and category boundaries are used to determine the 

probability of passing the steps required to obtain a particular score level.  
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Table 24 

Results of Fitting a GRM Model 

Item (or 
Testlet) α (S.E.) β1 (S.E.) β2 (S.E.) β3 (S.E.) β4 (S.E.) 

Q1 0.445 (0.055) 0.415 (0.116)    

Q2 1.142 (0.079) 0.250 (0.051)    

TL1.1 1.058 (0.059) -3.505 (0.196) -1.640 (0.155) 0.606 (0.110) 2.667 (0.655) 

TL1.2 1.232 (0.071) -1.053 (0.068) 0.557 (0.051)   

TL2 1.523 (0.084) -2.236 (0.108) -1.206 (0.108) -0.202 (0.072)  

TL3 0.844 (0.058) -0.875 (0.082) 1.754 (0.177)   

Q14 0.894 (0.069) 0.168 (0.060)    

TL4 0.475 (0.050) -1.285 (0.166) 2.554 (0.321)   

Q17 1.923 (0.138) -1.001 (0.055)    

Q18 1.045 (0.075) 0.434 (0.058)    

TL5 0.910 (0.061) -2.202 (0.143) 0.525 (0.057)   

TL6 0.522 (0.062) -4.252 (0.486) -1.911 (0.269)   

Q23 0.691 (0.062) -0.132 (0.073)    

TL7 0.889 (0.056) -2.238 (0.142) 0.131 (0.057) 2.140 (0.296)  

TL8 1.387 (0.069) -1.933 (0.092) -0.678 (0.072) 0.394 (0.060) 1.519 (0.268) 

Q31 2.060 (0.142) -0.700 (0.044)    

Q32 0.757 (0.064) 0.383 (0.072)    

Q33 0.841 (0.069) -0.689 (0.077)    

Q34 0.409 (0.073) 4.422 (0.760)    

Log-likelihood = -30946.84 
AIC = 61999.68 
BIC = 62295.94 
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Table 24 also shows the estimates of item properties (item discrimination, 

thresholds between category boundaries) for 34 items. The items show acceptable 

discrimination capacity, and it appears that the instrument should perform well in 

estimating individuals in the approximate range of -2.5 to 2.5. The items (or testlets) have 

moderate to high discrimination estimates, ranging from 0.409 to 2.06, according to the 

qualitative classification proposed by Baker (1985; very low < 0.20, low = 0.21-0.40, 

moderate = 0.41-0.80, high > 0.80).  

The location (difficulty) parameter bi for each of the k category boundaries shows 

that the difficulty estimates are distributed evenly—from low to high. The patterns of a- 

and b-parameters are also represented in the Item Characteristic Curve (ICC) or Item 

Category Characteristic Curve for each testlet (see Figure 5). The ICC of each item is the 

plot of the probability as a function of theta for each category option. 
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Figure 5. Item characteristic curves of 19 testlet-based items. 



 

Precision: Item information, Test information and 

Measurement (SEM). Figure 6

items. An item information curve is an index indicating the latent trait levels of 

which the item is most useful for distinguishing among individu

with high peaks denote items with high discrimination, thus providing more information 

over the trait levels around the item’s estimated thresholds. 

item 1, testlet 4, testlet 6, and item 34 ma

items have little precision 

Figure 6. Item information curves of 19 

In IRT, uncertainty about a person’s location is quantified through the estimate’s 

standard error of measurement (SEM). The SEM specifies the precision with respect to 

the person location parameter, 
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Precision: Item information, Test information and Standard Error of 

Figure 6 displays the item information curves of the

items. An item information curve is an index indicating the latent trait levels of 

which the item is most useful for distinguishing among individuals. Information curves 

with high peaks denote items with high discrimination, thus providing more information 

over the trait levels around the item’s estimated thresholds. The information curves of 

item 1, testlet 4, testlet 6, and item 34 marked by dashed lines in Figure 6

little precision in estimating trait levels.  
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In IRT, uncertainty about a person’s location is quantified through the estimate’s 

standard error of measurement (SEM). The SEM specifies the precision with respect to 

the person location parameter, θ. From another perspective, test information is the 

Standard Error of 

the 19 testlet 
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The information curves of 

d lines in Figure 6 show that these 

In IRT, uncertainty about a person’s location is quantified through the estimate’s 

standard error of measurement (SEM). The SEM specifies the precision with respect to 

perspective, test information is the 



 

amount of information we have for estimating a person’s location with an instrument, and 

it predicts the accuracy to which we can measure any value of the latent ability. 

Therefore, there is a reciprocal relationship between SEM and test information, as 

represented below: 

Figure 7 presents the information function of the test (based on the 19 testlet 
responses) and the SEM. It appears that the best precision for this test is for people with 
latent trait levels around zero
higher (or lower), indicating that the items do not measure students who are above or 
below average very accurately. 

Figure 7. Test information function and 

147 

nt of information we have for estimating a person’s location with an instrument, and 

t predicts the accuracy to which we can measure any value of the latent ability. 

Therefore, there is a reciprocal relationship between SEM and test information, as 
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presents the information function of the test (based on the 19 testlet 
responses) and the SEM. It appears that the best precision for this test is for people with 

around zero. The standard error increases as the latent trait level gets
higher (or lower), indicating that the items do not measure students who are above or 
below average very accurately.  
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Synthesis of the Results  

This study sought to make multiple validity inferences to argue that scores 

derived from the AIRS test can be used to assess students’ standing on the latent trait IRS 

in two content areas, ISI and FSI, and to provide information for a formative assessment 

in introductory statistics courses. Each inference in the interpretive argument prompted a 

particular investigation of the test development and evaluation procedures. Underlying 

inferences were evaluated by judging the claims laid out in the formative stage. Evidence 

sources collected in two stages were investigated to address the claims.  

This section synthesizes the inferences to develop a validity argument narrative 

that captures the evolving evaluations of the test score interpretations and uses. The four 

inferences are revisited and critically examined. The theoretical evidence (TE1 to TE5) 

and empirical evidence (EE1 to EE4) served as resources to evaluate the plausibility of 

the claims.  

Evaluation of Scoring Inference 

This inference is verified if Claim 3 (obtaining scores that are sufficiently precise) 

is supported. The following evidence resources were investigated to examine the 

plausibility of this claim: experts’ judgments of the appropriateness of the answer key for 

each item, testing conditions, and scoring methods. Scores on the test obtained from CTT 

and IRT were examined and compared in terms of score precision. Item consistency 

(reliability) from a CTT perspective and item discrimination from an IRT perspective 

were examined.  

During the experts’ review of the preliminary assessment, an answer key was 

provided for each item. All three experts agreed to the answer key for each item. Since 
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the assessment items are all multiple-choice format, there is high confidence in the 

accuracy of the scoring, given that the items have only one best answer and that the 

scoring key is correct (Kane, 2004). However, there might be circumstances that can alter 

the interpretation of the scores. In field-testing, the testing conditions were different, 

depending on the institution and the instructor: there were some cases where the test was 

administered in a proctored environment by the instructor, and in other cases, students 

took the test in a convenient place (e.g., home or computer lab). There were also some 

variations in terms of use of the test scores; some instructors used the scores as part of 

their course grades, but others used the scores as extra credit. Different testing conditions 

might influence score accuracy; therefore, caution is needed in interpreting the test 

scores.  

A distribution of the observed scores as number-correct is displayed in Figure 8. 

The mean of the testlet-based scores was 18.85 (N=1,978) with a standard deviation of 

5.8. Figure 9 shows that the distribution of the observed scores as correct-total is 

approximately normal. The degree of precision for number-correct scores was based on 

reliability coefficients (coefficient-alpha) in CTT. In CTT, reliability coefficients (e.g., 

coefficient-alpha) are fixed for all scale scores (number-correct scores between 0 and 34), 

and in IRT, measures of score precision are estimated separately for each score level or 

response pattern, controlling for the characteristics (e.g., difficulty) of the items in the 

scale (Embretston & Reise, 2000). Test reliability has the advantages of being a very 

compact measure of precision. However, the most accurate estimates are those in which 

items are locally independent since item dependencies tend to inflate reliability 

estimation. When seemingly distinct items related to a context exhibit dependency, 



 

grouping them together into a testlet more properly models the test structure (Sireci et al., 

1991). 

Figure 8. Distribution of correct
items total). 

 

The reliability estimate obtained in EE4 was 0.81. This is above the recommended 

value of .70 suggested by Nunnally and Bernstein (1994). Since the coefficient alpha is a 

measure of internal consistency, calculated from the pairwise correlations between items, 

this level of reliability indicates that, on average, the items are measuring the construct of 

IRS consistently (precisely) 

A distribution of the IRT

10. Figure 11 shows that the distribution of the ability levels is approximately normal. 

The mean of the estimates was 

discrimination coefficients were

discriminations shown in Table 24 in section 4.2.4 indicate that
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grouping them together into a testlet more properly models the test structure (Sireci et al., 

orrect-total scores (34- Figure 9. Q-Q plot of correct-total 

The reliability estimate obtained in EE4 was 0.81. This is above the recommended 

value of .70 suggested by Nunnally and Bernstein (1994). Since the coefficient alpha is a 

consistency, calculated from the pairwise correlations between items, 

this level of reliability indicates that, on average, the items are measuring the construct of 

consistently (precisely) at an acceptable level.  

A distribution of the IRT-estimated scores on the latent trait is displayed in Figure 

shows that the distribution of the ability levels is approximately normal. 

The mean of the estimates was -0.01 (N=1,978) with a standard deviation of 0.89.
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testlets) have an appropriate level of discrimination (slopes in item characteristics curves) 

with moderate to high numerical values.

Figure 10. Distribution of IRT 

 

However, an examination of item information curves

4, testlet 6, and item 34 provide lower information relative to other items, indicating that 

they do not contribute much information in measuring the underlying trait. In othe

words, these items or testlets diminish the degree of score precision in measuring 

Figure 12 shows a scatter

against the correct-total score (number

IRT scoring methods are in dealing with scoring issues that may arise regarding score 

precision. One issue that may be questioned in the correct

summed “points” to score a test: why the rated “points” for the 

should be equal to the “points” for the 

process finesses this issue: all of the item res
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an appropriate level of discrimination (slopes in item characteristics curves) 

with moderate to high numerical values. 
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process finesses this issue: all of the item responses are implicitly weighted; indeed, the 
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effect of each item response on the examinee’s score depends on the other item 

responses. Each response pattern is scored in a way that best uses the information about 

proficiency that the entire response pattern

summarizes the data accurately (Thissen & Wainer, 2001).

Figure 12. Scatter plot of correct

As can be seen in 

standard unit for some summed scores, although these scores are highly correlated 

(r=0.98). For instance, the IRT scale score varied for examinees who obtained a summed 

score of 20 because some responded correctly to more of the highly disc

Therefore, the IRT scale scores simultaneously provide more accurate estimates of each 

examinee’s proficiency and avoid any need for explicit consideration of the relative 

weights of the different kinds of “points.” 
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effect of each item response on the examinee’s score depends on the other item 

responses. Each response pattern is scored in a way that best uses the information about 

proficiency that the entire response pattern provides, assuming that the model 

summarizes the data accurately (Thissen & Wainer, 2001). 

 
orrect-total scores (34 items) versus IRT scores. 

 Figure 12, the range of IRT scale scores is as much as a 

standard unit for some summed scores, although these scores are highly correlated 

(r=0.98). For instance, the IRT scale score varied for examinees who obtained a summed 

score of 20 because some responded correctly to more of the highly discriminating items. 

Therefore, the IRT scale scores simultaneously provide more accurate estimates of each 

examinee’s proficiency and avoid any need for explicit consideration of the relative 

weights of the different kinds of “points.”  

effect of each item response on the examinee’s score depends on the other item 

responses. Each response pattern is scored in a way that best uses the information about 

provides, assuming that the model 

is as much as a 
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(r=0.98). For instance, the IRT scale score varied for examinees who obtained a summed 

riminating items. 

Therefore, the IRT scale scores simultaneously provide more accurate estimates of each 

examinee’s proficiency and avoid any need for explicit consideration of the relative 
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The evidence gathered throughout the assessment development procedure 

suggests that the AIRS test consistently measures the trait level of IRS within examinees, 

as shown in coefficient alphas and discrimination indices. When it comes to differences 

between examinees, however, a score is likely to be questioned in that the test 

administration conditions varied. Therefore, changing Claim 3 to reflect specific testing 

conditions (e.g., test proctoring, use of test scores) could better support the scoring 

inference in the validity argument.  

Evaluation of generalization inference (generalization from the score to the 

test domain). Generalization inference concerns broadening the test score interpretation 

from an evaluation of a specific set of items to a claim about a student’s expected score 

over the entire test domain (Kane, 2004). The plausibility of this inference was examined 

by asking the following question: To what extent do the test items and scoring represent 

the universe of generalization that is assessable from the target domain? This inference 

can be supported by evidence gathered for Claim 2, the test measures IRS in the 

representative test domains. In other words, evidence is needed to support the claim that 

tasks were sampled in a way to appropriately represent the range of tasks from the 

universe of generalization. 

Four resources were used to explore the variance sources in generalizing from an 

observed score to a universe score: (a) construct representation documented in the test 

blueprint; (b) expert review of the test blueprint and the items; (c) cognitive interviews; 

and (d) standard error of measurement from item- and test-information.  

The test blueprint documented the relevance of the test items to the learning goals 

by explicitly describing how each item is mapped to a specific learning goal that 
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represents the test domain (Testing Standards, 13.3). For example, in assessing the 

domain of “sampling variability,” item 2 measured the learning goal, “understanding the 

nature and behavior of sampling variability and taking into account sample size in 

association with sampling variability.” The degree of relevance between the test items 

and the learning goals documented in the test blueprint was evaluated by expert 

judgments.  

In the expert review of the test items (TE5), three experts responded either 

“Strongly agree” or “disagree” to the evaluation question, “The items adequately assess 

the learning goals specified in each category.” One reviewer commented, “Knowing how 

difficult it is to write questions that assess statistical reasoning, I think that you have 

assembled some very good questions to assess your proposed learning goals. You have 

covered a wide range of situations using different types of data and methods (norm-based 

and randomization),” providing evidence of the congruency of the domain to measure 

and the test content. These results suggest that the test items properly cover the range of 

knowledge, concepts, and reasoning in the target domain of IRS.  

Further, cognitive interviews using think-aloud provided evidence of how test 

scores represent their actual performance (reasoning) as indicators relevant to the broader 

domain (Testing Standards, 13.3). Matching two different measurement prompts, correct 

responses to MC items (1 or 0) and verbalizations of their reasoning, enabled evaluation 

of the extent to which generalization to the broader domain is supported. As shown in 

Table 18 in EE3 (Section 4.2.3), there were 30 items out of 34 that showed a 100% match 

between the correctness of MC choice (1 or 0) and alignment of student reasoning to the 

intended reasoning (aligned or misaligned), meaning that a student’s correct choice for an 
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MC item indicates the ability to make appropriate reasoning of the underlying content 

being assessed, and vice versa. 

The inference from the observed score to the universe score was also explored 

using examinees’ ability or trait parameters from the IRT analysis, although observed 

scores and trait parameters (universe scores) are stated in different units (AERA et al., 

2002). An examination of the standard error of measurement played a major role in 

determining the precision of estimates of the expected score over the test domain; that is, 

the strength of the claim based on this estimate (Claim 2: To measure IRS in the 

appropriate domains; Brennan, 2001). The test information function summarized how 

well the test discriminates among individuals at various levels of the ability being 

assessed. The peak of the information curve of each item shown in Figure 5 (item 

information curves) indicated where on the theta continuum the test provides the greatest 

amount of precision, or information. As noticed, most of the items and testlets provided 

high information levels (i.e., less measurement error) somewhere around zero of the theta 

continuum and less information (i.e., high measurement error) as the theta goes to the 

extremes (-4 or +4). This pattern appears clearer in the test information function in Figure 

6 showing that the SEM is higher as the theta level goes to either extreme.  

Two potential sources of variability were identified as variability that prevents the 

generalizability inference. The first source of variability arises from an interaction 

between persons and items, coming from the educational and experiential histories that 

students bring to the performance, in this case, on the AIRS test (Shavelson & Webb, 

1991). For example, the items asked in a Spinner context (items 3 to 8) would be easier 

for a student who has experienced a game using a spinner and who has thought about 



 

156 

probabilities in a fair spinner. The second source of variability comes from randomness, 

or other unidentified sources of variability (e.g., students took the test on different days, 

different testing conditions, etc.).  

Evaluation of extrapolation inference (extrapolating from the test domain to 

the IRS). The tasks included in the AIRS test tend to be systematically different from the 

corresponding tasks in the domains of IRS (e.g., answering multiple-choice items about 

hypothesis testing is different from actual reasoning about hypothesis testing in a real 

context). The tasks in the test domain were de-contextualized versions of corresponding 

reasoning in the IRS domains. This inference regards extrapolation from performance on 

the test tasks to performance of the reasoning in the IRS domain (Kane, 2004). Three 

types of evidence were explored to verify this inference: expert review, think-aloud 

interviews, and dimensionality analysis.  

The general evaluation form provided for the three experts included an evaluation 

question asking the extent to which the items measure students’ IRS and not extraneous 

factors (e.g., test taking strategies or typical procedural knowledge). Two reviewers 

responded “agree” for this question, suggesting plausibility of Claim 1 (the test measures 

students’ level of IRS) and Claim 5 (the test provides information about students’ level of 

IRS).  

The representativeness of the items in measuring IRS from reviewers’ feedback 

was supported from cognitive interviews conducted with a graduate student and nine 

undergraduate students. Think-aloud data collected in one-on-one sessions where the 

candidates presented self-descriptions of how they approached each task provided a 

direct indication of how well a candidate’s performance on each item of the test reflects 
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corresponding reasoning in IRS (Cronbach, 1971; Ohlsson, 1990). As revealed in the 

result of a think-aloud from a graduate student, the intended reasoning for all of the 34 

items were actually elicited by the expert. This indicates that the expert’s performance on 

the test reflected her reasoning on the corresponding items.  

Another issue regarding the extrapolation inference is how the response data 

shows a structure of the test in terms of the hypothesized dimensionality (a single 

dimension of IRS or two dimensions represented by ISI and FSI). Given that the AIRS 

items were based on the test blueprint that reflects two content categories (ISI and FSI), 

separate scores from ISI and FSI domains could be obtained from the test if both 

theoretical, as well as empirical data, confidently support this structure. In an expert 

review of the test items, the review package included a form that asked about the extent 

to which the items distinguished between ISI and FSI. Two reviewers agreed that “the 

items reflect students’ ISI or FSI” in general, and they also agreed that the items reflect 

the structure of ISI and FSI. However, an examination of dimensionality using 

confirmatory factor analysis revealed that the response data were closer to a 

unidimensional structure. This suggests that universe scores (IRT estimated scores) could 

provide inaccurate estimates if the scores were to be reported in two parts: one score for 

the ISI items and the other score for the FSI items. In other words, empirical evidence 

obtained from a large-scale administration shows that the students’ estimated abilities 

represent (extrapolate) their level on one latent trait, IRS.  

Evaluation of explanation/implication inference. Claims 4 and 5 concerned the 

extent to which AIRS test would help statistics instructors understand how students 

understand statistical inference, and give them useful information for a formative 
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assessment. To provide information for a formative assessment, it is necessary that the 

assessment covers multiple aspects of IRS (comprehensiveness of the test content) and 

that the test blueprint describing topics and learning goals helps instructors know what to 

look for when assessing IRS (a detailed and clear description of the blueprint).  

Experts’ positive evaluations provided during the blueprint and item review 

processes supported these arguments. The reviewers generally considered the blueprint as 

a good resource to be used as a framework in assessing statistical inference. As discussed 

in section 4.2, they acknowledged that the test blueprint covered multiple aspects of IRS. 

This was illustrated by reviewers’ responses to the items: “The categories of the blueprint 

are well structured” (all rated “Agree”) and that “the learning goals are clearly described” 

(one rated “Strongly agree” and two rated “Agree”).  

Given the agreement that the test can be functional to provide information in 

formative assessment measuring students’ standing on IRS, the next question to be 

verified is how much information each item (as well as the test) provides in measuring 

IRS. Although the test provides a good amount of information across the latent trait 

levels, the standard errors of measurement (SEM) are high for students at low-ability and 

high-ability latent trait levels. This indicates that the test does not contribute as well to 

providing information for the students at these levels. It further suggests that a single 

observed score could provide an inaccurate estimate of a student’s IRS proficiency in 

these ranges (high or low) of the latent trait. 
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Chapter 5 

Summary and Discussion  

This chapter summarizes the main research findings along with the discussion of 

the results and implications for teaching and for future research. Assumptions based on 

the validation results are discussed, as well as the extent to which the AIRS test scores 

provide useful and sufficient information for a formative assessment that measures 

inferential reasoning in statistics (IRS). Some of the claims are discussed focusing on 

discrepancies in results from theoretical evidence and empirical evidence. 

Summary of the Study 

This study developed and validated an assessment, the Assessment of Inferential 

Reasoning in Statistics (AIRS), designed to measure college students’ inferential 

reasoning in statistics. The purpose of the assessment is to evaluate students’ 

understanding of concepts of statistical inference in order to help statistics educators 

guide and monitor students’ developing ideas of statistical inference.  

Assessment development and validation were conducted by building and 

supporting arguments for the use of assessment in introductory statistics courses. In the 

two-phases of the research, the study first developed a test blueprint defining the target 

domains, and then developed the assessment from existing instruments and literature. 

Multiple sources of evidence were evaluated with regard to the plausibility of the 

inferences laid out from the test’s claims.  

In order for an observable attribute to be well defined, Kane (2006a) argues that 

the target domain must be clearly specified. The target domain in this study was defined 

in terms of the range of tasks (e.g., understanding sampling distributions, hypothesis 
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tests, evaluation of studies), test conditions (e.g., online test, 50- to 60-minute test), 

plausible contexts (e.g., classroom, home, or computer lab), and scoring rules (e.g., 

testlet-based scoring). Two content domains were specified from the literature—informal 

statistical inference (ISI) and formal statistical inference (FSI).  

The scoring inference was supported through evidence regarding the 

appropriateness of scoring methods and precision of the scores. Use of a multiple-choice 

format provided high confidence in the accuracy of the scoring. During the expert review 

process, it was confirmed that all item answer keys were correct and that other responses 

were not debatable as alternative answers. Since the test responses showed the presence 

of local item dependence, testlet-based scoring was used.  

During the item review process, the items were revised for clarification in 

wording, redundancy, and debatable issues. The observed scores showed an appropriate 

level of reliability in number-correct scores, but information provided from this score is 

limited in that there could be several students who have the same total-number-correct 

scores, but who would not be estimated to have the same latent trait level. The IRT 

estimated scores were used to address this issue since IRT considers the relative weights 

of the differential discrimination of each item. However, since testing conditions were 

different (e.g., taking the test at home, in a lab, or a classroom; different uses of the 

scores across courses), there should be some caution in interpreting the observed test 

scores, that is, in making an inference from an observed score to a universe score.  

As Kane (2006a) argues, a generalization inference under the assumption of 

random sampling of tasks from the target domain is typically impossible to justify. Thus, 

it is more plausible to justify the claim that a set of tasks is representative of the universe 
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of generalization by evaluating if tasks were sampled in a way to appropriately represent 

the range of tasks from the universe of generalization. This was evaluated by examining 

that: (1) relevant topics and learning goals measured in each domain were included; and 

that (2) irrelevant tasks were absent from the test by confirming that no possible sources 

of bias were identified.  

Expert reviews suggested that the items appropriately represent relevant topics 

and learning goals specified to measure the target domain of IRS. Results from student 

cognitive interviews confirmed that an observed score in the test represents a student’s 

reasoning level on the latent trait. High correlation between observed scores (raw scores) 

and IRT estimated scores (universe scores) was another source of evidence supporting 

that an observed score in the test can be generalized to the score in the universe domain. 

Students’ estimated IRT scores represent their standing on the universe domain of 

IRS. It turned out that the IRT estimated scores were relatively precise and standard 

errors of measurement (SEM) were low in the range of -2 to 1 on the latent trait 

continuum. However, item information curves revealed that some items (items 1 and 34, 

and testlets 4 and 6) have low information functions (i.e., high SEM) suggesting the need 

for item revisions. Possible sources of variability, such as different testing conditions and 

students’ familiarity with some items, could also reduce the magnitude of generalizability 

from an observed score to a universe score.  

Evidence to support an extrapolation inference that a score in the universe domain 

can be extrapolated to the target domain was gathered by a think-aloud interview with an 

expert. The kinds of intended reasoning and skills required across the range of test tasks 

were elicited by the items, suggesting the skills being assessed in the tasks are 
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representative of those required to fully perform other tasks in the target domain. Results 

from a factor analysis suggested a unidimensional structure, providing evidence, to some 

extent, that the universe of generalization covers the target domain.  

The inference regarding implication/explanation was examined using experts’ 

qualitative reviews of the test blueprint and the test items. Positive evaluations about the 

comprehensiveness and clearness of the blueprint provided evidence that the test can be 

used to provide useful information for a formative assessment to understand student’s 

current IRS. However, examination of item information functions revealed that there are 

some items that need to be improved in that those items contribute limited information in 

estimating student’s current level of IRS.  

Discussion of the Claims  

As reviewed in the literature, IRS has long been considered important, but 

difficult to develop (e.g., delMas et al., 1999a). In this regard, developing reasoning on 

ISI has been suggested as a “pathway” to help students learn and reason about formal 

concepts of statistical inference (e.g., Ben-Zvi, 2006; Makar & Rubin, 2009). If this 

conjecture that IRS involves two content domains, ISI and FSI, is empirically supported, 

this would provide educators and researchers with information to better develop students’ 

current understanding of IRS.  

In this study, there were claims made regarding the internal structure embedded in 

this test, and claims about test use and score interpretation drawn from the structure. 

Those claims are revisited below in terms of the plausibility based on theoretical 

evidence and empirical evidence.  
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Is IRS Unidimensional or Multi-dimensional?  

The following two claims were specified about the internal structure of the 

proposed test:  

• Claim 1: The test measures students’ level of IRS in two aspects—ISI and 

FSI.  

• Claim 5: The test provides information about students’ level of IRS in the 

aspects of ISI and FSI.  

As it turned out, student’s IRS as measured by this test did not support the 

hypothesized structure of two dimensions represented by ISI and FSI. There are a couple 

of plausible reasons for why the empirical data did not reflect a clear distinction between 

ISI and FSI. First of all, the two content domains of ISI and FSI are not clearly 

distinguished in the literature. Results from a factor analysis indicated that the response 

data were essentially unidimensional with a high correlation between the two domains.  

Given that the items were designed as a two-dimensional structure and that the 

experts agreed that the items reflect this structure, the unidimensional result from 

response data suggest the following explanations of how students use ISI and FSI: A 

student who understands the ideas in FSI probably (1) uses FSI when it is required, (2) 

uses the ideas in FSI when only ISI is needed, or (3) uses both ideas in ISI and FSI when 

either are required. Considering that ISI is foundational to FSI, students with a good 

understanding of FSI might have a good understanding of ISI, and it may be that those 

who do not develop a good understanding of ISI have difficulty with developing FSI.  

Pfannkuch’s (2006b) perspective on statistical inference aligns to this result in 

that she views statistical inference as the ability to interconnect different ideas of 
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descriptive statistics as well as inferential statistics, within an empirical reasoning cycle. 

This implies that students might use both informal and formal methods of statistical 

inference even when they do not need to use formal statistical ideas. This further implies 

that students develop IRS as they interconnect different ideas and integrate them to 

generate appropriate reasoning processes. This aspect of IRS is also reflected in an 

argument suggested by Makar and Rubin (2009): inference is a multi-faceted construct.  

How Useful is this Instrument?  

The following two claims are linked to the issue about uses of the proposed 

assessment. 

• Claim 2: The test measures IRS in representative test domains.  

• Claim 4: The test is functional for the purposes of formative assessment.  

The test domains were specified based on a thorough literature review, and the 

test blueprint was developed laying out important topics and learning goals of each 

domain. Claim 2 was supported by experts’ agreement that the topics and learning goals 

of the blueprint are comprehensive and the items well aligned to each item in the 

blueprint. This indicates that the AIRS can provide useful information for formative 

assessment (Claim 4). 

In formative assessments, teachers evaluate student understanding of course 

materials to help them make better decisions in planning instruction. Teachers can then 

decide whether further review is required or if the students are ready for the introduction 

of new material (Thorndike, 2005). Given that Claim 2 was verified, teachers can refer to 

the test blueprint along with student response data on the AIRS test to identify content 

areas students find difficult to understand. In this way, teachers could use data from 
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student responses on this assessment for formative assessment and provide feedback to 

students to help them learn better.  

Limitations 

While the results of this study supported the claims about the proposed test, there 

are some limitations that need to be considered. One of them concerns limited literature 

on the topic of inferential reasoning in statistics. Although inferential reasoning has been 

studied for decades, the study of statistical inference from teaching and learning 

perspectives is scarce. Due to the short history of statistics education as a discipline, there 

are no agreed upon definitions, content domains, and assessments to measure ISI and FSI 

as separate aspects. As seen in the blueprint- and assessment-review reports of the 

content experts, the reviewers had different opinions regarding the topics that need to be 

assessed. Although the author used the literature to decide which domains would be 

included, there are still arguable issues regarding what topics and learning goals are 

specifically about ISI and FSI.  

Another limitation of the study is a lack of validity evidence based on relations to 

other variables (e.g., convergent and discriminant validity evidence). This study is 

missing this evidence source due to the nonexistence of a criterion measures to provide 

adequate comparisons. The generalization inference in the validity argument would be 

more strongly supported if there were evidence based on relationships with other 

variables as it addresses questions about the degree to which these relationships are 

consistent with the construct underlying the test interpretations (AERA et al., 2002).  

Lastly, there are potential systematic sources of variability in test scores due to 

uncontrolled aspects of test administration. In the large-scale field-testing, instructors had 



 

166 

the flexibility to administer the online test depending on the course schedule, classroom 

environment, and student characteristics. This might result in lack of generalizability 

from the test score to the universe score.  

Teaching Implications 

Although developing the concepts and ideas of IRS has been emphasized in 

teaching introductory statistics (ASA, 2005), many studies reported that students struggle 

with understanding formal concepts and procedures in inferential statistics (e.g., Haller 

and Krauss, 2002). Given that the students who participated in this large-scale assessment 

are representative of students enrolled in college-level introductory statistics courses, it 

would be worthwhile to look at the observed proportion-correct score (used as a measure 

of item difficulty) of each item or testlet to see in what areas college students show good 

understanding or difficulty. Here, the item difficulties were computed as a proportion-

correct score from a CTT perspective instead of an IRT perspective since it is more 

straightforward in interpreting student’s current level of understanding. Table 25 displays 

the item difficulties for each item or testlet.  
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Table 25 

Item Difficulties as Proportion-correct 

Items Asked Independently Items Asked in Testlets 

Items 
Item 

Difficulty 
Items 

(Testlet) 
Item 

Difficulty Items 
Item 

Difficulty 

1  0.46 3 (TL1) 0.88+ 16 (TL4) 0.50 

2 0.44 4 (TL1) 0.77+ 19 (TL5) 0.66 

14 0.47 5(TL1) 0.37* 20 (TL5) 0.59 

17 0.78+ 6 (TL1) 0.21* 21 (TL6) 0.87+ 

18 0.41 7 (TL1) 0.50 22 (TL6) 0.75+ 

23 0.52 8 (TL1) 0.61 24 (TL7) 0.64 

31 0.71+ 9 (TL2) 0.82+ 25 (TL7) 0.35* 

32 0.44 10 (TL2) 0.79+ 26 (TL7) 0.49 

33 0.62 11 (TL2) 0.67 27 (TL8) 0.54 

34 0.15* 12 (TL3) 0.34* 28 (TL8) 0.52 

  13 (TL3) 0.53 29 (TL8) 0.54 

  15 (TL4) 0.39* 30 (TL8) 0.53 

*: items with item difficulty less than 0.40 
+: items with item difficulty greater than 0.70 

Looking at the items with high proportion-correct, students seem to show good 

reasoning for items that asked either about a sample or a population separately. However, 

they tend to show incorrect reasoning if the items require them to connect reasoning 

about a given sample to a distribution of sample statistics and then to make a conclusion 

about a population.  
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For example, the two easiest items were items 3 and 4 shown in Appendix H.2. 

Items 3 and 4, which asked either for a particular sample or for a population as a separate 

question, had high proportion-correct scores. Even though they tend to show good 

understanding of how to set up a null model to examine whether a particular sample is 

unusual or not (item 4), many students didn’t seem to understand what the null model 

represents in a distribution of sample statistics (item 5). They also showed lack of 

understanding of how to quantify unusualness and give a measure to argue that an 

observation is unusual (item 6).  

The items with low proportion-correct (item 5 and 6) may indicate that students 

do not make a connection between an observed sample and the null model to make a 

conclusion about a population. To reason about this inference process correctly, students 

are expected to: (1) recognize what to support or reject (the null model), (2) find evidence 

from the observed results, (3) quantify the extent to which the evidence is unusual, and 

(4) make an argument for rejecting or not rejecting the null model based on the quantified 

measure of unusualness by going back to (1). This entire process was embedded in the set 

of items (question 3 to 8), and students were expected to use informal inferential 

reasoning to answer this set of questions. 

Students’ lack of ability to connect different ideas of IRS and unify them to make 

an appropriate conclusion is consistent with results from a study conducted by Makar and 

Rubin (2009). In characterizing students’ informal statistical inference, these researchers 

found that students’ initial attention to descriptive statistics (e.g., mean) for a sample 

never got back to the problem that would have allowed them to realize the potential of the 

data they collected as evidence for drawing inferences.  



 

169 

Implications for Future Research 

This assessment opened possibilities for future research about inferential 

reasoning in statistics. Further investigation is needed to use the AIRS from a 

longitudinal perspective in a classroom setting. The next step would be to observe 

students’ assessment outcomes at different time points in a course, and to investigate how 

students’ levels on IRS change over time as they learn formal inferential reasoning. This 

type of study could help track students’ IRS from a developmental perspective so that 

students could be provided meaningful feedback.  

There is also a need for more research studies to characterize the IIR associated 

with students’ learning formal inference. It currently is not known how IIR is associated 

with IRS, how IIR affects IRS, and what instructional approaches are needed to develop 

IRS from IIR. There is a need for foundational studies about IIR to understand what kinds 

of informal ideas students have before they learn about formal concepts in statistics and 

how they use those ideas to learn about formal inferential ideas and techniques. 

An improved assessment to measure students’ IRS created in collaboration with 

statistics teachers and test developers would also be an interesting research area. The 

current practice of assessment design and development in introductory statistics courses 

is not well aligned with measurement or psychometric theories. Greater authenticity can 

result when test development is based on the joint consideration of content, item-quality 

and test-quality.  

Conclusion  

Examination of multiple sources of evidence suggest: the newly created AIRS 

measures students’ level of inferential reasoning in statistics (IRS) as a unidimensional 
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construct; the AIRS can provide useful information for formative assessment to 

understand students’ current standing on IRS; and information obtained from the scores 

on this assessment is relatively precise and generalizable to a larger domain.  

Incorporating these conclusions, it is suggested that this study contributes to the 

statistics education research in two ways: 1) This assessment will enable investigation of 

the impact of different approaches to teach the ideas of statistical inference using a 

reliable and valid measure; and 2) The AIRS provides a tool that can be used by 

instructors in statistics classrooms as well as by the statistics education research 

community. With the increasing attention being paid to effective way to teach statistical 

inference in introductory statistics courses these are two important contributions.  

 



 

171 

References 

Aberson, C. L., Berger, D. E., Healy, M. R., Kyle, D. J., & Romero, V. L. (2000). 

Evaluation of an Interactive Tutorial for Teaching the Central Limit Theorem. 

Teaching of Psychology, 27, 289–291.  

Ackerman, T. A. (1992). A didactic explanation of item bias, item impact, and item 

validity from a multidimensional perspective. Journal of Educational 

Measurement, 29, 67–91.  

AERA, APA, NCME. (2002). Standards for educational psychological testing. 

Washington, DC: AERA. 

Altman, D. G. (1991). Practical Statistics for Medical Research. London, England: 

Chapman & Hall.  

