Measuring Statistics Attitudes: Structure of the Survey of Attitudes Toward Statistics (SATS-36)[1]
Stijn vanhoof
Katholieke Universiteit Leuven
stijn_vanhoof@hotmail.com
sofie kuppens
Katholieke Universiteit Leuven
sofie.kuppens@ped.kuleuven.be
ana elisa castro sotos
Katholieke Universiteit Leuven
anaelisa.castrosotos@bnpparibasfortis.com
lieven verschaffel
Katholieke Universiteit Leuven
lieven.verschaffel@ped.kuleuven.be
patrick onghena
Katholieke Universiteit Leuven
patrick.onghena@ped.kuleuven.be
ABSTRACT
Although a number of instruments for assessing attitudes toward statistics have been developed, several questions with regard to the structure and item functioning remain unresolved. In this study, the structure of the Survey of Attitudes Toward Statistics (SATS-36), a widely used questionnaire to measure six aspects of students' attitudes toward statistics, is investigated. This study addresses the previously unexplored issue of individual item functioning. Based on confirmatory factor analysis using individual items, the results suggest that the SATS-36 can be improved by removing some poorly functioning items and that depending on the goals of a specific study either six subscales could be used or three of them (Affect, Cognitive Competence, and Difficulty) can be combined into one subscale without losing much information.
Keywords: Statistics education research; Attitudes towards statistics; Assessment instrument; Confirmatory factor analysis
__________________________
Statistics Education Research Journal, 10(1), 35-51, http://www.stat.auckland.ac.nz/serj
Ó International Association for Statistical Education (IASE/ISI), May, 2011
REFERENCES
Bandalos, D. L. (2002). The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. Structural Equation Modeling, 9(1), 78-102.
Bandalos, D. L., & Finney, S. J. (2001). Item parceling issues in structural equation modeling. In G. A. Marcoulides and R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 269-296). Hillsdale, NJ: Lawrence Erlbaum Associates.
Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S. du Toit, & D. Sorbom (Eds.), Structural equation models: Present and future. A Festschrift in honor of Karl Joreskog (pp. 139-168). Chicago: Scientific Software International.
Brislin, R. W. (1970). Back-translation for cross-cultural research. Journal of Cross-Cultural Psychology, 1(3), 185-216.
Byrne, B. M. (1989). A primer of LISREL: Basic applications and programming for confirmatory factor analytic models. New York: Springer.
Carnell, L. J. (2008). The effect of a student-designed data collection project on attitudes toward statistics. Journal of Statistics Education, 16(1).
[Online: http://www.amstat.org/publications/jse/v16n1/carnell.html ]
Cashin, S. E., & Elmore, P. B. (2005). The Survey of Attitudes Toward Statistics scale: A construct validity study. Educational and Psychological Measurement, 65(3), 1-16.
Chiesi, F., & Primi, C. (2009). Assessing statistics attitudes among college students: Psychometric properties of the Italian version of the Survey of Attitudes Toward Statistics (SATS). Learning and Individual Differences, 19(2), 309-313.
Dauphinee, T. L., Schau, C., & Stevens, J. J. (1997). Survey of Attitudes Toward Statistics: Factor structure and factorial invariance for females and males. Structural Equation Modeling, 4(2), 129-141.
Finney, S. J., & DiStefano, C. (2006). Dealing with nonnormal and categorical data in structural equation models. In G. R. Hancock & R. O. Mueller (Eds.), A second course in structural equation modeling. Greenwich, CT: Information Age.
Finney, S. J., & Schraw, G. (2003). Self-efficacy beliefs in college statistics courses. Contemporary Educational Psychology, 28(2), 161-186.
Flora, D. B., & Curran P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9(4), 466-491.
Gal, I., & Ginsburg, L. (1994). The role of beliefs and attitudes in learning statistics: Towards an assessment framework. Journal of Statistics Education, 2(2).
[Online: http://www.amstat.org/publications/jse/v2n2/gal.html ]
Gal, I., Ginsburg, L., & Schau, C. (1997). Monitoring attitudes and beliefs in statistics education. In I. Gal & J. B. Garfield (Eds.), The assessment challenge in statistics education (pp. 37-51). Amsterdam: IOS Press.
Hatcher, L. (1994). A step-by-step approach to using the SAS system for factor analysis and structural equation modeling. Carey, NC: SAS Institute, Inc.
Hau, K. T., & Marsh, H. W. (2004). The use of item parcels in structural equation modelling: Non-normal data and small sample sizes. British Journal of Mathematical Statistical Psychology, 57(2), 327-351.
Hilton, S. C., Schau, C., & Olsen, J. A. (2004). Survey of Attitudes Toward Statistics: Factor structure invariance by gender and by administration time. Structural Equation Modeling, 11(1), 92-109.
Hoyle, R. H., & Panter, A. T. (1995). Writing about structural equation models. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 158-176). Thousand Oaks, CA: Sage Publications.
