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EDITORIAL1 
 
This last August I was fortunate enough to be able to attend several meetings, 

including SRTL-5 (the fifth forum on Statistical Reasoning, Thinking, and Literacy, 
at the University of Warwick, UK), the IASE Satellite meeting on Assessing Student 
Learning in Statistics (Guimarães, Portugal), and ISI-56, the biannual meeting of the 
International Statistical Institute (Lisbon, Portugal). Information about all of them 
appears in the “Past IASE Conferences” section at the end of this issue.  

It was exciting to chat informally and hear presentations regarding a very wide 
range of studies, projects, and professional activities related to statistics education. 
Clearly, the international community interested in research on the learning, teaching, 
and understanding of statistics and probability, is growing and diversifying. From the 
many topics I came across, I would like to briefly highlight one that deserves special 
mentioning in the context of a research journal such as SERJ, related to the types of 
research data and types of evidence we encounter, and their implications for research 
publishing and for teaching/learning.  

We often speak of “quantitative research” versus “qualitative research.” Although 
it is recognized that both types are needed in research of an educational nature, 
sometimes we see researchers leaning towards one or the other. There is a somewhat 
tenuous relationship between quantitative and qualitative research in an area whose 
subject matter, statistics, is based on quantitative information, and where some of the 
researchers and teachers (as well as manuscript referees…) are mainly trained in 
quantitative methods.  

However, I have now come across a number of situations where neither of these 
two traditional labels is sufficient, and perhaps we should refer to a third (hybrid?) 
kind, “Dynamic data.” The need to rethink the traditional division of research into 
quantitative and qualitative became obvious to me this summer when listening to 
reports about classroom activities and studies where learners and teachers used 
dynamic software such as Fathom, Tinkerplots, or interactive applets such as 
probability simulators. In such and related cases, the data being collected by 
researchers (i.e., information about what students did, what they looked at, and how 
they thought during an activity or interpreted the results) was more complex than ever 
before, and sometimes quite slippery. The data accumulated over time and involved a 
dynamically changing mix of elements such as utterances and conversations among 
students or among students and teacher, different types of graphical displays, multiple 
“what if” trials with different aggregations or data views that the students looked at in 
the course of their work, results of trying different kinds of simulations, and more.  

Of course, the need to collect, describe and integrate data from multiple sources, 
both quantitative and qualitative, has existed before the emergence of dynamic 
software. However, listening to reports from different studies, it became apparent that 
researchers are challenged by the need to capture and describe the additional fast-
changing and multi-faceted data generated when dynamic software is an inherent part 
of the teaching/learning environment and when students are given enough time to use 
it in an exploratory manner. The nature of what students look at, work with, refer to, 
or think about is becoming more complex and harder to document, as it rapidly 
changes over time. Of course, all these realities place additional burden and present 
new demands to teachers working in a “dynamic data” environment, and have 
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implications for the forms of needed assessments. Further, researchers need new 
tools, methods, terminology, or conceptualizations in order to analyze and interpret 
such data, and probably so do teachers. The need to report in a concise and coherent 
manner what transpires in a teaching/learning episode involving dynamic data in turn 
presents new challenges to researchers trying to write a compact manuscript for 
publication in a journal such as SERJ. 

It follows that new technology-based developments offer brave new worlds for 
educators, learners, and researchers alike, and promise to make learning more fun, 
interesting, and deeper in nature. Yet, such developments also make life more 
complex for all involved. Certainly, as more researchers would want to report the 
results of research using “dynamic data” as described above, research journals such as 
SERJ may need to consider “dynamic reporting” of data, such as in the form of links 
within documents to mini-videos or dynamic screen-shots so that readers can 
appreciate the nature of the information being analyzed and reported by researchers. 

While the observations and ideas presented above are tentative in nature, certainly 
they may cause us to think where our field is moving. Next year, in 2008, several 
important meetings will take place where such and related developments can be 
further examined and discussed, and they are listed in the “Forthcoming Conferences” 
section in this issue. I refer in particular to two Topic Study Groups, #13 and #14, to 
be held as part of ICME-11 (International Congress on Mathematical Education), 
which will deal with research and development in the teaching and learning of 
probability, and of statistics, respectively. In addition, prior to ICME, the special 
“Joint ICMI/IASE study on statistics education in school mathematics” will be 
another forum where tensions and responsibilities emerging due to new technologies 
can be further explored. 

 
This issue of SERJ is the last that I will be co-editing, having reached the end of 

my four-year term. It is a pleasure for Tom and me to announce that Peter Petocz was 
appointed as co-editor for SERJ for the years 2008-2011 by the IASE Executive 
Committee, following the unanimous recommendation of the IASE search committee. 
Peter is Associate Professor in the Department of Statistics at Macquarie University, 
Australia. He is a very innovative and effective statistics educator, and also an 
accomplished researcher who has published on pedagogical issues in statistics and 
mathematics education. Peter will soon begin working with Tom Short, who 
continues as co-editor through 2009, and I wish both of them a good time ahead.  

  
In closing, I would like to express my gratitude to the many dedicated members 

of the SERJ Editorial Board and to the journal’s many referees who continue to invest 
time and effort in helping to improve research publishing and contribute advice and 
support to authors and educators alike. The growth SERJ has experienced over the 
last four years has been also helped by the support and understanding of the IASE 
Executive committee and its former and current presidents. All this goes to show that 
a journal such as SERJ develops in a dynamic environment that is sometimes 
slippery, yet full of promise. I am certain that the new editorial team will continue to 
find ways to maintain quality in published manuscripts, yet at the same time enable 
SERJ readers to benefit from new opportunities for developing research-based 
knowledge in our evolving field. 

  
IDDO GAL, for TOM SHORT 
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AN EXAMINATION OF THE LEVELS OF COGITIVE 
DEMAND REQUIRED BY PROBABILITY TASKS IN MIDDLE 

GRADES MATHEMATICS TEXTBOOKS2 
 

DUSTIN L. JONES 
Sam Houston State University 

dljones@shsu.edu 
 

JAMES E. TARR 
University of Missouri – Columbia 

tarrj@missouri.edu 
 

ABSTRACT 
 

We analyze probability content within middle grades (6, 7, and 8) mathematics 
textbooks from a historical perspective. Two series, one popular and the other 
alternative, from four recent eras of mathematics education (New Math, Back to 
Basics, Problem Solving, and Standards) were analyzed using the Mathematical 
Tasks Framework (Stein, Smith, Henningsen, & Silver, 2000). Standards-era textbook 
series devoted significantly more attention to probability than other series; more than 
half of all tasks analyzed were located in Standards-era textbooks. More than 85% of 
tasks for six series required low levels of cognitive demand, whereas the majority of 
tasks in the alternative series from the Standards era required high levels of cognitive 
demand. Recommendations for future research are offered.  

 
Keywords: Probability; Curriculum; Mathematics textbook content analysis; 
Mathematical tasks; Cognitive demands; Middle grades mathematics  
 

1. INTRODUCTION 
 
1.1.  THE EMERGENCE OF PROBABILTY IN SCHOOL MATHEMATICS 

 
Consumers and citizens in today’s information-rich society need to have an 

understanding of probability. Shaughnessy (1992) stated, “There is perhaps no other 
branch of the mathematical sciences that is as important for all students, college bound or 
not, as probability and statistics” (p. 466, emphasis in original). Despite the importance of 
probability and statistics, many children and adults hold misconceptions about probability 
(Garfield & Ahlgren, 1988; Konold, Pollatsek, Well, Lohmeier, & Lipson, 1993). In fact, 
Garfield and Ahlgren (1988) stated that “inappropriate reasoning [in probability and 
statistics] is…widespread and persistent…and similar at all age levels” (p. 52). 