American Statistical Association. (2005). GAISE College Report. Retrieved from ASA 

GAISE College Report Web site: 

http://www.amstat.org/education/gaise/GAISECollege.htm 

Aquilonius, B. C. (2005). How do college students reason about hypothesis testing in 

introductory statistics courses. Unpublished Ph.D. Thesis, University of 

California at Santa Barbara. Retrieved August 15, 2010, from 

http://www.stat.auckland.ac.nz/~iase/publications/dissertations/05.Aquilonius.pdf 

Bachman, L. F. (1990). Fundamental considerations in language testing. Oxford, 

England: Oxford University Press.  

Baker, F. (1985). The basic of item response theory. Portsmouth, NH: Heinemann.  

Bakker, A., & Gravemeijer, K. (2004). Learning to reason about distribution. In D. Ben-

Zvi & J. Garfield (Eds.), The Challenge of Developing Statistical Literacy, 



 

172 

Reasoning, and Thinking (pp. 147–168). Dordrecht, The Netherlands: Kluwer 

Academic. 

Bakker, A., Kent, P., Derry, J., Noss, R., & Hoyles, C. (2008). Statistical inference at 

work: Statistical process control as an example. Statistics Education Research 

Journal, 7(2), 130–145.  

Batanero, C. (2000). Controversies around the role of statistical tests in experimental 

research. Mathematical Thinking and Learning, 2(1/2), 75–97.  

Batanero, C., Tauber, L. M., & Sanchez, V. (2004). Students' reasoning about the normal 

distribution. In D. Ben-Zvi & J. Garfield (Eds.), The Challenge of Developing 

Statistical Literacy, Reasoning, and Thinking (pp. 257–276). Dordrecht, The 

Netherlands: Kluwer Academic.  

Beckman, M., Bjornsdottir, A., delMas, R., Everson, M., Garfield, J., Isaak, R., . . . & 

Zieffler, A. (2010). Evaluation report: Building a teaching and learning 

infrastructure. Evaluation conducted by the CATALST group at the University of 

Minnesota. 

Belia, S., Fidler, F., Williams, J., & Cumming, G. (2005). Researchers misunderstand 

confidence intervals and standard error bars. Psychological Methods, 10, 389–

396.  

Ben-Zvi, D. (2006). Scaffolding students' informal inference and argumentation. In A. 

Rossman & B. Chance (Eds.), Proceedings of the Seventh International 

Conference on Teaching Statistics. [CD-ROM]. IASE, The Netherlands: 

International Statistical Institute. Retrieved August 17, 2010, from 

http://www.auckland.ac.nz/~iase/publications/17/2D1_BENZ.pdf 



 

173 

Ben-Zvi, D., & Garfield, J. (2011, July). New approaches to developing reasoning about 

samples and sampling in informal statistical inference. The international 

collaboration of research on statistical reasoning, thinking and literacy (SRTL-7). 

Freudenthal Institute for Science and Mathematics Education, Utrecht University, 

Texel Island The Netherlands.  

Ben-Zvi, D., & Gil, E. (2010). The role of context in the development of students' 

informal inferential reasoning. Proceedings of the Eighth International 

Conference on Teaching Statistics. [CD-ROM]. IASE, Lijbljana, Slovenia, 

Invited Paper. 

Ben-Zvi, D., & Sharett-Amir, Y. (2005). How do primary school students begin to reason 

about distributions? In Reasoning about distributions: A collection of recent 

research studies. Proceedings of the Fourth International Research Forum for 

Statistical Reasoning, Thinking, and Literacy (SRTL-4), Brisbane: University of 

Queensland, 2005. University of Auckland, New Zealand. 

Biehler, R. (2005). Strengths and weaknesses in students’ project work in exploratory 

data analysis. Paper presented at the Fourth Congress of the European Society for 

Research in Mathematics Education, Sant Feliu de Guissols, Spain.  

Biggs, B., & Collis, F. (1982). Evaluating the quality of learning: The SOLO Taxonomy. 

New York, NY: Academic Press.  

Bond, T. G., & Fox, C. M. (2001). Applying the rasch model (2nd). Mahwah, NJ: 

Lawrence Erlbaum.  

Brennan, R. (2001). An essay on the history and future of reliability from the perspective 

of replications. Journal of Educational Measurement, 38, 295–317.  



 

174 

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. 

Bollen & J. Long (Eds.), Testing structural equation models (pp. 136–162). 

Newbury Park, CA: SAGE.  

Carver, R. H. (2006, August). Ambiguity intolerance: an impediment to inferential 

reasoning. Paper presented at the Joint Statistics Meetings, Seattle, WA.  

Carver, R. P. (1978). The case against statistical significance testing. Harvard 

Educational Review, 48(3), 378–399.  

Chance, B. L., & Rossman, A. J. (2001). Sequencing topics in introductory statistics: A 

debate on what to teach when. The American Statistician, 55, 140–144.  

Chance, B., delMas, R., & Garfield, J. (2004). Reasoning about sampling distributions. In 

D. Ben-Zvi & J. Garfield (Eds.), The Challenge of Developing Statistical 

Literacy, Reasoning and Thinking (pp. 295–323). Dordrecht, The Netherlands: 

Kluwer Academic.  

Chapelle, C. A., Enright, M. K., & Jamieson, J. (2010). Does an argument-based 

approach to validity make a difference? Educational Measurement: Issues and 

Practice, 29(1), 3–13.  

Chapelle, C. A., Enright, M. K., & Jamieson, J. M. (2008). Test score interpretation and 

use. In C. A. Chapelle, M. K. Enright, & J. M. Jamieson (Eds.), Building a 

validity argument for the test of English as a foreign language (pp. 1–25). New 

York, NY: Routledge.  

Chen, W., & Thissen, D. (1997). Local dependence indexes for item pairs using item 

response theory. Journal of Educational and Behavioral Statistics, 22(3), 265–

289.  



 

175 

Christensen, R. (2005). Testing Fisher, Neyman, Pearson, and Bayes. The American 

Statistician, 59(2). 

Cobb, G. W. (2007). The introductory statistics course: A Ptolemic curriculum? 

Technology Innovations in Statistics Education, 1(1).  

Cohen, J. (1994). The earth is round (p<.05). American Psychologist, 49(12), 997–1003.  

Collins, L., & Mittag, K. (2005). Effect of calculator technology on student achievement 

in introductory statistics. Statistics Educational Research Journal, 4(1), 7–15.  

Cox, D. R. (2005). Frequentist and Bayesian statistics: A critique (Keynote address). In 

Statistical Problems in Particle Physics, Astrophysics and Cosmology, Oxford, 

England, 2005 (pp. 3–6). University of Oxford. 

Cronbach, L. J. (1971). Educational measurement. In R. L. Thorndike (Ed.), Test 

validation (pp. 443–507). Washington, DC: American Council on Education.  

Cronbach, L. J. (1988). Five perspectives of the validity argument. In H. Wainer & H. I. 

Braun (Eds.), Test validity (pp. 3–18). Hillsdale, NJ: Lawrence Erlbaum.  

Daniel, L. G. (1998). Statistical significance testing: A historical overview of misuse and 

misinterpretation with implications for the editorial policies of educational 

journals. Research in the Schools, 5(2), 23–32.  

de Ayala, R. J. (1994). The influence of dimensionality on the graded response model. 

Applied Psychological Measurement, 18, 155–170.  

de Ayala, R. J. (1995). The influence of dimensionality on estimation in the partial credit 

model. Educational and Psychological Measurement, 55, 407–422.  

de Ayala, R. J. (2009). The theory and practice of item response theory. New York, NY: 

Guilford Press.  



 

176 

delMas, R., & Liu, Y. (2005). Exploring students' conceptions of the standard deviation. 

Statistics Education Research Journal, 4(1), 55–82.  

delMas, R. C., Garfield, J. B., & Chance, B. L. (1999). A model of classroom research in 

action: developing simulation activities to improve students' statistical reasoning. 

Journal of Statistics Education, 7(3). 

http://www.amstat.org/publications/jse/secure/v7n3/delmas.cfm 

delMas, R. C., Garfield, J.B., Ooms, A., & Chance, B. L. (2007). Assessing Students' 

Conceptual Understanding after a First Course in Statistics. Statistics Educational 

Research Journal, 6(2), 28–58. Retrieved September 10, 2010, from 

http://www.stat.auckland.ac.nz/~iase/serj/SERJ6(2)_delMas.pdf 

delMas, R., Garfield, J., & Chance, B. (1999). Assessing the effects of a computer 

microworld on statistical reasoning. Journal of Statistics Education, 7(3).  

delMas, R., Garfield, J., & Chance, B. (1999). Exploring the role of computer simulations 

in developing understanding of sampling distributions. Paper presented at the 

Annual Meeting of the American Educational Research Association, Montreal, 

Canada.  

Earley, M. (2001). Improving statistics education through simulations – the case of the 

sampling distribution. Paper presented at the Annual Meeting of the Mid-Western 

Educational Research Association, October 24–27.  

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, 

NJ: Lawrence Erlbaum Associates, Publishers.  

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data 

(revised). Cambridge, MA: MIT Press.  



 

177 

Falk, R. (1986). Misconceptions of statistical significance. Journal of Structural 

Learning, 9, 83–96. 

Falk, R., & Greenbaum, C. W. (1995). Significance tests die hard: The amazing 

persistence of a probabilistic misconception. Theory and Psychology, 5, 75–98.  

Fennessy, L. M. (1995). The impact of local dependencies on various IRT outcomes. 

Ph.D. dissertation, University of Massachusetts at Amherst.  

Ferrara, S., Duncan, T., Freed, R., Velez-Paschke, A., McGivern, J., Mushlin, S., . . . & 

Westphalen, K. (2004). Examining test score validity by examining item construct 

validity: Preliminary analysis of evidence of the alignment of targeted and 

observed content, skills, and cognitive processes in a middle school science 

assessment. Paper presented at the annual meeting of the American Educational 

Research Association, San Diego, CA.  

Ferrara, S., Duncan, T., Perie, M., Freed, R., McGivern, J., & Chilukuri, R. (2003). Item 

construct validity: Early results from a study of the relationship between intended 

and actual cognitive demands in a middle school science assessment. Paper 

presented in S. Ferrara (Chair). Cognitive and Other Influences on Responding to 

Science Test Items: What Is and What Can Be. A symposium conducted at the 

annual meeting of the American Educational Research Association, Chicago, IL. 

Fidler, F., Thomason, N., Cumming, G., Finch, S., & Leeman, J. (2004). Editors can lead 

researchers to confidence intervals, but can’t make them think: Statistical reform 

lessons from medicine. Psychological Science, 15, 119–126. 



 

178 

Fries, J., Bruce, B., & Cella, D. (2005). The promise of PROMIS: Using item response 

theory to improve assessment of patient-reported outcomes. Clinical and 

Experiment Rheumatology, 23(5, Suppl. 39), S53–S57.  

Garfield, J. (1998). The Statistical Reasoning Assessment: Development and Validation 

of a Research Tool. In L. Pereira Mendoza (Ed.), Proceedings of the Fifth 

International Conference on Teaching Statistics (pp. 781–786). Voorburg, The 

Netherlands: International Statistical Institute. 

Garfield, J. (2002). The challenge of developing statistical reasoning. Journal of Statistics 

Education, 10(3).  

Garfield, J., & Ben-Zvi, D. (2008). Developing Students Statistical Reasoning: 

Connecting Research and Teaching Practice. Dordrecht, The Netherlands: 

Springer.  

Garfield, J., delMas, R., & Chance, B. (2002). ARTIST: Assessment Resource Tools for 

Improving Statistical Thinking, [Online]. www.gen.umn.edu/artist/ 

Garfield, J., delMas, R., & Zieffler, A. (in review). Developing statistical modelers and 

thinkers in an introductory, tertiary-level statistics course. ZDM: The 

International Journal on Mathematics Education. 

Garfield, J., delMas, R., & Zieffler, A. (2007). AIMS project. Retrieved from 

http://www.tc.umn.edu/~aims/ 

Gigerenzer, G. (1993). The superego, the ego, and the id in statistical reasoning. In G. 

Keren & C. Lewis (Eds.), A handbook for data analysis in the behavioral 

sciences: Methodological issues (pp. 311–339). Hillsdale, NJ: Erlbaum.  



 

179 

Gigerenzer, G., Swijtink, A., Porter, T., Daston, L., Beatty, J., & Kruger, L. (1989). The 

empire of chance: How probability changed science and everyday life. 

Cambridge, England: Cambridge University Press.  

Green, B. F., Bock, R. D., Humphreys, L. D., Linn, R. L., & Reckase, M. D. (1984). 

Technical guidelines for assessing computerized adaptive tests. Journal of 

Educational Measurement, 21, 347–360.  

Greenwald, A. G. (1975). Consequences of prejudice against the null hypothesis. 

Psychological Bulletin, 82, 1–20.  

Haertel, E. H. (2006). Reliability. In R. L. Brennan (Ed.), Educational measurement (pp. 

65–110). Westport, CT: American Council on Education/Praeger.  

Haladyna, T. M. (2004). Developing and validating multiple-choice test items (3rd). 

Mahwah, NJ: Lawrence Erlbaum.  

Haller, H., & Krauss, S. (2002). Misinterpretations of significance: A problem students 

share with their teachers? Methods of Psychological Research, 7(1), 1–20.  

Halpin, P. F., & Stam, H. J. (2006). Inductive inference or inductive behavior: Fisher and 

Neyman-Pearson approaches to statistical testing in psychological research 

(1940–1960). American Journal of Psychology, 119(4), 625–653.  

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: principles and 

applications. Boston, MA: Kluwer/Nijhoff.  

Hertwig, R., & Gigerenzer, G. (1999). The "conjunction fallacy" revisited: How 

intelligent inferences look like reasoning errors. Journal of Behavioral Decision 

Making, 12, 275–305.  



 

180 

Hibbison, E. P. (1991). The ideal multiple choice question: A protocol analysis. Forum 

for reading, 22(2), 36–41.  

Hoekstra, R., Kiers, H., & Johnson, A. (2010). The influence of presentation on the 

interpretation of inferential results. Proceedings of the Eighth International 

Conference on Teaching Statistics. [CD-ROM]. IASE, Lijbljana, Slovenia. 

Holcomb, J., Chance, B., Rossman, A., Tietjen, E., & Cobb, G. (2010). Introducing 

concepts of statistical inference via randomization tests. In Data and context in 

statistics education: Towards an evidence-based society (ICOTS8), Voorburg, 

The Netherlands, 2010 (pp. CD-ROM). International Statistical Institute. 

Hong, E., & O’Neil, H. F., Jr. (1992). Instructional strategies to help learners build 

relevant mental models in inferential statistics. Journal of Educational 

Psychology, 84(2), 150–159.  

House, E. R. (1980). Evaluating with validity. Beverly Hills, CA: SAGE.  

Hoyle, R. H. (1995). Structural equation modeling approach: Basic concepts and 

fundamental issues. In R. H. Hoyle (Ed.), Structural equation modeling: 

Concepts, issues, and applications (pp. 1–15). Thousand Oaks, CA: SAGE.  

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure 

analysis: Conventional criteria versus new alternatives. Structural Equation 

Modeling, 6, 1–55.  

Hubbard, R., & Bayarri, M. J. (2003). Confusion over measures of evidence (p's) versus 

errors (a's) in classical statistical testing. The American Statistician, 57(3), 171–

182.  



 

181 

Innabi, H. (1999). Students’ judgment of the validity of societal statistical generalization. 

In A. Roserson (Ed.), Proceedings of the international conference on mathematics 

education into the 21st Century: Societal challenges, issues and approaches.  

Jones, G. A., Thornton, C. A., Langrall, C. W., Mooney, E. S., Perry, B., & Putt, I. J. 

(2000). A framework for characterizing children's statistical thinking. 

Mathematical Thinking and Learning, 2(4), 269–307.  

Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of 

representativeness. Cognitive Psychology, 3, 430–454.  

Kahneman, D., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and 

biases, New York, NY: Cambridge University Press. 

Kalinowski, P. (2010). Identifying misconceptions about confidence intervals. 

Proceedings of the Eighth International Conference on Teaching Statistics. [CD-

ROM]. IASE, Lijbljana, Slovenia, Refereed paper.  

Kane, M. T. (1992). An argument based approach to validity. Psychological Bulletin, 

112, 527–535.  

Kane, M. T. (2001). Current concerns in validity theory. Journal of Educational 

Measurement, 38, 319–342.  

Kane, M. T. (2002). Validating high-stakes testing programs. Educational Measurement: 

Issues and Practice, 21, 31–41.  

Kane, M. T. (2006a). Content-related validity evidence. In S. M. Downing & T. M. 

Haladyna (Eds.), Handbook of test development (pp. 131–154). Mahwah, NJ: 

Lawrence Erlbaum.  



 

182 

Kane, M. T. (2006b). Validation. In R. L. Brennan (Ed.), Educational measurement (pp. 

17–64). American Council on Education/Praeger.  

Kane, M. T., Crooks, T. J., & Cohen, A. S. (1999). Validating measures of performance. 

Educational Measurement: Issues and Practice, 19(2), 5–17.  

Kaplan, D. (2007). Computing and introductory statistics. Technology Innovations in 

Teaching Statistics, 1(1).  

Kaplan, J. J. (2009). Effect of belief bias on the development of undergraduate students' 

reasoning about inference. Journal of Statistics Education, 17(1). Retrieved from 

http://www.amstat.org/publications/jse/v17n1/kaplan.html 

Kirk, R. E. (2001). Promoting good statistical practices: Some suggestions. Educational 

and Psychological Measurement, 61(2), 213–218.  

Konold, C. (1991). Understanding students' beliefs about probability. In E. V. Glaserfeld 

(Ed.), Radical Constructivism in Mathematics Education (pp. 139–156). 

Dordrecht: Kluwer Academic. 

Konold, C. (1994). Understanding probability and statistical inference through 

resampling. In L. Brunelli & G. Cicchitelli (Eds.), Proceedings of the First 

Scientific Meeting (of the IASE; pp. 199–211). Perugia, Italy: Universita di 

Perugia. 

Konold, C. (2005). Exploring data with TinkerPlots. Emeryville, CA: Key Curriculum 

Press. 

Konold, C., Pollstek, A., Well, A., Lohmeier, J., & Lipson, A. (1993). Inconsistencies in 

students' reasoning about probability. Journal for Research in Mathematics 

Education, 24(5), 392–414.  



 

183 

Krauss, S., & Wassner, C. (2002). How significance tests should be presented to avoid 

the typical misinterpretations. Proceedings of the Sixth International Conference 

on Teaching Statistics. [CD-ROM]. IASE, Cape Town, South Africa, Retrieved 

September 15, from  

http://www.stats.org.uk/statistical-inference/KraussWassner2002.pdf 

Kyburg, H. E. (1974). The logical foundations of statistical inference. Dordrecht, The 

Netherlands: Reidel.  

Landis, R., & Koch, G. (1977). The measurement of observer agreement for categorical 

data. Biometrics, 33, 159–174. 

Lane-Getaz, S. (2007). Development and validation of a research-based assessment: 

reasoning about P-values and statistical significance. Ph.D. dissertation, 

University of Minnesota. 

Lane-Getaz, S. (2010). Linking the randomization test to reasoning about P-values and 

statistical significance. In Data and context in statistics education: Towards an 

evidence-based society, Proceedings of the Eighth International Conference on 

Teaching Statistics. [CD-ROM]. IASE, Lijbljana, Slovenia. 

Lane, D. M., & Tang, Z. (2000). Effectiveness of simulation training on transfer of 

statistical concepts. Journal of Educational Computing Research, 22(4), 383–396.  

Lavigne, N. C., Salkind, S. J., & Yan, J. (2008). Exploring college students' mental 

representations of inferential statistics. Journal of Mathematical Behavior, 27, 

11–32.  

Lehman, E. L. (1991). Testing statistical hypotheses. New York, NY: Springer.  



 

184 

Lipson, A. (2002). The role of computer based technology in developing understanding 

of the concept of sampling distribution. Proceedings of the Sixth International 

Conference on Teaching Statistics, Voorburg, The Netherlands, 2002. 

International Statistical Institute. 

Lipson, A. (2003). The role of the sampling distribution in understanding statistical 

inference. Mathematical Educational Research Journal, 15(3), 270–287.  

Lipson, K., Kokonis, S., & Francis, G. (2003). Investigation of students' experiences with 

a web-based computer simulation. Proceedings of the 2003 IASE/ISI Satellite 

Conference on Statistics Education and the Internet, Berlin [CD-ROM]. 

Voorburg, The Netherlands: International Statistical Institute. Retrieved October 

10, 2010, from http://www.stat.auckland.ac.nz/~iase/publications/6/Lipson.pdf 

Liu, Y. (2005). Teachers' understandings of probability and statistical inference and their 

implications for professional development. Unpublished Ph.D. Thesis. Retrieved 

from: 

http://www.stat.auckland.ac.nz/~iase/publications/dissertations/05/liu.Dissertation

.pdf 

Liu, Y., & Thompson, P. (2009). Mathematics teachers’ understandings of proto-

hypothesis testing. Pedagogies, 4(2), 129–138.  

Lord, F. M. (1980). Applications of item response theory to practical testing problems. 

Hillsdale, NJ: Lawrence Erlbaum.  

Lunsford, M. L., Rowell, G. H., & Goodson-Espy, T. (2006). Classroom research: 

Assessment of student understanding of sampling distributions of means and the 



 

185 

Central Limit Theorem in post-calculus probability and statistics classes. Journal 

of Statistics Education [On line], 14(3). 

Makar, K. (2009, July). The Role of Context and Evidence in Informal Inferential 

Reasoning. The international collaboration of research on statistical reasoning, 

thinking and literacy (SRTL-6). University of Queensland, Brisbane, Australia. 

Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical 

inference. Statistics Educational Research Journal, 8(1), 82–105. Retrieved from 

http://www.stat.auckland.ac.nz/~iase/serj/SERJ8(1)_Makar_Rubin.pdf 

Martinez, M. (1999). Cognition and the question of test item format. Educational 

Psychology, 34, 207–218.  

McDonald, R. (1997). Goodness of approximation in the linear model. In LL. Harlow, S. 

A. Mulaik, & J. H. Steiger (Eds.), What if there were no significance tests? (pp. 

199–219). Hillsdale, NJ: Erlbaum.  

Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal 

reasoning among children of different grade, ability, and knowledge levels. 

Cognition and Instruction, 14(2), 139–178.  

Meehl, P. E. (1997). The problem is epistemology, not statistics: Replace significance 

tests by confidence intervals and quantify accuracy of risky numerical predictions. 

In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no 

significance tests? (pp. 391–423). Hillsdale, NJ: Erlbaum.  

Meletiou-Mavrotheris, M. (2004). Technological tools in the introductory statistics 

classroom: effects on student understanding of inferential statistics. International 



 

186 

Journal of Computers for Mathematical Learning, Dordrecht, 2004 (pp. 265–

297). Kluwer Academic. 

Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational measurement (pp. 13–104). 

New York, NY: American Council on Education/Praeger.  

Messick, S. (1995). Validity of psychological assessment: Validation of inferences from 

persons' responses and performances as scientific inquiry into score meaning. 

American Psychologist, 50, 741–749.  

Metz, K. E. (1999). Why sampling works or why it can't: Ideas of young children 

engaged in research of their own design. In R. Hitt & M. Santos (Eds.), 

Proceedings of the Twenty-First Annual Meeting of the North American Chapter 

of the International Group for the Psychology of Education (pp. 492–498). 

Columbus, OH, 1999 ERIC Clearinghouse of Science, Mathematics, and 

Environmental Education. 

Mislevy, R. J. (2003). Substance and structure in assessment arguments. Law, 

Probability, and Risk, 2, 237–258.  

Mittag, K. C., & Thompson, B. (2000). A national survey of AERA members' 

perceptions of statistical significance tests and other statistical issues. Educational 

Researcher, 29(4), 14–20.  

Mokros, J., & Russell, S. J. (1995). Children's concepts of average and 

representativeness. Journal for Research in Mathematics Education, 26(1), 20–

39.  

Moore, D. S. (2007). The basic practice of statistics (5th edition). New York, NY: W. H. 

Freeman.  



 

187 

Moore, D., & McCabe, G. (2006). Introduction to the practice of statistics (4th ed.). New 

York, NY: Freeman.  

Moore, D., Notz, W., & Miller, J. (2008). Instructor’s Manual and Test Bank with 

Solutions for Statistics Concepts and Controversies(7th ed.). New York, NY: 

Freeman. 

Muraki, E., & Lee, Y. (2001). Detecting local item dependency in the TOEFL reading 

comprehension section: an application of the full-information item factor 

analysis. Draft research report.  

Muthén, B. O., du Toit, S. H. C., & Spisic, D. (1997). Robust inference using weighted 

least squares and quadratic estimating equations in latent variable modeling with 

categorical and continuous outcomes. Unpublished manuscript.  

Muthén, L. K., & Muthén, B. O. (2010). Mplus: Statistical analysis with latent variables 

(Version 6; 6th ed.). Los Angeles, CA: Muthén and Muthén.  

National Council of Teachers of Mathematics (2000). Principles and Standards for 

School Mathematics. Reston, VA: NCTM. 

Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and 

continuing controversy. Psychological Methods, 5(2), 241–301.  

Noll, J. (2011). Graduate teaching assistants’ statistical content knowledge of sampling. 

Statistics Education Research Journal, 10(2), 48–74.  

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York, NY: 

McGraw-Hill. 



 

188 

Ohlsson, S. (1990). Trace analysis and spatial reasoning: An example of intensive 

cognitive diagnosis and its implications for testing. In N. Frederiksen, R. Glaser, 

A. Lesgold, & M. G. Shafto (Eds.), Diagnostic Monitoring of Skill and 

Knowledge Acquisition. Hillsdale, NJ: Erlbaum.  

Paparistodemou, E., & Meletious-Mavrotheris, M. (2008). Developing young students' 

informal inference skills in data analysis. Statistics Education Research Journal, 

7(2), 83–106.  

Pfaff, T. J., & Weinberg, A. (2009). Do hands-on activities increase student 

understanding?: A case study. Journal of Statistics Education, 17(3). Retrieved 

from http://www.amstat.org/publications/jse/v17n3/pfaff.html.  

Pfannkuch, M. (2005). Probability and statistical inference: How can teachers enable 

learners to make the connection? In G. Jones (Ed.), Exploring probability in 

school: Challenges for teaching and learning (pp. 267–294). Dordrecht, The 

Netherlands: Kluwer Academic.  

Pfannkuch, M. (2006a). Comparing box plot distributions: A teacher's reasoning. 

Statistics Education Research Journal, 5(2), 27–45.  

Pfannkuch, M. (2006b). Informal inferential reasoning. Proceedings of the Seventh 

International Conference on Teaching Statistics. Voorburg, The Netherlands: 

International Statistical Institute. Retrieved from 

http://www.stat.auckland.ac.nz/~iase/publications/17/6A2_PFAN.pdf  

Pfannkuch, M. (2007, October). Year 11 students’ informal inferential reasoning: A case 

study about the interpretation of box plots. International Electronic Journal of 

Mathematical Education. 2(3), 149–167.  



 

189 

Phillips, L. D. (1973). Bayesian statistics for social scientists. London, England: Nelson.  

Pratt, D. (2007, August). Reasoning about Statistical Inference: Innovative Ways of 

Connecting Chance and Data. The international collaboration of research on 

statistical reasoning, thinking and literacy (SRTL-5). University of Warwick, 

England.  

Pratt, D., Johnston-Wilder, P., Ainley, J., & Mason, J. (2008). Local and global thinking 

in statistical inference. Statistics Education Research Journal, 7(2).  

Ramsey, F., & Schafer, D. (2002). The statistical sleuth: A course in methods of data 

analysis (2nd ed.). Belmont, CA: Duxbury Press.  

Reading, C. (2007, August). Cognitive development of reasoning about inference. 

Discussant reaction presented at the Fifth International Research Forum on 

Statistical Reasoning, Thinking and Literacy (SRTL-5), University of Warwick, 

England. 

Reckase, M. D. (1985). The difficulty of test items that measure more than one ability. 

Applied Psychological Measurement, 9, 401–412.  

Reed-Rhods, T., Murphy, T. J., & Terry, R. (2006). The Statistics Concept Inventory: An 

Instrument for Assessing Student Understanding of Statistics Concepts", 

SIGMAA on Statistics Education session First Steps for Implementing the 

Recommendations of the Guidelines for Assessment and Instruction in Statistics 

Education (GAISE) College Report, Joint Mathematics Meetings, San Antonio, 

January 2006. 

Rizopoulos, D. (2012). Package 'ltm' (Version 09-7). Retrieved from http://cran.r-

project.org/web/packages/ltm/ltm.pdf 



 

190 

Rodriguez, M. C. (2003). Construct equivalence of multiple-choice and constructed-

response items: a random effects synthesis of correlations. Journal of Educational 

Measurement, 40(2), 163–184.  

Rosenthal, R. (1993). Cumulating evidence. In G. Keren (Ed.), A handbook of data 

analysis in the behavioral sciences: Methodological issues (pp. 519–559). 

Hillsdale, NJ: Erlbaum. 

Rosnow, R. L., & Rosenthal, R. (1989). Statistical procedures and the justification of 

knowledge in psychological science. American Psychologist, 44(10), 1276–1284.  

Rossman, A. (2008). A statistician's view on the concept of inferential reasoning. 

Statistics Education Research Journal, 7(2), 5–19.  

Rossman, A. (2008). Reasoning about informal statistical inference: one statistician's 

view. Statistics Education Research Journal, 7(2), 5–19. Retrieved from 

http://www.stat.auckland.ac.nz/serj 

Rossman, A., Chance, B., Cobb, G., & Holcomb, J. (2008). CSI project. Retrieved from 

http://statweb.calpoly.edu/csi/ 

Rubin, A., Bruce, B., & Tenney, Y. (1991). Learning about sampling: Trouble at the core 

of statistics. In D. Vere-Jones (Ed.), Proceedings of the Third International 

Conference on Teaching Statistics (pp. 314–319). Dunedin, New Zealand: 

International Statistical Institute.  

Rubin, A., Hammerman, J., & Konold, C. (2006). Exploring informal inference with 

interactive visualization software. Proceedings of the Seventh International 

Conference on Teaching Statistics, Voorburg, The Netherlands: International 

Statistical Institute. 



 

191 

Saldanha, L. (2004). "Is this sample unusual?": An investigation of students exploring 

connections between sampling distributions and statistical inference. Unpublished 

Ph.D. Thesis, Vanderbilt University. 

Saldanha, L., & Thompson, P. (2002). Conceptions of sample and their relationship to 

statistical inference. Educational Studies in Mathematics, 51, 257–270.  

Saldanha, L., & Thompson, P. (2006). Investigating statistical unusualness in the context 

of a resampling activity: students exploring connections between sampling 

distributions and statistical inference. In A. Rossman & B. Chance (Eds.), 

Proceedings of the Seventh International Conference on Teaching Statistics. [CD-

ROM]. IASE, The Netherlands: International Statistical Institute.  

Saldanha, L., & Thompson, P. (2007, October). Exploring connections between sampling 

distributions and statistical inference: An analysis of students’ engagement and 

thinking in the context of instruction involving repeated sampling. International 

Electronic Journal of Mathematics Education, 2(3), 270–297.  

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded 

scores. Psychometrika Monograph Supplement (17).  

Schafer, D. (1993). Interpreting statistical significance and nonsignificance. Journal of 

Experimental Education, 61, 383–387.  

Schmidt, F. (1996). Statistical significance testing and cumulative knowledge in 

psychology: Implications for the training of researchers. Psychological Methods, 

1(2), 115–129.  



 

192 

Schmidt, F., & Hunter, J. (1997). In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), 

Eight common but false objections to the discontinuation of significance testing in 

the analysis of research data. Hillsdale, NJ: Erlbaum.  

Schneider, M., Huff, K., Egan, K., Tully, M., & Ferrara, S. (2010). Aligning achievement 

level descriptors to mapped item demands to enhance valid interpretations of 

scale scores and inform item development. In S. Ferrara & K. Huff (Chairs). 

Cognition and Valid Inferences About student Achievement: Aligning Items with 

Cognitive and Proficiency Targets. Cognition and Assessment SIG symposium 

conducted at the annual meeting of the American Educational Research 

Association, Denver, CO. 

Schwartz, D. L., Goldman, S. R., Vye, N. J., Barron, B. J., & the Cognition Technology 

Group at Vanderbilt (1998). In S. Lajoie (Ed.), Aligning everyday and 

mathematical reasoning: The case of sampling assumptions (pp. 233–273). 

Hillsdale, NJ: Erlbaum.  

Sedlemeier, P., & Gigerenzer, G. (1989). Do studies of statistical power have an effect on 

the power of studies? Psychological Bulletin, 105(2), 309–316.  

Sedlemeier, P., & Gigerenzer, G. (1997). Intuitions about sample size: The empirical law 

of large numbers. Journal of Behavior Decision Making, 10, 33–51.  

Shavelson, R. J., & Webb, N. M. (1991). Generalizability theory: A Primer. Newbury 

Park, CA: SAGE.  

Simon, J. L. (1976). Probability and statistics: Experimental results of a radically 

different teaching method. The American Mathematical Monthly, 83(9), 733–739.  



 

193 

Sireci, S. G. (2007). On validity theory and test validation. Educational Researcher, 36, 

477–481.  

Sireci, S. G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet-based tests. 

Journal of Educational Measurement, 28(3), 237–247.  

Smith, T. M. (2008). An investigation into student understanding of statistical hypothesis 

testing. Unpublished Ph.D. dissertation, University of Maryland. 

Sorto, M. A. (2006). Identifying content knowledge for teaching statistics. In A. Rossman 

& B. Chance (Eds.), Proceedings of the Seventh International Conference on 

Teaching Statistics. [CD-ROM]. IASE, The Netherlands: International Statistical 

Institute.  

Sotos, A. E. C., Vanhoof, S., den Noortgate, W. V., & Onghena, P. (2007). Students' 

misconceptions of statistical inference: A review of the empirical evidence from 

research on statistics education. Educational Research Review, 2, 98–113.  

Sowey, E. R. (2005). From a logical point of view: an illuminating perspective in 

teaching statistical inference. International Journal of Mathematical Education in 

Science and Technology, 36, 801–811.  

Stohl, H., & Tarr, J. E. (2002). Developing notions of inference using probability 

simulation tools. Journal of Mathematical Behavior, 21, 319–337.  

Stout, W. (1987). A nonparametric approach for assessing latent trait unidimensionality 

assessment. Psychometrika, 52(4), 589–617.  

Thissen, D., & Wainer, H. (2001). Test Scoring (1st). Mahwah, NJ: Routledge.  



 

194 

Thissen, D., Steinberg, L., & Mooney, J. (1989). Trace lines for testlets: A use of 

multiple-categorical response models. Journal of Educational Measurement, 26, 

247–260.  

Thissen, D., Wainer, H., & Wang, X. B. (1994). Are tests comprising both multiple-

choice and free-response items necessarily less unidimensional than multiple-

choice tests? An analysis of two tests. Journal of Educational Measurement, 31, 

113–123.  

Thompson, B. (1989). Asking “what if” questions about significance tests. Measurement 

and Evaluation in Counseling and Development, 61, 334–349.  

Thompson, B. (1996). AERA editorial policies regarding statistical significance testing: 

Three suggested reforms. Educational Researcher, 25(2), 26–30.  

Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding 

concepts and applications. Washington, DC: American Psychological 

Association.  

Thompson, P. (2004, April). Why statistical inference is hard to understand. Paper 

presented at the Annual Meeting of the American Educational Research 

Association, San Diego, CA.  

Thompson, P., Liu, Y., & Saldanha, L. (2007). In M. Lovett & P. Shaw (Eds.), Intricacies 

of statistical inference and teachers' understandings of them (pp. 207–231). 

Mahwah, NJ: Erlbaum.  

Thurstone, L. L. (1928). Attitudes can be measured. American Journal of Sociology, 33, 

529–554.  



 

195 

Toulmin, S. (1958). The uses of argument. Cambridge, England: Cambridge University 

Press.  

Traub, R. E., & Fisher, C. W. (1977). On the equivalence of constructed-response and 

multiple-choice tests. Applied Psychological Measurement, 1, 355–369. 

Tversky, A., & Kahneman, D. (1971). Belief in the law of small numbers. Psychological 

Bulletin, 76, 105–110. (Reprinted in D. Kahneman, P. Slovic & A. Tversky 

[1982] Judgment under uncertainty: Heuristics and biases. Cambridge University 

Press.) 

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. 

Science, 184, 1124–1131. 