Hu, L., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112(2), 351-362.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
John, O. P., & Soto, C. J. (2007). The importance of being valid: Reliability and the process of construct validation. In R. W. Robins, R. C. Fraley, & R. F. Krueger (Eds.), Handbook of research methods in personality psychology (pp. 461-494). New York: The Guilford Press.
Joreskog, K. (1993). Testing structural equation models. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 294-316). Newbury Park, NJ: Sage Publications.
Joreskog, K. G. (1999). Formulas for skewness and kurtosis. Unpublished manuscript. [Online: http://www.ssicentral.com/lisrel/techdocs/kurtosis.pdf ]
Joreskog, K. G. (2004). Structural equation modeling with ordinal variables using LISREL. Unpublished manuscript.
Joreskog, K. G. (2005). Structural equation modeling with ordinal variables using LISREL, Unpublished manuscript.
[Online: http://www.ssicentral.com/lisrel/techdocs/ordinal.pdf ]
Joreskog, K. G., & Sorbom, D. (2004). LISREL 8.7 for Windows [Computer Software]. Lincolnwood, IL: Scientific Software International, Inc.
Keeler, C. M., & Steinhorst, R. K. (1995). Using small groups to promote active learning in the introductory statistics course: A report from the field. Journal of Statistics Education, 3(2).
[Online: http://www.amstat.org/publications/jse/v3n2/keeler.html ]
Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York: The Guilford Press.
Leong, J. L. (2006). High school students' attitudes and beliefs regarding statistics in a service-learning based statistics course (Unpublished doctoral dissertation). Georgia State University. Georgia.
Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9(2), 151-173.
MacCallum, R., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111(3), 490-504.
McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 575-596). New York: Macmillan.
Mills, J. (2004). Students' attitudes toward statistics: Implications for the future. College Student Journal, 38(3), 349-362.
Nasser F., & Wisenbaker J. (2003). A Monte Carlo study investigating the impact of item parceling on measures of fit in confirmatory factor analysis. Educational and Psychological Measurement, 63(5), 729-757.
Raftery, A. E. (1995). Bayesian model selection in social research. In A. E. Raftery (Ed.), Sociological methodology (pp. 111-164). Oxford: Blackwell.
Roberts, D. M., & Bilderback, E. W. (1980). Reliability and validity of a statistics attitude survey. Educational and Psychological Measurement, 40(1), 235-238.
Roberts, D. M., & Saxe, J. E. (1982). Validity of a statistics attitude survey: A follow-up study. Educational and Psychological Measurement, 42(3), 907-912.
Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399-419). Thousand Oaks, CA: Sage.
Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507-514.
Schau, C. (2003, August). Students' attitudes: The "other" important outcome in statistics education. Paper presented at the Joint Statistical Meetings, San Francisco, CA.
[Online: http://evaluationandstatistics.com/JSM2003.pdf ]
Schau, C., Stevens, J., Dauphinee, T. L., & Del Vecchio, A. (1995). The development and validation of the Survey of Attitudes Toward Statistics. Educational and Psychological Measurement, 55(5), 868-875.
Schumacker, R. E., & Lomax, R. G. (2004). A beginners' guide to Structural Equation Modelling. Mahwah, NJ: Lawrence Erlbaum.
Shultz, K. S., & Koshino, H. (1998). Evidence of reliability and validity for Wise-s Attitude Toward Statistics scale. Psychological Reports, 82(1), 27-31.
SSICentral (n.d.). The diagnosis and treatment of non-normality. Unpublished manuscript.
[Online: http://www.ssicentral.com/lisrel/techdocs/Session4.pdf ]
Suanpang, P., Petocz, P., & Kalceff, W. (2004). Student attitudes to learning business statistics: Comparison of online and traditional methods. Educational Technology & Society, 7(3), 9-20.
Tempelaar, D. T., van der Loeff, S. S., & Gijselaers, W. H. (2007). A structural equation model analyzing the relationship of students' attitudes toward statistics, prior reasoning abilities and course performance. Statistics Education Research Journal, 6(2), 78-102.
[Online: http://www.stat.auckland.ac.nz/~iase/serj/SERJ6%282%29_Tempelaar.pdf ]
Wang, Y., & Liu, Q. (2006). Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock-recruitment relationships. Fisheries Research, 77(2), 220-225.
Waters, L. K., Martelli, T. A., Zakrajsek, T., & Popovich, P. M. (1988). Attitudes toward statistics: An evaluation of multiple measures. Educational and Psychological Measurement, 48(2), 513-516.
Wise, S. L. (1985). The development and validation of a scale measuring attitudes toward statistics. Educational and Psychological Measurement, 45(2), 401-405.
Stijn Vanhoof
Centre for Methodology of Educational Research
Katholieke Universiteit Leuven
Vesaliusstraat 2 bus 3762
3000 Leuven (Belgium)
tel.: +32 485-93.01.99
fax: +32 16-32.59.34