Instruction in probability should provide experiences in which students are allowed to 
confront their misconceptions and develop understandings based on mathematical 
reasoning (Garfield & Ahlgren, 1988; Konold, 1983, 1989; Shaughnessy, 2003). Due to 
the widespread nature of probabilistic misconceptions among adults, such instruction may 
not have occurred for all students in recent decades. Perhaps probability topics were not 
present in textbooks, or perhaps these topics were present in textbooks but omitted from 
instruction (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981; Shaughnessy, 1992). 
                                                      
Statistics Education Research Journal, 6(2), 4-27, http://www.stat.auckland.ac.nz/serj 
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Teachers may omit topics for a number of reasons, including a lack of preparation to 
teach topics from probability due to their own lack of experience or misconceptions 
(Conference Board of the Mathematical Sciences, 2001), or a subsequent lack of 
confidence in their ability to teach such topics. In some cases, a teacher’s interpretation of 
and orientation to the curriculum may constrain how what is printed in the textbook is 
communicated to the class (Remillard & Bryans, 2004). Moreover, teachers’ 
interpretations of the textbook may be in opposition to the intentions of the authors 
(Lloyd, 1999; Lloyd & Behm, 2005). In such cases, a teacher may use all of the 
probability tasks in an investigation-oriented textbook, but present these tasks in a 
traditional manner by providing students with explicit rules, formulas, and repetitive 
practice problems. Alternatively, teachers may not have time to teach all of the material 
present in the textbook, and omit probability lessons simply for a lack of sufficient time. 
If probability topics are taught, the lessons as presented in textbooks may not sufficiently 
address students’ misconceptions. 

Over the past several decades, probability has emerged as an important topic for all 
students to learn, particularly those in the middle grades. Due to the growing emphasis on 
the topic of probability in recommendations from professional organizations, one might 
reasonably expect to observe changes in textbooks. Unfortunately, there have not been 
any systematic examinations of the composition of textbooks as they have evolved over 
time, particularly in relation to probability. 

 
1.2.  TEXTBOOK USE AND LEVEL OF COGNITIVE DEMAND  
 

Textbooks are common elements in classrooms throughout the world, and are 
ubiquitous in mathematics classrooms in the United States. Textbooks are present not 
only in classrooms, they are also frequently used by teachers and students, and influence 
the instructional decisions that teachers make on a daily basis (Robitaille & Travers, 
1992; Tyson-Bernstein & Woodward, 1991). Recent studies have revealed that most 
middle-grades (grades 6-8) mathematics teachers use most of the textbook most of the 
time (Grouws & Smith, 2000; Weiss, Banilower, McMahon, & Smith, 2001). Grouws 
and Smith (2000) observed that the mathematics teachers of three fourths of the eighth 
grade students involved in the 1996 National Assessment of Educational Progress 
(NAEP) reported using their textbook on a daily basis. Weiss et al. (2001) found that two 
thirds of middle-grades mathematics teachers “cover” at least three fourths of the 
textbook each year. These findings tend to agree with results of research on students’ use 
of mathematics textbooks as well. In the 2000 administration of the NAEP, 72% of 
participating eighth graders stated that they did mathematics problems from a textbook 
every day (Braswell et al., 2001). 

After analyzing the levels of cognitive demand of mathematical tasks, QUASAR 
[Quantitative Understanding: Amplifying Student Achievement and Reasoning] project 
researchers noted that students “need opportunities on a regular basis to engage with tasks 
that lead to deeper, more generative understandings about the nature of mathematical 
concepts, processes, and relationships” (Stein, Smith, Henningsen, & Silver, 2000, p. 15). 
They also found that teachers implementing tasks with high levels of cognitive demand 
rarely selected tasks from commercial textbook series (Stein, Grover, & Henningsen, 
1996). 
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2. RESEARCH OBJECTIVES 
 
Because textbooks have a marked influence on what is taught in mathematics 

classrooms, it is important to investigate curricular materials that many mathematics 
teachers use and the potential of such resources to impact students’ opportunities to learn 
probability. Accordingly, the research reported in this article addressed the following 
research questions: What is the nature of the treatment of probability topics in middle 
grades mathematics textbooks? How has the nature of the treatment of probability 
changed over the past 50 years and across popular textbooks series and alternative (or 
innovative) textbook series? More specifically, what levels of cognitive demand are 
required by tasks and activities related to probability, and what are the trends in the 
required level of cognitive demand over the past 50 years? 

Heretofore there has not been any systematic review of the content of textbooks over 
time. Thus, our study is intended to highlight any differences that have come about 
through different eras of mathematics education, and how these differences coincide with 
the contemporary recommendations for the inclusion of probability in the school 
mathematics curriculum. Moreover, it is our goal to reveal the degree to which textbooks 
have maintained the status quo in terms of the content and level of cognitive demand 
required by tasks. 
 

3. THEORETICAL CONSIDERATIONS 
 
3.1. RECENT TEXTBOOK CONTENT ANALYSES  

 
In a pivotal study, Project 2061 (American Association for the Advancement of 

Science [AAAS], 2000) analyzed thirteen contemporary mathematics textbook series 
written specifically for middle grades students. Their sample of textbooks included four 
series developed with support from the National Science Foundation; the other nine series 
were popular textbooks from the late 1990s. They evaluated each series according to a set 
of benchmarks related to the core content that should be present in middle grades 
mathematics instruction: number concepts, number skills, geometry concepts, geometry 
skills, algebra graph concepts, and algebra graph skills. It is important to note that topics 
from probability were excluded from their analysis. The research team examined the 
student and teacher editions of each textbook, specifically attending to lessons that dealt 
with their selected benchmarks. Each series was rated as having most, partial, or minimal 
content according to each benchmark. The research team found that only four of the 
series addressed four or more benchmarks in depth, and no series sufficiently addressed 
all of the benchmarks. Finally, in terms of quality, none of the popular textbooks were 
among the best rated.  

Valverde, Bianchi, Wolfe, Schmidt, and Houang (2002) also analyzed the content of 
the textbooks in their sample according to the characteristics of lessons. These 
characteristics included the primary nature of lessons (concrete and pictorial vs. textual 
and symbolic), components of the lesson, and student performance expectations. To 
measure textbook lessons along these dimensions, the researchers divided lessons into 
blocks, “classified according to whether they constituted narrative or graphical elements; 
exercise or question sets; worked examples; or activities” (p. 141). The research team 
analyzed these blocks according to the mathematical topics that were addressed. Results 
related to the treatment of probability were not reported because topics from this branch 
of mathematics were not present in many of the textbooks. The researchers also identified 
the student performance expectations for each block. This analysis revealed that 
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mathematics “textbooks across all populations were mostly made up of exercises and 
question sets” (p. 143). Additionally, over the three grade levels, the amount of narrative 
and worked examples increased, whereas the number of activities decreased. 
Furthermore, “the most common expectation for student performance was that they read 
and understand, recognize or recall or that they use individual mathematical notations, 
facts or objects. This is followed . . . by the use of routine mathematical procedures” (p. 
128). In order to describe the characteristics of probability tasks in middle grades 
mathematics textbooks, we utilized a methodology similar to that described by Valverde 
et al. We identified all of the probability tasks within a textbook, and coded each task 
with the level of cognitive demand required by the task. 