Upton, G., & Cook, I. (2008). Oxford Dictionary of Statistics (2nd). Retrieved October 

12, 2010, from http://www.oxfordreference.com.floyd.lib.umn.edu.  

Vallecillos, A. (1999). Some empirical evidences on learning difficulties about testing 

hypotheses. In Proceedings of the 52 session of the International Statistical 

Institute (pp. 201–204). Helsinki: International Statistical Institute. Tome 58, 

Book 2. 

Vallecillos, A. (2002). Empirical evidence about understanding of the level of 

significance concept in hypotheses testing by university students. Themes in 

Education, 3(2), 183–198.  

Vallecillos, A., & Batanero, C. (1997). Conditional probability and the level of 

significance in tests of hypotheses. In Proceedings of the 20th conference of the 

International Group for the Psychology of mathematics education, Valencia, 

Spain, 1997 (pp. 271–278). University of Valencia. 



 

196 

Vanhoof, S., Sotos, A., Onghena, P., & Verschaffel, L. (2007). Students’ reasoning about 

sampling distribution before and after the sampling distribution activity. In 

Proceedings of the 56 session of the International Statistical Institute, Lisbon, 

Spain, International Statistical Institute.  

Wagner, D. A., & Gal, I. (1991). Project STARC: Acquisition of statistical reasoning in 

children. (Annual Report: Year 1, NSF Grant No. MDR90-50006). Philadelphia, 

PA: Literacy Research Center, University of Pennsylvania.  

Wainer, H. (1995). Precision and differential item functioning on a testlet-based test: The 

1991 Law School Admissions Test as an example. Applied Psychological 

Measurement, 8(2), 157–187. 

Wainer, H., & Robinson, D. H. (2003). Shaping up the practice of null hypothesis 

significance testing. Educational Researcher, 32(7), 22–30.  

Wainer, H., & Thissen, D. (1996). How is reliability related to the quality of test scores? 

What is the effect of local dependence on reliability? Educational Measurement: 

Issues and Practice, 15, 22–29.  

Watson, J., & Moritz, J. (2000). Developing concepts of sampling. Journal for Research 

in Mathematics Education, 31(1), 44–70.  

Watson, J. M. (2004). Chapter 12. Developing reasoning about samples. In D. Ben-Zvi & 

J. Garfield (Eds.), The Challenge of Developing Statistical Literacy, Reasoning, 

and Thinking (pp. 277–294). Dordrecht, The Netherlands: Kluwer Academic. 

Watson, J. M., & Moritz, J. B. (2000). Development of understanding of sampling for 

statistical literacy. Journal of Mathematical Behavior, 19(1), 109–136.  

West, W. (2011). Textbooks 2.0. Joint Statistical Meetings, August 1, 2011. 



 

197 

Well, A., Pollastek, A., & Boyce, S. (1990). Understanding of the effects of sample size 

on the variability of the mean. Organizational Behavior and Human Decision 

Processes, 47, 289–312.  

Wild, C.K., Pfannkuch, M., Regan, M., & Horton, N. J. (2011). Towards more accessible 

conceptions of statistical inference. J. Royal Statistical Society A. 174, Part 2, 1–

23. Retrieved November 7, 2010, from 

http://www.rss.org.uk/pdf/Wild_Oct._2010.pdf  

Wilkerson, M., & Olson, J. R. (1997). Misconceptions about sample size, statistical 

significance, and treatment effect. The Journal of Psychology, 131(6), 627–631.  

Williams, A. M. (1999). Novice students' conceptual knowledge of statistical hypothesis 

testing. In J.M. Truran & K.M. Truran (Eds.), Making the difference: Proceedings 

of the Twenty-second Annual Conference of the Mathematics Education Research 

Group of Australasia (pp. 554–560). Adelaide, South Australia: MERGA. 

Williams, A. M. (1999). Students' understanding of hypothesis testing: the case of the 

significance concept. In F. Biddulph & K. Carr (Eds.), People in Mathematics 

Education: Proceedings of the Twentieth Annual Conference of the Mathematics 

Education Research Group of Australasia (pp. 585–591). Rotorua, New Zealand, 

MERGA. 

Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and 

future directions. Psychological Methods, 12(1), 58–79.  

Yen, W. M. (1993). Scaling performance assessments: Strategies for managing local item 

dependence. Journal of Educational Measurement, 30(3), 187–213.  



 

198 

Zenisky, A., Hambleton, R., & Sireci, S. (1999). Effects of local item dependence on the 

validity of IRT item, test, and ability statistics. Washington, DC: Association of 

American Medical Colleges.  

Zieffler, A., Garfield, J., delMas, R., Isaak, R., Ziegler, L., & Le, L. (2011). How do 

tertiary students reason about samples and sampling in the context of a modeling 

and simulation approach to informal inference? Paper presented at the Seventh 

International Research Forum on Statistical Reasoning, Thinking, and Literacy 

(SRTL-7). Texel Island, The Netherlands. 

Zieffler, A., Garfield, J., delMas, R., & Reading, C. (2008). A framework to support 

research on informal inferential reasoning. Statistics Educational Research 

Journal, 7(2), 40–58. 

Ziegler, L. (2012). The effect of length of an assessment item on college student 

responses on an assessment of learning outcomes for introductory statistics. 

Unpublished manuscript. A pre-dissertation paper, University of Minnesota. 

 



 

 

199 

Appendix A 

Studies on Statistical Inference 

Table A-1 

Studies on Foundations of Statistical Inference, Formal Statistical Inference, and Informal Statistical Inference  

Studies [number of 
studies] Sample size Students’ Grade Level Design 

Instruments/Method 
of Data Collection Response Methods 

Aberson et al. (2000) 111 Undergraduates and 
graduates  

Quasi-experimental 
study; 
Pre- and posttest  

Quizzes and student 
ratings on their 
learning  

Pre- and post-test: 
unclear  
Student rating: rating 
scale 

Aquilonius (2005) 16 College students 1 group posttest  Classroom 
observation 

 

Bakker et al. (2008) 10 Employees  1 group posttest Audio recordings, 
workplace artifacts, a 
questionnaire, and 
interview 

 

Batanero (2004) 117 Undergraduates  1 group; 
Pre- and posttest 

Pretest: SRA (Konold 
& Garfield, 1993); 
posttest: questionnaire  

Pretest: Multiple 
choice 
posttest: Open-ended 
questions 

(cont.) 
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Studies [number of 
studies] Sample size Students’ Grade Level Design 

Instruments/Method 
of Data Collection Response Methods 

Table A-1, cont.     

Belia et al. (2005) 473 Authors of journal 
articles 

1 group one 
evaluation  

Tasks presented in a 
website (Quantitative) 
Observations and 
interviews 
(Qualitative)  

Open-ended tasks 

Ben-Zvi (2006) [2] 75 Grade 5 1 group one 
evaluation 

20 items from TIMSS  

Ben-Zvi & Gil (2010) 3 Grade 6 1 group one 
evaluation  

Observation of 
students working on 
questionnaire 
(Qualitative)  

Open-ended questions  

Carver (2006) 48 College students  1 group; 
Pre- and posttest 

Pre- and post-test 
(CAOS)  

Multiple choice  

Chance et al. (2004) N=114 (pre- and post-
test) 
N=37 (interview) 

Undergraduates (pre- 
and post-test, 
interview) + graduates 
(interview) 

1 group; pre- and 
posttest  

Software (Sampling 
Distribution) 
Posttest and final 
exam 

Multiple choice and 
interview  

Collins & Mittag 
(2005)  

22 versus 47 Undergraduates  Quasi-experimental: 2 
groups  

3 pretest scores; 1 
inferential test scores; 
1 final test score 

Unclear  

delMas & Garfield 
(1999) 

49 Undergraduates  1 group posttest  1 posttest  Multiple-choice and 
true/false items  

delMas et al. (1999) 
[2]  

89 (initial activity);  
141 (new activity)  

Undergraduates Quasi-experimental: 2 
groups  

Pre- and posttest  same items as delMas 
& Garfield, 1999 

(cont.) 
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Studies [number of 
studies] Sample size Students’ Grade Level Design 

Instruments/Method 
of Data Collection Response Methods 

Table A-1, cont.      

Earley (2001)  98 Undergraduates  1 group one 
evaluation 

1 posttest   

Falk & Greenbaum 
(1995) 

53 Undergraduates  1 group one 
evaluation  

Questionnaire  One multiple-choice 
item  

Grant & Nathan 
(2007) 

3 Graduate students  1 group one 
evaluation  

Interview  

Haller & Krauss 
(2002); Krauss & 
Wassner (2002)  

44 Undergraduates Quasi-experiment: 3 
groups (instructors, 
scientists, and 
students)  

Questionnaire Six True/False 
questionnaires  

Hertwig & Gigerenzer 
(1999) 

18 Undergraduates 1 group one 
evaluation  

Questions (interview) Think aloud protocol  

Hoekstra (2010)  71 Ph.D students  1 group one 
evaluation  

Tasks on hypothesis 
testing and CIs 

Open ended questions  

Hong et al. (1992)  56 Graduate (N=27); 
Undergraduate 
(N=29)  

Quasi-experiment: 4 
experimental units  

Pre-(10 items) and 
posttest (17 items) 

A computer-assisted 
pretest; paper-and-
pencil posttest  

Kahneman & Tversky 
(1972)  

95 Undergraduates  1group one evaluation Questionnaire Open-ended 

Kalinowski (2010) 94 Graduate students  1 group one 
evaluation 

Survey  

Kaplan (2009) 10 Undergraduates  1 group one 
evaluation  

Open-ended questions 
(interview)  

 

(cont.) 
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Studies [number of 
studies] Sample size Students’ Grade Level Design 

Instruments/Method 
of Data Collection Response Methods 

Table A-1, cont.      

Konold et al. (1993) 88  16 high school 
students  
25 undergraduates and 
47 college students  

1 group: pre and post-
test  

Open-ended questions  

Konold (1994)  199 High school students 1 group: pre and post-
test  

SRA (Konold & 
Garfield, 1993) 

Multiple-choice 

Lane-Getaz (2010) 105 College students in 3 
introductory courses  

Quasi-experiment: 3 
groups: pre- and post-
test  

RPASS (Lane-Getaz, 
2008) 

34 Multiple-choice 
items  

Lane & Tang (2000) 115 Undergraduates  Randomized control: 
Four treatments with 
two different 
conditions--factorial 
combination; 
And one control group  

Pre- and post-test  12 open-ended 
questions  

Lavigne et. al (2008) 3 Undergraduates  1 group evaluation 
(case study) 

Word problem; 
Concept map; 
interview 

Open-ended 

Lipson (2003) [2] 23 Undergraduates  1 group one 
evaluation 

Concept map  

Liu (2005); Liu & 
Thompson (2009)  

8 High school 
mathematics teachers  

1 group several 
evaluations (teaching 
experiment) 

3 time interviews after 
each seminar  

Video and interviews  

Lunsford et al. (2006) 18 versus 7  Undergraduates  Quasi-experiment; 
Two groups  

Pre- and post-test (27 
items)  

Items from delMas et 
al. (1999) (cont.) 
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Studies [number of 
studies] Sample size Students’ Grade Level Design 

Instruments/Method 
of Data Collection Response Methods 

Table A-1, cont.      

Makar & Rubin 
(2007, 2009) 

4  Primary school 
teachers (4) and their 
students (Grades 
unclear) 

1 group one 
evaluation 

Classroom 
observation and 
follow-up interview 

 

Means & Voss (1996)  60  Grades 5, 7, 9, and 11 1 group one 
evaluation  

Interviews for Open-
ended questions  

 

Meletiou-Mavrotheris 
(2004)  

5 Undergraduates  1 group one 
evaluation  

Experimental analysis 
(Videotape, classroom 
observation)  

Transcript  

Smith (2008)  104 Undergraduates  1 group one 
evaluation  

Mixed methods: 
Assessment and 
follow-up interview 
(N=11)  

14 multiple-choice 
item  

Mittag & Thompson 
(2000) 

225 AERA members 
(educational 
researchers) 

Stratified random 
sample 

Survey   

Paparistodemou & 
Meletious-
Mavrotheris (2008)  

22 Grade 3  1 group one 
evaluation (Case 
study) 

Interview   

Pfaff & Weinberg 
(2009)  

26 Undergraduates  1 group several 
evaluation  

5 different 
assessments 
beginning/during/after 
instruction 

Open-ended 
questions, items from 
delMas et al. (1999) 

Pfannkuch (2005)  30 Grade 10 1 group one 
evaluation  

Interview   

(cont.) 
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Studies [number of 
studies] Sample size Students’ Grade Level Design 

Instruments/Method 
of Data Collection Response Methods 

Table A-1, cont.      

Pfannkuch (2006) [2] 1 teacher and 29 
students  

Grade 11 1 group one 
evaluation 

Teacher 
communications and 
students 
communication 

 

Pratt (2008)  2 10- 11 years old  1 group one 
evaluation 

Interview on students’ 
working with activity 

 

Rubin et al. (1991) 12 Senior high school 
students 

Observational Interview of 6 open-
ended questions 

 

Rubin et al. (2006)  9  Secondary Teachers 
(math/statistics)  

1 group one 
evaluation 

Responses to given 
tasks 

 

Saldhanha (2004)  8 High school students  1 group one 
evaluation 

Classroom 
observation; student 
written work 

 

Saldanha & 
Thompson (2003) [2] 

27 High school students 
(11th and 12th grades) 

1 group one 
evaluation 

Classroom 
observation; student 
written work; post 
experiment interview  

 

Saldanha & 
Thompson (2006)  

8 Grade 10 (N=1); 
Grade 11 (N=3); 
Grade 12 (N=4)  

1 group one 
evaluation 

Students discussion   

 

(cont.) 
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Studies [number of 
studies] Sample size Students’ Grade Level Design 

Instruments/Method 
of Data Collection Response Methods 

Table A-1, cont.      

Sedlemeier (1998) N=46 (Study 1)” 
N=22+40 (Study 2) 
N=31 (Study 3) 

Undergraduates  Study 1: random 
assignment of two 
conditions  
Study 2: extended 
interview from Study 
1 
Study 3: interview  

Study 1: open-ended 
tasks in a PC 
Study 2: item with 
three tasks 
Study 3: interview  

 

Simon (1976) 25 Undergraduates  (Quasi-) Controlled 
experimental design  

Pre- and posttest Unclear  

Sotos et al. (2009)  144 Undergraduates  1 group one 
evaluation 

5 items from ARTIST 
project and confidence 
for the responses  

Multiple choice (for 
assessment); 10-point 
Likert scale 
(confidence items)  

Stohl & Tarr (2002) 2 Grade 6  1 group one 
evaluation (case 
study)  

Analysis of students’ 
work and conversation  

 

Thompson et al. 
(2007) 

8 Teachers 1 group one 
evaluation 

Seminar � Interview 
(Qualitative)  

 

Vallecillos (1995, 
1996, 2000, 2002) 

436 ?? 1 group one 
evaluation 

Questionnaire and 
interview 

20-item (true/false, 
multiple-choice, and 
open ended question)  

Vallecillos and 
Batanero (1997) 

7 University  1 group one 
evaluation 

Questionnaire and 
interview 

3 true/false items and 
two interview 
questions  

(cont.) 
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Studies [number of 
studies] Sample size Students’ Grade Level Design 

Instruments/Method 
of Data Collection Response Methods 

Table A-1, cont.      

Vanhoof et al. (2007)  221 Undergraduates  1 group pre- and post-
test  

Pre- and post-test  Multiple choice items 
during activity + 1 
item from SRA  

Watson (2004) 38 3 years after the 
previous study 
(Grades 6 to 13)  

1 group repeated 
evaluations  

Longitudinal 
interview with the 
same subjects  

 

Watson & Moritz 
(2000) 

62 Grades 3, 6, and 9 1 group one 
evaluation 

Interview and written 
works for open-ended 
questions  

 

Well et al. (1990)  1st study: N=114 
2nd study a: N=151 
2nd study b: N=138 
3rd study: N=120 

Undergraduates  1st study: 1 group 
2nd study: 2groups 
comparison  
3rd study: groups 
comparison 
(controlled 
conditions) 

1st study: 
questionnaires 
2nd study: two 
versions of 
questionnaires for 
comparison 
3rd study: problems 
for two groups, 
interview for 1 group  

1st and 2nd study: two 
open ended questions; 
3rd study: four open 
ended questions  

Wilkerson & Olson 
(1997) 

52 Graduates  1 group one 
evaluation 

6 items  Type of items unclear  

Willams (1999) [2] 18 Undergraduates 1 group one 
evaluation 

Concept map and 
interview (pre- and 
post-interviews)  

Talk aloud 
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Appendix B 

Preliminary Test Blueprint 

Table B-1 

Test Blueprint to Assess Informal Statistical Inference 

Topic 
Category Topics Learning Goals Literature 

Informal 
Inference 
(Inf-1) 

The concept of 
uncertainty 

Being able to express uncertainty in making inference using probabilistic 
(not deterministic) language 

Makar and Rubin (2009), Zieffler 
et al. (2008) 

Inf-2 Properties of 
aggregates 

Being able to able to reason about a collection of data from individual 
cases as an aggregate 

Makar and Rubin (2009); 
Rubin, Hammerman, & Konold 
(2006); Pfannkuch (1999) 

Inf-3 Sampling variability - Understanding the nature and behavior of sampling variability 
- Understanding sample to sample variability  
- Taking into account sample size in association with sampling variability 

Rubin, Hammerman, & Konold 
(2006); Wild et al. (2011) 

Inf-4 The concept of 
unusualness 

Being able to understand and articulate whether or not a particular sample 
of data is likely given a particular expectation or claim 

Makar and Rubin (2009); Zieffler 
et al. (2008); 
Liu and Thompson (2009) 

Inf-5 Generalizing from a 
sample to a 
population 

- Being able to predict and reason about possible characteristics of a 
population based on a sample of data  
- Being able to draw a conclusion about population from sample(s) based 
on the prediction 

Zieffler et al. (2008) 

   (cont.) 
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Topic 
Category Topics Learning Goals Literature 

Table B-1, cont.   

Inf-6 Reasoning about 
comparison of two 
populations from two 
samples 

- Being able to predict and reason about possible differences between two 
populations based on observed differences between two samples of data  
- Being able to draw a conclusion about comparison of two populations 
from two samples based on the prediction 

Wild et al. (2011); 
Makar and Rubin, (2009); Zieffler 
et al. (2008); Pfannkuch, (2005) 
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Table B-2 

Test Blueprint to Assess Formal Statistical Inference 

Topic Category Topics Learning Goals 
Misconceptions Found 

in Literature Literature 

Sampling 
distribution  
(SD-1)a 

The concepts of 
samples and 
sampling  

-Understanding the definition of sampling 
distribution  
-Understanding the role of sampling 
distribution 

A tendency to predict 
sample outcomes based on 
causal analyses instead of 
statistical patterns in a 
collection of sample 
outcomes 

Saldanha and Thompson 
(2002); Saldhanha (2004); 
Rubin, Bruce, and Tenney 
(1991) 

SD-2 Law of Large 
Numbers (Sample 
representativeness)  

Understanding that the larger the sample, 
the closer the distribution of the sample is 
expected to be to the population 
distribution 

A tendency to assume that a 
sample represents the 
population regardless of 
sample size 
(representativeness 
heuristic) 

Kahneman and Tversky; Rubin 
et al. (1991); Saldanha & 
Thompson (2002); Metz 
(1999); Watson & Moritz, 
(2000a, 2000b) 

SD-3 Population 
distribution and 
frequency 
distributions  

Understanding the relationship between 
frequency distribution and population 
distribution  

Confusion between 
frequency distributions and 
sampling distributions 

Sedlemeier (1997); Lipson, 
2003; delMas et al. (1999) 

SD-4 Population 
distribution and 
sampling 
distributions 

Understanding the relationship between 
sampling distribution and population 
distribution 

Confusion between 
population and sampling 
distributions 

delMas et al. (1999) 

 

(cont.) 
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Topic Category Topics Learning Goals 
Misconceptions Found 

in Literature Literature 

Table B-2, cont.     

SD-5 Central Limit 
Theorem  

-Understanding the effect of sample size 
in sampling distributions 
-Understanding how sampling error is 
related to making an inference about a 
sample mean 

Lack of taking into account 
sample size in association 
with distributions of samples  

Mokros and Russell (1995); 
Sedlemeier & Gigerenzer 
(1997); Tversky & Kahneman, 
(1974); Vanhoof et al. (2007); 
Schwartz, Goldman, Vye, 
Barron, and The Cognition and 
Technology Group at 
Vanderbilt (1998); Wagner & 
Gal (1991); Well, Pollastek, 
and Boyce (1990) 

Hypothesis 
testing (HT-1)a 

Definition, role, 
and logic of 
hypothesis testing  

-Being able to describe the null 
hypothesis  
-Understanding the logic of a significance 
test  

-Failing to reject the null is 
equivalent to demonstrating 
it to be true (Lack of 
understanding the 
conditional logic of 
significance tests) 
-Lack of understanding the 
role of hypothesis testing as 
a tool for making a decision  

Batanero (2000); Nickerson 
(2000); Haller & Krauss 
(2002); Liu & Thompson 
(2009); Vallecillos (2002); 
Williams (1999); Mittag & 
Thompson, 2000 

HT-2 Definitions of P-
value and statistical 
significance  

Being able to recognize a correct 
interpretation of a P-value 

Misconception: P-value is 
the probability that the null 
hypothesis is true and that 
(1-p) is the probability that 
the alternative hypothesis is 
true 

Carver (1978); Falk & 
Greenbaum (1995); Nickerson 
(2000) 

 

(cont.) 
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Topic Category Topics Learning Goals 
Misconceptions Found 

in Literature Literature 

Table B-2, cont.     

HT-3 P-value as a 
numerical 
probability 

-Understanding the smaller the P-value, 
the stronger the evidence of a difference 
of effect 
-Understanding the relationship between 
P-value and standard error 
(Understanding that given the same mean 
difference, the smaller the variation in the 
sample statistic, the smaller the P-value, 
if all else remains the same) 

Misconception: A small P-
value means a treatment 
effect of large magnitude 

Cohen (1994); Rosenthal 
(1993) 

HT-4 Sample size and 
statistical 
significance in HT 

-Understanding larger sample sizes yield 
smaller P-values, and more statistically 
significant observed results, if all else 
remains the same 

Lack of understanding the 
relationship between sample 
size and statistical 
significance  

Wilkerson and Olson (1997) 

HT-5 Evaluation of HT -Understanding that an experimental 
design with random assignment supports 
causal inference 
-Being able to make an appropriate 
conclusion from a hypothesis test 

Lack of interpretation of 
result of hypothesis testing 
and statistical significance  

Wilkerson & Olson (1997) 

HT-6 Designing a 
statistical test for 
the comparison 

-Being able to design a statistical test to 
compare two samples from a population 
-Being able to make a conclusion from a 
statistical test  

  

aSD and aHT: The SD was used to stand for the topic of sampling distribution and HT for the topic of hypothesis tests. However, in a later version of the 
blueprint, these acronyms were changed to SampD and Stest (See Appendix D), respectively. This is to avoid confusion that SD is used to represent 
standard deviation in statistics. 
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Appendix C 

Expert Review Forms of Test Blueprint 

Consent Form: Expert Review  

This study is being conducted by a researcher from the University of Minnesota. You are invited 
to participate in a research study designed to develop and validate the "Assessment of Inferential 
Reasoning in Statistics (AIRS)". You were selected as a possible participant because you have 
been contributing your expertise of college students’ statistical reasoning and thinking on the 
research of the field of statistics education. We ask that you read this form and ask any questions 
you may have before agreeing to be in the study. 

This study is being conducted by: Jiyoon Park, Educational Psychology, EPSY 5261 instructor 

Background Information:  

The proposed study is to develop an instrument to assess two aspects of college students’ 
statistical inferential reasoning—informal and formal statistical inference. The target population 
of the assessment is college students in the U.S. who are taking a non-calculus-based statistics 
course. The purposes of this assessment are: (1) to monitor students’ longitudinal development of 
inferential reasoning as they learn statistics in an introductory course; and (2) to facilitate 
statistics education research on students’ informal and formal statistical inference and the effect 
of instructional approaches on this topic.  

Procedures: 

If you agree to be in this study, we would ask you to take your time to review and evaluate the 
test blueprint and preliminary assessment on the evaluation form attached.  

Risks and Benefits of Being in the Study: 

There are no known risks to you as a participant. 

The benefit to participation is the opportunity to contribute your expertise on the statistics 
education research.  

Confidentiality:  

The records of this study will be kept private. In any sort of report we might publish, we will not 
include any information that will make it possible to identify you as a participant. Research 
records will be kept in a locked file; only the researchers conducting this study will have access to 
the records.  

Voluntary Nature of the Study: 

Your decision whether or not to participate will not affect your current or future relations with the 
University of Minnesota. If you decide to participate, you are free to withdraw at any time 
without affecting those relationships.  
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Contacts and Questions: 

The researcher conducting this study is Jiyoon Park under the advisement of Professors Robert 
delMas, Ph.D. (Educational Psychology--Statistics Education) and Joan Garfield, Ph.D. 
(Educational Psychology—Statistics Education). If you are willing to participate or have any 
questions you are encouraged to contact me, Jiyoon Park via my University of Minnesota, email: 
parkx666@umn.edu. You may also contact my advisor, Robert delMas, at delma001@umn.edu. 

If you have any questions or concerns regarding the study and would like to talk to someone other 
than the researchers, you are encouraged to contact the Research Subjects’ Advocate line, D528 
Mayo, 420 Delaware Street S.E., Minneapolis, Minnesota 55455; telephone 612-625-1650. 

You can print a copy of this form to keep for your records. 

Statement of Consent: 

I have read the above information. I have had the opportunity to ask questions and receive 
answers.  

You need to sign and return this consent form if you agree to let us use your responses in the 
research study described above.  

I give permission for my responses to evaluation form to be included in any analyses, reports or 
research presentations made as part of this research project. 

Your Name (Please PRINT):  

___________________________________________________________ 

Signature ___________________________________________________ 
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 The Invitation Letter and Test Blueprint Evaluation Form 

Expert Invitation Letter March 22, 2011 

Dear Professor XXX, 
 
I am conducting my dissertation research on the development of an assessment to measure students’ 
reasoning of statistical inference in two aspects—formal and informal inference. The purposes of the 
proposed assessment are: (1) to monitor college students’ longitudinal development of inferential reasoning 
as they learn statistics in an introductory course, and (2) to facilitate statistics education research on 
students’ informal and formal statistical inference and the effect of instructional approaches on this topic. 
With this letter I am formally soliciting your expert help in the development of my research instrument, 
which is now titled Assessment of Inferential Reasoning in Statistics (AIRS). 
 
As a sequential process of expert review in the development of the instrument, at the first stage, I asking 
you to evaluate the test blueprint with respect to the validity of the topics and learning goals in the blueprint 
for developing an assessment to measure students’ statistical inference. Please note that the learning goals 
that students have in reasoning about statistical inference, specifically in the two categories of informal and 
formal inference, were culled from research literature. As a statistics educator your expert opinion on how 
these items measure students’ statistical inference is invaluable. 
 
The assessment items will be developed from the test blueprint based on your feedback at the first stage. At 
the second stage, I will ask you to evaluate the assessment items that are developed from the test blueprint. 
 
As an expert rater you are being asked to assess the validity of the blueprint and the assessment in relation 
to these specific learning objectives and misconceptions. If you are willing to participate in these two stages 
of expert review on the development of the instrument, please email me to confirm your interest at: 
parkx666@umn.edu. 
 
I am attaching two documents to help you get a sense of the task I am asking you to perform: 1) the test 
blueprint, and 2) the evaluation form. The test blueprint is organized into two main sections, informal 
statistical inference and formal statistical inference. Formal statistical inference is categorized into two 
subtopics, sampling distributions and hypothesis testing. The evaluation form includes questions the ask 
about the validity of the content and the degree to which the test blueprint is relevant to the constructs, 
informal and formal inferential reasoning.  
 
About 40 to 50 assessment items will be written based on the revised test blueprint. You will also be asked 
at a later time to rate each of the assessment items with respect to how well they measure the learning 
outcomes stated in the final test blueprint. You will be asked to suggest improvements for any items for 
which you “strongly disagree” or “disagree”. You will be asked to suggest concepts/topics that may be 
missing, items that can be removed/revised, and any other suggestions you may have to improve the 
assessment. 
 
If you agree to participate as an expert reviewer, I will send you again a copy of the test blueprint for you to 
review. The turnaround for the evaluation form of the blueprint will be 2 weeks. Please feel free to ask me 
any questions that you have. I sincerely hope that you will be able to contribute to my research.  
 
Thank you, 
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 Test Blueprint Evaluation Form 

Evaluation Form on the Test Blueprint 

This is an evaluation form to get information of how valid the test blueprint is to develop an instrument to 
assess college students’ informal and formal inference in statistics. Please read through the blueprint 
carefully before answering the items below. 
 
Part 1. Please check the extent to which you agree or disagree with each of the following statements about 
the blueprint. 

 

Item Evaluation Questions 

Ratings 

Strongly 
agree  

� 

Agree 
 

� 

Disagree 
 

� 

Strongly 
Disagree 

� 

1 
The topics of the blueprint represent the constructs of 
informal inference and formal inference in statistics. 

    

2 
The learning goals of the blueprint are adequate for 
developing items to assess students’ understanding of 
informal inference. 

    

3 
The learning goals of the blueprint are adequate for 
developing items to assess students’ understanding of 
formal inference. 

    

4 
The set of learning goals is well supported by the 
literature. 

    

5 The learning goals are clearly described.     

6 The categories of the blueprint are well structured.     

7 
The blueprint provides a framework for testing the 
constructs of informal and formal statistical 
inference. 

    

 
Part 2. For the following questions, please describe your opinions about the blueprint. 

1. For each item to which you responded “Strongly disagree” or “Disagree”, please explain why you 
disagree and suggest how the blueprint might be improved. 

2. What do you think may be missing from the content of the blueprint related to the constructs of 
informal and formal statistical inference? 

3. What parts of the blueprint may be extraneous or not as important for measuring the constructs of 
informal and formal statistical inference? 

4. Do you have any other suggestions for improving the test blueprint? Please describe. 

Thank you 
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Appendix D 

Final Version Test Blueprint 

Table D-1 

Test Blueprint to Assess Informal Inference 

Topic 
Category Topics Learning Goals Items 

Informal 
Inference 
(Inf-1) 

The concept 
of 
uncertainty 

Being able to reason about uncertainty in making inference using 
probabilistic (not deterministic) language 

1 

Inf-2 Properties of 
aggregates 

-Being able to reason about a collection of data from individual 
cases as an aggregate  

9  

Inf-3 Sampling 
variability 

- Understanding the nature and behavior of sampling variability 

- Understanding sample to sample variability  

- Taking into account sample size in association with sampling 
variability 

2 

Inf-4 The concept 
of 
unusualness 

-Being able to expect and reason whether or not a particular sample 
of data is likely given a particular expectation or claim (3)  

-Being able to describe the null model in the given context (4) 

-Being able to reason about unusualness of a sample statistic in the 
given context (5) 

3, 4, 
5, 

Inf-5 Relationship 
between 
sample size 
and 
distribution 
of sample 
statistics  

-Being able to reason and articulate about the relationship between 
sample size and the shape of distribution of sample statistics  

7 

Inf-6 Generalizing 
from a 
sample to a 
population 

- Being able to draw a conclusion about a population from a 
sample based on the distribution of sample statistics (5)  

-Being able to make a conclusion about a population from a sample 
in association with change of sample size (8) 

- Being able to generalize (or make a conclusion) to a population 
using the null model and the distribution of sample statistics 
(recognizing the logic of statistical testing) (6) 

5, 6, 8 

 

 

 

 

(cont.) 
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Topic 
Category Topics Learning Goals Items 

Table D-1, cont.   

Inf-7 Comparing 
two samples 
from two 
populations 

- Being able to predict and reason about possible differences 
between two populations based on observed differences between 
two samples of data (10, 11) 

- Being able to draw a conclusion about two populations (10) 

-Being able to take into account sample variations or sample size in 
relation with evidence to compare two samples (12, 13) 

10,11, 
12, 13 
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Table D-2 

Test Blueprint to Assess Formal Inference 

Topic 
Category  Topics Learning Goals Items 

Sampling 
distribution  
(SampD-1) 

The concepts of 
samples and 
sampling  

-Understanding the definition of sampling 
distribution  
-Understanding the role of sampling distribution 

14 

SampD-2 Sample 
representativeness 

-Understanding importance of random sampling 
(recognizing biased sampling) (31) 
-Law of Large Numbers (Understanding that the 
larger the sample, the closer the distribution of the 
sample is expected to be to the population 
distribution) 

31 

SampD-3 Population 
distribution, sample 
distributions, and 
sampling 
distribution  

-Understanding the relationship between sample 
distribution and population distribution (15) 
-Understanding the relationship between sampling 
distribution and population distribution (16) 

15, 16  

SampD-4 Central Limit 
Theorem  

-Understanding the effect of sample size in sampling 
distributions (17) 
-Understanding how sampling error is related to 
making an inference about a sample mean 

17 

DE (DEsign 
of study) 

Study design  -Understanding the logic of experimental design 
-Understanding difference between observational 
and experimental study 
-Understanding the purpose of random assignment 
in an experimental study 

34 

Statistical 
testing 
(Stest-1) 

Definitions of P-
value and statistical 
significance  

-Being able to recognize a correct interpretation of a 
P-value (18) 
-Being able to calculate a numerical P-value from a 
given distribution of statistics (25) 
-Being able to recognize a correct interpretation of 
statistical significance (27) 

18, 25, 
27 

Stest-2 A statistical test for 
the comparison 

-Being able to design a statistical test to compare 
two samples from two population (21, 22) 
-Designing a statistical test to compare two groups 
in an experiment 
-Being able to make a conclusion from a statistical 
test for comparing two groups 

21, 22  

Stest-3 Inference about a 
population 
proportion 

-designing a statistical test for the proportion given 
in a sample (23) 
-making a conclusion about a statistical test for the 
population proportion (23) 

23 

 

(cont.) 
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Topic 
Category  Topics Learning Goals Items 

Table D-2, cont.   

Stest-4 Inference about 
comparing two 
proportions 

-being able to set up the null model to compare two 
proportions (24) 
-being able to make a conclusion about a statistical 
test for comparing two population proportions (26) 

24, 26 

CI 
(Confidence 
Interval) 

Inference about 
Confidence Intervals  

-Being able to interpret confidence interval in a 
given context (29) 
-Being able to interpret the relationship between 
confidence interval and margin of error (30) 

29, 30 

EV Generalizing the 
results of ST 
Evaluation of ST 

-Understanding that an experimental design with 
random assignment supports causal inference (20) 
-Understanding that an observational design with no 
random assignment doesn’t support causal inference 
(28) 
-Being able to evaluate the results of hypothesis 
testing (considering sample size, practical 
significance, effect size, data quality, soundness of 
the method, etc.) (32, 33) 

20, 28, 
32, 33 
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Appendix E 

Expert Review Forms of Preliminary Assessment 

Item evaluation form (general)  

Evaluation Form on the Assessment  

This is an evaluation form to ask you to evaluate the assessment as a whole. The evaluation 
questions are intended to get information of how valid the proposed test is in assessing college 
students’ informal and formal inference in statistics. If you haven’t yet, please read each item and 
complete the evaluation question for each item before answering the items below.  
 
Part 1. Please check the extent to which you agree or disagree with each of the following 
statements about the blueprint. 

 

Item Evaluation Questions 

Ratings 

Strongly 
agree  

� 

Agree  
 

� 

Disagree  
 

� 

Strongly 
Disagree 

� 

1 
The items in the assessment are adequate to assess 
the learning goals specified in each category.  

    

2 The items in the assessment are related to the ISI.      

3 The items in the assessment are related to the FSI.      

4 
The items in each category (ISI and FSI) are 
distinctive in terms of whether the item is 
categorized as one in ISI or FSI.  

    

5 
The items are adequate to assess the construct of 
statistical inference.  

    

 
Part 2. For the following questions, please describe your opinions about the blueprint. 

1. What do you think may be missing from the assessment items related to the constructs of 
informal and formal statistical inference? 

2. What do you think of the assessment may be extraneous or not as important for assessing the 
constructs of informal and formal statistical inference? 

3. Do you have any other suggestions for improving the assessment? Please describe. 

Thank you! 
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Item Evaluation Form (specific) 

The following evaluation question was asked to the reviewers for each item (item 1-34).  

 

Learning goal 
e.g.) Inf-1: Being able to express uncertainty in making inference using probabilistic 
(not deterministic) language 

Please check the extent to which you agree or 
disagree with each of the following statements. 

Ratings 

Strongly 
Agree 

� 

Agree 
 

� 

Disagree 
 

� 

Strongly 
Disagree 

� 

This item assesses the stated learning goal. 
    

If you responded “Strongly disagree” or 
“Disagree”, please explain why you disagree 
and suggest how the item might be improved. 
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Appendix F 

Student Cognitive Interview Invitation 

Student Invitation Letter: Cognitive Interview 

To: Students who have taken EPSY 3264: Basic and Applied Statistics 
 
You are invited to participate in a research study designed to develop and validate a research 
instrument called the Assessment of Inferential Reasoning in Statistics (AIRS). 
This instrument was developed to assess college students' statistical inference after they have 
taken an introductory statistics course. You were selected as a possible participant because you 
took an introductory statistics course last semester. 
 
This study is being conducted by Jiyoon Park, a Ph.D student in the Department of Educational 
Psychology under the supervision of Dr. Robert delMas. 
 
The study involves a one-hour interview where you will solve about 30 problems. You will be 
asked to talk aloud as you solve a set of the problems. You will also be asked to say whatever you 
are looking at, thinking, doing and feeling as you take the assessment. You will be audio-taped as 
you work through the assessment.  
 
The problems may not look like anything you have done before and a problem may have several 
possible solutions that you can produce using everyday knowledge and reasoning. While the test 
will cover some of what you learned in your statistics course, you do not have to review the 
course content for this study.  
 
As an incentive to participate in this study, you will receive a $20 Amazon.com gift card. 
 
The available times for the interview are: 
 
Wednesday, July 13, 10am - 6pm  
Thursday, July 14, 10am - 6pm 
Friday, July 15, 2pm - 6pm  
Monday, July 18 to Friday, July 22, 2pm - 6pm  
 
If you are interested in participating please email me at parkx666@umn.edu by this Friday, July 
8. Please let me know all times that you are available on each day so that I can identify the best 
times for all students who want to participate. 
 
You will be notified by Monday, July 11, if you are selected to participate in the study, and you 
will be told the time and location of the study at that time. 
 
Thanks so much! 
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Consent Form: Student Cognitive Interview 

Consent Form: Think-alouds interview  

This study is being conducted by a researcher from the University of Minnesota. You are invited 
to participate in a research study designed to develop and validate the "Assessment of Inferential 
Reasoning in Statistics (AIRS)". You were selected as a possible participant because you are 
currently taking or have taken post- secondary statistics courses. We ask that you read this form 
and ask any questions you may have before agreeing to be in the study.  

 

This study is being conducted by: Jiyoon Park, Educational Psychology, EPSY 5261 instructor 

Background Information:  

The proposed study is to develop an instrument to assess two aspects of college students’ statistical 
inferential reasoning—informal and formal statistical inference. The target population of the assessment is 
college students in the U.S. who are taking a non-calculus-based statistics course. The purposes of this 
assessment are: (1) to monitor students’ longitudinal development of inferential reasoning as they learn 
statistics in an introductory course; and (2) to facilitate statistics education research on students’ informal 
and formal statistical inference and the effect of instructional approaches on this topic.  

 

Procedures: 

You will participate in a one-hour interview that is designed to gain an understanding of what 
reasoning and strategies you used for the questions in the AIRS assessment.  

Each interview will be audio-taped to produce a record of your responses for later analysis. 
Excerpts of your interview may be used in research presentations or publications as an illustration 
of students’ statistical thinking and reasoning. These excerpts may be in the form of a 
transcription of your statements during the interview, or of audio files selected from an interview. 

We are asking for your consent to do three things. First, we ask for your consent to audio-tape 
and record the interview. Second, we ask for your consent to include audio files of your 
interviews in presentations of this research. Third, we ask for your consent to include excerpts of 
your statements during the interviews in research presentations and publications. 

Compensation:  

You will receive a $20 amazon.com gift certificate for your participation in the one-hour 
interview.  

Risks and Benefits of Being in the Study: 

There are no known risks to you as a participant. 

The benefit to participation is the opportunity to develop a better understanding of statistics, and 
of your own statistical thinking. 
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Confidentiality:  

The records of this study will be kept private. In any sort of report we might publish, we will not 
include any information that will make it possible to identify you as a participant. Research 
records will be kept in a locked file; only the researchers conducting this study will have access to 
the records.  

Voluntary Nature of the Study: 

Your decision whether or not to participate will not affect your current or future relations with the 
University of Minnesota. If you decide to participate, you are free to withdraw at any time 
without affecting those relationships.  

Contacts and Questions: 

The researcher conducting this study is Jiyoon Park under the advisement of Professors Robert 
delMas, Ph.D. (Educational Psychology--Statistics Education) and Joan Garfield, Ph.D. 
(Educational Psychology—Statistics Education). If you are willing to participate or have any 
questions you are encouraged to contact me, Jiyoon Park via my University of Minnesota, email: 
parkx666@umn.edu. You may also contact my advisor, Robert delMas, at delma001@umn.edu. 

If you have any questions or concerns regarding the study and would like to talk to someone other 
than the researchers, you are encouraged to contact the Research Subjects’ Advocate line, D528 
Mayo, 420 Delaware Street S.E., Minneapolis, Minnesota 55455; telephone 612-625-1650. 

You will be given a copy of this form to keep for your records. 

Statement of Consent: 

I have read the above information. I have had the opportunity to ask questions and receive 
answers.  

You need to sign and return this consent form if you agree to let us use your responses in the 
research study described above. Please place an X next to each item below for which you do give 
your permission. 

 I give permission to be recorded and audio-taped. 

 I give permission to include audio files of my interview in presentations of this 
research. 

 I give permission to include excerpts of my statements in research presentations and 
publications. 

Your Name (Please PRINT): 

___________________________________________________________ 

Signature ______________________________________________________Date____________ 
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Appendix G 

Online Assessment Consent Form and Test Instruction 

Please read the description below and check in the Statement of Consent if you agree to participate in 
this study. * This question is required 
You are invited to participate in a research study designed to develop and validate the Assessment of 
Inferential Reasoning in Statistics (AIRS). You were selected as a possible participant because you are 
currently taking or have taken a post-secondary statistics course. Please read this form and ask any 
questions you may have before agreeing to be in the study. 

This study is being conducted by: Jiyoon Park, a Ph.D student in the department of Educational Psychology 
at the University of Minnesota. 

Background Information  

The purpose of this study is to develop an instrument to assess aspects of college students’ statistical 
inferential reasoning. The target population of the assessment is students in the U.S. who are taking a non-
calculus-based statistics course. The purposes of this assessment are: (1) to monitor the development of 
students’ inferential reasoning as they learn statistics in an introductory course; and (2) to facilitate 
statistics education research on students’ statistical inference and the effect of instructional approaches on 
this topic. 

Procedures 

If you agree to be in this study, you will take an online version of the assessment. The assessment consists 
of 34 questions and will take 40 to 50 minutes to complete.  

Risks and Benefits of Being in the Study 

There are no known risks to you as a participant. The benefit to participation is the opportunity to develop a 
better understanding of statistics, and of your own statistical thinking. The instructors of students 
participating in this study will be provided with the scores of their students.  

Confidentiality  

The records of this study will be kept private. Any published report will not include any information that 
will make it possible to identify you as a participant. Research records will be kept in a locked file; only the 
researchers conducting this study will have access to the records. 

Voluntary Nature of the Study 

Your decision whether or not to participate will not affect your current or future relations with the 
University of Minnesota. If you decide to participate, you are free to withdraw at any time without affecting 
those relationships. 

Contacts and Questions 

The researcher conducting this study is Jiyoon Park under the advisement of Professors Robert delMas, 
Ph.D. (Educational Psychology--Statistics Education) and Joan Garfield, Ph.D. (Educational Psychology—
Statistics Education). If you are willing to participate or have any questions you are encouraged to contact 
me, Jiyoon Park, at parkx666@umn.edu. You may also contact my advisor, Robert delMas, at 
delma001@umn.edu. 
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If you have any questions or concerns regarding the study and would like to talk to someone other than the 
researchers, you are encouraged to contact the Research Subjects’ Advocate line, D528 Mayo, 420 
Delaware Street S.E., Minneapolis, Minnesota 55455; telephone 612-625-1650. 

Statement of Consent  

Please check in the consent statement below if you agree to participate in this research study.  

 I have read the above information and I give permission for my responses to assessment items to be 
included in any analyses, reports or research presentations made as part of this research project. 

Please provide a unique code your instructor provided for your class. The code should be typed in capital 
letters (e.g., ABC or DEF01). * 

 

 

*Online Test Instruction 

You will now start the AIRS online test. This test includes 34 multiple-choice type of questions. Please 
read each question carefully and select the answer that best describes your reasoning. You can click 
the next button to go the next question. You can also go back to previous question(s) to review or change 
your answer(s) by clicking the back button. 
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Appendix H 

Expert Review on Test Blueprint 

Table H-1 

Summary of Expert Comments 

 Comments and Suggestions Who Commented Change of the Current Blueprint 
Rational for 
the Change 

Common 
suggestions 

In the category of Informal inference: 

There is no attention to inferences 
about the real world or contextual 
knowledge 

Reviewer 1; Reviewer 2 Added some learning goals which 
consider inferential reasoning in a 
given context  

 

In categories of Formal inference (SD 
and ST): 

Too focus on the limited population  

Reviewer 1: “one can 
conceptualize a process as an 
infinite, undefined 
population” 
Reviewer 3: “no comments 
are made about experiments”, 
only talk about samples from 
limited population. 

Added the topics, DE (DEsign of 
study) and EV (evaluation of 
study) to get at students’ 
understanding of characteristics of 
different types of study in terms 
of—how to design the study and 
how to generalize the results of the 
study 

 

Need to have learning goals about 
understanding of effect size  

Reviewer 2: In HT-1, Use the 
words “tool towards making 
a decision” 
Reviewer 3: For a HT 
showing a small P-value, we 
need to ask, “how large is the 
effect?” After that, we should 
consider data quality, 
soundness of the method etc.  

In the category EV, added the 
learning goal, “Being able to 
evaluate the results of hypothesis 
testing considering —sample size, 
practical significance, effect size, 
data quality, soundness of the 
method, etc.  

 

 

 

 

 

 

(cont.) 
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 Comments and Suggestions Who Commented Change of the Current Blueprint 
Rational for 
the Change 

Table H-1, cont.    

Specific 
suggestions 

Too focus on one type of problem, 
differences between groups, but 
almost half of the problems are about 
correlation problems (and regression)  

Reviewer 1 Not included in the blueprint  Correlation and 
regression were 
considered as literacy or 
part of descriptive 
statistics rather than use 
of inferential reasoning  

Include learning goals about “Using 
models in informal inferential 
reasoning” 

In two categories, informal 
inference and formal inference, the 
learning goals about setting up the 
null model in a given context was 
added.  

 

Include using meta-cognitive 
awareness what inference is as 
opposed to performing some 
techniques 

Not included in the blueprint  This learning goal was 
considered to be difficult 
to assess using typical 
test format (online 
format or paper-and-
pencil format). Meta-
cognitive awareness can 
be assessed through in-
depth interview or 
individual observation.  

(cont.) 
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 Comments and Suggestions Who Commented Change of the Current Blueprint 
Rational for 
the Change 

Table H-1, cont.   

Describe more explicitly about 
concepts like distribution, center and 
variation in aggregate category  

In the category of Properties of 
aggregates the learning goal, 
Being able to able to describe a 
collection of data using properties 
of distribution (shape, center, and 
variation but not necessarily using 
the terms), was added.  

 

Need to develop a topic category on 
Confidence Intervals 

Reviewer 2 The topic category, “Inference 
about Confidence Interval, CI” was 
added.  

 

Need to consider data quality, 
soundness of the method etc.  

The topic category, “Evaluation of 
HT (EV)”, was separated out from 
the Hypothesis Testing categories 
since this topic is more about 
assessing how to interpret and 
evaluate the results from statistical 
testing by integrating different 
kinds of information in a given 
study (e.g., random assignment, 
sample size, data quality). The 
learning goal about, “Being able to 
evaluate the results of hypothesis 
testing (considering sample size, 
practical significance, effect size, 
data quality, soundness of the 
method, etc.)”, was included in this 
EV category.  

 

 

 

 

 

 

 

 

 

 

 

(cont.) 
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 Comments and Suggestions Who Commented Change of the Current Blueprint 
Rational for 
the Change 

Table H-1, cont.   

In HT-6, add designing a test to 
compare two groups in an experiment. 
You might take samples from 
volunteers, not from populations.  

In ST-3 (changed from category of 
HT), the learning goal, designing a 
statistical test to compare two 
groups in an experiment, was 
added.  

 

Consider including randomization and 
bootstrapping methods 

Not included as a separate learning 
goals, but will be assessed in a way 
that items get at students reasoning 
of the ideas involved in 
randomization and bootstrap 
methods.  

Considering that hypothesis testing 
based on normal distribution-based 
approach is not the only way of 
statistical testing, the original 
category about hypothesis testing 
(HT) was changed to statistical 
testing (ST), which includes 
randomization or bootstrap 
methods.  

 

For SD-2, in addition to “how larger 
samples look more like the 
population”, it is much more 
important “biased sampling” for 
sampling representativeness 

Reviewer 3 The topic of “Law of Large 
Numbers” was changed to “sample 
representativeness” to assess 
whether students realize the 
importance of unbiased sampling 
(quality of samples) in addition to 
a large number of a sample 
(quantity of samples)  

 

 



 

 

231 

Table H-2 

Detailed Comments 

Reviewer 
Strongly disagree/Disagree to which 

evaluation question? Why disagree? What suggestions to improve that part? Any other suggestions? 

Reviewer 1 • Item 1. The topics of the blueprint 
represent the constructs of informal 
statistical inference 

• Item 3. The learning goals of the 
blueprint are adequate for developing 
items to asses students’ understanding of 
informal statistical inference 

• Item 5. The set of learning goals is well 
supported by the literature  

• There is no attention to inferences about the real world 
(contextual knowledge)  

• Limit focus to one type of problem, differences between 
groups, where almost half of the problems are about 
correlation problems (and regression)  

• using models in informal inferential reasoning 

• generalize to a process than to a population (one can 
conceptualize a process as an infinite, undefined 
population, but focus here is rather limited to finite 
population) – personally, processes are often more 
interesting than populations  

• Add something like the 
role of inference in an 
investigative cycle, or 
in modeling. 

• Use of meta-cognitive 
awareness what 
inference is as opposed 
to performing some 
techniques  

• Including more 
explicitly concepts 
like distribution, 
center and variation in 
aggregate category  

(cont.) 
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Reviewer 
Strongly disagree/Disagree to which 

evaluation question? Why disagree? What suggestions to improve that part? Any other suggestions? 

Table H-2, cont.   

Reviewer 2 • Item 1. The topics of the blueprint 
represent the constructs of informal and 
formal inference. 

• Item 2. The topics of the blueprint 
represent the constructs of formal 
statistical inference 

• Item 4. The learning goals of the 
blueprint are adequate for developing 
items to assess students’ understanding 
of formal statistical inference 

• Item 8. The blueprint provides a 
framework of developing a test to assess 
informal and formal statistical inference  

• For informal inference: 

- “Inf-5: Generalizing from a sample to population”, 
consider use of “contextual knowledge”. Can ask, “Can the 
conclusion make sense?” or “Alternative factors or 
explanations?” 

- students’ realizing the link between sample and population 

• Reasoning about comparison of two groups in an 
experiment.  

• Student misconceptions about the relationship between 
sample distribution, sampling distribution, and 
population distribution 

• For Hypothesis testing: 
• very focused on the P-value. Need to develop a topic 

category on Confidence Intervals.  
• In HT-1. Use the words “tool towards making a 

decision”. For a HT showing a small P-value, we need 
to ask, “how large is the effect?”. After that, we should 
consider data quality, soundness of the method etc.  

• In HT-6, change the sentence to comparing two 
populations based on a sample from each population  

• In HT-6, add designing a test to compare two groups in 
an experiment. You might take samples from volunteers, 
not from populations.  

• For formal inference:  
• Consider including randomization and bootstrapping 

methods: the current blueprint assumes that norm-based 
inference is the only method for inference yet statistical 
practice is very quickly adopting these methods.  (cont.) 



 

 

233 

Reviewer 
Strongly disagree/Disagree to which 

evaluation question? Why disagree? What suggestions to improve that part? Any other suggestions? 

Table H-2, cont.   

Reviewer 3 He “strongly agreed” or “agreed” for every 
evaluation question.  

• For informal inference:  

-Inf-5 and Inf-6 both talk about generalizing to a population, 
but no comments are made about experiments.  

-In Inf-3, inference about effect size and data variability need 
to be included.  

• For formal inference:  

-For SD-2, in addition to “how larger samples look more like 
the population”, it is much more important “biased 
sampling” for sampling representativeness.  

-Like in Informal inference, effect size and data variability 
are important topics. 

 



 

Assessment of Inferential Reasoning in Statistics 

[NOTE: The free-response format will be revised to multiple

Informal inferential reasoning items

1. The Springfield Meteorological Center wanted to determine the accuracy of their weather forecasts. 
They searched their records for those days when the forecaster had reported a 70% chance of rain. They 
compared these forecasts to records of whether or not it actually rained on those particular days.
The forecast of 70% chance of rain can be considered very accurate i
a. 95% - 100% of those days. 
b. 85% - 94% of those days. 
c. 75% - 84% of those days. 
D. 65% - 74% of those days. 
e. 55% - 64% of those days. 

 

2. Imagine you have a barrel that contains thousands of candies with several different colors. We
the manufacturer produces 50% brown candies. Ten students each take one random sample of 10 candies 
and record the percentage of brown candies in each of their samples. Another ten students each take one 
random sample of 100 candies and record t
of the following pairs of graphs represent the most plausible distributions for the percent of brown candies 
obtained in the samples for each group of 10 students? 
a.  

B.  
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Appendix I 

Versions of Assessment 

Preliminary Version  

Assessment of Inferential Reasoning in Statistics (AIRS)  

response format will be revised to multiple-choice format after piloting.]

Informal inferential reasoning items 

The Springfield Meteorological Center wanted to determine the accuracy of their weather forecasts. 
their records for those days when the forecaster had reported a 70% chance of rain. They 

compared these forecasts to records of whether or not it actually rained on those particular days.
The forecast of 70% chance of rain can be considered very accurate if it rained on: 

 

74% of those days.  

Imagine you have a barrel that contains thousands of candies with several different colors. We
the manufacturer produces 50% brown candies. Ten students each take one random sample of 10 candies 
and record the percentage of brown candies in each of their samples. Another ten students each take one 
random sample of 100 candies and record the percentage of brown candies in each of their samples. Which 
of the following pairs of graphs represent the most plausible distributions for the percent of brown candies 
obtained in the samples for each group of 10 students?  

 

 

 

 

choice format after piloting.] 

The Springfield Meteorological Center wanted to determine the accuracy of their weather forecasts. 
their records for those days when the forecaster had reported a 70% chance of rain. They 

compared these forecasts to records of whether or not it actually rained on those particular days. 

Imagine you have a barrel that contains thousands of candies with several different colors. We know that 
the manufacturer produces 50% brown candies. Ten students each take one random sample of 10 candies 
and record the percentage of brown candies in each of their samples. Another ten students each take one 

he percentage of brown candies in each of their samples. Which 
of the following pairs of graphs represent the most plausible distributions for the percent of brown candies 



 

c.  

 

d.  

 

Question 3 to 9 refer to the following:

 

Let’s say you used the spinner 10 times and each time you wrote down the letter that the spinner lands on. 
Furthermore, let’s say when you looked at the results, you saw that the letter 
the 10 spins.  

Suppose a person is watching 
 
A second person says that 5 B’s would not be unusual for this spinner.
 
3. If the spinner is fair, how many B’s out of 10 spins would you expect to see?

A. 2 or 3 B’s 

b. 4 or 5 B’s 

c. 6 or 7 B’s 

d. 8 or 9 B’s 
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Question 3 to 9 refer to the following: Consider a spinner shown below that has the letters from 

Let’s say you used the spinner 10 times and each time you wrote down the letter that the spinner lands on. 
Furthermore, let’s say when you looked at the results, you saw that the letter B showed up 5 times out of 

 you play the game and they say that it seems like you got too many 

’s would not be unusual for this spinner. 

3. If the spinner is fair, how many B’s out of 10 spins would you expect to see? 

Consider a spinner shown below that has the letters from A to D.  

Let’s say you used the spinner 10 times and each time you wrote down the letter that the spinner lands on. 
showed up 5 times out of 

you play the game and they say that it seems like you got too many B’s. 



 

4. Which person do you think is correct?

a. The first person because:. 

B. The second person because:

c. Both are correct because: 

5. A statistician wants to set up a probability model to examine how often the result of 5 B’s out of 10 spins 
could happen with the spinner just by chance alone. 
can use to do a test? Please describe th

a. All the trials of getting letters are independent. 
B. The probability for each letter is p(A)=1/4, p(B)= 1/4, p(C)=1/4, p(D)=1/4. 
c. The probability for letter B is 1/2 and the other three letters each have probability of 1/6. 
d. The probability for letter B is 1/2 and the probabilities for the other letters sum to 1/2. 

 

6. The following dot plot represents the distribution for the number of B’s that the statistician got based on 
the null model from 100 samples where each sample consisted of the r
think about the observed result of 5 B’s? [*Free

a. 5 B’s are not unusual because:
b. 5 B’s are unusual 
c. There is not enough information to decide if 5 B’s is unusual or not.

 

7. Based on your answers to the questions 4 and 5, what would you conclude about whether or not the 
spinner is fair? Explain your reasoning. [*Free

a. This spinner is fair because:
b. This spinner is unfair because: 
 
*Note: This item will be revised to mult
 
 
8. Let’s say you try the spinner again to gather more data. You spin it 20 times and get the same 
of B’s as before, (10 B’s out of the 20 times, or ½ B’s). How would you expect the distribution of the 
proportion of B’s obtained from100 samples of 20 spins each to compare to the distribution of the 
proportion of B’s obtained from 100 samples of 10 spins each? 

a. The distribution of the proportion of B’s for 100 samples of 20 spins each would be wider because you 
have twice as many spins in each trial.
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4. Which person do you think is correct? And why? 

. The second person because:  

5. A statistician wants to set up a probability model to examine how often the result of 5 B’s out of 10 spins 
could happen with the spinner just by chance alone. What would be the probability model the statistician 
can use to do a test? Please describe the null model.  

All the trials of getting letters are independent.  
The probability for each letter is p(A)=1/4, p(B)= 1/4, p(C)=1/4, p(D)=1/4. 
The probability for letter B is 1/2 and the other three letters each have probability of 1/6. 

or letter B is 1/2 and the probabilities for the other letters sum to 1/2. 

6. The following dot plot represents the distribution for the number of B’s that the statistician got based on 
the null model from 100 samples where each sample consisted of the results from 10 spins. What do you 
think about the observed result of 5 B’s? [*Free-response question]  

 

5 B’s are not unusual because: 
5 B’s are unusual because: 
There is not enough information to decide if 5 B’s is unusual or not. 

rs to the questions 4 and 5, what would you conclude about whether or not the 
spinner is fair? Explain your reasoning. [*Free-response question]  

a. This spinner is fair because: 
. This spinner is unfair because:  

*Note: This item will be revised to multiple-choice format after piloting based on student responses. 

8. Let’s say you try the spinner again to gather more data. You spin it 20 times and get the same 
’s out of the 20 times, or ½ B’s). How would you expect the distribution of the 

of B’s obtained from100 samples of 20 spins each to compare to the distribution of the 
of B’s obtained from 100 samples of 10 spins each?  

tion of the proportion of B’s for 100 samples of 20 spins each would be wider because you 
have twice as many spins in each trial. 

5. A statistician wants to set up a probability model to examine how often the result of 5 B’s out of 10 spins 
What would be the probability model the statistician 

The probability for each letter is p(A)=1/4, p(B)= 1/4, p(C)=1/4, p(D)=1/4.  
The probability for letter B is 1/2 and the other three letters each have probability of 1/6.  

or letter B is 1/2 and the probabilities for the other letters sum to 1/2.  

6. The following dot plot represents the distribution for the number of B’s that the statistician got based on 
esults from 10 spins. What do you 

rs to the questions 4 and 5, what would you conclude about whether or not the 

choice format after piloting based on student responses.  

8. Let’s say you try the spinner again to gather more data. You spin it 20 times and get the same proportion 
’s out of the 20 times, or ½ B’s). How would you expect the distribution of the 

of B’s obtained from100 samples of 20 spins each to compare to the distribution of the 

tion of the proportion of B’s for 100 samples of 20 spins each would be wider because you 
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B. The distribution of the proportion of B’s for 100 repetitions of 20 spins each would be narrower because 
you have more information for each sample. 

c. Both distributions would have about the same width because the probability of getting each letter is the 
same whether you do 10 spins or 20 spins.  

9. Which situation, 5 B’s out of 10 spins or 10 B’s out of 20 spins, provides the stronger evidence that the 
spinner is not fair? Explain your reasoning. [*Free-response question]  

A. 10 B’s out of 20 spins because:  
b. 5 B’s out of 10 spins because: 
c. Both outcomes provide the same evidence because:  
*Note: This item will be revised to multiple-choice format after piloting based on student responses.  
 

10. A drug company developed a new formula for their headache medication. To test the effectiveness of 
this new formula, 250 people were randomly selected from a larger population of patients with headaches. 
100 of these people were randomly assigned to receive the new formula medication when they had a 
headache, and the other 150 people received the old formula medication. The time it took, in minutes, for 
each patient to no longer have a headache was recorded. The results from both of these clinical trials are 
shown below. Which statement do you think is the most valid?  

 

a. The old formula works better. Two people who took the old formula felt relief in less than 20 minutes, 
compared to none who took the new formula. Also, the worst result - near 120 minutes - was with the new 
formula. 

b. The average time for the new formula to relieve a headache is lower than the average time for the old 
formula. I would conclude that people taking the new formula will tend to feel relief about 20 minutes 
sooner than those taking the old formula. 

c. We can’t conclude anything from these data. The number of patients in the two groups is not the same so 
there is no fair way to compare the two formulas. 

 

Question 11 and 12 refer to the following: An experiment was designed to study the effects of two 
different exam preparation strategies on exam scores. In each experiment, half of the subjects are randomly 
assigned to each exam preparation strategy. After completing the exam preparation, all subjects take the 
same exam (which is scored from 0 to 100). Four different experiments are conducted with students who 
are enrolled in introductory courses for four different subject areas: (biology, chemistry, psychology, 
sociology) 

The dot plots in question 10 and 11 are distributions of exam scores obtained from two experiments, where 
the subjects prepared with two different strategies, A and B.  

 



 

11. Boxplots of exam scores for students in the biology course ar
boxplots for the students in the chemistry course are on the right. For each subject area, 25 students were 
randomly assigned to either strategy A and 25 students were randomly assigned to strategy B. Which 
subject area, biology or chemistry, provides the stronger evidence against the claim, “neither strategy is 
better than the other”? Select either Biology or Chemistry and right an explanation for your choice.

A. Biology 
b. Chemistry 
Explain your choice: 

*Note: This item will be revised to multiple
 

12. Boxplots of exam scores for students in the psychology course are shown below on the left, and the 
boxplots for the students in the sociology course
who were randomly assigned to strategy A and 25 students were randomly assigned to strategy B. 
However, for the sociology course 100 students were randomly assigned to either strategy A and 100 
students were randomly assigned to strategy B. Which experiment provides the stronger evidence against 
the claim, “neither strategy is better than the other”? Why? 

a. Psychology  
B. Sociology 
Explain your choice: 

*Note: This item will be revised to multiple
 

 

Formal inferential reasoning items

13. A random sample of 25 textbooks for different courses taught at a University is obtained, and the mean 
textbook price is computed for the sample. To determi
of 25 textbooks with a mean more extreme than the one obtained from this random sample, you would need 
to refer to: 

a.  the distribution of textbook prices for all courses at the 
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11. Boxplots of exam scores for students in the biology course are shown below on the left, and the 
boxplots for the students in the chemistry course are on the right. For each subject area, 25 students were 
randomly assigned to either strategy A and 25 students were randomly assigned to strategy B. Which 

biology or chemistry, provides the stronger evidence against the claim, “neither strategy is 
better than the other”? Select either Biology or Chemistry and right an explanation for your choice.

  

*Note: This item will be revised to multiple-choice format after piloting based on student responses. 

12. Boxplots of exam scores for students in the psychology course are shown below on the left, and the 
boxplots for the students in the sociology course are on the right. For the psychology course, 25 students 
who were randomly assigned to strategy A and 25 students were randomly assigned to strategy B. 
However, for the sociology course 100 students were randomly assigned to either strategy A and 100 

ents were randomly assigned to strategy B. Which experiment provides the stronger evidence against 
the claim, “neither strategy is better than the other”? Why?  

 

*Note: This item will be revised to multiple-choice format after piloting based on student responses. 

Formal inferential reasoning items 

13. A random sample of 25 textbooks for different courses taught at a University is obtained, and the mean 
textbook price is computed for the sample. To determine the probability of finding another random sample 
of 25 textbooks with a mean more extreme than the one obtained from this random sample, you would need 

the distribution of textbook prices for all courses at the University.  

e shown below on the left, and the 
boxplots for the students in the chemistry course are on the right. For each subject area, 25 students were 
randomly assigned to either strategy A and 25 students were randomly assigned to strategy B. Which 

biology or chemistry, provides the stronger evidence against the claim, “neither strategy is 
better than the other”? Select either Biology or Chemistry and right an explanation for your choice.  

choice format after piloting based on student responses.  

12. Boxplots of exam scores for students in the psychology course are shown below on the left, and the 
are on the right. For the psychology course, 25 students 

who were randomly assigned to strategy A and 25 students were randomly assigned to strategy B. 
However, for the sociology course 100 students were randomly assigned to either strategy A and 100 

ents were randomly assigned to strategy B. Which experiment provides the stronger evidence against 

choice format after piloting based on student responses.  

13. A random sample of 25 textbooks for different courses taught at a University is obtained, and the mean 
ne the probability of finding another random sample 

of 25 textbooks with a mean more extreme than the one obtained from this random sample, you would need 



 

239 

b.  the distribution of textbook prices for this sample of University textbooks.  
C.   the distribution of mean textbook prices for all samples from the University.  

14 – 15. Items 14 and 15 refer to the following situation: 

Four graphs are presented below. The graph at the top is a distribution for a population of test scores. 
The mean score is 6.4 and the standard deviation is 4.1.  

 

14. Which graph (A, B, or C) do you think represents a single random sample of 500 values from this 
population? 

A.  Graph A  
b.  Graph B  
c.  Graph C  

 
 

15.  Which graph (A, B, or C) do you think represents a distribution of 500 sample means from random 
samples each of size 9? 

a.  Graph A  
B.  Graph B  
c.  Graph C  

 
16. It has been established that under normal environmental conditions, adult largemouth bass in Silver 

Lake have an average length of 12.3 inches with a standard deviation of 3 inches. People who have 
been fishing Silver Lake for some time claim that this year they are catching smaller than usual 
largemouth bass. A research group from the Department of Natural Resources took a random sample 
of adult largemouth bass from Silver Lake. Which of the following provides the strongest evidence to 
support the claim that they are catching smaller than average length (12.3 inches) largemouth bass this 
year? 

a.  A random sample of a sample size of 100 with a sample mean of 12.1. 
b.  A random sample of a sample size of 36 with a sample mean of 11.5. 
C.  A random sample of a sample size of 100 with a sample mean of 11.5 
d.  A random sample of a sample size of 36 with a sample mean of 12.1  
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17. A university administrator obtains a sample of the academic records of past and present scholarship 
athletes at the university. The administrator reports that no significant difference was found in the mean 
GPA (grade point average) for male and female scholarship athletes (p = 0.287). This means 

a. The distribution of the GPAs for male and female scholarship athletes are identical except for 28.7% of 
the athletes.  

b. The difference between the mean GPA of male scholarship athletes and the mean GPA of female 
scholarship athletes is 0.287.  

c. There is a 0.287 chance that a pair of randomly chosen male and female scholarship athletes would have 
a significant difference. 

D. There is a 0.287 chance of obtaining as large or larger of a mean difference in GPAs between male and 
female scholarship athletes as that observed in the sample.  

Questions 18 and 19 refer to the following: A researcher investigates the impact of a particular herbicide on 
fish. He has 60 healthy fish and randomly assigns each fish to either be exposed or not be exposed to the 
herbicide. The fish exposed to the herbicide showed higher levels of an enzyme associated with cancer. 

18. Suppose no statistically significant difference was found between the two groups of fish. What 
conclusion can be drawn from these results? 

a.  The researcher must not be interpreting the results correctly; there should be a significant 
difference.  

b.  The sample size may be too small to detect a statistically significant difference.  
c.  It must be true that the herbicide does not cause higher levels of the enzyme.  

 

19.  Suppose a statistically significant difference was found between the two groups of fish. What 
conclusion can be drawn from these results? 

a.  There is evidence of association, but no causal effect of herbicide on enzyme levels.  
b.  The sample size is too small to draw a valid conclusion.  
c.  He has proven that the herbicide causes higher levels of the enzyme.  
d.  There is evidence that the herbicide causes higher levels of the enzyme for these fish.  

 

20 – 21. Read the following information to answer questions 20 and 21: 

Data are collected from a research study that compares performance for professionals who have 
participated in a new training program with performance for professionals who haven’t participated in the 
program. The professionals are randomly assigned to one of two groups, with one group being given the 
new training program and the other group being not given. For each of the following pairs of graphs, 
indicate what you would do next to determine if there is a statistically significant difference between the 
training and no training groups. 

20.  

 
a. Nothing, the two groups appear to be statistically significantly different. 
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b. Conduct an appropriate statistical test for a difference between groups 

21.  

 
A. Nothing, the two groups appear to be statistically significantly different 

B. Conduct an appropriate statistical test for a difference between groups 

 

Read the following information to answer Question 22:  

A student participates in a Coke versus Pepsi taste test. She correctly identifies which soda is which seven 
times out of ten tries. She claims that this proves that she can reliably tell the difference between the two 
soft drinks. You want to estimate the probability that this student could get at least seven right out of ten 
tries just by chance alone.  

You decide to follow a procedure where you: 

• Simulate a chance process in which you specify the probability  of making a correct guess on each 
trial 

• Repeatedly generate ten cases per trial from this process and record the number of correct outcomes 
in each trial  

• Calculate the proportion of trials where the number of correct guesses meets a specified criterion 

In order to run the procedure, you need to decide on the value for the probability of making a correct guess, 
and specify the criterion for the number of correct guesses. 

22. Which of the options below would provide a reasonable approach to simulating data in 
order to determine the probability of anyone getting seven out of ten tries correct just by 
chance alone? 

a. Specify the probability of a correct guess as 50% and calculate the proportion of all trials 
with exactly seven correct guesses 

b. Specify the probability of a correct guess as 50% and calculate the proportion of all 
trials with seven or more correct guesses 

c. Specify the probability of a correct guess as 70% and calculate the proportion of all trials 
with exactly seven correct guesses 

d. Specify the probability of a correct guess as 70% and calculate the proportion of all trials 
with seven or more correct guesses 

Read the following information before answering Questions 23– 25: 

A research question of interest is whether financial incentives can improve performance. Alicia designed a 
study to test whether video game players are more likely to win on a certain video game when offered a $5 
incentive compared to when simply told to “do your best.” Forty subjects are randomly assigned to one of 



 

two groups, with one group being offered $5 for a win and the other group simply being told to “do your 
best.” She collected the following data from her study:

 

 
It looks like the $5 incentive is more successful than the encouragement. The difference in success rates as 
a proportion is  
 

 
 
In order to test whether this apparent difference might be due simply to chance, she does the following:

 
• She gets 40 index cards. On 24 of the cards she writes "win" and on 16 she writes "lose". 

o She then shuffles the cards and randomly places the cards into two stacks.
represents "$5 incentive" and the other "verbal encouragement".

o For this simulation, she computes 
subtracting the success rate for the simulation's "$5 incentive" group from the success rate 
of the simulation's "verbal encouragement" group.

• She repeats the previous two steps 100 times.

• She plots the 100 statistics she observes from these trials.