In an effort to provide a tool for comparing the intended, enacted, and assessed 
curricula, Porter (2006) developed two-dimensional languages to describe the content of 
the mathematics curriculum. This two-dimensional language can be presented in a 
rectangular matrix with topics as rows and cognitive demands (sometimes called 
performance goals or performance expectations) as columns. Topics are content 
distinctions such as “add whole numbers” or “point slope form of a line.” Cognitive 
demands distinguish memorizing; performing procedures; communicating understanding 
of concepts; solving non-routine problems; and conjecturing, generalizing, and proving. 
Our research utilizes methodology similar to that which Porter has described, in that we 
examined the content of textbooks in terms of topics and levels of cognitive demand. 

Very recently, the National Research Council [NRC] (2004) issued a key report 
evaluating the evidence regarding the effectiveness of K-12 mathematics textbooks. The 
authors devoted an entire chapter to content analysis, and provided descriptions of the 
methodology and results on several recently published textbook evaluations in the form 
of content analyses (e.g., AAAS, 2000), as well as unpublished reports available on the 
world wide web (e.g., Adams et al., 2000; Clopton, McKeown, McKeown, & Clopton, 
1999a, 1999b, 1999c; Robinson & Robinson, 1996). Consistent with the 
recommendations of the NRC, we address the depth of mathematical inquiry and 
reasoning of probability tasks in textbooks by rating these tasks according to their level of 
cognitive demand. Our analysis of the levels of cognitive demand required by tasks 
further provides insight into the engagement, timeliness, and support for diversity 
provided in each textbook. Textbooks containing tasks that predominately require lower 
levels of cognitive demand may not support student learning because students are rarely 
asked to grapple with difficult situations.  

 
3.2. DEVELOPMENT OF THE MATHEMATICAL TASKS FRAMEWORK 

 
Research on tasks as the primary unit of instruction and learning began in the late 

1970s and early 1980s. During that time, Doyle (1983) provided the groundwork that 
would become influential in the work of the QUASAR research team. Doyle described 
students’ work in terms of academic tasks. He used this term to focus on the following: 

(a) the products students are to formulate, such as an original essay or answers to a set 
of test questions; (b) the operations that are to be used to generate the product, such as 
memorizing a list of words or classifying examples of a concept; and (c) the “givens” 
or resources available to students while they are generating a product, such as a 
model of a finished essay supplied by the teacher or a fellow student. Academic tasks, 
in other words, are defined by the answers students are required to produce and the 
routes that can be used to obtain these answers. (p. 161)  
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In later work, Doyle (1988) added a fourth component of academic tasks as “the 
importance of the task in the overall work system of the class” (p. 169). It should be 
noted here that Doyle considered individual questions, exercises, or problems as distinct 
academic tasks. He defined four general categories of academic tasks: memory tasks, 
procedural or routine tasks, comprehension or understanding tasks, and opinion tasks 
(Doyle, 1983). He argued that each of these categories varied in terms of the cognitive 
operations required to successfully complete tasks contained therein. 

The research on academic tasks mentioned above provided a theoretical foundation 
for the Mathematical Tasks Framework developed by the QUASAR Project team (Smith 
& Stein, 1998; Stein et al., 1996; Stein & Smith, 1998; Stein et al., 2000). The 
Mathematical Tasks Framework represents the relationship between student learning and 
three phases of task implementation. In this model, tasks are first represented in curricular 
materials, then set up by teachers, and finally implemented by students in the classroom. 
This framework is particularly useful for our study, because it gives specific attention to 
tasks as they are present in textbooks. 

This model further delineates four levels of cognitive demand for tasks: lower-level 
demands of Memorization and Procedures without Connections, and higher-level 
demands of Procedures with Connections and “Doing Mathematics.” Descriptors of each 
level of the framework appear in Figure 1. Stein et al. (1996) argued that it was important 
to examine the cognitive demand required by tasks because of their influence on student 
learning: 

The mathematical tasks with which students become engaged determine not only 
what substance they learn but also how they come to think about, develop, use, and 
make sense of mathematics. Indeed, an important distinction that permeates research 
on academic tasks is the differences between tasks that engage students at a surface 
level and tasks that engage students at a deeper level by demanding interpretation, 
flexibility, the shepherding of resources, and the construction of meaning. (p. 459) 
 
To date, the Mathematical Tasks Framework has not been used to analyze the levels 

of cognitive demand required by the tasks contained in a series of textbooks, let alone the 
probability tasks from series published over a 50-year period. Thus, in an effort to more 
fully describe the treatment of probability in textbooks, we made distinctions between 
those tasks that require students to (a) simply memorize information, (b) routinely 
perform algorithms without giving any attention to the meaning or development of the 
procedure, (c) focus on the meaning of a procedure or algorithm, and (d) explore and 
analyze the mathematical features of a situation. 
 

4. METHODOLOGY 
 
4.1. SAMPLE SELECTION 

 
Recent Eras of Mathematics Education In order to determine historical trends in the 

treatment of probability in curricular materials, we selected two textbook series from each 
of the four most recent eras of mathematics education (Fey & Graeber, 2003; Payne, 
2003): the New Math, Back to Basics, a focus on Problem Solving, and the advent of the 
National Council of Mathematics’ [NCTM] Standards.  

The “New Math” era was so named by the contemporary popular media, as a 
descriptor of the innovative mathematics curricula that were being developed during this 
time period. Several of these curricula were developed as a response to the 1957 launch 
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Levels of Demands
 
Lower-level demands (Memorization): 

• Involve either reproducing previously learned facts, rules, formulas, or definitions or 
committing facts, rules, formulas or definitions to memory. 

• Cannot be solved using procedures because a procedure does not exist or because the time 
frame in which the task is being completed is too short to use a procedure. 

• Are not ambiguous. Such tasks involve the exact reproduction of previously seen material, 
and what is to be reproduced is clearly and directly stated. 

• Have no connection to the concepts or meaning that underlie the facts, rules, formulas, or 
definitions being learned or reproduced. 

 
Lower-level demands (Procedures without Connections): 

• Are algorithmic. Use of the procedure either is specifically called for or is evident from 
prior instruction, experience, or placement of the task. 

• Require limited cognitive demand for successful completion. Little ambiguity exists about 
what needs to be done and how to do it. 

• Have no connection to the concepts or meaning that underlie the procedure being used. 
• Are focused on producing correct answers instead of on developing mathematical 

understanding. 
• Require no explanations or explanations that focus solely on describing the procedure that 

was used. 
 

Higher-level demands (Procedures with Connections): 
• Focus students’ attention on the use of procedures for the purpose of developing deeper 

levels of understanding of mathematical concepts and ideas. 
• Suggest explicitly or implicitly pathways to follow that are broad general procedures that 

have close connections to underlying conceptual ideas as opposed to narrow algorithms that 
are opaque with respect to underlying concepts. 

• Usually are represented in multiple ways, such as visual diagrams, manipulatives, symbols, 
and problem situations. Making connections among multiple representations helps develop 
meaning. 