 
This is the simulated data that Alicia generated from her 100 trials and used to test her research question:

 

 
23. What is the null model that Alicia's data simulated? 

 
a. The $5 incentive is more effective than 
b. The $5 incentive and verbal encouragement are equally effe
c. Verbal encouragement is more effective than a $5 incentive for improving performance.

 
 

24. Use this distribution to estimate the 
p-value. 

a. 0.02 
b. 0.03  
c. 0.04 
d. 0.05 
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two groups, with one group being offered $5 for a win and the other group simply being told to “do your 
best.” She collected the following data from her study: 

 
$5 incentive “Do your best” Total  

Win 16 8 24  
Lose 4 12 16  
Total  20  20  40  

It looks like the $5 incentive is more successful than the encouragement. The difference in success rates as 

 

In order to test whether this apparent difference might be due simply to chance, she does the following:

ards. On 24 of the cards she writes "win" and on 16 she writes "lose". 

She then shuffles the cards and randomly places the cards into two stacks.
represents "$5 incentive" and the other "verbal encouragement". 

For this simulation, she computes the observed difference in the success rates by 
subtracting the success rate for the simulation's "$5 incentive" group from the success rate 
of the simulation's "verbal encouragement" group. 

She repeats the previous two steps 100 times. 

tatistics she observes from these trials. 

This is the simulated data that Alicia generated from her 100 trials and used to test her research question:

 

What is the null model that Alicia's data simulated?  

The $5 incentive is more effective than verbal encouragement for improving performance.
The $5 incentive and verbal encouragement are equally effective at improving performance.
Verbal encouragement is more effective than a $5 incentive for improving performance.

Use this distribution to estimate the p-value for her observed result. Explain how you got the 

two groups, with one group being offered $5 for a win and the other group simply being told to “do your 

It looks like the $5 incentive is more successful than the encouragement. The difference in success rates as 

In order to test whether this apparent difference might be due simply to chance, she does the following: 

ards. On 24 of the cards she writes "win" and on 16 she writes "lose".  

She then shuffles the cards and randomly places the cards into two stacks. One stack 

the observed difference in the success rates by 
subtracting the success rate for the simulation's "$5 incentive" group from the success rate 

This is the simulated data that Alicia generated from her 100 trials and used to test her research question: 

ment for improving performance. 
ctive at improving performance. 

Verbal encouragement is more effective than a $5 incentive for improving performance. 

value for her observed result. Explain how you got the 
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e. 0.4 
f. 0.5 

Explain your choice:  

25. What does the distribution tell you about the hypothesis that $5 incentives are effective for 
improving performance? 

 
a. The incentive is not effective because the null distribution is centered at 0. 

 
b. The incentive is effective because the null distribution is centered at 0. 

 
c. The incentive is not effective because the p-value is greater than .05 

 
d. The incentive is effective because the p-value is less than .05 

Questions 26 to 29 refer to the following: Does coaching raise college admission test scores? 
Because many students scored higher on a second try even without coaching, a study looked at a 
random sample of 4,200 students who took a college admissions test twice. Of these, 500 had taken 
coaching courses between their two attempts at the college admissions test. The study compared the 
average increase in scores (out of the total possible score of 2,400) for students who were coached with 
the average increase for students who were not coached.  

26. The result of this study showed that when students retake the SAT test, the difference between the 
average increase for coached and not-coached students was not statistically significant. This 
means that 

a. The sample sizes were too small to detect a true difference between the coached and not-coached 
students. 

b. The difference between coached and not-coached students could occur just by chance even if 
coaching really has no effect.  

c. The increase in test scores makes no difference in getting into college since it is not statistically 
significant. 

d. The study was badly designed because they did not have equal numbers of coached and not-
coached students.  
 

27. The study doesn’t show that coaching causes a greater increase in SAT scores. One plausible 
reason is that 

a. the not-coached students used other effective ways to prepare.  
b. 4,200 students is too few to draw a conclusion. 
c. more students were not coached than were coached. 
d. Students were not randomly assigned to the two groups. 

 

28. The report of the study states, “With 95% confidence, we can say that the average score for 
students who take the college admissions test a second time is between 28 and 57 points higher 
than the average score for the first time.” By “95% confidence” we mean: 

a. 95% of all students will increase their score by between 28 and 57 points for a second test.  
b. We are certain that the average increase is between 28 and 57 points. 
c. We got the 28 to 57 point higher mean scores in a second test in 95% of all samples.  
d. 95% of all adults would believe the statement.  

 



 

29. We are 95% confidence that the difference between average scores for coached and uncoached 
students is between 28 and 57 points. If we want to be
be: 

a. Wider, because higher confidence requires a larger margin of error. 
b. Narrower, because higher confidence requires a smaller margin of error.
c. Exactly the same width as for 95% confidence.

 
Questions 30 to 31 refer to the following:
cause food poisoning among consumers. A large egg producer takes a random sample of 200 eggs 
from all the eggs shipped in one day. The laboratory reports that 9 of these eggs ha
contamination. Unknown to the producer, 0.1% (one
salmonella.  

30. A statistician tells the producer that the margin of error for a 95% confidence statement for these 
data is about plus or minus 3perce
and 7.5% (that’s 4.5%
all eggs from the producer are contaminated. What went wrong?

a. The statement that 0.1% of all of the
wrong; it has to be at least 1.5% of all eggs shipped. 

b. A 95% confidence statement is only right for 95% of all possible samples. This must be one of the 
5% of samples for which we get an incorrect co

c. The laboratory tests must be wrong because it’s impossible for the true percentage to lie outside 
the confidence interval.
 

31. If the producer took an random sample of 400 eggs instead of 200, the new margin of error would 
be: 

a. The same as before, b
b. Smaller than before, because the sample is larger. 
c. Larger than before, because the sample is larger.
d. Random in size, could be either larger or smaller than before.
e. Can’t tell, because sample size doesn’t control 

 

32. A sportswriter wants to know how strongly football fans in a large city support building a new 
football stadium. She stands outside the current football stadium before a game and interviews the 
first 250 people who enter the stadium. 
estimate of the percentage of football fans in the city who support building a new stadium. Which 
statement is correct in terms of the sampling method?

a. This is a simple random sample. It will give 
b. Because the sample is so small, it will not give an accurate estimate
c. This is a census, because all fans had a chance to be asked. It 
d. The sampling method is biased. It wil

 

 

33. Suppose we wish to estimate the percentage of students who smoke cigarettes at each of several 
colleges and universities. One is a small liberal arts college with an enrollment 2,000 
undergraduates and another is a large public university 
undergraduates. A simple random sample of 5% of the students is taken at each school and used to 
estimate the percentage of students who smoke. The margin of error for the estimate will be:

a. smaller for the liberal arts 
b. smaller for the university. 
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We are 95% confidence that the difference between average scores for coached and uncoached 
students is between 28 and 57 points. If we want to be 99% confident, the range of points would 

Wider, because higher confidence requires a larger margin of error.  
Narrower, because higher confidence requires a smaller margin of error. 
Exactly the same width as for 95% confidence. 

refer to the following: Sale of eggs that are contaminated with salmonella can 
cause food poisoning among consumers. A large egg producer takes a random sample of 200 eggs 
from all the eggs shipped in one day. The laboratory reports that 9 of these eggs ha
contamination. Unknown to the producer, 0.1% (one-tenth of one percent) of all eggs shipped had 

A statistician tells the producer that the margin of error for a 95% confidence statement for these 
data is about plus or minus 3percentage points. The producer therefore reports that between 1.5% 
and 7.5% (that’s 4.5% 3%) of all eggs are contaminated. This isn’t right because only 0.1% of 
all eggs from the producer are contaminated. What went wrong? 
The statement that 0.1% of all of the eggs shipped were contaminated with salmonella must be 
wrong; it has to be at least 1.5% of all eggs shipped.  
A 95% confidence statement is only right for 95% of all possible samples. This must be one of the 
5% of samples for which we get an incorrect conclusion.  
The laboratory tests must be wrong because it’s impossible for the true percentage to lie outside 
the confidence interval. 

If the producer took an random sample of 400 eggs instead of 200, the new margin of error would 

The same as before, because the population of eggs is the same. 
Smaller than before, because the sample is larger.  
Larger than before, because the sample is larger. 
Random in size, could be either larger or smaller than before. 
Can’t tell, because sample size doesn’t control the margin of error. 

A sportswriter wants to know how strongly football fans in a large city support building a new 
football stadium. She stands outside the current football stadium before a game and interviews the 
first 250 people who enter the stadium. The newspaper reports the results from the sample as an 
estimate of the percentage of football fans in the city who support building a new stadium. Which 
statement is correct in terms of the sampling method? 

This is a simple random sample. It will give an accurate estimate. 
Because the sample is so small, it will not give an accurate estimate. 
This is a census, because all fans had a chance to be asked. It will give an accurate estimate.
The sampling method is biased. It will not give an accurate estimate. 

Suppose we wish to estimate the percentage of students who smoke cigarettes at each of several 
colleges and universities. One is a small liberal arts college with an enrollment 2,000 
undergraduates and another is a large public university with an enrollment of 30,000 
undergraduates. A simple random sample of 5% of the students is taken at each school and used to 
estimate the percentage of students who smoke. The margin of error for the estimate will be:

smaller for the liberal arts college. 
smaller for the university.  

We are 95% confidence that the difference between average scores for coached and uncoached 
99% confident, the range of points would 

Sale of eggs that are contaminated with salmonella can 
cause food poisoning among consumers. A large egg producer takes a random sample of 200 eggs 

d salmonella 
tenth of one percent) of all eggs shipped had 

A statistician tells the producer that the margin of error for a 95% confidence statement for these 
ntage points. The producer therefore reports that between 1.5% 

3%) of all eggs are contaminated. This isn’t right because only 0.1% of 

eggs shipped were contaminated with salmonella must be 

A 95% confidence statement is only right for 95% of all possible samples. This must be one of the 

The laboratory tests must be wrong because it’s impossible for the true percentage to lie outside 

If the producer took an random sample of 400 eggs instead of 200, the new margin of error would 

A sportswriter wants to know how strongly football fans in a large city support building a new 
football stadium. She stands outside the current football stadium before a game and interviews the 

The newspaper reports the results from the sample as an 
estimate of the percentage of football fans in the city who support building a new stadium. Which 

will give an accurate estimate. 

Suppose we wish to estimate the percentage of students who smoke cigarettes at each of several 
colleges and universities. One is a small liberal arts college with an enrollment 2,000 

with an enrollment of 30,000 
undergraduates. A simple random sample of 5% of the students is taken at each school and used to 
estimate the percentage of students who smoke. The margin of error for the estimate will be: 
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d. about the same at both schools. 
e. anything - you can’t tell without seeing the sample results.  

 

 
34. A study of treatments for angina (pain due to low blood supply to the heart) compared the 

effectiveness of three different treatments: bypass surgery, angioplasty, and prescription 
medications only. The study looked at the medical records of thousands of angina patients whose 
doctors had chosen one of these treatments. The researchers concluded that prescription 
medications only were the most effective treatment because those patients had the highest median 
survival time. Is the researchers’ conclusion valid?  

a. Yes, because medication patients lived longer. 
b. No, because doctors chose the treatments. 
c. Yes, because the study was a comparative experiment. 
d. No, because the patients volunteered to be studied.  

 
35. An engineer designs an improved light bulb. The previous design had an average lifetime of 1,200 

hours. The new bulb design has an estimated lifetime of 1,200.2 hours based on a sample of 
40,000 bulbs. Although the difference was quite small, the mean difference was statistically 
significant. The most likely explanation is 

a. The new design had more variability than the previous design. 
b. The sample size for the new design is very large.  
c. The mean of 1,200 for the previous design is large. 

 
36. Research participants were randomly assigned to take Vitamin E or a placebo pill. After taking the 

pills for eight years, it was reported how many developed cancer. Which of the following 
responses gives the best explanation as to the purpose of randomization in this study? 

a. To ensure that all potential cancer patients had an equal chance of being selected for the study.  
b. To reduce the amount of sampling error.  
c. To produce treatment groups with similar characteristics.  
d. To prevent skewness in the results.  

===The End === 

 



 

AIRS-1

Assessment of Inferential Reasoning in Statistics

[NOTE: The free-response format will be revised to 

1. The Springfield Meteorological Center wanted to determine the accuracy of their weather forecasts. 
They searched their records for those days when the forecaster had reported a 70% chance of rain. They 
compared these forecasts to records of whether or not it actually rained on those particular days.
The forecast of 70% chance of rain can be considered very accurate if it rained on:

a. 95% - 100% of those days.
b. 85% - 94% of those days.
c. 75% - 84% of those days.
d. 65% - 74% of those days. 
e. 55% - 64% of those days.

 

2. Imagine you have a barrel that contains thousands of candies with several different colors. We know that 
the manufacturer produces 50% brown candies. Ten students each take one random sample of 10 candies 
and record the percentage of brown candies in each of their samples. Another ten students each take one 
random sample of 100 candies and record the percentage of brown candies in each of their samples. Which 
of the following pairs of graphs represents the mo
candies obtained in the samples for each group of 10 students? 
a.  

 

b.  

 

c.  
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1 (Changes were made from expert reviews) 

Assessment of Inferential Reasoning in Statistics-1 (AIRS-1)  

response format will be revised to multiple-choice format after piloting.]

The Springfield Meteorological Center wanted to determine the accuracy of their weather forecasts. 
They searched their records for those days when the forecaster had reported a 70% chance of rain. They 

these forecasts to records of whether or not it actually rained on those particular days.
The forecast of 70% chance of rain can be considered very accurate if it rained on: 

100% of those days. 
94% of those days. 
84% of those days. 
74% of those days.  
64% of those days. 

Imagine you have a barrel that contains thousands of candies with several different colors. We know that 
the manufacturer produces 50% brown candies. Ten students each take one random sample of 10 candies 

d record the percentage of brown candies in each of their samples. Another ten students each take one 
random sample of 100 candies and record the percentage of brown candies in each of their samples. Which 
of the following pairs of graphs represents the more plausible distributions for the percentage of brown 
candies obtained in the samples for each group of 10 students?  

 

 

 

 

 

 

choice format after piloting.] 

The Springfield Meteorological Center wanted to determine the accuracy of their weather forecasts. 
They searched their records for those days when the forecaster had reported a 70% chance of rain. They 

these forecasts to records of whether or not it actually rained on those particular days. 

Imagine you have a barrel that contains thousands of candies with several different colors. We know that 
the manufacturer produces 50% brown candies. Ten students each take one random sample of 10 candies 

d record the percentage of brown candies in each of their samples. Another ten students each take one 
random sample of 100 candies and record the percentage of brown candies in each of their samples. Which 

re plausible distributions for the percentage of brown 



 

 

d.  

 

Question 3 to 9 refer to the following:

 

‘Person 1’ used the spinner 10 times and each time he wrote down the letter that the spinner landed on. 
When he looked at the results, he saw that the letter 
doubts the fairness of the spinner because it seems like he got too many 
Bs would not be unusual for this spinner. 
4. If the spinner is fair, how many 

a. 2 or 3 B’s 
b. 4 or 5 B’s 
c. 6 or 7 B’s 
d. 8 or 9 B’s 

 
 
4. Which person do you think is correct and why? 

a. Person 1 is correct because:
b. Person 2 is correct because:
c. Both are correct because:

 

5. A statistician wants to set up a probability model to examine how often the result of 5 B’s out of 10 spins 
could happen with a fair spinner just by chance alone. Please describe the null model. [*Free
question]  

6. The statistician conducted a
simulation. The computer simulation randomly generates four letters, A to D. She obtained 100 samples 
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Question 3 to 9 refer to the following: Consider a spinner shown below that has the letters from 

‘Person 1’ used the spinner 10 times and each time he wrote down the letter that the spinner landed on. 
When he looked at the results, he saw that the letter B showed up 5 times out of the 10 spins.
doubts the fairness of the spinner because it seems like he got too many Bs. However, ‘Person 2’ says that 5 

s would not be unusual for this spinner.  
If the spinner is fair, how many Bs out of 10 spins would you expect to see? 

4. Which person do you think is correct and why?  
Person 1 is correct because: 
Person 2 is correct because: 
Both are correct because: 

5. A statistician wants to set up a probability model to examine how often the result of 5 B’s out of 10 spins 
could happen with a fair spinner just by chance alone. Please describe the null model. [*Free

6. The statistician conducted a statistical test to examine the fairness of the spinner using a computer 
simulation. The computer simulation randomly generates four letters, A to D. She obtained 100 samples 

Consider a spinner shown below that has the letters from A to D.  

‘Person 1’ used the spinner 10 times and each time he wrote down the letter that the spinner landed on. 
showed up 5 times out of the 10 spins. Now he 

s. However, ‘Person 2’ says that 5 

5. A statistician wants to set up a probability model to examine how often the result of 5 B’s out of 10 spins 
could happen with a fair spinner just by chance alone. Please describe the null model. [*Free-response 

statistical test to examine the fairness of the spinner using a computer 
simulation. The computer simulation randomly generates four letters, A to D. She obtained 100 samples 



 

where each sample consisted of 10 letters.
letters. The following dot plot represents the number of Bs for each of the 100 samples. What do you think 
about the observed result of 5 Bs out of 10 spins in the spinner? 

a. 5 B’s are not unusual because:.
b. 5 B’s are unusual because:
c. There is not enough information to decide if 5 B’s is unusual or not. 

 

 

7. Based on your answers to questions 5 and 6, what would you conclude about whether or not the spinner 
is fair? Why? [*Free-response question] 

a. This spinner is fair because:
b. This spinner is unfair because: 

 
*Note: This item will be revised to multiple
 
8. Let’s say the statistician did another computer simulation, but this time each sample consisted of 20 
spins. She calculated the proportion of Bs in each sample (the number of Bs divide by 20). How would you 
expect the distribution of the proportion
the distribution of the proportion

a. The distribution of the proportion of Bs for 100 samples of 20 spins each would be wider 
because you have twice 

b. The distribution of the proportion of Bs for 100 repetitions of 20 spins each would be 
narrower because you have more information for each sample.

c. Both distributions would have about the same width because the probability of ge
each letter is the same whether you do 10 spins or 20 spins.

 

9. Which of the following results, 5 Bs out of 10 spins or 10 Bs out of 20 spins, provides the stronger 
evidence that the spinner is not fair? Explain your reasoning. 

a. 10 Bs out of 20 spin
get an unusual result with a fair spinner.

b. 5 Bs out of 10 spins because smaller samples have larger variability, so it is more likely 
to get an unusual result with a fair spinner.

c. Both outcomes provide the same evidence because there is the same proportion of Bs 
(1/2) in each of the two samples. 

 
 

Item 10 to 12 refers to the following situation: 
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where each sample consisted of 10 letters. She then counted the number Bs in each sample of 10 random 
letters. The following dot plot represents the number of Bs for each of the 100 samples. What do you think 
about the observed result of 5 Bs out of 10 spins in the spinner?  

 

5 B’s are not unusual because:. 
5 B’s are unusual because:.  
There is not enough information to decide if 5 B’s is unusual or not.  

7. Based on your answers to questions 5 and 6, what would you conclude about whether or not the spinner 
response question]  

This spinner is fair because: 
spinner is unfair because:  

*Note: This item will be revised to multiple-choice format after piloting based on student responses. 

8. Let’s say the statistician did another computer simulation, but this time each sample consisted of 20 
spins. She calculated the proportion of Bs in each sample (the number of Bs divide by 20). How would you 

proportion of Bs obtained from100 samples of 20 spins each to compare to 
proportion of Bs obtained from 100 samples of 10 spins each?  

The distribution of the proportion of Bs for 100 samples of 20 spins each would be wider 
because you have twice as many spins in each trial. 
The distribution of the proportion of Bs for 100 repetitions of 20 spins each would be 
narrower because you have more information for each sample. 
Both distributions would have about the same width because the probability of ge
each letter is the same whether you do 10 spins or 20 spins. 

9. Which of the following results, 5 Bs out of 10 spins or 10 Bs out of 20 spins, provides the stronger 
evidence that the spinner is not fair? Explain your reasoning.  

10 Bs out of 20 spins because larger samples have less variability, so it is less likely to 
get an unusual result with a fair spinner. 
5 Bs out of 10 spins because smaller samples have larger variability, so it is more likely 
to get an unusual result with a fair spinner.  

h outcomes provide the same evidence because there is the same proportion of Bs 
(1/2) in each of the two samples.  

Item 10 to 12 refers to the following situation:  

h sample of 10 random 
letters. The following dot plot represents the number of Bs for each of the 100 samples. What do you think 

 

7. Based on your answers to questions 5 and 6, what would you conclude about whether or not the spinner 

choice format after piloting based on student responses.  

8. Let’s say the statistician did another computer simulation, but this time each sample consisted of 20 
spins. She calculated the proportion of Bs in each sample (the number of Bs divide by 20). How would you 

s obtained from100 samples of 20 spins each to compare to 

The distribution of the proportion of Bs for 100 samples of 20 spins each would be wider 

The distribution of the proportion of Bs for 100 repetitions of 20 spins each would be 

Both distributions would have about the same width because the probability of getting 

9. Which of the following results, 5 Bs out of 10 spins or 10 Bs out of 20 spins, provides the stronger 

s because larger samples have less variability, so it is less likely to 

5 Bs out of 10 spins because smaller samples have larger variability, so it is more likely 

h outcomes provide the same evidence because there is the same proportion of Bs 



 

A drug company developed a new formula for their headache medication. To test the effecti
new formula, 250 people were randomly selected from a larger population of patients with headaches.
of these people were randomly assigned to receive the new formula medication when they had a headache, 
and the other 150 people received 
to no longer have a headache was recorded. The results from both of these clinical trials are shown below. 
Questions 9, 10, and 11 present statements made by three different statist
indicate whether you think the student’s conclusion is valid. 

10. The old formula works better. Two people who took the old formula felt relief in less than 20 minutes, 
compared to none who took the new formula.
formula. 

a. Valid 

b. Not valid 

11. The average time for the new formula to relieve a headache is lower than the average time for the old 
formula. I would conclude that people taking the new formula will tend
minutes sooner than those taking the old formula.

a. Valid 

b. Not valid 

12. We can’t conclude anything from these data. The number of patients in the two groups is not the same 
so there is no fair way to compare the two formul

c. Valid 

d. Not valid 

 

Question 13 and 14 refer to the following:
different exam preparation strategies on exam scores. In each experiment, half of the subjects were 
randomly assigned to strategy A 
took the same exam (which is scored from 0 to 100) in all four experiments. The four different experiments 
were conducted with students who were enrolled in four different subject 
psychology, sociology. 

13. Boxplots of exam scores for students in the biology course are shown below on the left, and the 
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A drug company developed a new formula for their headache medication. To test the effecti
new formula, 250 people were randomly selected from a larger population of patients with headaches.
of these people were randomly assigned to receive the new formula medication when they had a headache, 
and the other 150 people received the old formula medication. The time it took, in minutes, for each patient 
to no longer have a headache was recorded. The results from both of these clinical trials are shown below. 
Questions 9, 10, and 11 present statements made by three different statistics students. For each statement, 
indicate whether you think the student’s conclusion is valid.  

 

10. The old formula works better. Two people who took the old formula felt relief in less than 20 minutes, 
compared to none who took the new formula. Also, the worst result - near 120 minutes 

11. The average time for the new formula to relieve a headache is lower than the average time for the old 
formula. I would conclude that people taking the new formula will tend to feel relief on average about 20 
minutes sooner than those taking the old formula. 

12. We can’t conclude anything from these data. The number of patients in the two groups is not the same 
so there is no fair way to compare the two formulas. 

Question 13 and 14 refer to the following: Four experiments were conducted to study the effects of two 
different exam preparation strategies on exam scores. In each experiment, half of the subjects were 
randomly assigned to strategy A and half to strategy B. After completing the exam preparation, all subjects 
took the same exam (which is scored from 0 to 100) in all four experiments. The four different experiments 
were conducted with students who were enrolled in four different subject areas: biology, chemistry, 

13. Boxplots of exam scores for students in the biology course are shown below on the left, and the 

A drug company developed a new formula for their headache medication. To test the effectiveness of this 
new formula, 250 people were randomly selected from a larger population of patients with headaches. 100 
of these people were randomly assigned to receive the new formula medication when they had a headache, 

The time it took, in minutes, for each patient 
to no longer have a headache was recorded. The results from both of these clinical trials are shown below. 

ics students. For each statement, 

10. The old formula works better. Two people who took the old formula felt relief in less than 20 minutes, 
near 120 minutes - was with the new 

11. The average time for the new formula to relieve a headache is lower than the average time for the old 
to feel relief on average about 20 

12. We can’t conclude anything from these data. The number of patients in the two groups is not the same 

Four experiments were conducted to study the effects of two 
different exam preparation strategies on exam scores. In each experiment, half of the subjects were 

and half to strategy B. After completing the exam preparation, all subjects 
took the same exam (which is scored from 0 to 100) in all four experiments. The four different experiments 

areas: biology, chemistry, 

13. Boxplots of exam scores for students in the biology course are shown below on the left, and the 



 

boxplots for the students in the chemistry course are on the right. For each subject area, 25 students wer
randomly assigned to either strategy A and 25 students were randomly assigned to strategy B. Which 
experiment, the one for the biology or the chemistry course, provides the stronger evidence 
claim, “neither strategy is better than the other”?

a. Biology  
b. Chemistry 

14. Boxplots of exam scores for students in the psychology course are shown below on the left, and the 
boxplots for the students in the sociology course are on the right. For the psychology course, 25 students 
were randomly assigned to strategy A and 25 students were randomly assigned to strategy B. However, for 
the sociology course 100 students were randomly assigned to strategy A and 100 students were randomly 
assigned to strategy B. Which experiment provides the stronger eviden
strategy is better than the other”? Why? 

a. Psychology 
b. Sociology 

15. A random sample of 25 textbooks for different courses taught at a University is obtained, and the mean 
textbook price is computed for the sample. To determi
of 25 textbooks with a mean more extreme than the one obtained from this random sample, you would need 
to refer to: 

a. the distribution of textbook prices for all courses at the University. 
b. the distribution of textbook prices for this sample of University textbooks. 
c. the distribution of mean textbook prices for all samples of size 25 from the University. 

Questions 16 and 17 refer to the following situation:

Four graphs are presented below. The graph at the 
The mean score is 6.57 and the standard deviation is 1.23
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boxplots for the students in the chemistry course are on the right. For each subject area, 25 students wer
randomly assigned to either strategy A and 25 students were randomly assigned to strategy B. Which 
experiment, the one for the biology or the chemistry course, provides the stronger evidence 
claim, “neither strategy is better than the other”? Why? 

 

14. Boxplots of exam scores for students in the psychology course are shown below on the left, and the 
boxplots for the students in the sociology course are on the right. For the psychology course, 25 students 

ned to strategy A and 25 students were randomly assigned to strategy B. However, for 
the sociology course 100 students were randomly assigned to strategy A and 100 students were randomly 
assigned to strategy B. Which experiment provides the stronger evidence against the claim, “neither 
strategy is better than the other”? Why?  

 

 

15. A random sample of 25 textbooks for different courses taught at a University is obtained, and the mean 
textbook price is computed for the sample. To determine the probability of finding another random sample 
of 25 textbooks with a mean more extreme than the one obtained from this random sample, you would need 

the distribution of textbook prices for all courses at the University.  
of textbook prices for this sample of University textbooks.  

the distribution of mean textbook prices for all samples of size 25 from the University. 

Questions 16 and 17 refer to the following situation: 

Four graphs are presented below. The graph at the top is a distribution for a population of te
nd the standard deviation is 1.23.  

boxplots for the students in the chemistry course are on the right. For each subject area, 25 students were 
randomly assigned to either strategy A and 25 students were randomly assigned to strategy B. Which 
experiment, the one for the biology or the chemistry course, provides the stronger evidence against the 

14. Boxplots of exam scores for students in the psychology course are shown below on the left, and the 
boxplots for the students in the sociology course are on the right. For the psychology course, 25 students 

ned to strategy A and 25 students were randomly assigned to strategy B. However, for 
the sociology course 100 students were randomly assigned to strategy A and 100 students were randomly 

the claim, “neither 

15. A random sample of 25 textbooks for different courses taught at a University is obtained, and the mean 
ne the probability of finding another random sample 

of 25 textbooks with a mean more extreme than the one obtained from this random sample, you would need 

the distribution of mean textbook prices for all samples of size 25 from the University.  

top is a distribution for a population of test scores. 



 

16. Which graph (A, B, or C) do you think represents a single random sample of 500 values from this 
population? 

a. Graph A  
b. Graph B  
c. Graph C  

 

 

17.  Which graph (A, B, or C) do you think represents a distribution of 500 sample means from random 
samples each of size 9?

a. Graph A  
b. Graph B  
c. Graph C  

 

 

18. It has been established that under normal environmental conditions, adult largemouth bass in Sil
Lake have an average length of 12.3 inches with a standard deviation of 3 inches. People who have 
been fishing Silver Lake for some time claim that this year they are catching smaller than usual 
largemouth bass. A research group from the Department of 
of adult largemouth bass from Silver Lake. Which of the following provides the strongest evidence to 
support the claim that they are catching smaller than average length (12.3 inches) largemouth bass this 
year? 

a. A random sample of a sample size of 100 with a sample mean of 12.1.
b. A random sample of a sample size of 36 with a sample mean of 11.5.
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Which graph (A, B, or C) do you think represents a single random sample of 500 values from this 

Which graph (A, B, or C) do you think represents a distribution of 500 sample means from random 
samples each of size 9? 

18. It has been established that under normal environmental conditions, adult largemouth bass in Sil
Lake have an average length of 12.3 inches with a standard deviation of 3 inches. People who have 
been fishing Silver Lake for some time claim that this year they are catching smaller than usual 

A research group from the Department of Natural Resources took a random sample 
of adult largemouth bass from Silver Lake. Which of the following provides the strongest evidence to 
support the claim that they are catching smaller than average length (12.3 inches) largemouth bass this 

om sample of a sample size of 100 with a sample mean of 12.1. 
A random sample of a sample size of 36 with a sample mean of 11.5. 

Which graph (A, B, or C) do you think represents a single random sample of 500 values from this 

Which graph (A, B, or C) do you think represents a distribution of 500 sample means from random 

18. It has been established that under normal environmental conditions, adult largemouth bass in Silver 
Lake have an average length of 12.3 inches with a standard deviation of 3 inches. People who have 
been fishing Silver Lake for some time claim that this year they are catching smaller than usual 

Natural Resources took a random sample 
of adult largemouth bass from Silver Lake. Which of the following provides the strongest evidence to 
support the claim that they are catching smaller than average length (12.3 inches) largemouth bass this 
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c. A random sample of a sample size of 100 with a sample mean of 11.5. 
d. A random sample of a sample size of 36 with a sample mean of 12.1. 

 

 

19. A university administrator obtains a sample of the academic records of past and present scholarship 
athletes at the university. The administrator reports that no significant difference was found in the mean 
GPA (grade point average) for male and female scholarship athletes (p = 0.287). What does this mean? 

a. The distribution of the GPAs for male and female scholarship athletes are identical except for 28.7% 
of the athletes.  

b. The difference between the mean GPA of male scholarship athletes and the mean GPA of female 
scholarship athletes is 0.287.  

c. There is a 28.7% chance that a pair of randomly chosen male and female scholarship athletes 
would have d. significant difference assuming that there is no difference.  

d. There is a 28.7% chance of obtaining as large or larger of a mean difference in GPAs between 
male and female scholarship athletes as that observed in the sample assuming that there is no 
difference.  

 

Questions 20 and 21 refer to the following: A researcher investigates the impact of a particular herbicide on 
fish. He has 60 healthy fish and randomly assigns each fish to either be exposed or not be exposed to the 
herbicide. The fish exposed to the herbicide showed higher levels of an enzyme associated with cancer. 

20. Suppose no statistically significant difference was found between the two groups of fish. What 
conclusion can be drawn from these results? 

a.  The researcher must not be interpreting the results correctly; there should be a significant 
difference.  

b.  The sample size may be too small to detect a statistically significant difference.  

c.  It must be true that the herbicide does not cause higher levels of the enzyme.  

 

21.  Suppose a statistically significant difference was found between the two groups of fish. What 
conclusion can be drawn from these results? 

a.  There is evidence of association, but no causal effect of herbicide on enzyme levels.  

b.  The sample size is too small to draw a valid conclusion.  

c.  He has proven that the herbicide causes higher levels of the enzyme.  

d.  There is evidence that the herbicide causes higher levels of the enzyme for these fish.  

 

 

22 – 23. Read the following information to answer questions 20 and 21: 

Data are collected from a research study that compares the times to complete a task for professionals who 
have participated in a new training program with performance for professionals who haven’t participated in 
the program. The professionals are randomly assigned to one of the two groups, with one group receiving 
the new training program (N=50) and the other group not receiving the training (N=50). For each of the 
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following pairs of graphs, select an appropriate action that you would need to do next to determine if there 
is a statistically significant difference between the training and no training groups. Write an explanation for 
your choice.  

22.  

 
a. Nothing, the two groups appear to be statistically significantly different. 

b. Conduct an appropriate statistical test for a difference between groups. 

 

23.  

 
a. Nothing, the two groups appear to be statistically significantly different. 

b. Conduct an appropriate statistical test for a difference between groups.  

24. A student participates in a Coke versus Pepsi taste test. She identifies the correct soda seven times out 
of ten tries. She claims that this proves that she can reliably tell the difference between the two soft drinks. 
You want to estimate the probability that this student could get at least seven right out of ten tries just by 
chance alone.  

You decide to follow a procedure where you: 

• Simulate a chance process in which you specify the probability  of making a correct guess on each 
trial 

• Repeatedly generate ten cases per trial from this process and record the number of correct outcomes 
in each trial  

• Calculate the proportion of trials where the number of correct guesses meets a specified criterion 

In order to run the procedure, you need to decide on the value for the probability of making a correct guess, 
and specify the criterion for the number of correct guesses. 

Which of the options below would provide a reasonable approach to simulating data in order to determine 
the probability of anyone getting seven out of ten tries correct just by chance alone? 
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a. Specify the probability of a correct guess as 50% and calculate the proportion of all trials 
with exactly seven correct guesses 

b. Specify the probability of a correct guess as 50% and calculate the proportion of all trials 
with seven or more correct guesses 

c. Specify the probability of a correct guess as 70% and calculate the proportion of all trials 
with exactly seven correct guesses 

d. Specify the probability of a correct guess as 70% and calculate the proportion of all trials 
with seven or more correct guesses 

 

Read the following information before answering Questions 25– 26: 

A research question of interest is whether financial incentives can improve performance. Alicia designed a 
study to test whether video game players are more likely to win on a certain video game when offered a $5 
incentive compared to when simply told to “do your best.” Forty subjects are randomly assigned to one of 
two groups, with one group being offered $5 for a win and the other group simply being told to “do your 
best.” She collected the following data from her study: 

 
 

$5 incentive “Do your best”  Total  
Win 16 8 24  
Lose 4 12 16  
Total  20  20  40  

 
It looks like the $5 incentive is more successful than the encouragement. The difference in success rates as 
a proportion is: 16/20 – 8/20 = 8/20 = 0.40  
 
 
In order to test whether this apparent difference might be due simply to chance, she does the following: 

 
• She gets 40 index cards. On 24 of the cards she writes "win" and on 16 she writes "lose".  

o She then shuffles the cards and randomly places the cards into two stacks. One stack 
represents "$5 incentive" and the other "verbal encouragement". 

o For this simulation, she computes the observed difference in the success rates by 
subtracting the success rate for the simulation's "$5 incentive" group from the success rate 
of the simulation's "verbal encouragement" group. 

• She repeats the previous two steps 100 times. 

• She plots the 100 statistics she observes from these trials. 

 
The following shows a distribution of simulated data that Alicia generated from her 100 trials and used to 
test her research question: 



 

 

 
25. What is the null model (null hypothesis) that Alicia's data simulated? 

 
a. The $5 incentive is more effective than verbal encourage
b. The $5 incentive and verbal encouragement are equally effec
c. Verbal encouragement is more effective than a $5 incentive for improving performance.

 
 
 

 
26. Use this distribution to estimate the 

a. 0.02 
b. 0.03  
c. 0.04 
d. 0.05 
e. 0.40 

27. What does the distribution tell you about the hypothesis that $5 incentives are effective for improving 
performance?  

a. The incentive is not effective because the null distribution is centered at 0.
b. The incentive is effective because the null distribution is
c. The incentive is not effective because the 
d. The incentive is effective because the 

 

Questions 28 to 31 refer to the following:
many students scored higher on a second try even without coaching, a study looked at a random sample of 
4,200 students who took the college admissions test twice. Of these, 500 took a coaching course between 
their two attempts at the college admissions tes
students who were coached to the average increase for students who were not coached. 