• Require some degree of cognitive effort. Although general procedures may be followed, 
they cannot be followed mindlessly. Students need to engage with conceptual ideas that 
underlie the procedures to complete the task successfully and that develop understanding. 

 
Higher-level demands (Doing Mathematics): 

• Require complex and nonalgorithmic thinking—a predictable, well-rehearsed approach or 
pathway is not explicitly suggested by the task, task instructions, or a worked-out example. 

• Require students to explore and understand the nature of mathematical concepts, processes, 
or relationships. 

• Demand self-monitoring or self-regulation of one’s own cognitive processes. 
• Require students to access relevant knowledge and experiences and make appropriate use of 

them in working through the task. 
• Require students to analyze the task and actively examine task constraints that may limit 

possible solution strategies and solutions. 
• Require considerable cognitive effort and may involve some level of anxiety for the student 

because of the unpredictable nature of the solution process required. 
 
Smith and Stein (1998). Reprinted with permission from Mathematics Teaching in the Middle 
School, copyright 1998 by the National Council of Teachers of Mathematics. All rights reserved. 

 
Figure 1. Characteristics of tasks at different levels of cognitive demand 
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of Sputnik and subsequent U.S. realization of the need for improvement in mathematics 
education (DeVault & Weaver, 1970; Osbourne & Crosswhite, 1970). Several facets of 
the New Math materials were met with intense opposition. A growing concern began to 
emerge from the public and elementary school teachers that students were unable to 
accurately compute (Payne, 2003). This growing concern blossomed into a full-fledged 
reactionary movement in the 1970s that focused students on the fundamentals of 
mathematics. For this reason, this era is referred to as “Back to Basics,” where the basics 
were primarily defined as computational skills (Usiskin, 1985).  

After a decade of focused attention on procedures and algorithms, the NCTM (1980) 
published An Agenda for Action, calling for a focus on problem solving in mathematics 
classes during the 1980s. Other organizations (College Board, 1983; National Academy 
of Sciences and National Academy of Engineering, 1982; National Commission on 
Excellence in Education, 1983; National Science Foundation and Department of 
Education, 1980) also issued reports and recommendations for mathematics education. 
Usiskin (1985) summarized these recommendations as follows: “Taken as a body, reports 
from inside and outside mathematics education agree almost unanimously that … 
emphasis should be shifted from rote manipulation to problem solving” (p. 15).  

In 1989, the NCTM published Curriculum and Evaluation Standards for School 
Mathematics, calling for reform of mathematics education on a wide scale. In this 
document, the Council provided recommendations for mathematical content that ought to 
receive increased or decreased attention in the classroom and outlined important 
mathematical processes, such as problem solving and communication, that should be 
encouraged and fostered as students do mathematics. This document, along with 
Professional Standards for Teaching Mathematics (NCTM, 1991) and Assessment 
Standards for School Mathematics (NCTM, 1995) provided classroom teachers and 
mathematics educators with a conceptual anchor for reforming their practice. In an 
attempt to focus the reform of mathematics education into the new millennium, the 
NCTM (2000) published Principles and Standards for School Mathematics. This 
document represented further refinements of the earlier Standards documents in an 
integrated format, and provided more detailed narrative of the recommendations of the 
Council.  

It is difficult to determine the precise beginning and end of these eras, and a 
significant event that marks the start of a new era (e.g., the publication of the Curriculum 
and Evaluation Standards for School Mathematics in 1989) does not necessarily 
immediately impact the textbooks that are published that year or the next. Nevertheless, 
we acknowledge the need to specify time frames for each era. Hereafter, we refer to the 
years 1957-1972 as the New Math era, 1973-1983 as the Back to Basics era, 1984-1993 
as the Problem Solving era, and 1994-2004 as the Standards era. Table 1 displays the 
years that we designated as the terminal points of each era. 

 
Table 1. Operational time frames for recent eras in mathematics education 

 
Mathematics Education Era Time Frame 

New Math 1957-1972 
Back to Basics 1973-1983 

Problem Solving 1984-1993 
Standards 1994-2004 

 
For each era, we selected two series of mathematics textbooks: one series that was 

used by a relatively large proportion of middle-grade students in the United States, and 
one series that was different from “popular” textbooks at the time, possibly because of the 
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authors’ desire to reform mathematics education by providing alternative curricular 
materials. We refer to the former type as popular, and the latter as alternative. We 
examined both popular and alternative textbooks from each era in an attempt to gain a 
broad perspective on the treatment of probability topics for that era.  

 
Popular Textbook Selection In this study, we define a popular textbook series as the 

mathematics textbook series having the largest market share during a given era. 
Hereafter, these textbooks are referred to as popular. Textbook market share data are 
available (Weiss, 1978, 1987; Weiss et al., 2001) and were used to determine which 
textbook series was the most popular during the Back to Basics, Problem Solving, and 
Standards eras. In the absence of market share data for the New Math era, the popular 
textbook series was determined by a “professional consensus” of mathematics educators 
familiar with the middle-grades curriculum during the past 50 years and affiliated with 
the Center for the Study of Mathematics Curriculum. 

For each era, the popular textbooks that were considered for selection must be 
intended for use with students in grades 6, 7, and 8. Furthermore, these textbooks should 
have been written for the “average-level” student, that is, neither remedial nor 
accelerated. For this reason, algebra textbooks (i.e., textbooks that primarily focused on 
algebra, and are geared toward more mathematically advanced students in the middle 
grades) such as Algebra 1/2 (Saxon, 1980) or Algebra through Applications with 
Probability and Statistics (Usiskin, 1979), for example, were not considered in this study.  

Data from Weiss (1978, 1987) and Weiss et al. (2001) yielded the following sample 
of popular textbooks (see Table 2): Holt School Mathematics (Nichols et al., 1974a, 
1974b, 1974c) for the Back to Basics era; Mathematics Today (Abbott and Wells, 1985a, 
1985b, 1985c) published by Harcourt Brace Jovanovich for the Problem Solving era; and 
Mathematics: Applications and Connections (Collins et al., 1998a, 1998b, 1998c) for the 
Standards era. For the New Math era, a majority of those comprising the “professional 
consensus” stated that Modern School Mathematics (Dolciani, Beckenbach, Wooten, 
Chinn, & Markert, 1967a, 1967b; Duncan, Capps, Dolciani, Quast, & Zweng, 1967) was 
one of the most (if not the most) popular textbook series for middle-grades students 
during the New Math era.  

In this study, we examined only the student editions of each textbook, because we 
were primarily interested in the tasks that students may have encountered as they used the 
textbooks. We did not examine the teacher’s editions because students typically do not 
interact directly with the material within the teacher’s edition; the teacher usually 
mediates this interaction. Although research indicates that teachers also mediate a 
student’s interaction with the student’s textbook edition by lowering the cognitive 
demand for tasks (e.g., Arbaugh, Lannin, Jones, & Park-Rogers, 2006; Stein & Smith, 
1998; Stein et al., 2000), it would be impossible (in most cases) to document the myriad 
of interactions between teachers and curricular materials over the past several decades. 
For this reason, we focus solely on the student editions of the textbook and acknowledge 
that our study was not designed to capture any teacher actions regarding implementation 
of the curricula. 

 
Alternative Textbook Selection As with the popular textbooks, the alternative series 

that were considered needed to be written for the “average-level” student in grades 6-8, 
and algebra textbooks were not considered. Additionally, we intended to examine 
textbooks that were part of a comprehensive mathematics series. Thus, we did not 
consider materials from the Middle Grades Mathematics Project (Phillips, Lappan, 
Winter, & Fitzgerald, 1986) or the Quantitative Literacy Series (Newman, Obremski, & 
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Scheaffer, 1987) because they were originally written as supplemental units, not as a 
comprehensive stand-alone curriculum.  

Identifying textbook series that were “alternative” (i.e., series that were possibly 
innovative, influential, or offered as a departure from the popular series of the time) 
requires assigning a value judgment to that series. Such value judgments are subjective 
and vary among individuals. In order to counter the subjectivity of this process, the 
aforementioned “professional consensus” was solicited to identify alternative middle-
grades mathematics textbook series for each of the eras of concern. 

Results from the professional consensus yielded the following sets of alternative 
textbook series for each of the specified eras, as depicted in Table 2. Mathematics for the 
Elementary School: Grade 6 (School Mathematics Study Group [SMSG], 1962) and 
Mathematics for Junior High School (SMSG, 1961a, 1961b) were created with support 
from the National Science Foundation (NSF) during the New Math era. The SMSG 
materials were used in many classrooms across the United States, and had substantial 
impact on the content of several commercially-developed textbooks (Payne, 2003). Real 
Math (Willoughby, Bereiter, Hilton, & Rubenstein, 1981, 1985a, 1985b) published by 
Open Court during the Back to Basics era, was offered as an alternative to popular 
textbooks which focused almost exclusively on computation, as stated in an 
advertisement from the October 1977 issue of Arithmetic Teacher. Saxon Publishers 
offered Math 65, Math 76, and Math 87 (Hake & Saxon, 1985, 1987, 1991) during the 
Problem Solving era as alternative to the popular textbooks of the time, and focused on an 
incremental development of skills. Connected Mathematics Project materials (Lappan, 
Fey, Fitzgerald, Friel, & Phillips, 1998a, 1998b, 1998c, 1998d, 1998e, 1998f, 1998g, 
1998h, 1998i, 1998j, 1998k, 1998l, 1998m, 1998n, 1998o, 1998p, 1998q, 1998r, 1998s, 
1998t, 1998u, 1998v, 1998w, 1998x) were created with the support of the NSF during the 
Standards era, and had the largest market share of all such middle-grades mathematics 
materials. The Connected Mathematics Project units were divided into grade levels 
according to the authors’ suggested order in Getting to Know Connected Mathematics 
(Lappan, Fey, Fitzgerald, Friel, & Phillips, 1996).  

 
Table 2. Set of textbooks selected for analysis, with labels used for this study 

 
Era Type Textbook Titles Publisher 

New 
Math 

Popular 
• Modern School Mathematics: Structure and Use 6 
• Modern School Mathematics: Structure and 

Method 7 & 8 

Houghton 
Mifflin 

Alternative • Mathematics for the Elementary School, Grade 6 
• Mathematics for Junior High School, Vols. I & II 

Yale University 
Press 

Back to 
Basics 

Popular • Holt School Mathematics: Grades 6, 7, & 8 Holt, Rinehart, 
& Winston 

Alternative • Real Math: Levels 6, 7, & 8 Open Court 

Problem 
Solving 

Popular • Mathematics Today: Levels 6, 7, & 8 Harcourt Brace 
Jovanovich 

Alternative 
• Math 65: An Incremental Development 
• Math 76: An Incremental Development 
• Math 87: An Incremental Development 

Saxon 
Publishers 

Standards 
Popular • Mathematics: Applications and Connections: 

Courses 1, 2, & 3 
Glencoe/  

McGraw-Hill 
Alternative • Connected Mathematics Dale Seymour 
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4.2. ANALYSIS METHODS FOR IDENTIFICATION OF TASKS 
 

Drawing heavily on the work of the QUASAR Project (e.g., Smith & Stein, 1998; 
Stein et al., 1996; Stein & Smith, 1998; Stein et al., 2000), we use the term probability 
task (or simply task) to refer to an activity, exercise, or set of exercises in a textbook that 
has been written with the intent of focusing a student’s attention on a particular idea from 
probability. Any task that contained probability was considered a probability task, even if 
the main focus of the task was on another content area, such as geometry, combinatorics, 
or statistics. A probability task is not necessarily a single exercise in the textbook. A set 
of exercises that build on one another are considered as a single task. We have 
constructed such a task, as illustrated in Figure 2. 
 

 
 

Figure 2. Sample probability task 
 
Likewise, a set of exercises that attend to the same topic but may be answered in 

isolation is considered as one task, as is the case in the task we constructed for Figure 3. 
Sections of probability lessons that contain narrative, such as definitions or written 
explanations of concepts and procedures, are not considered as probability tasks, although 
they are considered as portions of the textbook devoted to topics in probability. 

 

 
 

Figure 3. Sample probability task. 
 
We examined each page of the selected textbooks for probability content. The 

portions of these textbooks that contained probability content were divided into discrete 
probability tasks by the first author and subsequently validated by the second author. As 
mentioned previously, these tasks may have consisted of several questions related to the 
same mathematical idea. Because of this distinction, in a given textbook the number of 
probability tasks that were identified was less than the number of questions, examples, 

How likely is it that a chocolate chip will land on the flat side after being tossed in the 
air? Perform the following experiment and answer these questions to help formulate 
your answer to this question. 

1. What are the possible outcomes for the landing position of a chocolate chip? 
2. With your partner, toss 50 chocolate chips and record the landing position. 

How many chips landed on the flat side?  
3. Based on your data, what is the experimental probability of a chocolate chip 

landing on the flat side? 
4. As a class, pool your data. Based on the pooled data, what is the 

experimental probability of a chocolate chip landing on the flat side? 
5. How does the experimental probability based on your data compare to the 

experimental probability based on the pooled data? How do you account for 
any differences? 

6. Which of these experimental probabilities do you believe to be closest to the 
theoretical probability? Why? How could you obtain a better estimate of the 
theoretical probability? 

A gumball machine contains four red gumballs, five blue gumballs, and six green 
gumballs. Rosalie selects one gumball from the machine at random. 

1. What is the probability that the gumball is red? 
2. What is the probability that the gumball is yellow? 
3. What is the probability that the gumball is not blue? 
4. What is the probability that the gumball is red or blue?
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and activities related to probability. Most probability tasks were located within lessons, in 
both the development (e.g., worked examples, activities) and assignment portion of 
lessons. Other probability tasks were not located in lessons, but in chapter reviews, 
assessments, and extension or enrichment activities. 

 
4.3. CODING AND ANALYZING THE LEVEL OF COGNITIVE DEMAND OF 

PROBABILITY TASKS 
 

We coded each task according to the level of cognitive demand that it required. 
According to the Levels of Demand criteria (Smith & Stein, 1998; see Figure 1), we 
indicated whether the task required Memorization (Low-M), Procedures without 
Connections (Low-P), Procedures with Connections (High-P), or “Doing Mathematics” 
(High-D). Tasks containing multiple questions were analyzed as a whole; therefore, we 
coded each task as requiring a single level of cognitive demand. The two researchers 
performed check-coding (Miles & Huberman, 1994) on tasks from two randomly selected 
textbooks from our sample by independently coding each task and then comparing 
assigned codes. Initial agreement was reached on the assignment of approximately 82% 
of the tasks, and 100% agreement was reached after discussion. The first author then 
proceeded in coding all probability tasks contained in the remaining textbooks in the 
sample. 