28. The result of this study showed that while the coached students had a larger increase, the difference 
between the average increase for coached and not
does this mean?  

a. The sample sizes were too small to detect a true difference between the coached and not
students. 

b. The observed difference between co
alone even if coaching really has no effect. 
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What is the null model (null hypothesis) that Alicia's data simulated?  

The $5 incentive is more effective than verbal encouragement for improving performance.
The $5 incentive and verbal encouragement are equally effective for improving performance.

al encouragement is more effective than a $5 incentive for improving performance.

Use this distribution to estimate the p-value for her observed result.  

What does the distribution tell you about the hypothesis that $5 incentives are effective for improving 

The incentive is not effective because the null distribution is centered at 0. 
The incentive is effective because the null distribution is centered at 0. 
The incentive is not effective because the p-value is greater than .05. 
The incentive is effective because the p-value is less than .05. 

Questions 28 to 31 refer to the following: Does coaching raise college admission test scores? Because 
many students scored higher on a second try even without coaching, a study looked at a random sample of 
4,200 students who took the college admissions test twice. Of these, 500 took a coaching course between 
their two attempts at the college admissions test. The study compared the average increase in scores for 
students who were coached to the average increase for students who were not coached. 

The result of this study showed that while the coached students had a larger increase, the difference 
the average increase for coached and not-coached students was not statistically significant. What 

The sample sizes were too small to detect a true difference between the coached and not

The observed difference between coached and not-coached students could occur just by chance 
alone even if coaching really has no effect.  

ment for improving performance. 
tive for improving performance. 

al encouragement is more effective than a $5 incentive for improving performance. 

What does the distribution tell you about the hypothesis that $5 incentives are effective for improving 

Does coaching raise college admission test scores? Because 
many students scored higher on a second try even without coaching, a study looked at a random sample of 
4,200 students who took the college admissions test twice. Of these, 500 took a coaching course between 

t. The study compared the average increase in scores for 
students who were coached to the average increase for students who were not coached.  

The result of this study showed that while the coached students had a larger increase, the difference 
coached students was not statistically significant. What 

The sample sizes were too small to detect a true difference between the coached and not-coached 

coached students could occur just by chance 
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c. The increase in test scores makes no difference in getting into college since it is not statistically 
significant. 

d. The study was badly designed because they did not have equal numbers of coached and not-
coached students.  
 
 

29. The study doesn’t show that coaching causes a greater increase in college admissions test scores. Which 
of the following would be the most plausible reason for this? 

a. The not-coached students used other effective ways to prepare.  
b. The number of 4,200 students is too few to detect a difference. 
c. More students were not coached than were coached. 

 

30. The report of the study states, “With 95% confidence, we can say that the average score for students 
who take the college admissions test a second time is between 28 and 57 points higher than the average 
score for the first time.” By “95% confidence” we mean: 

a. 95% of all students will increase their score by between 28 and 57 points for a second test.  
b. 95% of all samples of students will increase their score by between 28 to 57 points for a second 

test.  
c. 95% of all students who take the college admissions test would believe the statement.  
d. We are 95% certain that the average increase in college admissions scores is between 28 and 57 

points. 
 

31. We are 95% confident that the difference between average scores for the first and the second tests is 
between 28 and 57 points. If we want to be 99% confident, the range of values in the interval would be: 

a. Wider, because higher confidence requires a larger margin of error.  
b. Narrower, because higher confidence requires a smaller margin of error. 
c. Exactly the same width as the range for the 95% confidence interval. 

 

32. A sportswriter wants to know how strongly football fans in a large city support building a new football 
stadium. She stands outside the current football stadium before a game and interviews the first 250 people 
who enter the stadium. The newspaper reports the results from the sample as an estimate of the percentage 
of football fans in the city who support building a new stadium. Which statement is correct in terms of the 
sampling method? 

a. This is a simple random sample. It will give an accurate estimate 
b. Because the sample is so small, it will not give an accurate estimate 
c. Because all fans had a chance to be asked, it will give an accurate estimate.  
d. The sampling method is biased. It will not give an accurate estimate. 

 

 

33. A study of treatments for angina (pain due to low blood supply to the heart) compared the effectiveness 
of three different treatments: bypass surgery, angioplasty, and prescription medications only. The study 
looked at the medical records of thousands of angina patients whose doctors had chosen one of these 
treatments. The researchers concluded that ‘prescription medications only’ was the most effective treatment 
because those patients had the highest median survival time. Is the researchers’ conclusion valid?  
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a. Yes, because medication patients lived longer. 
b. No, because doctors chose the treatments. 
c. Yes, because the study was a comparative experiment. 
d. No, because the patients volunteered to be studied.  

34. An engineer designs a new light bulb. The previous design had an average lifetime of 1,200 hours. The 
new bulb design has an estimated lifetime of 1,200.2 hours based on a sample of 40,000 bulbs. Although 
the difference was quite small, the mean difference was statistically significant. Which of the following is 
the most likely explanation for the statistically significant result? 

a. The new design had more variability than the previous design. 
b. The sample size for the new design is very large.  
c. The mean of 1,200 for the previous design is large. 

 

35. Research participants were randomly assigned to take Vitamin E or a placebo pill. After taking the pills 
for eight years, it was reported how many developed cancer. Which of the following responses gives the 
best explanation as to the purpose of randomization in this study? 

a. To reduce the amount of sampling error that can happen if the subjects are not randomly assigned.  
b. To ensure that all potential cancer patients had an equal chance of being selected for the study.  
c. To produce treatment groups with similar characteristics 
d. To prevent skewness in the results. 

===== The End ==== 

 



 

AIRS-2 (Changes were made from 1st cognitive interview)

Assessment of Inferential Reasoning in Statistics

1. The Springfield Meteorological Center wanted to determine the 
They searched their records for those days when the forecaster had reported a 70% chance of rain. They 
compared these forecasts to records of whether or not it actually rained on those particular days.
The forecast of 70% chance of rain can be considered very accurate if it rained on:

a. 95% - 100% of those days.
b. 85% - 94% of those days.
c. 75% - 84% of those days.
d. 65% - 74% of those days. 
e. 55% - 64% of those days.

 

2. Imagine you have a barrel that contains thousands of candi
the manufacturer produces 50% brown candies. Ten students each take one random sample of 10 candies 
and record the percentage of brown candies in each of their samples. Another ten students each take one 
random sample of 100 candies and record the percentage of brown candies in each of their samples. Which 
of the following pairs of graphs represents the more plausible distributions for the percentage of brown 
candies obtained in the samples for each group of 10

a. Graph A. 
b. Graph B. 
c. Graph C. 
d. Graph D. 

 

Questions 3 to 8 refer to the following: Consider a spinner shown below that has the letters from 
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(Changes were made from 1st cognitive interview)

Assessment of Inferential Reasoning in Statistics-2 (AIRS-2)  

The Springfield Meteorological Center wanted to determine the accuracy of their weather forecasts. 
They searched their records for those days when the forecaster had reported a 70% chance of rain. They 
compared these forecasts to records of whether or not it actually rained on those particular days.

0% chance of rain can be considered very accurate if it rained on: 
100% of those days. 
94% of those days. 
84% of those days. 
74% of those days.  
64% of those days. 

Imagine you have a barrel that contains thousands of candies with several different colors. We know that 
the manufacturer produces 50% brown candies. Ten students each take one random sample of 10 candies 
and record the percentage of brown candies in each of their samples. Another ten students each take one 

m sample of 100 candies and record the percentage of brown candies in each of their samples. Which 
of the following pairs of graphs represents the more plausible distributions for the percentage of brown 
candies obtained in the samples for each group of 10 students?  

3 to 8 refer to the following: Consider a spinner shown below that has the letters from 

(Changes were made from 1st cognitive interview) 

accuracy of their weather forecasts. 
They searched their records for those days when the forecaster had reported a 70% chance of rain. They 
compared these forecasts to records of whether or not it actually rained on those particular days. 

es with several different colors. We know that 
the manufacturer produces 50% brown candies. Ten students each take one random sample of 10 candies 
and record the percentage of brown candies in each of their samples. Another ten students each take one 

m sample of 100 candies and record the percentage of brown candies in each of their samples. Which 
of the following pairs of graphs represents the more plausible distributions for the percentage of brown 

 

3 to 8 refer to the following: Consider a spinner shown below that has the letters from A to D.  



 

 

‘Person 1’ used the spinner 10 times and each time he wrote down the letter that the spinner landed on. 
When he looked at the results, he saw that the letter 
doubts the fairness of the spinner because it seem
Bs would not be unusual for this spinner. 

3. If the spinner is fair, how many 

a. 2 or 3 B’s 
b. 4 or 5 B’s 
c. 6 or 7 B’s 
d. 8 or 9 B’s 

4. A statistician wants to set up a probability model to examine how often the result of 5 B’s out of 10 spins 
could happen with a fair spinner just by chance alone. Which of the following is the best probability model 
for the statistician to use?  

a. The probability for each letter is the same
b. The probability for letter B is 1/2 and the other three letters each have probability of 1/6. 
c. The probability for letter B is 1/2 and the probabilities for the other letters sum to 1/2. 

5. The statistician conducted a statistical test to examine the fairness of the spinner using a computer 
simulation. The computer simulation randomly generates four letters, A to D. She obtained 100 samples 
where each sample consisted of 10 letters.
letters. The following dot plot represents the number of Bs for each of the 100 samples. What do you think 
about the observed result of 5 Bs out of 10 spins in the spinner? 

a. 5 Bs are not unusual because 5
b. 5 Bs are not unusual because 5 or more 
c. 5 Bs are unusual because 5
d. 5 Bs are unusual because 5 or more 
e. There is not enough information to decide if 5 
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‘Person 1’ used the spinner 10 times and each time he wrote down the letter that the spinner landed on. 
When he looked at the results, he saw that the letter B showed up 5 times out of the 10 spins.
doubts the fairness of the spinner because it seems like he got too many Bs. However, ‘Person 2’ says that 5 

s would not be unusual for this spinner.  

3. If the spinner is fair, how many Bs out of 10 spins would you expect to see? 

4. A statistician wants to set up a probability model to examine how often the result of 5 B’s out of 10 spins 
could happen with a fair spinner just by chance alone. Which of the following is the best probability model 

bability for each letter is the same—1/4 for each letter.  
The probability for letter B is 1/2 and the other three letters each have probability of 1/6. 
The probability for letter B is 1/2 and the probabilities for the other letters sum to 1/2. 

atistician conducted a statistical test to examine the fairness of the spinner using a computer 
simulation. The computer simulation randomly generates four letters, A to D. She obtained 100 samples 
where each sample consisted of 10 letters. She then counted the number of Bs in each sample of 10 random 
letters. The following dot plot represents the number of Bs for each of the 100 samples. What do you think 
about the observed result of 5 Bs out of 10 spins in the spinner?  

 

5 Bs are not unusual because 5 or less Bs happened in more than 90 samples out of 100. 
s are not unusual because 5 or more Bs happened in four samples out of 100.
s are unusual because 5Bs happened in only three samples out of 100.  

s are unusual because 5 or more Bs happened in only four samples out of 100. 
There is not enough information to decide if 5 Bs are unusual or not.  

‘Person 1’ used the spinner 10 times and each time he wrote down the letter that the spinner landed on. 
showed up 5 times out of the 10 spins. Now he 

s. However, ‘Person 2’ says that 5 

4. A statistician wants to set up a probability model to examine how often the result of 5 B’s out of 10 spins 
could happen with a fair spinner just by chance alone. Which of the following is the best probability model 

The probability for letter B is 1/2 and the other three letters each have probability of 1/6.  
The probability for letter B is 1/2 and the probabilities for the other letters sum to 1/2.  

atistician conducted a statistical test to examine the fairness of the spinner using a computer 
simulation. The computer simulation randomly generates four letters, A to D. She obtained 100 samples 

d the number of Bs in each sample of 10 random 
letters. The following dot plot represents the number of Bs for each of the 100 samples. What do you think 

or less Bs happened in more than 90 samples out of 100.  
s happened in four samples out of 100. 

ned in only four samples out of 100.  
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6. Based on your answers to questions 5 and 6, what would you conclude about whether or not the spinner 
is fair? Why?  

a. This spinner is most likely fair because 2 Bs and 3 Bs happened the most in the simulation.  
b. This spinner is most likely fair because 5 or less Bs was not unusual in the simulation. 
c. This spinner is most likely unfair because 5 or more Bs was rare in the simulation.  
d. This spinner is most likely unfair because the simulation distribution seems skewed. 
e. We do not know whether or not the spinner is fair because the sample size of 10 is small.  
 
 
 
7. Let’s say the statistician did another computer simulation, but this time each sample consisted of 20 
spins. She calculated the proportion of Bs in each sample (the number of Bs divided by 20). How would 
you expect the distribution of the proportion of Bs obtained from100 samples of 20 spins each to compare 
to the distribution of the proportion of Bs obtained from 100 samples of 10 spins each?  

a. The distribution of the proportion of Bs for 100 samples of 20 spins each would be wider because you 
have twice as many spins in each trial. 

b. The distribution of the proportion of Bs for 100 repetitions of 20 spins each would be narrower because 
you have more information for each sample. 

c. Both distributions would have about the same width because the probability of getting each letter is the 
same whether you do 10 spins or 20 spins. 

 

8. Which of the following results, 5 Bs out of 10 spins or 10 Bs out of 20 spins, provides the stronger 
evidence that the spinner is not fair? Why?  

a. 10 Bs out of 20 spins, because larger samples have less variability, so it is less likely to get an unusual 
result with a fair spinner. 
b. 5 Bs out of 10 spins, because smaller samples have larger variability, so it is more likely to get an 
unusual result with a fair spinner.  
c. Both outcomes provide the same evidence because there is the same proportion of Bs (1/2) in each of the 
two samples.  
 
 

Item 9 to 11 refers to the following situation:  

A drug company developed a new formula for their headache medication. To test the effectiveness of this 
new formula, 250 people were randomly selected from a larger population of patients with headaches. 100 
of these people were randomly assigned to receive the new formula medication when they had a headache, 
and the other 150 people received the old formula medication. The time it took, in minutes, for each patient 
to no longer have a headache was recorded. The results from both of these clinical trials are shown below. 
Items 9, 10, and 11 present statements made by three different statistics students. For each statement, 



 

indicate whether you think the student’s co

9. The old formula works better. Two people who took the old formula felt relief in less than 20 minutes, 
compared to none who took the new formula.
formula. 

a. Valid 

b. Not valid 

10. The average time for the new formula to relieve a headache is lower than the average time for the old 
formula. I would conclude that people taking the new formula will tend to feel relief on average about 20 
minutes sooner than those taking the o

a. Valid 

b. Not valid 

11. We can’t conclude anything from these data. The number of patients in the two groups is not the same 
so there is no fair way to compare the two formulas.

a. Valid 

b. Not valid 

 

Question 12 and 13 refer to the 
different exam preparation strategies on exam scores. In each experiment, half of the subjects were 
randomly assigned to strategy A and half to strategy B. After completing the exam pre
took the same exam (which is scored from 0 to 100) in all four experiments. The four different experiments 
were conducted with students who were enrolled in four different subject areas: biology, chemistry, 
psychology, sociology. 

12. Boxplots of exam scores for students in the biology course are shown below on the left, and the 
boxplots for the students in the chemistry course are on the right. For each subject area, 25 students were 
randomly assigned to either strategy A and 25 stude
experiment, the one for the biology or the chemistry course, provides the stronger evidence 
claim, “neither strategy is better than the other”? 
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indicate whether you think the student’s conclusion is valid. 

 

9. The old formula works better. Two people who took the old formula felt relief in less than 20 minutes, 
compared to none who took the new formula. Also, the worst result - near 120 minutes 

10. The average time for the new formula to relieve a headache is lower than the average time for the old 
formula. I would conclude that people taking the new formula will tend to feel relief on average about 20 
minutes sooner than those taking the old formula. 

11. We can’t conclude anything from these data. The number of patients in the two groups is not the same 
so there is no fair way to compare the two formulas. 

Question 12 and 13 refer to the following: Four experiments were conducted to study the effects of two 
different exam preparation strategies on exam scores. In each experiment, half of the subjects were 
randomly assigned to strategy A and half to strategy B. After completing the exam preparation, all subjects 
took the same exam (which is scored from 0 to 100) in all four experiments. The four different experiments 
were conducted with students who were enrolled in four different subject areas: biology, chemistry, 

Boxplots of exam scores for students in the biology course are shown below on the left, and the 
boxplots for the students in the chemistry course are on the right. For each subject area, 25 students were 
randomly assigned to either strategy A and 25 students were randomly assigned to strategy B. Which 
experiment, the one for the biology or the chemistry course, provides the stronger evidence 
claim, “neither strategy is better than the other”?  

9. The old formula works better. Two people who took the old formula felt relief in less than 20 minutes, 
near 120 minutes - was with the new 

10. The average time for the new formula to relieve a headache is lower than the average time for the old 
formula. I would conclude that people taking the new formula will tend to feel relief on average about 20 

11. We can’t conclude anything from these data. The number of patients in the two groups is not the same 

Four experiments were conducted to study the effects of two 
different exam preparation strategies on exam scores. In each experiment, half of the subjects were 

paration, all subjects 
took the same exam (which is scored from 0 to 100) in all four experiments. The four different experiments 
were conducted with students who were enrolled in four different subject areas: biology, chemistry, 

Boxplots of exam scores for students in the biology course are shown below on the left, and the 
boxplots for the students in the chemistry course are on the right. For each subject area, 25 students were 

nts were randomly assigned to strategy B. Which 
experiment, the one for the biology or the chemistry course, provides the stronger evidence against the 



 

a. Biology, because scores from the Biology exper
between the strategies larger relative to the Chemistry experiment. 

b. Biology, because the outliers in the boxplot for strategy A from the Biology experiment indicate there is 
more variability in score for strategy A than for strategy B.

c. Chemistry, because scores from the Chemistry experiment are more variable indicating there are more 
students who got scores above the mean in strategy B. 

d. Chemistry, because the difference between the maximum and
Chemistry experiment than in the Biology experiment. 

13. Boxplots of exam scores for students in the psychology course are shown below on the left, and the 
boxplots for the students in the sociology course are on the r
were randomly assigned to strategy A and 25 students were randomly assigned to strategy B. However, for 
the sociology course 100 students were randomly assigned to strategy A and 100 students were randomly 
assigned to strategy B. Which experiment provides the stronger evidence 
strategy is better than the other”? Why? 

a. Psychology, because there appears to be a larger difference between the medians in the Psychology 
experiment than in the Sociology experiment. 

b. Psychology, because there are more outliers in strategy B from the Psychology experiment, indicating 
that strategy B did not work well in that course.

c. Sociology, because the difference between the maximum and minimum sco
experiment than in the Psychology experiment. 

d. Sociology, because the sample size is larger in the Sociology experiment, which will produce a more 
accurate estimate of the difference between the two strategies.
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a. Biology, because scores from the Biology experiment are more consistent, which makes the difference 
between the strategies larger relative to the Chemistry experiment.  

b. Biology, because the outliers in the boxplot for strategy A from the Biology experiment indicate there is 
e for strategy A than for strategy B. 

c. Chemistry, because scores from the Chemistry experiment are more variable indicating there are more 
students who got scores above the mean in strategy B.  

d. Chemistry, because the difference between the maximum and the minimum scores is larger in the 
Chemistry experiment than in the Biology experiment.  

13. Boxplots of exam scores for students in the psychology course are shown below on the left, and the 
boxplots for the students in the sociology course are on the right. For the psychology course, 25 students 
were randomly assigned to strategy A and 25 students were randomly assigned to strategy B. However, for 
the sociology course 100 students were randomly assigned to strategy A and 100 students were randomly 

ned to strategy B. Which experiment provides the stronger evidence against the claim, “neither 
strategy is better than the other”? Why?  

a. Psychology, because there appears to be a larger difference between the medians in the Psychology 
in the Sociology experiment.  

b. Psychology, because there are more outliers in strategy B from the Psychology experiment, indicating 
that strategy B did not work well in that course. 

c. Sociology, because the difference between the maximum and minimum scores is larger in the Sociology 
experiment than in the Psychology experiment.  

d. Sociology, because the sample size is larger in the Sociology experiment, which will produce a more 
accurate estimate of the difference between the two strategies.  

 

iment are more consistent, which makes the difference 

b. Biology, because the outliers in the boxplot for strategy A from the Biology experiment indicate there is 

c. Chemistry, because scores from the Chemistry experiment are more variable indicating there are more 

the minimum scores is larger in the 

13. Boxplots of exam scores for students in the psychology course are shown below on the left, and the 
ight. For the psychology course, 25 students 

were randomly assigned to strategy A and 25 students were randomly assigned to strategy B. However, for 
the sociology course 100 students were randomly assigned to strategy A and 100 students were randomly 

the claim, “neither 

 

a. Psychology, because there appears to be a larger difference between the medians in the Psychology 

b. Psychology, because there are more outliers in strategy B from the Psychology experiment, indicating 

res is larger in the Sociology 

d. Sociology, because the sample size is larger in the Sociology experiment, which will produce a more 



 

14. A random sample of 25 textbooks for different courses taught at a University is obtained, and the mean 
textbook price is computed for the sample. To determine the probability of finding another random sample 
of 25 textbooks with a mean more extreme than the one 
to refer to: 

a.  the distribution of textbook prices for all courses at the University. 

b.  the distribution of textbook prices for this sample of University textbooks. 

c.  the distribution of mean textbook prices for all samples of size 25 from the University. 

 

Questions 15 and 16 refer to the following situation:

Four graphs are presented below. The graph at the top is a distribution for a population of test scores. 
The mean score is 6.4 and the standard deviation is 4.1.

15. Which graph (A, B, or C) do you think represents a single random sample of 500 values from this 
population? 

a.  Graph A  

b.  Graph B  

c.  Graph C  

16.  Which graph (A, B, or C) do you think repres
samples each of size 9?

a.  Graph A  

b.  Graph B  
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om sample of 25 textbooks for different courses taught at a University is obtained, and the mean 
textbook price is computed for the sample. To determine the probability of finding another random sample 
of 25 textbooks with a mean more extreme than the one obtained from this random sample, you would need 

the distribution of textbook prices for all courses at the University.  

the distribution of textbook prices for this sample of University textbooks.  

the distribution of mean textbook prices for all samples of size 25 from the University. 

Questions 15 and 16 refer to the following situation: 

Four graphs are presented below. The graph at the top is a distribution for a population of test scores. 
mean score is 6.4 and the standard deviation is 4.1.  

 

Which graph (A, B, or C) do you think represents a single random sample of 500 values from this 

Which graph (A, B, or C) do you think represents a distribution of 500 sample means from random 
samples each of size 9? 

om sample of 25 textbooks for different courses taught at a University is obtained, and the mean 
textbook price is computed for the sample. To determine the probability of finding another random sample 

obtained from this random sample, you would need 

 

the distribution of mean textbook prices for all samples of size 25 from the University.  

Four graphs are presented below. The graph at the top is a distribution for a population of test scores. 

Which graph (A, B, or C) do you think represents a single random sample of 500 values from this 

ents a distribution of 500 sample means from random 
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c.  Graph C  

 

 

17. It has been established that under normal environmental conditions, adult largemouth bass in Silver 
Lake have an average length of 12.3 inches with a standard deviation of 3 inches. People who have 
been fishing Silver Lake for some time claim that this year they are catching smaller than usual 
largemouth bass. A research group from the Department of Natural Resources took a random sample 
of adult largemouth bass from Silver Lake. Which of the following provides the strongest evidence to 
support the claim that they are catching smaller than average length (12.3 inches) largemouth bass this 
year? 

a. A random sample of a sample size of 100 with a sample mean of 12.1. 

b. A random sample of a sample size of 36 with a sample mean of 11.5. 

c. A random sample of a sample size of 100 with a sample mean of 11.5 

d. A random sample of a sample size of 36 with a sample mean of 12.1  

 

 

18. A university administrator obtains a sample of the academic records of past and present scholarship 
athletes at the university. The administrator reports that no significant difference was found in the mean 
GPA (grade point average) for male and female scholarship athletes (p = 0.287). What does this mean? 

a. The distribution of the GPAs for male and female scholarship athletes are identical except for 28.7% of 
the athletes.  

b. The difference between the mean GPA of male scholarship athletes and the mean GPA of female 
scholarship athletes is 0.287.  

c. There is a 28.7% chance that a pair of randomly chosen male and female scholarship athletes would have 
a significant difference assuming that there is no difference.  

d. There is a 28.7% chance of obtaining as large or larger of a mean difference in GPAs between male and 
female scholarship athletes as that observed in the sample assuming that there is no difference.  

 

Questions 19 and 20 refer to the following: A researcher investigates the impact of a particular herbicide on 
fish. He has 60 healthy fish and randomly assigns each fish to either be exposed or not be exposed to the 
herbicide. The fish exposed to the herbicide showed higher levels of an enzyme associated with cancer. 

19. Suppose no statistically significant difference was found between the two groups of fish. What 
conclusion can be drawn from these results? 

a.  The researcher must not be interpreting the results correctly; there should be a significant 
difference.  

b.  The sample size may be too small to detect a statistically significant difference.  

c.  It must be true that the herbicide does not cause higher levels of the enzyme.  
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20.  Suppose a statistically significant difference was found between the two groups of fish. What 
conclusion can be drawn from these results? 

a.  There is evidence of association, but no causal effect of herbicide on enzyme levels.  

b.  The sample size is too small to draw a valid conclusion.  

c.  He has proven that the herbicide causes higher levels of the enzyme.  

d.  There is evidence that the herbicide causes higher levels of the enzyme for these fish.  

 

 

21 – 22. Read the following information to answer questions 21 and 22: 

Data are collected from a research study that compares the times to complete a task for professionals who 
have participated in a new training program with performance for professionals who haven’t participated in 
the program. The professionals are randomly assigned to one of the two groups, with one group receiving 
the new training program (N=50) and the other group not receiving the training (N=50). For each of the 
following pairs of graphs, select an appropriate action that you would need to do next to determine if there 
is a statistically significant difference between the training and no training groups. Write an explanation for 
your choice.  

21.  

 
a. Nothing, the two groups appear to be statistically significantly different. 

b. Conduct an appropriate statistical test for a difference between groups. 

 

22.  

 
a. Nothing, the two groups appear to be statistically significantly different 
b. Conduct an appropriate statistical test for a difference between groups.  
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23. A student participates in a Coke versus Pepsi taste test. She identifies the correct soda seven times out 
of ten tries. She claims that this proves that she can reliably tell the difference between the two soft drinks. 
You want to estimate the probability that this student could get at least seven right out of ten tries just by 
chance alone.  

You decide to follow a procedure where you: 

• Simulate a chance process in which you specify the probability of making a correct guess on each 
trial 

• Repeatedly generate ten cases per trial from this process and record the number of correct outcomes 
in each trial  

• Calculate the proportion of trials where the number of correct guesses meets a specified criterion 

In order to run the procedure, you need to decide on the value for the probability of making a correct guess, 
and specify the criterion for the number of correct guesses. 

Which of the options below would provide a reasonable approach to simulating data in order to determine 
the probability of anyone getting seven out of ten tries correct just by chance alone? 

a. Specify the probability of a correct guess as 50% and calculate the proportion of all trials with exactly 
seven correct guesses 

b. Specify the probability of a correct guess as 50% and calculate the proportion of all trials with seven or 
more correct guesses 

c. Specify the probability of a correct guess as 70% and calculate the proportion of all trials with exactly 
seven correct guesses 

d. Specify the probability of a correct guess as 70% and calculate the proportion of all trials with seven or 
more correct guesses 

 

Read the following information before answering Questions 24– 26: 

A research question of interest is whether financial incentives can improve performance. Alicia designed a 
study to test whether video game players are more likely to win on a certain video game when offered a $5 
incentive compared to when simply told to “do your best.” Forty subjects are randomly assigned to one of 
two groups, with one group being offered $5 for a win and the other group simply being told to “do your 
best.” She collected the following data from her study: 

 
 

$5 incentive “Do your best” Total  
Win 16 8 24  
Lose 4 12 16  
Total  20  20  40  

 
It looks like the $5 incentive is more successful than the encouragement. The difference in success rates as 
a proportion is: 16/20 – 8/20 = 8/20 = 0.40  
 
 
In order to test whether this apparent difference might be due simply to chance, she does the following: 

 
• She gets 40 index cards. On 24 of the cards she writes "win" and on 16 she writes "lose".  

o She then shuffles the cards and randomly places the cards into two stacks. One stack 
represents "$5 incentive" and the other "verbal encouragement". 



 

o For this simulation, she computes the observed difference in the success rates by 
subtracting the success rate for the simulation's "$5 incentive" group from the success rate 
of the simulation's "verbal encouragement" group.

• She repeats the previous two steps 100 t

• She plots the 100 statistics she observes from these trials.

 
The following shows a distribution of simulated data that Alicia generated from her 100 trials and used to 
test her research question: 

 

 
24. What is the null model (null hypothesis) that

 
a. The $5 incentive is more effective than verbal encouragement for improving performance.
 
b. The $5 incentive and verbal encouragement are equally effective for improving performance.
 
c. Verbal encouragement is more effective
 
 
 

 
25. Use this distribution to estimate the 

a. 0.02 

b. 0.03  

c. 0.04 

d. 0.05 

e. 0.40 

 

26. What does the distribution tell you about the hypothesis that $5 incentives are 
performance? 

 
a. The incentive is not effective because the null distribution is centered at 0.
 
b. The incentive is effective because the null distribution is centered at 0.
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simulation, she computes the observed difference in the success rates by 
subtracting the success rate for the simulation's "$5 incentive" group from the success rate 
of the simulation's "verbal encouragement" group. 

She repeats the previous two steps 100 times. 

She plots the 100 statistics she observes from these trials. 

The following shows a distribution of simulated data that Alicia generated from her 100 trials and used to 

 

24. What is the null model (null hypothesis) that Alicia's data simulated?  

a. The $5 incentive is more effective than verbal encouragement for improving performance.

b. The $5 incentive and verbal encouragement are equally effective for improving performance.

c. Verbal encouragement is more effective than a $5 incentive for improving performance.

25. Use this distribution to estimate the p-value for her observed result.  

26. What does the distribution tell you about the hypothesis that $5 incentives are effective for improving 

a. The incentive is not effective because the null distribution is centered at 0. 

b. The incentive is effective because the null distribution is centered at 0. 

simulation, she computes the observed difference in the success rates by 
subtracting the success rate for the simulation's "$5 incentive" group from the success rate 

The following shows a distribution of simulated data that Alicia generated from her 100 trials and used to 

a. The $5 incentive is more effective than verbal encouragement for improving performance. 

b. The $5 incentive and verbal encouragement are equally effective for improving performance. 

than a $5 incentive for improving performance. 

effective for improving 
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c. The incentive is not effective because the p-value is greater than .05 
 
d. The incentive is effective because the p-value is less than .05 

 

Questions 27 to 30 refer to the following: Does coaching raise college admission test scores? Because 
many students scored higher on a second try even without coaching, a study looked at a random 
sample of 4,200 students who took the college admissions test twice. Of these, 500 took a coaching 
course between their two attempts at the college admissions test. The study compared the average 
increase in scores for students who were coached to the average increase for students who were not 
coached.  

27. The result of this study showed that while the coached students had a larger increase, the difference 
between the average increase for coached and not-coached students was not statistically significant. What 
does this mean?  

a. The sample sizes were too small to detect a true difference between the coached and not-coached 
students. 

b. The observed difference between coached and not-coached students could occur just by chance alone 
even if coaching really has no effect.  

c. The increase in test scores makes no difference in getting into college since it is not statistically 
significant. 

d. The study was badly designed because they did not have equal numbers of coached and not-coached 
students.  

 
 

28. The study doesn’t show that coaching causes a greater increase in college admissions test scores. Which 
of the following would be the most plausible reason for this? 

a. The not-coached students used other effective ways to prepare.  
b. The number of 4,200 students is too few to detect a difference. 
c. More students were not coached than were coached.  

 

29. The report of the study states, “With 95% confidence, we can say that the average score for students 
who take the college admissions test a second time is between 28 and 57 points higher than the average 
score for the first time.” By “95% confidence” we mean: 

a. 95% of all students will increase their score by between 28 and 57 points for a second test.  
b. 95% of all students in a new sample will increase their score by between 28 to 57 points for a 

second test.  
c. 95% of all students who take the college admissions test would believe the statement.  
d. We are 95% certain that the average increase in college admissions scores is between 28 and 57 

points. 
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30. We are 95% confident that the difference between average scores for the first and the second tests is 
between 28 and 57 points. If we want to be 99% confident, the range of values in the interval would be: 

a. Wider, because higher confidence requires a larger margin of error.  
b. Narrower, because higher confidence requires a smaller margin of error. 
c. Exactly the same width as the range for the 95% confidence interval. 

31. A sportswriter wants to know how strongly football fans in a large city support building a new football 
stadium. She stands outside the current football stadium before a game and interviews the first 250 people 
who enter the stadium. The newspaper reports the results from the sample as an estimate of the percentage 
of football fans in the city who support building a new stadium. Which statement is correct in terms of the 
sampling method? 

a. This is a simple random sample. It will give an accurate estimate. 
b. Because the sample is so small, it will not give an accurate estimate. 
c. Because all fans had a chance to be asked, it will give an accurate estimate.  
d. The sampling method is biased. It will not give an accurate estimate. 

32. A study of treatments for angina (pain due to low blood supply to the heart) compared the effectiveness 
of three different treatments: bypass surgery, angioplasty, and prescription medications only. The study 
looked at the medical records of thousands of angina patients whose doctors had chosen one of these 
treatments. The researchers concluded that ‘prescription medications only’ was the most effective treatment 
because those patients had the highest median survival time. Is the researchers’ conclusion valid?  

a. Yes, because medication patients lived longer. 
b. No, because doctors chose the treatments. 
c. Yes, because the study was a comparative experiment. 
d. No, because the patients volunteered to be studied.  

33. An engineer designs a new light bulb. The previous design had an average lifetime of 1,200 hours. The 
new bulb design has an estimated lifetime of 1,200.2 hours based on a sample of 40,000 bulbs. Although 
the difference was quite small, the mean difference was statistically significant. Which of the following is 
the most likely explanation for the statistically significant result? 

a. The new design had more variability than the previous design. 
b. The sample size for the new design is very large.  
c. The mean of 1,200 for the previous design is large. 

34. Research participants were randomly assigned to take Vitamin E or a placebo pill. After taking the pills 
for eight years, it was reported how many developed cancer. Which of the following responses gives the 
best explanation as to the purpose of randomization in this study? 

a. To reduce the amount of sampling error that can happen if the subjects are not randomly 
assigned.  

b. To ensure that all potential cancer patients had an equal chance of being selected for the study.  
c. To produce treatment groups with similar characteristics 
d. To prevent skewness in the results. 

 

===== The End ==== 



 

AIRS-3: Final version (Changes were made from pilot testing)

*Note: This final version was administered via online assessment tool. This version shown below was 
copied from the online tool.  

Assessment of Inferential Reasoning in Statistics (AIRS 
 

1. The Springfield Meteorological Center wanted to determine the accuracy of their weather 
forecasts. They searched their records for those 300 days when the forecaster had reported a 70% 
chance of rain. They compared these for
those particular days. The forecast of 70% chance of rain can be considered very accurate if it rained 
on: 
( ) 95% - 100% of those days. 
( ) 85% - 94% of those days. 
( ) 75% - 84% of those days. 
( ) 65% - 74% of those days. 
( ) 55% - 64% of those days. 
 

2. Imagine you have a barrel that contains thousands of candies with several different colors. 
We know that the manufacturer produces 50% brown candies. Ten students each take one random 
sample of 10 candies and record the percentage of brown candies in each of their samples. Another 
ten students each take one random sample of 100 candies and record the percentage of brown 
candies in each of their samples. Which of the following pairs of graphs repr
distributions for the percentage of brown candies obtained in the samples for each group of 10 
students? 
 