 
5. RESULTS 

 
5.1. NUMBER OF PROBABILITY TASKS IN EACH SERIES 

 
Figure 4 displays the number of probability tasks for each series by grade level. Note 

that most series have the greatest number of probability tasks in the 8th grade textbook 
and the least in the 6th grade textbook, although this is not uniformly the case. The 
Standards-Alternative series has quite a different composition, with over half of the 
probability tasks located in the 7th grade textbook. 

There were approximately equivalent numbers of probability tasks in the New Math-
Popular, New Math-Alternative, Back to Basics-Popular, Back to Basics-Alternative, and 
Problem Solving-Popular textbook series. The Problem Solving-Alternative series had the 
fewest number of probability tasks (42) of all textbook series in the sample, less than half 
of the number in the New Math-Alternative and Back to Basics-Popular series, which 
ranked next to lowest in number of probability tasks. The number of probability tasks in 
five of the six textbooks from the Standards era was nearly equivalent to or greater than 
the number of tasks in an entire series from any of the other three eras. Furthermore, it 
should be noted that more than half of the probability tasks from the entire sample were 
located within textbooks from the Standards era. 
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Figure 4. Number of probability tasks in each series, by grade level 

 
5.2. DISTRIBUTION OF REQUIRED LEVELS OF COGNITIVE DEMAND 

WITHIN A TEXTBOOK SERIES 
 

Within each era, and across the eras, the majority of tasks required low levels of 
cognitive demand, predominantly Procedures without Connections (Low-P). The 
Standards-Alternative series was an exception, with the majority of tasks requiring high 
levels of cognitive demand. The two tasks shown in Figure 5 both require lower levels of 
cognitive demand, Memorization (Low-M) and Procedures without Connections (Low-
P). The rationale for this coding follows in the next few paragraphs. 

The task in Question 3 was coded as Memorization because it was preceded by text 
that contained the definition of the term “dependent events,” a description of the 
procedure and a worked example incorporating the procedure for finding the probability 
of the occurrence of two dependent events. When working through the text sequentially, 
a student would first read the definition and worked example, and later read this task,  
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prompting him or her to merely recall and provide the definition. This task could be 
completed by referring to the preceding text, or from memorizing the given procedure of 
“multiply the probability of the first event by the probability of the second event” (Collins 
et al., 1998c, p. 522).  

Questions 10 through 14 were identified as a single task and coded as Procedures 
without Connections. This task is algorithmic, and there is little ambiguity on how to 
complete the task. As described above, the text that precedes this task includes a 
description and worked example of the exact procedure that is to be followed. 
Furthermore, this task requires no explanations and appears to focus more on correct 
answers than fostering the development of mathematical understanding. 

 
  3.  Tell how to find the probability of two dependent events.  

 
In a bag there are 5 red marbles, 2 yellow marbles, and 1 blue marble. Once a marble is selected, it 
is not replaced. Find the probability of each outcome.  
 10. a red marble and then a yellow marble 
 11.  a blue marble and then a yellow marble 
 12. a red marble and then a blue marble 
 13. any color marble except yellow and then a yellow marble 
 14. a red marble three times in a row  

 
From Mathematics: Applications and Connections, Course 3 © 1998, Collins, Dristas, Frey-
Mason, Howard, McClain, Molina, et al. Published by Glencoe/McGraw-Hill. Used by 
permission. 

 
Figure 5. Examples of tasks that require low levels of cognitive demand 

 
As stated previously, the majority of tasks in seven of the eight textbook series 

required low levels of cognitive demand, primarily Procedures without Connections. In 
contrast to these series, most probability tasks in the Standards-Alternative series required 
higher levels of cognitive demand. Examples of two tasks from this series requiring 
higher levels of cognitive demand are shown in Figure 6. The rationale behind this coding 
follows below.  

The task in Question 19 was coded as Procedures with Connections (High-P) because 
it addresses a common misconception (all outcomes are equally likely) without 
suggesting a pathway to the solution, either in the task itself or on preceding pages. This 
task utilizes multiple representations of the problem situation (a counting tree and an 
organized listing of the complete sample space), and requires some degree of cognitive 
effort, as no algorithm or procedure has been previously given that addresses this 
situation in this form.  

The task in Problem 6.1 and Problem 6.1 Follow-Up, coded as “Doing Mathematics” 
(High-D), requires complex and nonalgorithmic thinking. Prior to this task, the textbook 
authors have provided tasks to allow students to conduct experiments and calculate and 
compare experimental and theoretical probabilities, but this is the first request to create a 
simulation. Students are required to utilize their prior knowledge and apply it to this task. 
Furthermore, this task requires that students understand several mathematical concepts, 
including the set of possible outcomes of this game, the expected number of wins in 100 
trials, and the fairness of the game. Finally, students are instructed to provide 
justifications for their reasoning in questions 2 and 3. 
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  19.  Tricia wants to determine the probability of getting two 1s when two number cubes are 
rolled. She made a counting tree and used it to list the possible outcomes. 
 
                                          Cube 1               Cube 2          Outcome 
 
                                                                     1                   1/1 
                                          1 
                                                                     not 1             1/not 1 
                start 
                                                                     1                   not 1/1 
                                          not 1  
                                                                     not 1             not 1/not 1 
 
 
She says that, since there are four possible outcomes, the probability of getting 1 on both  
number cubes is 1

4 . Is Tricia right? Why or why not? 
 
 Tawanda’s Toys is having a contest! Any customer who spends at least $10 receives a scratch-

off game card. Each card has five gold spots that reveal the names of video games when they are 
scratched. Exactly two spots match on each card. A customer may scratch off only two spots on 
a card; if the spots match, the customer wins the video game under those spots. 

  
 Problem 6.1 
 If you play this game once, what is your probability of winning? To answer this question, do the 

following two things: 
 A.  Create a way to simulate Tawanda’s contest, and find the experimental probability of 

winning. 
 B. Analyze the different ways you can scratch off two spots, and find the theoretical 

probability of winning a prize with one game card. 
  
 Problem 6.1 Follow-Up 
 1. a. If you play Tawanda’s scratch-off game 100 times, how many video games would you 

expect to win? 
  b. How much money would you have to spend to play the game 100 times? 
 2. Tawanda wants to be sure she will not lose money on her contest. The video games she gives 

as prizes cost her about $15 each. Will Tawanda lose money on this contest? Why or why 
not? 

 3. Suppose you play Tawanda’s game 20 times and never win. Would you conclude that the 
game is unfair? For example, would you think that there were not two matching spots on 
every card? Why or why not?   

 
From Connected Mathematics: What Do You Expect? Probability and Expected Value © 1998 by 
Michigan State University, Lappan, Fey, Fitzgerald, Friel, and Phillips. Published by Pearson 
Education, Inc., publishing as Pearson Prentice Hall. Used by permission. 

 
Figure 6. Examples of tasks that require high levels of cognitive demand 

 
Table 3 displays the percentage of tasks coded at each level of cognitive demand for 

each series. Using the Mann-Whitney U test (Hinkle, Wiersma, & Jurs, 1988; also named 
the “Mann, Whitney, and Wilcoxon test” in Hogg & Tanis, 1993), we determined that the 
distributions of required levels of cognitive demand were not significantly different for 
the three textbooks within a given series, with p > 0.18 in each case. Accordingly, the 
data presented in Table 3 represent all tasks in the series, without disaggregating by grade 
level. 
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Table 3. Percentage of tasks coded at each level of cognitive demand 
 
 New Math Back to Basics Problem Solving Standards 

 Pop. Alt. Pop. Alt. Pop. Alt. Pop. Alt. 
High-D 0 0 0 4 0 0 2 12 
High-P 6 14 0 22 2 0 15 47 
Low-P 83 82 95 74 97 98 75 40 
Low-M 11 4 5 0 1 2 8 1 

 
Note that the Back to Basics-Alternative series did not contain any tasks coded at the 

Memorization level (Low-M), and three series contained tasks coded at the highest level–
“Doing Mathematics” (High-D). Furthermore, the Back to Basics-Popular and Problem 
Solving-Alternative series contained no probability tasks that required high levels of 
cognitive demand.  

The composition of tasks found at each level of cognitive demand was very similar 
for the two series in the Problem Solving era; the New Math era series were also similar 
in this composition. In terms of cognitive demand, the series within both the Back to 
Basics and Standards eras appeared to be quite different, with the alternative series 
tending to have greater proportions of tasks that require higher levels of cognitive 
demand than the contemporary popular series.  

 
5.3. TRENDS IN REQUIRED LEVELS OF COGNITIVE DEMAND OVER TIME  

 
Typically, the most common level of cognitive demand required by probability tasks 

was Procedures without Connections (Low-P). The Standards-Alternative series was an 
exception, with nearly half of all tasks coded as Procedures with Connections (High-P). 
The majority of tasks that required high levels of cognitive demand were located within 
the series of the Standards era, as were the majority of tasks that were analyzed for this 
study. More specifically, there were a greater number of tasks, but not necessarily a 
greater percentage of tasks, that required higher levels of cognitive demand in the two 
Standards-era textbook series. The Standards-Popular series is a case of this phenomenon. 
It contains more tasks requiring higher levels of cognitive demand than any series from a 
previous era, but a smaller percentage of higher level tasks than the Back to Basics-
Alternative series.  
 

6. DISCUSSION 
 
6.1. INTERPRETATION OF INCREASED NUMBER OF TASKS IN MORE 

RECENT SERIES 
 
There was a dramatic increase in number of probability tasks in the textbooks from 

the Standards era, compared to the three previous eras of mathematics education. In 
particular, over half of all of the tasks analyzed in this study were located within 
textbooks from the Standards era. This increase in attention to probability appears to have 
coincided with the release of national recommendations such as NCTM (1989) that 
advocated the inclusion of probability in the middle grades. Although the design of this 
study did not allow for the identification of causal factors, the proliferation of probability 
tasks within the Standards era appears to be consistent with the contemporary 
recommendations for the inclusion of probability topics within the middle grades 
mathematics curriculum. 
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6.2. INTERPRETATION OF STABILITY OF DISTRIBUTION OF LEVEL OF 
COGNITIVE DEMAND WITHIN EACH SERIES, BUT DIFFERENCES 
BETWEEN SERIES 

 
As stated above, across the three grade levels of each series, the distributions of 

required levels of cognitive demand of probability tasks were not significantly different. 
For most series, probability tasks required predominantly low levels. In the Standards-
Alternative series, however, a majority of probability tasks (59%) required high levels of 
cognitive demand. Therefore, the Standards-Alternative series adhered to the 
recommendations of Stein et al. (2000) that students at each grade level should have 
opportunities to “engage with tasks that lead to deeper, more generative understandings 
regarding the nature of mathematical processes, concepts, and relationships” (p. 15). 
Furthermore, the use of tasks that require higher levels of cognitive demand in instruction 
supports the development of conceptual understanding that is called for by the NCTM 
(1989, 2000). 

It is likely not a coincidence that the series with the highest distribution of required 
levels of cognitive demand (Standards-Alternative) was the same series that received the 
highest quality ratings in the Project 2061 study of mathematics textbooks for middle 
grades students (AAAS, 2000). The Project 2061 study did not examine the treatment of 
probability, but instead focused on number, algebra, and geometry. Although numerous 
criteria were used to render quality ratings, the results from our study indicate that the 
probability portions of this series may be of similar high quality. Additionally, Project 
2061 researchers found that two other series included in our study (Standards-Popular and 
a revised edition of Problem Solving-Alternative) were of lower overall quality than the 
Standards-Alternative series; their findings coincide with results from our study that the 
probability tasks contained in the Problem Solving-Alternative and Standards-Popular 
series required significantly lower levels of cognitive demand than the Standards-
Alternative series. Although the distribution of required levels of cognitive demand is not 
equivalent to the quality of instruction in a textbook, these measures are similar in that 
they address the potential opportunities for students to develop deeper understandings of 
mathematical content. 

In the Back to Basics and Standards eras, there were significant differences in the 
distribution of required levels of cognitive demand for probability tasks between the 
popular and alternative series (U = 3199.5, Z = -5.443, p < 0.001 and U = 19661.5, Z =  
-10.273, p < 0.001, respectively). In each case, the alternative series had a higher 
distribution of required levels of cognitive demand. This may reflect the desires of the 
authors to offer something truly different. These alternative series presented more than a 
new sequence of topics or additional topics; indeed, the nature of the tasks within these 
textbook series was substantially different. This lends credence to the notion that these 
series represented true alternatives to the contemporary popular series. 

 
7. RECOMMENDATIONS AND IMPLICATIONS 

 
With the exception of the Standards-Alternative series, the vast majority of tasks in 

each series were characterized as requiring low levels of cognitive demand, usually at the 
Procedures without Connections level. Indeed, all tasks in the Back to Basics-Popular and 
Problem Solving-Alternative series were coded as Procedures without Connections, save 
five tasks within the Back to Basics-Popular series and one task in the Problem Solving-
Alternative series coded as Memorization. Stein, Grover, and Henningsen (1996) found 
that the level of cognitive demand of a task as written tends to either stay the same or 
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decline when implemented by the teacher. For this reason, textbooks should include tasks 
that require high levels of cognitive demand, and thus provide potential opportunities for 
students to experience mathematics as more than a set of unrelated procedures and facts. 
The inclusion of tasks that require high levels of cognitive demand has the potential to 
foster a more connected view of mathematics as related, meaningful concepts and 
procedures useful for solving many types of problems. 

Heretofore there is no research documenting the impact of specific curricular tasks on 
student learning in probability, delineating between the kinds of reasoning tasks at each 
level may promote. Nevertheless, it seems reasonable to conjecture that the nature of a set 
of probability tasks might influence students’ views of probability, and promote a more 
classical, frequentist, or subjective approach (for a more detailed description, see 
Batanero, Henry, & Parzysz, 2005; Borovcnik, Bentz, & Kapadia, 1991). For example, 
low-level tasks, including Procedures without Connections, might promote a classical, 
deterministic outlook, in which students rely on calculations of theoretical probabilities 
with little or no appreciation for how much variability might be expected in repeated 
trials of a probability experiment. On the other hand, higher-level tasks, such as Doing 
Mathematics, might foster a frequentist view in which students grapple with disparities 
between empirically-derived and theoretically-derived probabilities. This latter approach 
not only aligns with recent curriculum frameworks (e.g., NCTM, 2000), it is also 
consistent with research on learning probability that advocates teachers (a) “make 
connections between probability and statistics,” (b) “introduce probability through data,” 
and (c) “adapt a problem-solving approach to probability” (Shaughnessy, 2003, p. 224). 
Indeed, there is a growing body of evidence (e.g., delMas & Bart, 1989; Pratt, 2000; 
Pratt, 2005; Stohl & Tarr, 2002; Yáñez, 2002) to support the role of simulations as a 
means of fostering more sophisticated understanding of probability concepts in place of 
the well-documented equiprobability bias (Lecoutre, 1992), outcome approach (Konold, 
1991), and representativeness (e.g., Konold et al., 1993). Therefore, we argue that more 
recent curricular materials containing higher-level probability tasks have the potential to 
promote sound probabilistic reasoning, challenging some of the primary intuitions 
students bring to the classroom, and preparing them to make sense of the chance variation 
and random phenomena they will inevitably face in the real world. 