( ) Graph A 
( ) Graph B 
( ) Graph C 
( ) Graph D 
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Final version (Changes were made from pilot testing)

*Note: This final version was administered via online assessment tool. This version shown below was 
 

Assessment of Inferential Reasoning in Statistics (AIRS - 3) 

AIRS Online Consent Form 

Start AIRS 

1. The Springfield Meteorological Center wanted to determine the accuracy of their weather 
forecasts. They searched their records for those 300 days when the forecaster had reported a 70% 
chance of rain. They compared these forecasts to records of whether or not it actually rained on 
those particular days. The forecast of 70% chance of rain can be considered very accurate if it rained 

 

2. Imagine you have a barrel that contains thousands of candies with several different colors. 
We know that the manufacturer produces 50% brown candies. Ten students each take one random 

10 candies and record the percentage of brown candies in each of their samples. Another 
ten students each take one random sample of 100 candies and record the percentage of brown 
candies in each of their samples. Which of the following pairs of graphs represents the more plausible 
distributions for the percentage of brown candies obtained in the samples for each group of 10 

 

Final version (Changes were made from pilot testing) 

*Note: This final version was administered via online assessment tool. This version shown below was 

 

 

1. The Springfield Meteorological Center wanted to determine the accuracy of their weather 
forecasts. They searched their records for those 300 days when the forecaster had reported a 70% 

ecasts to records of whether or not it actually rained on 
those particular days. The forecast of 70% chance of rain can be considered very accurate if it rained 

 
2. Imagine you have a barrel that contains thousands of candies with several different colors. 

We know that the manufacturer produces 50% brown candies. Ten students each take one random 
10 candies and record the percentage of brown candies in each of their samples. Another 

ten students each take one random sample of 100 candies and record the percentage of brown 
esents the more plausible 

distributions for the percentage of brown candies obtained in the samples for each group of 10 



 

Questions 3 to 8 refer to the following:
Consider a spinner shown below that has the letters from

 
‘Person 1’ used the spinner 10 times and each time he wrote down the letter that the spinner landed on. 
When he looked at the results, he saw that the letter
doubts the fairness of the spinner because it seems like he got too many
5 Bs would not be unusual for this spinner.
 

3. If the spinner is fair, how many 

( ) 2 or 3 B's 
( ) 4 or 5 B's 
( ) 6 or 7 B's 
( ) 8 or 9 B's 
 

4. A statistician wants to set up a probability model to examine how often the result of 5 

out of 10 spins could happen with a fair spinner just by chance alone. Which of the following is the 

best probability model for the s

( ) The probability for each letter is the same
( ) The probability for letter B is 1/2 and the other three letters each have probability of 1/6.
( ) The probability for letter B is 1/2 and the probabilities for the
 

5. The statistician conducted a statistical test to examine the fairness of the spinner using a 
computer simulation. The computer simulation randomly generates four letters, 
100 samples where each sample consisted of 10 letters. She then counted the number of 
sample of 10 random letters. The following dot plot represents the number of Bs for each of the 100 
samples. What do you think about the observe

 
( ) 5 Bs are not unusual because 5 or less Bs happened in more than 90 samples out of 100.
( ) 5 Bs are not unusual because 5 or more Bs happened in four samples out of 100.
( ) 5 Bs are unusual because 5Bs happened in only three samples out of 100.
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3 to 8 refer to the following:  
below that has the letters from A to D. 

 
‘Person 1’ used the spinner 10 times and each time he wrote down the letter that the spinner landed on. 
When he looked at the results, he saw that the letter B showed up 5 times out of the 10 spins.

he fairness of the spinner because it seems like he got too many Bs. However, ‘Person 2’ says that 
s would not be unusual for this spinner. 

3. If the spinner is fair, how many Bs out of 10 spins would you expect to see?

4. A statistician wants to set up a probability model to examine how often the result of 5 

out of 10 spins could happen with a fair spinner just by chance alone. Which of the following is the 

best probability model for the statistician to use? 

( ) The probability for each letter is the same—1/4 for each letter. 
( ) The probability for letter B is 1/2 and the other three letters each have probability of 1/6.
( ) The probability for letter B is 1/2 and the probabilities for the other letters sum to 1/2.

5. The statistician conducted a statistical test to examine the fairness of the spinner using a 
computer simulation. The computer simulation randomly generates four letters, A
100 samples where each sample consisted of 10 letters. She then counted the number of 
sample of 10 random letters. The following dot plot represents the number of Bs for each of the 100 
samples. What do you think about the observed result of 5 Bs out of 10 spins in the spinner?

 

( ) 5 Bs are not unusual because 5 or less Bs happened in more than 90 samples out of 100.
( ) 5 Bs are not unusual because 5 or more Bs happened in four samples out of 100. 

5Bs happened in only three samples out of 100. 

 

‘Person 1’ used the spinner 10 times and each time he wrote down the letter that the spinner landed on. 
showed up 5 times out of the 10 spins. Now he 

s. However, ‘Person 2’ says that 

s out of 10 spins would you expect to see? 

4. A statistician wants to set up a probability model to examine how often the result of 5 Bs 

out of 10 spins could happen with a fair spinner just by chance alone. Which of the following is the 

( ) The probability for letter B is 1/2 and the other three letters each have probability of 1/6. 
other letters sum to 1/2. 

5. The statistician conducted a statistical test to examine the fairness of the spinner using a 
A to D. She obtained 

100 samples where each sample consisted of 10 letters. She then counted the number of Bs in each 
sample of 10 random letters. The following dot plot represents the number of Bs for each of the 100 

s out of 10 spins in the spinner? 

( ) 5 Bs are not unusual because 5 or less Bs happened in more than 90 samples out of 100. 
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( ) 5 Bs are unusual because 5 or more Bs happened in only four samples out of 100. 
( ) There is not enough information to decide if 5 Bs are unusual or not. 
 

6. Based on your answers to questions 4 and 5, what would you conclude about whether or 
not the spinner is fair? Why? 
( ) This spinner is most likely fair because 2 Bs and 3 Bs happened the most in the simulation. 
( ) This spinner is most likely fair because 5 or less Bs was not unusual in the simulation. 
( ) This spinner is most likely unfair because 5 or more Bs was rare in the simulation. 
( ) This spinner is most likely unfair because the simulation distribution seems skewed. 
( ) We do not know whether or not the spinner is fair because the sample size of 10 is small. 
 

7. Let's say the statistician did another computer simulation, but this time each sample 
consisted of 20 spins. She calculated the proportion of Bs in each sample (the number of Bs divided 
by 20). How would you expect the distribution of the proportion of Bs obtained from100 samples of 
20 spins each to compare to the distribution of the proportion of Bs obtained from 100 samples of 10 
spins each? 
( ) The distribution of the proportion of Bs for 100 samples of 20 spins each would be wider because you 
have twice as many spins in each trial. 
( ) The distribution of the proportion of Bs for 100 repetitions of 20 spins each would be narrower because 
you have more information for each sample. 
( ) Both distributions would have about the same width because the probability of getting each letter is the 
same whether you do 10 spins or 20 spins. 
 

8. Which of the following results, 5 Bs out of 10 spins or 10 Bs out of 20 spins, provides the 
stronger evidence that the spinner is not fair? Why? 
( ) 10 Bs out of 20 spins, because larger samples have less variability, so it is less likely to get an unusual 
result with a fair spinner. 
( ) 5 Bs out of 10 spins, because smaller samples have larger variability, so it is more likely to get an 
unusual result with a fair spinner. 
( ) Both outcomes provide the same evidence because there is the same proportion of Bs (1/2) in each of the 
two samples. 
 

 
Item 9 to 11 refers to the following situation: 
 
A drug company developed a new formula for their headache medication. To test the effectiveness of this 
new formula, 250 people were randomly selected from a larger population of patients with headaches. 100 
of these people were randomly assigned to receive the new formula medication when they had a headache, 
and the other 150 people received the old formula medication. The time it took, in minutes, for each patient 
to no longer have a headache was recorded. The results from both of these clinical trials are shown below. 

 



 

Questions 9, 10, and 11 present statemen
indicate whether you think the student’s conclusion is valid.
 

9. The old formula works better. Two people who took the old formula felt relief in less than 

20 minutes, compared to none wh

was with the new formula. 

( ) Valid 
( ) Not valid 
 

10. The average time for the new formula to relieve a headache is lower than the average 

time for the old formula. I would conclude that 

on average about 20 minutes sooner than those taking the old formula.

( ) Valid 
( ) Not valid 
 

11. We can't conclude anything from these data. The number of patients in the two groups is 

not the same so there is no fair way to compare the two formulas.

( ) Valid 
( ) Not valid 
 

Question 12 and 13 refer to the following:
Four experiments were conducted to study the effects of two different exam preparation strategies on exam 
scores. In each experiment, half of the subjects were randomly assigned to strategy A and half to strategy 
B. After completing the exam preparation, all subjects took the same exam (which is scored from 0 to 100) 
in all four experiments. The four different experiments were conducted 
four different subject areas: biology, chemistry, psychology, sociology.
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Questions 9, 10, and 11 present statements made by three different statistics students. For each statement, 
indicate whether you think the student’s conclusion is valid. 

9. The old formula works better. Two people who took the old formula felt relief in less than 

20 minutes, compared to none who took the new formula. Also, the worst result - near 120 minutes 

10. The average time for the new formula to relieve a headache is lower than the average 

time for the old formula. I would conclude that people taking the new formula will tend to feel relief 

on average about 20 minutes sooner than those taking the old formula. 

11. We can't conclude anything from these data. The number of patients in the two groups is 

o there is no fair way to compare the two formulas. 

Question 12 and 13 refer to the following: 
Four experiments were conducted to study the effects of two different exam preparation strategies on exam 

half of the subjects were randomly assigned to strategy A and half to strategy 
B. After completing the exam preparation, all subjects took the same exam (which is scored from 0 to 100) 
in all four experiments. The four different experiments were conducted with students who were enrolled in 
four different subject areas: biology, chemistry, psychology, sociology. 

For each statement, 

9. The old formula works better. Two people who took the old formula felt relief in less than 

near 120 minutes - 

10. The average time for the new formula to relieve a headache is lower than the average 

people taking the new formula will tend to feel relief 

11. We can't conclude anything from these data. The number of patients in the two groups is 

 

Four experiments were conducted to study the effects of two different exam preparation strategies on exam 
half of the subjects were randomly assigned to strategy A and half to strategy 

B. After completing the exam preparation, all subjects took the same exam (which is scored from 0 to 100) 
with students who were enrolled in 



 

 
12. Boxplots of exam scores for students in the biology course are shown below on the left, and the 
boxplots for the students in the chemistry course are on the right. For each subject area, 25 students were 
randomly assigned to either strategy A and 25 st
experiment, the one for the biology or the chemistry course, provides the stronger evidence 
claim, “neither strategy is better than the other”?
 

 
( ) Biology, because scores from the Biolog
between the strategies larger relative to the Chemistry experiment.
( ) Biology, because the outliers in the boxplot for strategy A from the Biology experiment indicate there is 
more variability in score for strategy A than for strategy B.
( ) Chemistry, because scores from the Chemistry experiment are more variable indicating there are more 
students who got scores above the mean in strategy B.
( ) Chemistry, because the difference between the max
Chemistry experiment than in the Biology experiment.
 

13. Boxplots of exam scores for students in the psychology course are shown below on the 

left, and the boxplots for the students in the sociology course are 

course, 25 students were randomly assigned to strategy A and 25 students were randomly assigned to 

strategy B. However, for the sociology course 100 students were randomly assigned to strategy A and 

100 students were randomly assigned to strategy B. Which experiment provides the stronger 

evidence against the claim, "neither strategy is better than the other"? Why?

 
( ) Psychology, because there appears to be a larger difference between the medians in the Psychology 
experiment than in the Sociology experiment.
( ) Psychology, because there are more outliers in strategy B from the Psychology experiment, indicating 
that strategy B did not work well in that course.
( ) Sociology, because the difference between the maximum and m
experiment than in the Psychology experiment.
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12. Boxplots of exam scores for students in the biology course are shown below on the left, and the 
boxplots for the students in the chemistry course are on the right. For each subject area, 25 students were 
randomly assigned to either strategy A and 25 students were randomly assigned to strategy B. Which 
experiment, the one for the biology or the chemistry course, provides the stronger evidence 
claim, “neither strategy is better than the other”?  

  

( ) Biology, because scores from the Biology experiment are more consistent, which makes the difference 
between the strategies larger relative to the Chemistry experiment. 
( ) Biology, because the outliers in the boxplot for strategy A from the Biology experiment indicate there is 

in score for strategy A than for strategy B. 
( ) Chemistry, because scores from the Chemistry experiment are more variable indicating there are more 
students who got scores above the mean in strategy B. 
( ) Chemistry, because the difference between the maximum and the minimum scores is larger in the 
Chemistry experiment than in the Biology experiment. 

13. Boxplots of exam scores for students in the psychology course are shown below on the 

left, and the boxplots for the students in the sociology course are on the right. For the psychology 

course, 25 students were randomly assigned to strategy A and 25 students were randomly assigned to 

strategy B. However, for the sociology course 100 students were randomly assigned to strategy A and 

ly assigned to strategy B. Which experiment provides the stronger 

evidence against the claim, "neither strategy is better than the other"? Why? 

 

( ) Psychology, because there appears to be a larger difference between the medians in the Psychology 
ent than in the Sociology experiment. 

( ) Psychology, because there are more outliers in strategy B from the Psychology experiment, indicating 
that strategy B did not work well in that course. 
( ) Sociology, because the difference between the maximum and minimum scores is larger in the Sociology 
experiment than in the Psychology experiment. 

12. Boxplots of exam scores for students in the biology course are shown below on the left, and the 
boxplots for the students in the chemistry course are on the right. For each subject area, 25 students were 

udents were randomly assigned to strategy B. Which 
experiment, the one for the biology or the chemistry course, provides the stronger evidence against the 

 

y experiment are more consistent, which makes the difference 

( ) Biology, because the outliers in the boxplot for strategy A from the Biology experiment indicate there is 

( ) Chemistry, because scores from the Chemistry experiment are more variable indicating there are more 

imum and the minimum scores is larger in the 

13. Boxplots of exam scores for students in the psychology course are shown below on the 

on the right. For the psychology 

course, 25 students were randomly assigned to strategy A and 25 students were randomly assigned to 

strategy B. However, for the sociology course 100 students were randomly assigned to strategy A and 

ly assigned to strategy B. Which experiment provides the stronger 

( ) Psychology, because there appears to be a larger difference between the medians in the Psychology 

( ) Psychology, because there are more outliers in strategy B from the Psychology experiment, indicating 

inimum scores is larger in the Sociology 



 

( ) Sociology, because the sample size is larger in the Sociology experiment, which will produce a more 
accurate estimate of the difference between the two strategies.
 

14. A random sample of 10 textbooks for different courses taught at a University is obtained, 

and the mean textbook price is computed for the sample. To determine the probability of finding 

another random sample of 10 textbooks with a mean more extreme t

random sample, you would need to refer to:

( ) the distribution of textbook prices for all courses at the University.
( ) the distribution of textbook prices for this sample of University textbooks.
( ) the distribution of mean textbook prices for all samples of size 10 from the University.
 

Questions 15 and 16 refer to the following situation:
 
Four graphs are presented below. The first is a distribution for a population of test scores. The mean score 
is 6.57 and the standard deviation is 1.23. Please select an appropriate graph for each of the following two 
questions. 

 
 

15. Which graph (A, B, or C) do you think represents 

from this population? 

( ) Graph A 
( ) Graph B 
( ) Graph C 
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( ) Sociology, because the sample size is larger in the Sociology experiment, which will produce a more 
accurate estimate of the difference between the two strategies. 

14. A random sample of 10 textbooks for different courses taught at a University is obtained, 

and the mean textbook price is computed for the sample. To determine the probability of finding 

another random sample of 10 textbooks with a mean more extreme than the one obtained from this 

random sample, you would need to refer to: 

( ) the distribution of textbook prices for all courses at the University. 
( ) the distribution of textbook prices for this sample of University textbooks. 

an textbook prices for all samples of size 10 from the University.

Questions 15 and 16 refer to the following situation:  

Four graphs are presented below. The first is a distribution for a population of test scores. The mean score 
ard deviation is 1.23. Please select an appropriate graph for each of the following two 

 

15. Which graph (A, B, or C) do you think represents a single random sample of 500 values

( ) Sociology, because the sample size is larger in the Sociology experiment, which will produce a more 

 
14. A random sample of 10 textbooks for different courses taught at a University is obtained, 

and the mean textbook price is computed for the sample. To determine the probability of finding 

han the one obtained from this 

an textbook prices for all samples of size 10 from the University. 

 

Four graphs are presented below. The first is a distribution for a population of test scores. The mean score 
ard deviation is 1.23. Please select an appropriate graph for each of the following two 

a single random sample of 500 values 
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16. Which graph (A, B, or C) do you think represents a distribution of 500 sample means 

from random samples each of size 9? 

( ) Graph A 
( ) Graph B 
( ) Graph C 
 

 
17. It has been established that under normal environmental conditions, adult largemouth 

bass in Silver Lake have an average length of 12.3 inches with a standard deviation of 3 inches. 

People who have been fishing Silver Lake for some time claim that this year they are catching 

smaller than usual largemouth bass. A research group from the Department of Natural Resources 

took a random sample of adult largemouth bass from Silver Lake. Which of the following provides 

the strongest evidence to support the claim that they are catching smaller than average length (12.3 

inches) largemouth bass this year? 

( ) A random sample of sample size of 100 with a sample mean of 12.1. 
( ) A random sample of sample size of 36 with a sample mean of 11.5. 
( ) A random sample of sample size of 100 with a sample mean of 11.5. 
( ) A random sample of sample size of 36 with a sample mean of 12.1. 
 

 
18. A university administrator obtains a sample of the academic records of past and present 

scholarship athletes at the university. The administrator reports that no significant difference was 

found in the mean GPA (grade point average) for male and female scholarship athletes (P = 0.287). 

What does this mean? 

( ) The distribution of the GPAs for male and female scholarship athletes are identical except for 28.7% of 
the athletes. 
( ) The difference between the mean GPA of male scholarship athletes and the mean GPA of female 
scholarship athletes is 0.287. 
( ) There is a 28.7% chance that a randomly chosen male and a randomly chosen female scholarship athlete 
will have significantly different GPAs assuming that there is no difference. 
( ) There is a 28.7% chance of obtaining as large or larger of a mean difference in GPAs between male and 
female scholarship athletes as that observed in the sample assuming that there is no difference. 
 

 
Questions 19 and 20 refer to the following:  
 
A researcher investigates the impact of a particular herbicide on fish. He has 60 healthy fish and randomly 
assigns each fish to either be exposed or not be exposed to the herbicide. The fish exposed to the herbicide 
showed higher levels of an enzyme associated with cancer.  

 



 

19. Suppose no statistically significant difference
What conclusion can be drawn from these results?
( ) The researcher must not be interpreting the results correctly; there should be a significa
( ) The sample size may be too small to detect a statistically significant difference.
( ) It must be true that the herbicide does not cause higher levels of the enzyme.
 

 
20. Suppose a statistically significant difference
conclusion can be drawn from these results?
( ) There is evidence of association, but no causal effect of herbicide on enzyme levels.
( ) The sample size is too small to draw a valid conclusion.
( ) He has proven that the herbi
( ) There is evidence that the herbicide causes higher levels of the enzyme for these fish.
 

Questions 21 and 22 refer to the following:
Data are collected from a research study that compares the times to complete
have participated in a new training program with performance for professionals who haven't participated in 
the program. The professionals are randomly assigned to one of the two groups, with one group receiving 
the new training program (N=50) and the other group not receiving the training (N=50).
For each of the following pairs of graphs, select an appropriate action that you would need to do next to 
determine if there is a statistically significant difference between the train
 

21. 

( ) Nothing, the two groups appear to be statistically significantly different.
( ) Conduct an appropriate statistical test for a difference between groups.
 

22. 

( ) Nothing, the two groups appear to be statistically 
( ) Conduct an appropriate statistical test for a difference between groups.
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no statistically significant difference was found between the two groups of fish. 
What conclusion can be drawn from these results? 
( ) The researcher must not be interpreting the results correctly; there should be a significa
( ) The sample size may be too small to detect a statistically significant difference. 
( ) It must be true that the herbicide does not cause higher levels of the enzyme. 

a statistically significant difference was found between the two groups of fish. What 
conclusion can be drawn from these results? 
( ) There is evidence of association, but no causal effect of herbicide on enzyme levels. 
( ) The sample size is too small to draw a valid conclusion. 
( ) He has proven that the herbicide causes higher levels of the enzyme. 
( ) There is evidence that the herbicide causes higher levels of the enzyme for these fish.

Questions 21 and 22 refer to the following: 
Data are collected from a research study that compares the times to complete a task for professionals who 
have participated in a new training program with performance for professionals who haven't participated in 
the program. The professionals are randomly assigned to one of the two groups, with one group receiving 

g program (N=50) and the other group not receiving the training (N=50).
For each of the following pairs of graphs, select an appropriate action that you would need to do next to 
determine if there is a statistically significant difference between the training and no training groups.

 
( ) Nothing, the two groups appear to be statistically significantly different. 
( ) Conduct an appropriate statistical test for a difference between groups. 

 
( ) Nothing, the two groups appear to be statistically significantly different. 
( ) Conduct an appropriate statistical test for a difference between groups. 

was found between the two groups of fish. 

( ) The researcher must not be interpreting the results correctly; there should be a significant difference. 

the two groups of fish. What 

 

( ) There is evidence that the herbicide causes higher levels of the enzyme for these fish. 

 

a task for professionals who 
have participated in a new training program with performance for professionals who haven't participated in 
the program. The professionals are randomly assigned to one of the two groups, with one group receiving 

g program (N=50) and the other group not receiving the training (N=50). 
For each of the following pairs of graphs, select an appropriate action that you would need to do next to 

ing and no training groups. 



 

23. A student participates in a Coke versus Pepsi taste test. She correctly identifies the soda 
seven times out of ten tries. She claims that this prov
between the two soft drinks. You are not sure that she can make this claim. You want to estimate the 
probability that a student who cannot reliably tell the difference between the two soft drinks could 
get at least seven right out of ten tries, just by guessing.
 
You decide to follow a procedure:
 1. Simulate a chance process in which you specify the probability of making a correct guess on each 
trial.  
 2. Repeatedly generate ten cases per trial from this proc
outcomes in each trial.  
 3. Calculate the proportion of trials where the number of correct guesses meets a specified criterion.
In order to run the procedure, you need to decide on the value for the probability of mak
correct guess, and specify the criterion for the number of correct guesses. 
 
Which of the options below would provide a reasonable approach to simulating data in order to 
determine the probability of anyone getting seven out of ten tries correct jus
( ) Specify the probability of a correct guess as 50% and calculate the proportion of all trials with exactly 
seven correct guesses. 
( ) Specify the probability of a correct guess as 50% and calculate the proportion of all trials with se
more correct guesses. 
( ) Specify the probability of a correct guess as 70% and calculate the proportion of all trials with exactly 
seven correct guesses. 
( ) Specify the probability of a correct guess as 70% and calculate the proportion of all tria
more correct guesses. 
 

Questions 24 to 26 refer to the following situation:
 
A research question of interest is whether financial incentives can improve performance. Alicia designed a 
study to test whether video game players are more 
incentive compared to when simply told to "do your best." Forty subjects are randomly assigned to one of 
two groups, with one group being offered $5 for a win and the other group simply being told to 
best." She collected the following data from her study:

It looks like the $5 incentive is more successful than the encouragement. The difference in success rates as 
a proportion is: 16/20 – 8/20 = 8/20 = 0.40.
In order to test whether this appar

• She gets 40 index cards. On 24 of the cards she writes "win" and on 16 she writes "lose".
shuffles the cards and randomly places the cards into two stacks. One stack
incentive" and the other "verbal encouragement".
difference in the success rates by subtracting the success rate for the simulation's "$5 incentive" 
group from the success rate of the simulation's "Do Your

• She repeats the previous two steps 100 times.
• She plots the 100 statistics she observes from these trials.

The following shows a distribution of simulated data that Alicia generated from her 100 trials and used to 
test her research question: 
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A student participates in a Coke versus Pepsi taste test. She correctly identifies the soda 
seven times out of ten tries. She claims that this proves that she can reliably tell the difference 
between the two soft drinks. You are not sure that she can make this claim. You want to estimate the 
probability that a student who cannot reliably tell the difference between the two soft drinks could 

ast seven right out of ten tries, just by guessing.  

You decide to follow a procedure:  
1. Simulate a chance process in which you specify the probability of making a correct guess on each 

2. Repeatedly generate ten cases per trial from this process and record the number of correct 

3. Calculate the proportion of trials where the number of correct guesses meets a specified criterion.
In order to run the procedure, you need to decide on the value for the probability of mak
correct guess, and specify the criterion for the number of correct guesses.  

Which of the options below would provide a reasonable approach to simulating data in order to 
determine the probability of anyone getting seven out of ten tries correct just by chance alone?
( ) Specify the probability of a correct guess as 50% and calculate the proportion of all trials with exactly 

( ) Specify the probability of a correct guess as 50% and calculate the proportion of all trials with se

( ) Specify the probability of a correct guess as 70% and calculate the proportion of all trials with exactly 

( ) Specify the probability of a correct guess as 70% and calculate the proportion of all tria

Questions 24 to 26 refer to the following situation:  

A research question of interest is whether financial incentives can improve performance. Alicia designed a 
study to test whether video game players are more likely to win on a certain video game when offered a $5 
incentive compared to when simply told to "do your best." Forty subjects are randomly assigned to one of 
two groups, with one group being offered $5 for a win and the other group simply being told to 
best." She collected the following data from her study: 

 
It looks like the $5 incentive is more successful than the encouragement. The difference in success rates as 

8/20 = 8/20 = 0.40. 
In order to test whether this apparent difference might be due simply to chance, she does the following:

She gets 40 index cards. On 24 of the cards she writes "win" and on 16 she writes "lose".
shuffles the cards and randomly places the cards into two stacks. One stack represents 
incentive" and the other "verbal encouragement". For this simulation, she computes the observed 
difference in the success rates by subtracting the success rate for the simulation's "$5 incentive" 
group from the success rate of the simulation's "Do Your Best" (verbal incentive) group.
She repeats the previous two steps 100 times.  
She plots the 100 statistics she observes from these trials.  

The following shows a distribution of simulated data that Alicia generated from her 100 trials and used to 

 
A student participates in a Coke versus Pepsi taste test. She correctly identifies the soda 

es that she can reliably tell the difference 
between the two soft drinks. You are not sure that she can make this claim. You want to estimate the 
probability that a student who cannot reliably tell the difference between the two soft drinks could 

1. Simulate a chance process in which you specify the probability of making a correct guess on each 

ess and record the number of correct 

3. Calculate the proportion of trials where the number of correct guesses meets a specified criterion.  
In order to run the procedure, you need to decide on the value for the probability of making a 

Which of the options below would provide a reasonable approach to simulating data in order to 
t by chance alone? 

( ) Specify the probability of a correct guess as 50% and calculate the proportion of all trials with exactly 

( ) Specify the probability of a correct guess as 50% and calculate the proportion of all trials with seven or 

( ) Specify the probability of a correct guess as 70% and calculate the proportion of all trials with exactly 

( ) Specify the probability of a correct guess as 70% and calculate the proportion of all trials with seven or 

 

A research question of interest is whether financial incentives can improve performance. Alicia designed a 
likely to win on a certain video game when offered a $5 

incentive compared to when simply told to "do your best." Forty subjects are randomly assigned to one of 
two groups, with one group being offered $5 for a win and the other group simply being told to "do your 

It looks like the $5 incentive is more successful than the encouragement. The difference in success rates as 

ent difference might be due simply to chance, she does the following: 
She gets 40 index cards. On 24 of the cards she writes "win" and on 16 she writes "lose". She then 

represents "$5 
For this simulation, she computes the observed 

difference in the success rates by subtracting the success rate for the simulation's "$5 incentive" 
Best" (verbal incentive) group.  

The following shows a distribution of simulated data that Alicia generated from her 100 trials and used to 



 

 
24. What is the null model (null hypothesis) that Alicia's data simulated?

( ) The $5 incentive is more effective than verbal encouragement for improving performance.
( ) The $5 incentive and verbal encouragement are equally effec
( ) Verbal encouragement is more effective than a $5 incentive for improving performance.
 

25. What is the P-value for her observed result? Use this distribution to estimate the 

( ) 0.01 
( ) 0.02 
( ) 0.03 
( ) 0.04 
( ) 0.05 
 

26. What does the distribution tell you about the hypothesis that $5 incentives are effective 

for improving performance?

( ) The incentive is not effective because the null distribution is centered at 0.
( ) The incentive is effective because the 
( ) The incentive is not effective because the p
( ) The incentive is effective because the p
 

Questions 27 to 30 refer to the following:
Does coaching raise college admission test scores? Because many students scored higher on a second try 
even without coaching, a study looked at a random sample of 4,200 students who took the college 
admissions test twice. Of these, 500 took a coaching course between their two attempt
admissions test. The study compared the average increase in scores for students who were coached to the 
average increase for students who were not coached.
 

27. The result of this study showed that while the coached students had a larger i
difference between the average increase for coached and not
significant. What does this mean?
( ) The sample sizes were too small to detect a true difference between the coached and not
students. 
( ) The observed difference between coached and not
( ) The increase in test scores makes no difference in getting into college since it is not statistically 
significant. 
( ) The study was badly designed b
students. 
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24. What is the null model (null hypothesis) that Alicia's data simulated? 

( ) The $5 incentive is more effective than verbal encouragement for improving performance.
( ) The $5 incentive and verbal encouragement are equally effective for improving performance.
( ) Verbal encouragement is more effective than a $5 incentive for improving performance.

value for her observed result? Use this distribution to estimate the 

26. What does the distribution tell you about the hypothesis that $5 incentives are effective 

for improving performance? 

( ) The incentive is not effective because the null distribution is centered at 0. 
( ) The incentive is effective because the null distribution is centered at 0. 
( ) The incentive is not effective because the p-value is greater than .05. 
( ) The incentive is effective because the p-value is less than .05. 

Questions 27 to 30 refer to the following: 
admission test scores? Because many students scored higher on a second try 

even without coaching, a study looked at a random sample of 4,200 students who took the college 
admissions test twice. Of these, 500 took a coaching course between their two attempts at the college 
admissions test. The study compared the average increase in scores for students who were coached to the 
average increase for students who were not coached. 

27. The result of this study showed that while the coached students had a larger i
difference between the average increase for coached and not-coached students was not statistically 
significant. What does this mean? 
( ) The sample sizes were too small to detect a true difference between the coached and not

( ) The observed difference between coached and not-coached students could occur just by chance alone.
( ) The increase in test scores makes no difference in getting into college since it is not statistically 

( ) The study was badly designed because they did not have equal numbers of coached and not

 

( ) The $5 incentive is more effective than verbal encouragement for improving performance. 
tive for improving performance. 

( ) Verbal encouragement is more effective than a $5 incentive for improving performance. 

value for her observed result? Use this distribution to estimate the P-value. 

26. What does the distribution tell you about the hypothesis that $5 incentives are effective 

 

admission test scores? Because many students scored higher on a second try 
even without coaching, a study looked at a random sample of 4,200 students who took the college 

s at the college 
admissions test. The study compared the average increase in scores for students who were coached to the 

27. The result of this study showed that while the coached students had a larger increase, the 
coached students was not statistically 

( ) The sample sizes were too small to detect a true difference between the coached and not-coached 

coached students could occur just by chance alone. 
( ) The increase in test scores makes no difference in getting into college since it is not statistically 

ecause they did not have equal numbers of coached and not-coached 
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28. The study doesn't show that coaching causes a greater increase in college admissions test 
scores. Which of the following would be the most plausible reason for this? 
( ) The not-coached students used other effective ways to prepare. 
( ) The number of 4,200 students is too few to detect a difference. 
( ) More students were not coached than were coached. 
 

29. The report of the study states, "With 95% confidence, we can say that the average score 
for students who take the college admissions test a second time is between 28 and 57 points higher 
than the average score for the first time." By "95% confidence" we mean: 
( ) We are certain that 95% of all students will increase their score by between 28 and 57 points for a 
second test. 
( ) We are certain that 95% of all students in a new sample will increase their score by between 28 to 57 
points for a second test. 
( ) We are certain that 95% of all students who take the college admissions test would believe the 
statement. 
( ) We are 95% certain that the average increase in college admissions scores is between 28 and 57 points. 
 

30. If we want to be 99% confident that the difference between average scores for the first 
and the second tests is between 28 and 57 points, the range of values in the interval would be: 
( ) Wider, because higher confidence requires a larger margin of error. 
( ) Narrower, because higher confidence requires a smaller margin of error. 
( ) Exactly the same width as the range for the 95% confidence interval. 
 

 
31. A sportswriter wants to know how strongly football fans in a large city support building 

a new football stadium. She stands outside the current football stadium before a game and interviews 
the first 250 people who enter the stadium. The newspaper reports the results from the sample as an 
estimate of the percentage of football fans in the city who support building a new stadium. Which 
statement is correct in terms of the sampling method? 
( ) This is a simple random sample. It will give an accurate estimate. 
( ) Because the sample is so small, it will not give an accurate estimate. 
( ) Because all fans had a chance to be asked, it will give an accurate estimate. 
( ) The sampling method is biased. It will not give an accurate estimate. 
 

 
32. A study of treatments for angina (pain due to low blood supply to the heart) compared 

the effectiveness of three different treatments: bypass surgery, angioplasty, and prescription 
medications only. The study looked at the medical records of thousands of angina patients whose 
doctors had chosen one of these treatments. The researchers concluded that 'prescription 
medications only' was the most effective treatment because those patients had the highest median 
survival time. Is the researchers' conclusion valid? 
( ) Yes, because medication patients lived longer. 
( ) No, because doctors chose the treatments. 
( ) Yes, because the study was a comparative experiment. 
( ) No, because the patients volunteered to be studied. 
 

 
33. An engineer designs a new light bulb. The previous design had an average lifetime of 

1,200 hours. The new bulb design has an estimated lifetime of 1,200.2 hours based on a sample of 
40,000 bulbs. Although the difference was quite small, the mean difference was statistically 
significant. A significant result for such a small difference would occur because: 
( ) The new design had more variability than the previous design. 
( ) The sample size for the new design is very large. 
( ) The mean of 1,200 for the previous design is large. 
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34. Research participants were randomly assigned to take Vitamin E or a placebo pill. After 

taking the pills for eight years, it was reported how many developed cancer. Which of the following 
responses gives the best explanation as to the purpose of randomization in this study? 
( ) To reduce the amount of sampling error that can happen if the subjects are not randomly assigned. 
( ) To ensure that all potential cancer patients had an equal chance of being selected for the study. 
( ) To produce treatment groups with similar characteristics 
( ) To prevent skewness in the results. 
 
 

 
Quiz Score 

 

 
 

Note: Answer key is shown in Appendix K. 
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Appendix J 

Expert Review on Preliminary Assessment 

Table J-1 

Comments of Reviewers 

Items Rater Comments 
Rationale for 
Change Made Change 

4 Internal 
Reviewer 

Remove this item: I could argue for why each response is correct.  All of the responses 
have all its own 
argument. All 
options could be 
correct.  

Item was not 
removed since we 
need to see 
students’ actual 
reasoning. 

5 Rater 1 The distracters seem to be very implausible. Might need to have pilot testing 
using a free-response format.  

 Changed to free-
response question 

Internal 
Reviewer 

“I like this item. However, I would delete the option A. It is not a statement of 
a probability model. It is a statement about a condition for the trials, which is 
part of the simulation. Also, in the simulation, you would want the trials to be 
independent, so it is a correct statement about the simulation” 

Agreed The option A 
removed.  

6 Internal 
Reviewer 

The question is reworded after discussion. The change was made because we 
decided that students did not quite understand how to simulate the data.  

Agreed Use of ‘computer 
simulation’ rather 
than ‘spin more 
times  

(cont.) 
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Items Rater Comments 
Rationale for 
Change Made Change 

Table J-1, cont.    

7 Rater 1 Should have another option which says “we don’t know whether the spinner 
is fair or unfair because…”. In this question, you are setting up two 
competing hypotheses with the implication that one of them must be accepted 
but with hypothesis testing all you can do is have evidence against the null 
(chance alone explanation). If you have no evidence against the null then the 
two hypotheses remain standing. In other words you do not know whether the 
spinner is fair or unfair.  

Agreed Added another 
option, “We do not 
know whether or 
not the spinner is 
fair”. 

Internal 
Reviewer 

Minor wording changes made mostly for the response options made from 
student interview.  

  

8 Internal 
Reviewer 

Minor changes to be aligned with item 6.   Use of ‘computer 
simulation’ rather 
than ‘spin more 
times  

10 

 

Rater 1 Wording clarification: in option B, include “…on average about 20 minutes 
sooner than” 

Agreed Included 

Rater 3 I like that the sample sizes are not equal.   

Internal 
Reviewer 

Item adapted from CAOS. In CAOS, we have these separate items, and the 
student indicates if they think each statement is Valid or Invalid. You get 
more information about the students’ thinking if you have them respond to the 
validity of each statement. You could also then see if a single score based on 
their responses to all three items provides more information than a separate 
score for each item  

Decided to pilot with 
three separate items.  

Item separated to 
three.  

11 Internal R Minor wording changes mostly for the response options made from student 
interview.  

 
(cont.) 
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Items Rater Comments 
Rationale for 
Change Made Change 

Table J-1, cont.    

12 Rater 2 On what informal inference basis are you making a claim? I would pick ‘A’ 
using my heuristic.  

 Decided to leave 
the original 
question and see 
how students are 
responding in 
think-aloud. 

Internal R Minor wording changes mostly for the response options made from student 
interview.  

  

13 Rater 3 This is a clunky problem. Do you need to add “of size 25” to part? Agreed Added  

20 Rater 1 You need to give the sample sizes for both groups and state what the time is 
measuring. As you state you are comparing two groups since these people are 
probably volunteers not samples from populations. The learning goal needs to 
include this idea.  

Agreed Sample size was 
included.  

Learning goal was 
modified.  

21 Rater 3 What if n=3 in both groups? Need to add a bit more guidance. Agreed Sample size added 

23 Rater 3 This is lovely.   

26 Rater 1 You might want to say “observed difference” and “chance alone” for option 
B. 

Agreed Option B modified 

27 Rater 1 Not quite sure if this item is assessing this learning goal. Part of the problem 
may be that the result was not statistically significant.  

  

28 Rater 1 Option C should be reworded to better capture ideas about population 
differences 

Agreed Option c modified  

 Rater 3 Wording of option C is clunky and imprecise Agreed Option c modified  
 (cont.) 
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Items Rater Comments 
Rationale for 
Change Made Change 

Table J-1, cont.l    

29 Rater 3 Wording comments   Modified 

30 Rater 3 Commented about many possible ways to get different answers depending on 
the proportion of being contaminated of eggs sampled. 

Agreed Item removed 

31 Rater 3 Do not think this item gets at the learning goal. Agreed Item removed  

33 Rater 3 Binomial is less variable when p is close to 0 or 1. Therefore, big differences 
in true proportions could trump sample size. 

Agreed Item removed  

36  Rater 3 I continue to be puzzled why students have such a problem with this item.    

Note. Comments of Reviewers: The internal expert’s comments were conducted for the revised items from the expert review process and student think-
alouds.  
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Appendix K 

Reasoning Statement and Expert’s Enacted Reasoning 

Table K-1 

Reasoning statement (intended reasoning) in AIRS-1 

Item # 
Correct 
Answer Intended Reasoning 

1 
Forecast  

D Since it is reported 70 % chance of raining, the interval for the 
population proportion of raining should include 70%.  

2 
Brown candies 

B The proportions of the brown candies in ten candies will be more 
closely clustered to the mean proportion (.5) for 100 samples than for 
10 samples because smaller samples tend to have larger variability.  

3 
Spinner 1: How 
many B’s you 
expect  

A If the spinner is fair, the number of letters being landed would be 
equally likely. Since there are four possibilities, each of the letters has 
the equal chance of a quarter—about two or three spins out of 10.  

4 
Spinner 2: Null 
model 

A The null hypothesis is the one that will happen assuming the spinner is 
fair: each letter has an equal change of a quarter.  

5 
Spinner 3: 
distribution of 100 
samples 

D 5 Bs out of 10 spins is unusual if the spinner is fair, because from the 
distribution of 100 samples, there are only 4 cases where 5 Bs or more 
Bs happened out of 10 spins.  

6 
Spinner 4:  
Is the spinner fair? 

C This spinner is not fair because from the distribution above we observed 
that 5 Bs out of 10 spins happened only 4 times when the spinner is fair.  

7 
Spinner 5: 20 
samples  

B The distribution of the proportion of Bs obtained from 100 samples of 
20 spins would be narrower because there would be less variability in a 
larger sample size.  

8 
Spinner 7: which 
one is the stronger 
evidence? 

A Since the 100 samples of 20 spins have narrower distribution than 10 
spins, it would be less likely to get an unusual result with a fair spinner. 
Therefore, 100 samples of 20 spins would be the stronger evidence to 
support that the spinner is not fair.  

9 
A drug company 1 

B Invalid. We need to see in which group chunk of people have less time 
to get relief. This statement focuses only on some of the data, not about 
the general tendency of the data. (Students are expected to see the data 
as aggregates not as individual data) 

10 
A drug company 2 

A Valid because the average time for the new formula group is larger.  
 (cont.) 
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Item # 
Correct 
Answer Intended Reasoning 

Table K-1, cont.   

11 
A drug company 3 

B Invalid. Although the sample sizes are different for two groups, we can 
make a conclusion because both sample sizes are fairly large.  

12 
Exam strategy 1 

A The sample size and mean difference between two strategies look the 
same in Biology and Chemistry. However, Biology has narrower 
distribution meaning it has smaller variability than Chemistry. This 
indicates that the difference between two groups is more consistent (or 
reliable), so it has stronger evidence that there is a difference between 
two groups. 

13 
Exam strategy 2 

D The variability and a difference between two strategies look similar in 
Psychology and Sociology. However, Sociology has a larger sample 
indicating the sample of Sociology is more representative to the 
population.  

14  
Textbook  

C Since we want to know how expensive the sample of 25 textbooks is, 
we need a sampling distribution of all samples of size 25 from the 
population (university).  

15  
A single random 
sample of 500 

A A single random sample of 500 values would be representative of a 
population. 

16 
500 sample means 

B A distribution of 500 sample means would follow the Central Limit 
Theorem—normally distributed centered to the mean, less variability.  

17 
Silver Lake fish 

C The smaller sample and the larger the sample size, the stronger 
evidence. 

18 
GPA 

D Interpretation of the p-value of 28.7%.  

19 
Herbicide to fish: 
no statistical 
significance 

B It is possible that a statistical testing could not capture the observed 
difference because of small sample size.  

20 
Herbicide to fish: 
a statistical 
significance 

D Since the fish were randomly assigned to two groups, we can make a 
causal inference from the statistical significant result.  

21 
Training vs. No-
training with 
overlaps 

B Since there is an overlap between two groups, we need to do a statistical 
test to see if the difference indicates a statistically significant difference.  

(cont.) 
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Item # 
Correct 
Answer Intended Reasoning 

Table K-1, cont.   

22 
Training vs. No-
training without 
overlaps 

A Since there is no overlap between two groups, we can conclude that 
there is a significant difference.  

23 
Coke vs. Pepsi 

B The probability of guessing is 50% and what we observed in our sample 
is seven out of ten. Therefore, 50% of chance would be the probability 
of specification and calculate the proportion of all trials with seven or 
more correct guesses.  

24 
Alicia, null model 

B The null model is one that we have the result just by chance. Therefore, 
null model here is that there is equally likely effectiveness.  

25 
Alicia, p-value 

B or C Since we have found four times out of 100 where the cases are greater 
than the observed proportion of 0.4, the p-value is 0.03 (or 0.04 if we 
consider both sides).  

26 
Alicia, conclusion 

D Since the p-value is less than 0.05, we reject the null. The incentive is 
effective.  

27 
coaching – no 
statistical 
significance 

B Since the sample size is large enough and there was no significant 
difference between two groups, the observed difference could happen 
just by chance alone.  

28 
coaching – 
statistical 
significance 

A Since there was no random assignment for treatment, any confounding 
factors could’ve have impact on the observed result.  

29 
95% CI 

D The confidence interval indicates the range of increase score in a second 
test for the population. This gives us the degree of certainty.  

30 
Range of 99% CI 

A If the confidence level increases, the margin of error increases. 
Therefore, the range of values gets wider.  

31 
sports writer 

D This is a biased sampling because the sample (people who went to the 
football stadium) is not representative to a population.  

32 
angina 

B This is an experiment with no random assignment. The conclusion is 
not valid because the doctors chose the treatment groups.  

33 
bulb  

B Since the sample size is very large, even a small observed difference 
could result in a statistically significant difference.  

34 
Vitamin vs. 
placebo 

C The purpose of random assignment is to have equal characteristics for 
both of treatment group and control group.  
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Table K-2 

A Script from an Expert’s Think-aloud 

Items Intended Reasoning 
Enacted Reasoning 
(expert’s reasoning) 

Item 5: 
Spinner 3: Null 
model 

The null hypothesis is the one that 
happened if the spinner is fair.  

Since we have 10 spins, and we want to 
have a probability model, and we want to 
count the number of B’s, based on the 
set-up of the spinner, it looks like each 
letter has equal probability of being 
chosen, and because it’s fair. The 
probability model is gonna be based on 
the fair spinner. Each letter would have to 
have equal probability. If I would spin the 
fair spinner ninety times, not just ten. 
This fair spinner in the long run, the 
probability of each letter would come out 
to be about one quarter.  

Item 9-11: A 
drug company 

Invalid. We need to see in which group 
chunk of people have less time to get 
relief. This statement focuses only on 
some of the data, not about the general 
tendency of the data. (Students are 
expected to see the data as aggregates not 
as individual data) 

This statement is not valid. Because it 
looks to me like…if you look at the 
overall shape of this data, the overall 
average of old formula would be larger 
than the overall average of the new 
formula, which means that the new 
formula works better.  

Item 10.  Valid because the average time for the 
new formula group is larger.  

I agree with the first statement. And on 
average makes sense to me. So I would 
say it’s valid. 

Item 11.  Invalid. Although the sample sizes are 
different for two groups, we can make a 
conclusion because both sample sizes are 
fairly large.  

That is not valid. Two groups were 
chosen randomly, the number of samples 
is fairly large, so I think we can make 
some conclusion on the comparison.  

Item 12-13. 
Biology and 
Chemistry: 
Item 12.  

Since the sample size and a difference 
between two samples look the same, we 
need to look at the distribution of two. 
Biology has narrower distribution 
indicating that the difference between two 
groups is more consistent (or reliable), so 
it has stronger evidence that there is a 
difference between two groups. 

In both of the box plots, the boxes 
overlap quite significantly. And the tails 
are also overlap. The chemistry, there are 
same amount of variability between two 
strategies. And the biology, there are less 
variations than the chemistry for both 
strategies. So I would say the less 
variability means the scores are more 
consistent in Biology. Given that the 
difference between two strategies is 
almost the same in two groups (Biology 
and Chemistry) the less variability gives 
stronger evidence against the claim.  

(cont.) 
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Items Intended Reasoning 
Enacted Reasoning 
(expert’s reasoning) 

Table K-2, cont.  

Item 18.  Interpretation of the p-value of 28.7%.  It’s basically asking about the definition 
of p-value. So I would say D is the 
correct answer.  

Item 19.  If there is no statistical difference 
between two groups of fish in an 
experiment where they found some 
difference, it could be because of a small 
sample size. 

I don’t think it’s A because they say that 
it is statistically significant. I would say 
B is correct: the same size is sixty. If we 
have more fish, he could have better idea 
of what the difference of two groups, it 
might tell better.  

Item 20.  If there is a statistical difference between 
two groups of fish in an experiment with 
random assignment, it indicates that we 
have evidence of causation.  

I did random assignment. So, not A. 
Possible for B, but he found significant 
difference, so not B. I would say D 
instead of C. because the idea of having 
evidence causes higher levels of the 
enzyme given that we used the random 
assignment. Even so, we couldn’t say we 
could prove something.  

Item 24-26. The null model is one that we have the 
result just by chance. Therefore, no 
improvement with $5 incentive.  

Her null model is based on the fact that 
they are equally effective. So, I would 
say the answer is B showing both of the 
groups are equally effective for the 
performance.  

Item 25 Since we have found four times out of 
100 which is great than 0.4, the p-value is 
0.03 (or 0.04 if we consider both sides) 

She’s taking the difference between. I see 
that she only cares one-sided where or 
not there is improvement. So, it’s three 
out of 100.  

Item 26 Since the p-value is less than 0.05, we 
reject the null. The incentive is effective.  

Since the p-value is less than 0.05, so I 
would say the incentive is effective.  

Item 27.  Since the sample size is large enough and 
there was no significant difference 
between two groups’ scores, the observed 
difference could happen just by chance 
alone. 

I would say sample size is fairly large, so 
A is not the answer. I would say B, 
because we did see a difference but it 
wasn’t significant. That means that 
happened just by chance alone even if 
coaching really has not any effect.  

Item 28.  This is an experiment study with no 
random assignment. If there was not a 
significant difference between two 
groups, it could be because any 
confounding factors were not controlled. 

I would say that there are any effective 
ways to prepare for the not-coached 
students. That makes the most sense to 
me.  

(cont.) 



 

291 

Items Intended Reasoning 
Enacted Reasoning 
(expert’s reasoning) 

Table K-2, cont.  

Item 29.  The confidence interval indicates the 
range of increase score in a second test 
for the population. This gives us the 
degree of certainty.  

95% CI means just D. this is about the 
definition of confidence interval.  

Item 33.  Since the sample size is very large, the 
small observed difference could be 
compensated to be statistically 
significant.  

I would say the answer is B, because with 
huge sample size like this we can get a 
significant result even with a tiny 
difference between two groups.  

Item 34.  The purpose of random assignment is to 
control any confounding factors by 
having all subjects be selected with an 
equal chance.  

This is basically asking about the purpose 
of random assignment. If you are 
randomly assigning the people to two 
groups, Vitamin and placebo, we can 
even out the systematic difference 
between them. So B is the most plausible 
answer because this way (random 
assigning) any difference within or 
between groups can be controlled.  

Note. The think-aloud with an expert was conducted before the 1st cognitive interview. 
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Appendix L 

Reliability Analysis from Pilot Testing 

Item Standardized Alpha Polyserial Correlation 

1 0.82 0.86 

2 0.83 0.84 

3a NA NA 

4 0.84 -0.27 

5 0.82 0.9 

6 0.84 0.53 

7 0.83 0.61 

8 0.83 0.63 

9a NA NA 

10 0.83 0.54 

11 0.83 0.71 

12 0.83 0.37 

13 0.84 0.12 

14 0.83 -0.12 

15 0.82 0.66 

16 0.82 0.59 

17 0.83 0.59 

18 0.83 0.65 

19 0.84 0.18 

20 0.84 0.03 

21 0.83 0.51 

22 0.84 0.12 

23 0.84 0.27 

24 0.83 0.31 

  (cont.) 
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Item Standardized Alpha Polyserial Correlation 

Table L, cont.   

25 0.84 0.21 

26 0.84 0.29 

27 0.82 0.77 

28 0.83 0.74 

29 0.84 -0.14 

30 0.83 0.53 

31 0.83 0.77 

32 0.82 0.64 

33 0.82 1 

34 0.84 0.56 

 Total standardized alpha = 0.84  

aItem 3 and item 9 have perfect correct score, so coefficient alpha and item-total correlation are not 
available. 
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Appendix M 

LD Indexes of AIRS Items 

Note: The lower diagonal presents Likelihood Ratio G2 statistic for each pair of 34 items. The upper diagonal shows Cramer’s V.  

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 

Q1  0.05 0.02 0.03 0.02 0.03 0.05 0.02 0.04 0.01 0.02 0.00 0.04 0.01 0.03 0.02 0.04 0.02 0.05 

Q2 5.15  0.04 0.05 0.01 0.04 0.19 0.01 0.07 0.08 0.05 0.01 0.03 0.02 0.03 0.01 0.04 0.01 0.04 

Q3 0.87 -2.90  0.08 0.03 0.03 0.06 0.02 0.02 0.03 0.04 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.03 

Q4 1.81 -4.11 13.78  0.03 0.01 0.04 0.04 0.03 0.03 0.02 0.01 0.00 0.03 0.01 0.03 0.04 0.05 0.02 

Q5 -0.88 0.10 -1.31 -1.59  0.07 0.02 0.01 0.02 0.01 0.04 0.04 0.01 0.03 0.00 0.04 0.02 0.03 0.01 

Q6 -1.26 -2.39 -1.65 -0.23 9.33  0.01 0.04 0.03 0.04 0.02 0.01 0.04 0.02 0.01 0.04 0.02 0.05 0.03 

Q7 5.65 69.60 -6.02 -2.80 -0.58 -0.05  0.09 0.07 0.09 0.05 0.03 0.03 0.01 0.03 0.01 0.08 0.02 0.02 

Q8 0.92 -0.14 0.98 -2.84 0.20 -3.34 16.76  0.04 0.01 0.01 0.00 0.00 0.05 0.03 0.02 0.04 0.02 0.02 

Q9 -3.69 -9.34 0.92 1.43 -0.72 -1.33 -10.05 -2.58  0.11 0.06 0.04 0.05 0.03 0.03 0.02 0.02 0.06 0.02 

Q10 0.07 -13.82 -1.42 -1.29 0.38 -3.55 -15.44 -0.28 23.88  0.20 0.03 0.03 0.05 0.01 0.01 0.04 0.04 0.01 

Q11 -0.64 -4.99 -2.91 -0.56 -3.86 -0.86 -5.68 -0.24 -6.43 81.22  0.02 0.05 0.02 0.04 0.02 0.05 0.01 0.04 

Q12 0.01 -0.07 1.10 0.26 -3.00 0.26 -1.68 -0.01 -2.78 -1.55 -1.13  0.06 0.01 0.01 0.01 0.02 0.02 0.01 

Q13 -2.98 -1.34 1.41 0.02 0.05 -2.42 -1.86 0.01 4.21 -2.02 -5.48 6.23  0.01 0.06 0.04 0.07 0.04 0.01 

Q14 -0.31 0.57 -2.04 -1.24 -2.00 0.85 0.14 -3.93 -1.20 -4.06 -0.72 0.11 0.23  0.03 0.05 0.03 0.03 0.07 

Q15 1.66 2.31 -1.50 -0.19 -0.01 0.15 -1.22 -2.11 -1.94 -0.13 -2.71 0.38 -6.12 1.61  0.17 0.04 0.03 0.01 

Q16 0.98 0.07 1.28 -1.60 -2.57 -3.61 -0.27 -1.10 -0.94 -0.20 -1.01 0.05 -3.72 5.65 56.06  0.01 0.02 0.00 

Q17 -2.62 -3.41 -2.19 -3.06 -0.42 -0.70 -11.13 -2.50 -0.89 -2.62 -4.10 -0.45 10.19 -2.07 -3.12 0.40  0.02 0.01 

Q18 -0.93 -0.07 -3.39 -4.78 2.08 4.31 -0.62 -0.76 -6.61 -3.88 0.39 -0.43 -2.43 1.27 1.61 0.97 0.70  0.01 

Q19 -4.15 -3.18 -1.32 1.08 0.05 -1.34 -0.76 -0.91 -0.70 0.11 -3.17 0.18 -0.24 -8.69 -0.36 0.01 -0.39 0.28  
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 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 

Q20 -4.91 -4.62 -0.51 0.04 1.08 0.43 -8.14 -3.69 2.43 0.22 0.31 -1.58 0.16 -0.41 -0.18 -11.14 5.24 -1.02 -4.94 

Q21 -2.21 -1.62 0.85 1.10 -4.51 0.34 -16.60 -5.74 -2.12 -3.78 -1.11 -0.41 0.41 -2.81 -0.76 -0.53 -2.35 -2.23 1.52 

Q22 0.63 -2.08 12.63 4.49 -1.09 -1.09 -10.79 0.00 0.79 2.01 -0.71 -0.01 0.05 -5.66 -0.03 -0.10 0.44 -3.86 -0.03 

Q23 -1.50 2.56 -2.48 2.14 6.97 0.47 -0.02 -0.20 -3.52 0.43 0.06 -0.63 -0.81 -0.19 -1.71 -0.40 -3.11 -0.19 0.60 

Q24 3.20 -1.43 -2.74 -2.40 0.17 -0.39 0.63 -0.68 -10.00 -3.46 -1.86 0.13 -1.11 -0.51 0.00 0.92 -1.04 -0.47 -0.43 

Q25 0.33 0.48 -0.58 0.04 -1.27 12.29 -0.07 -0.02 -11.27 -9.67 -1.18 -0.04 -0.04 -3.17 1.91 -0.45 -5.62 0.20 7.21 

Q26 -4.51 -2.86 0.51 -0.82 0.01 4.89 -5.25 -3.12 1.48 -2.00 -0.02 0.62 -1.08 -0.03 1.02 -0.16 -0.52 1.26 -1.29 

Q27 -1.87 -2.21 -3.84 -0.77 -0.26 -0.03 -0.56 -0.24 -8.38 -0.84 5.29 -0.10 -12.28 -0.07 -1.31 -1.65 -5.01 -3.43 -0.04 

Q28 -0.18 -3.03 -4.20 -3.95 -0.20 -0.25 -0.02 -0.26 -5.55 0.18 8.50 -1.18 -8.25 -0.46 -5.00 -2.55 -8.03 -0.10 -5.97 

Q29 -5.18 -0.56 -2.54 1.42 -4.15 -0.19 -1.86 -4.76 -1.32 -1.69 0.09 -0.54 1.00 -4.86 -0.08 -5.94 0.43 0.05 -0.35 

Q30 4.64 2.13 -0.53 -0.55 -0.02 -0.62 2.41 -2.04 -8.58 -3.89 -2.77 -3.92 -4.99 0.29 0.04 -0.06 -7.62 -0.32 0.16 

Q31 -1.68 -6.40 -1.25 -1.09 -4.88 -1.02 -3.21 -3.14 -1.54 -4.05 -10.50 -0.43 -0.11 0.97 -0.72 1.51 -1.98 -1.29 0.35 

Q32 -0.11 -0.27 -0.77 -3.10 -0.08 -3.20 1.26 -1.56 -2.11 -4.30 -14.78 6.43 -0.04 0.53 3.83 5.97 -3.23 0.41 0.61 

Q33 0.24 -0.72 -2.47 0.22 0.56 1.24 0.50 0.90 -6.75 -3.33 -4.90 -0.02 6.44 -2.55 -0.56 1.50 -1.84 -0.51 5.27 

Q34 0.92 1.01 -13.83 -0.86 0.07 15.19 0.52 -0.29 -20.85 -4.61 -0.23 4.57 -3.01 0.04 3.43 -0.03 -5.59 5.13 -4.30 
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 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 

Q1 0.05 0.03 0.02 0.03 0.04 0.01 0.05 0.03 0.01 0.05 0.05 0.03 0.01 0.01 0.02 

Q2 0.05 0.03 0.03 0.04 0.03 0.02 0.04 0.03 0.04 0.02 0.03 0.06 0.01 0.02 0.02 

Q3 0.02 0.02 0.08 0.04 0.04 0.02 0.02 0.04 0.05 0.04 0.02 0.03 0.02 0.04 0.08 

Q4 0.00 0.02 0.05 0.03 0.04 0.01 0.02 0.02 0.05 0.03 0.02 0.02 0.04 0.01 0.02 

Q5 0.02 0.05 0.02 0.06 0.01 0.03 0.00 0.01 0.01 0.05 0.00 0.05 0.01 0.02 0.01 

Q6 0.02 0.01 0.02 0.02 0.01 0.08 0.05 0.00 0.01 0.01 0.02 0.02 0.04 0.03 0.09 

Q7 0.06 0.09 0.07 0.00 0.02 0.01 0.05 0.02 0.00 0.03 0.04 0.04 0.03 0.02 0.02 

Q8 0.04 0.05 0.00 0.01 0.02 0.00 0.04 0.01 0.01 0.05 0.03 0.04 0.03 0.02 0.01 

Q9 0.04 0.03 0.02 0.04 0.07 0.08 0.03 0.07 0.05 0.03 0.07 0.03 0.03 0.06 0.10 

Q10 0.01 0.04 0.03 0.02 0.04 0.07 0.03 0.02 0.01 0.03 0.04 0.05 0.05 0.04 0.05 

Q11 0.01 0.02 0.02 0.01 0.03 0.02 0.00 0.05 0.07 0.01 0.04 0.07 0.09 0.05 0.01 

Q12 0.03 0.01 0.00 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.05 0.02 0.06 0.00 0.05 

Q13 0.01 0.01 0.01 0.02 0.02 0.00 0.02 0.08 0.07 0.02 0.05 0.01 0.01 0.06 0.04 

Q14 0.01 0.04 0.05 0.01 0.02 0.04 0.00 0.01 0.02 0.05 0.01 0.02 0.02 0.04 0.01 

Q15 0.01 0.02 0.00 0.03 0.00 0.03 0.02 0.03 0.05 0.01 0.01 0.02 0.04 0.02 0.04 

Q16 0.08 0.02 0.01 0.01 0.02 0.02 0.01 0.03 0.04 0.06 0.01 0.03 0.06 0.03 0.00 

Q17 0.05 0.03 0.02 0.04 0.02 0.05 0.02 0.05 0.06 0.02 0.06 0.03 0.04 0.03 0.05 

Q18 0.02 0.03 0.04 0.01 0.02 0.01 0.03 0.04 0.01 0.01 0.01 0.03 0.01 0.02 0.05 

Q19 0.05 0.03 0.00 0.02 0.02 0.06 0.03 0.01 0.06 0.01 0.01 0.01 0.02 0.05 0.05 

Q20  0.04 0.04 0.03 0.04 0.06 0.03 0.02 0.01 0.04 0.02 0.03 0.09 0.02 0.03 

Q21 2.50  0.40 0.03 0.02 0.02 0.03 0.05 0.02 0.03 0.06 0.02 0.03 0.03 0.05 

Q22 3.28 311.87  0.04 0.03 0.02 0.00 0.08 0.01 0.01 0.04 0.01 0.03 0.00 0.07 

Q23 -1.37 -2.17 -2.58  0.02 0.03 0.00 0.02 0.01 0.02 0.05 0.09 0.02 0.01 0.02 
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 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 

Q24 -3.20 0.82 -1.42 0.88  0.01 0.01 0.05 0.01 0.03 0.01 0.08 0.02 0.05 0.02 

Q25 -6.21 -1.18 -1.18 1.46 -0.24  0.14 0.00 0.04 0.01 0.02 0.08 0.01 0.01 0.06 

Q26 1.38 1.39 0.01 -0.01 -0.29 38.38  0.03 0.01 0.04 0.06 0.01 0.02 0.03 0.01 

Q27 0.88 -5.08 -11.45 0.65 4.39 0.03 -1.85  0.22 0.06 0.01 0.03 0.00 0.03 0.00 

Q28 0.13 0.45 -0.12 -0.07 0.18 -3.37 -0.20 92.21  0.01 0.04 0.02 0.04 0.07 0.01 

Q29 3.17 2.02 0.26 -0.50 -2.11 0.21 2.98 -7.76 0.41  0.00 0.01 0.00 0.03 0.00 

Q30 -0.60 -6.03 -3.21 -4.88 -0.24 -0.48 -8.01 0.07 3.32 -0.03  0.03 0.04 0.03 0.04 

Q31 1.64 -1.16 -0.11 -16.80 -12.34 -13.82 0.20 -1.47 -0.86 0.18 1.69  0.04 0.02 0.07 

Q32 -17.05 -1.59 -1.51 -1.08 0.56 0.40 1.01 0.04 -2.58 -0.03 2.37 2.49  0.01 0.06 

Q33 -0.68 -1.36 0.00 0.25 4.91 0.28 -1.56 -1.23 -10.52 -1.56 -1.64 -0.52 -0.16  0.02 

Q34 -1.79 -4.11 -9.68 0.44 1.01 7.99 -0.38 -0.02 0.26 -0.01 3.34 -9.64 5.91 -0.49  
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Appendix N 

Development of a Preliminary Version: 

Item Changes Made from Existing Instruments 

Item 
Numbers in 
Preliminary 

Version 
AIRS Item Source and Original Item Changes Made and Rationale for Change 

1 Konold and Garfield (1993), as adapted from Falk 1993, problem 5.1.1, p. 111 No change 

2 Context adapted from CAOS item 17.  Item was revised by the author to ask:  
- Understanding the nature and behavior of 
sampling variability 
- Understanding sample to sample variability  
- Taking into account sample size in association 
with sampling variability 

3-9 
Spinner 
problem 

CATALST project (ongoing validation) items: 
[Context omitted]  

 Q. How could you decide which person is correct? Explain. 
 Q. Did you use technology to answer this question? If so please describe what 

you used. 
 Explain what you think this p value suggests about whether or not the spinner is 

fair? 
 Q. Do you think this result would produce the same p-value of 0.08 as before, or 

a higher  
p-value, or a lower one? Explain your reasoning.  

 Q. Did you use technology to answer questions 3 or 4? If so please describe what 
you used. 

The scenario of the items was adopted and 
revised. The items were revised to MC types. The 
items were created by the author and delMas. 

 
 
 
 
 
 
 
 

(cont.) 
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Item 
Numbers in 
Preliminary 

Version 
AIRS Item Source and Original Item Changes Made and Rationale for Change 

Table N, cont.  

10 CAOS item 11- 13: [Context omitted]  

11. The old formula works better. Two people who took the old formula felt relief 
in less than 20 minutes, compared to none who took the new formula. Also, the 
worst result - near 120 minutes - was with the new formula. 

a.  Valid.  
b. Not valid.  

12. The average time for the new formula to relieve a headache is lower than the 
average time for the old formula. I would conclude that people taking the new 
formula will tend to feel relief about 20 minutes sooner than those taking the old 
formula. 

a.  Valid.  
b. Not valid.  

 13. I would not conclude anything from these data. The number of patients in the 
two groups is not the same so there is no fair way to compare the two formulas. 
a.  Valid.  
b. Not valid.  

The original three items in CAOS was merged to 
one item.  

11, 12 Context adapted from CATALST project (ongoing validation)  
Items crested by Robert delMas on the topic of Comparing two samples from two 
populations 

 
 

(cont.) 



 

 

300 

Item 
Numbers in 
Preliminary 

Version 
AIRS Item Source and Original Item Changes Made and Rationale for Change 

Table N, cont. 

13 ARTIST topic scale (Sampling Variation) item 4: 

A random sample of 25 college statistics textbook prices is obtained and the 
mean price is computed. To determine the probability of finding a more extreme 
mean than the one obtained from this random sample, you would need to refer 
to: 

a. the population distribution of all college statistics textbook prices.  
b. the distribution of prices for this sample of college statistics textbooks.  
c. the sampling distribution of textbook prices for all samples of 25 textbooks 
from this population.  

14. A random sample of 10 textbooks for different 
courses taught at a University is obtained, and the 
mean textbook price is computed for the sample. 
To determine the probability of finding another 
random sample of 10 textbooks with a mean more 
extreme than the one obtained from this random 
sample, you would need to refer to: 

a. the distribution of textbook prices for all 
courses at the University.  
b. the distribution of textbook prices for this 
sample of University textbooks.  
c. the distribution of mean textbook prices for all 
samples of size 10 from the University.  

14, 15 CAOS 34, 35 No change 
(cont.) 
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16 CAOS 32:  
[Context omitted] A research group from the Department of Natural Resources 
took a random sample of 100 adult largemouth bass from Silver Lake and found 
the mean of this sample to be 11.2 inches. Which of the following is the most 
appropriate statistical conclusion? 
a.The researchers cannot conclude that the fish are smaller than what is normal 
because 11.2 inches is less than one standard deviation from the established 
mean (12.3 inches) for this species.  
b. The researchers can conclude that the fish are smaller than what is normal 
because the sample mean should be almost identical to the population mean with 
a large sample of 100 fish.  
c. The researchers can conclude that the fish are smaller than what is normal 
because the difference between 12.3 inches and 11.2 inches is much larger than 
the expected sampling error.  

Used the same context but modified in wording 
and alternatives:  
17.[Context omitted] Which of the following 
provides the strongest evidence to support the 
claim that they are catching smaller than average 
length (12.3 inches) largemouth bass this year? 
a. A random sample of a sample size of 100 with a 
sample mean of 12.1. 
b. A random sample of a sample size of 36 with a 
sample mean of 11.5. 
c. A random sample of a sample size of 100 with a 
sample mean of 11.5. 
d. A random sample of a sample size of 36 with a 
sample mean of 12.1. 

17 Adapted from Instructor’s Manual and Test Bank for Moore and Notz’ (Moore et 
al., 2008) (cont.) 
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18, 19 CAOS 23, 24:  
A researcher in environmental science is conducting a study to investigate the 
impact of a particular herbicide on fish. He has 60 healthy fish and randomly 
assigns each fish to either a treatment or a control group. The fish in the 
treatment group showed higher levels of the indicator enzyme.  

Change in wording of the context and questions to 
make them clearer and simpler: 
[Context] A researcher investigates the impact of 
a particular herbicide on fish. He has 60 healthy 
fish and randomly assigns each fish to either 
exposed or not be exposed to the herbicide. The 
fish exposed to the herbicide showed higher levels 
of an enzyme associated with cancer. 
19. Suppose no statistically significant difference 
was found between the two groups of fish. What 
conclusion can be drawn from these results? 
20. Suppose a statistically significant difference 
was found between the two groups of fish. What 
conclusion can be drawn from these results? 

20, 21 UCLA Evaluation project (Beckman et al.) Used the same items that were assessed in a 
research project [Rob Gould evaluation project] 

(cont.) 
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22 CAOS 37. 
You have studied statistics and you want to determine the probability of anyone 
getting at least four right out of six tries just by chance alone. Which of the 
following would provide an accurate estimate of that probability? 

a. Have the student repeat this experiment many times and calculate the 
percentage time she correctly distinguishes between the brands.  

b. Simulate this on the computer with a 50% chance of guessing the correct soft 
drink on each try, and calculate the percent of times there are four or more 
correct guesses out of six trials.  
c. Repeat this experiment with a very large sample of people and calculate the 
percentage of people who make four correct guesses out of six tries.  
d. All of the methods listed above would provide an accurate estimate of the 
probability.  

Modified in wording, questioning and alternatives 
to emphasize the process of simulating data:  
a. Specify the probability of a correct guess as 
50% and calculate the proportion of all trials with 
exactly seven correct guesses. 
b. Specify the probability of a correct guess as 
50% and calculate the proportion of all trials with 
seven or more correct guesses. 
c. Specify the probability of a correct guess as 
70% and calculate the proportion of all trials with 
exactly seven correct guesses. 
d. Specify the probability of a correct guess as 
70% and calculate the proportion of all trials with 
seven or more correct guesses. 

23-25 Context adapted from CSI project (Allan & Chance) as adapted for use in Robert 
Gould Evaluation project (Beckman et al.). Items were developed for the topic of 
Inference about comparing two proportions and Definitions of P-value and 
statistical significance  

 

26-31 Adapted from Instructor’s Manual and Test Bank for Moore and Notz’ (Moore et 
al., 2008, p. 63) 

 

32 Created by the author and an Robert delMas (cont.) 
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33-35 Adapted from Instructor’s Manual and Test Bank for Moore and Notz’ (Moore et 
al., 2008, p.280) 

Topic of Evaluation of statistical testing 
(considering sample size, practical significance, 
effect size) 

36 CAOS 7.  
A recent research study randomly divided participants into groups who were 
given different levels of Vitamin E to take daily. One group received only a 
placebo pill. The research study followed the participants for eight years to see 
how many developed a particular type of cancer during that time period. Which 
of the following responses gives the best explanation as to the purpose of 
randomization in this study? 
a. To increase the accuracy of the research results.  
b. To ensure that all potential cancer patients had an equal chance of being 
selected for the study.  
c. To reduce the amount of sampling error.  
d. To produce treatment groups with similar characteristics.  
e. To prevent skewness in the results.  

Modified working of the context, questioning, and 
alternatives to make them clearer and simpler.  
34. Research participants were randomly assigned 
to take Vitamin E or a placebo pill. After taking 
the pills for eight years, it was reported how many 
developed cancer. Which of the following 
responses gives the best explanation as to the 
purpose of randomization in this study? 
a. To reduce the amount of sampling error that can 
happen if the subjects are not randomly assigned.  
b. To ensure that all potential cancer patients had 
an equal chance of being selected for the study.  
c. To produce treatment groups with similar 
characteristics 
d. To prevent skewness in the results. 

 