Results of this study revealed differences in the extent and nature of the treatment of 
probability across series. Prospective and practicing mathematics teachers may benefit 
from applying portions of the framework used in this study to analyze curricula and, in 
doing so, dispel the notion that all textbooks are created alike. In particular, determining 
the levels of cognitive demand required by tasks revealed that for most series, the 
majority of probability tasks required low levels of cognitive demand. By conducting 
similar analyses, it is possible prospective mathematics teachers will be more prepared to 
scrutinize their own textbook and realize the need to increase the levels of cognitive 
demand of tasks. Such teacher education activities form an important part of the call from 
researchers for prospective teachers to critically analyze textbooks and other curriculum 
materials (Lloyd & Behm, 2005; Remillard, 2004), In addition, preservice teachers with 
experience in analyzing curricula may be better prepared to assist in the selection of 
curriculum in their future positions, and less likely to examine only surface characteristics 
of textbooks. 

Only two textbook series were selected from each era for the sample of this study. 
The mathematics curriculum of a particular era may be more fully described if more 
series, particularly more popular series, from each era were examined. Furthermore, the 
“alternative” curriculum may be more appropriately characterized by analyzing 
commonly used supplemental materials that did not fit the selection criteria to be 
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included within this sample. For example, several mathematics educators familiar with 
middle grades mathematics curricula identified the Middle Grades Mathematics Project 
(Phillips et al., 1986) and Transition Mathematics (Usiskin et al., 1995) as widely used 
alternative curricula, but neither set of materials was written as a comprehensive 
curriculum for students in grades 6, 7, and 8. Thus, research should analyze a broader 
range of curricular materials, both popular and alternative, in order to more fully 
characterize the mathematics curriculum of particular eras of mathematics education. 

For most of the series, no significant difference was found between the distribution of 
required levels of cognitive demand of tasks in the development and assignment portions 
of lessons. In each of the textbook series in the first three eras and the Standards-Popular 
series, p > 0.05. In the Standards-Alternative series (U = 2821, Z = -3.03, p < 0.01), the 
tasks in the development portions of lessons tended to require higher levels of cognitive 
demand than tasks within the assignment portions. Further research should examine the 
distribution of required levels of cognitive demand for assessment tasks as well, and 
compare these distributions to those of tasks within the development and assignment 
portions of lessons. Results from this study revealed that relatively few probability tasks 
were written for the purpose of summative assessment. For this reason, future research 
may need to examine ancillary materials for assessment items. Such analyses may reveal 
a potential mismatch between assessment and instruction. In particular, it may be that 
tasks within lessons require high levels of cognitive demand, whereas assessment tasks 
require low levels of cognitive demand.  

Finally, this study focused on describing the intended probability curriculum as 
present in middle grades mathematics textbooks. Informed by the results of this study, 
future research should investigate the enacted probability curriculum as presented by 
teachers in contemporary classrooms. This enacted curriculum should include more than 
the particular chapters and lessons that were covered, but also which tasks were assigned, 
and why teachers chose to include or omit particular portions of the intended probability 
curriculum from their instruction. Such an analysis of the enacted curriculum was beyond 
the scope of this study, but it needs to be examined in order to more precisely determine 
students’ opportunity to learn. 
 

8. CONCLUSION 
 

This study addressed an existing void in the research base by analyzing the treatment 
of probability within middle grades mathematics textbooks from a historical perspective. 
Moreover, it represented the first documented attempt to analyze the levels of cognitive 
demand required by probability tasks within textbooks published across four recent eras 
of mathematics education. Information about the levels of cognitive demand required by 
tasks within a textbook may prove to be one measure of the quality of the mathematics 
presented within a textbook or textbook series. Indeed, a significant result of our study 
was the increase in the number and proportion of tasks that required high levels of 
cognitive demand within the alternative textbook series from the Back to Basics and 
Standards eras. In essence, these two series may be viewed as models for the 
development of future curricula because they challenge students to move beyond the 
development of mere procedural knowledge of probability.  

In this era of Standards, middle grades mathematics textbooks are devoting more 
attention to probability and requiring high levels of cognitive demand. Whether 
attributable to the recommendations of researchers or professional organizations, the 
alternative textbook series of the Back to Basics and Standards eras in this study 
demonstrate a markedly different approach to the level of cognitive demand required by 
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probability tasks, and the alternative series from the Standards era provided many more 
opportunities for students to engage in these types of tasks. What remains to be 
documented is the impact of such curricular materials on student learning, particularly in 
reference to supporting students’ understanding of probability concepts, so that 
probability misconceptions will become less prevalent among people of all ages.  
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ABSTRACT 

 
This paper describes the development of the CAOS test, designed to measure 
students’ conceptual understanding of important statistical ideas, across three years 
of revision and testing, content validation, and realiability analysis. Results are 
reported from a large scale class testing and item responses are compared from 
pretest to posttest in order to learn more about areas in which students demonstrated 
improved performance from beginning to end of the course, as well as areas that 
showed no improvement or decreased performance. Items that showed an increase in 
students’ misconceptions about particular statistical concepts were also examined. 
The paper concludes with a discussion of implications for students’ understanding of 
different statistical topics, followed by suggestions for further research. 
 

 
Keywords: Statistics education research; Assessment; Conceptual understanding; 
Online test 

 
1. INTRODUCTION 

 
What do students know at the end of a first course in statistics? How well do they 

understand the important concepts and use basic statistical literacy to read and critique 
information in the world around them? Students’ difficulty with understanding 
probability and reasoning about chance events is well documented (Garfield, 2003; 
Konold, 1989, 1995; Konold, Pollatsek, Well, Lohmeier, & Lipson, 1993; Pollatsek, 
Konold, Well, & Lima, 1984; Shaughnessy, 1977, 1992). Studies indicate that students 
also have difficulty with reasoning about distributions and graphical representations of 
distributions (e.g., Bakker & Gravemeijer, 2004; Biehler, 1997; Ben-Zvi 2004; 
Hammerman & Rubin, 2004; Konold & Higgins, 2003; McClain, Cobb, & Gravemeijer, 
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© International Association for Statistical Education (IASE/ISI), November, 2007 



29 

 

2000), and understanding concepts related to statistical variation such as measures of 
variability (delMas & Liu, 2005; Mathews & Clark, 1997; Shaughnessy, 1977), sampling 
variation (Reading & Shaughnessy, 2004; Shaughnessy, Watson, Moritz, & Reading, 
1999), and sampling distributions (delMas, Garfield, & Chance, 1999; Rubin, Bruce, & 
Tenney, 1990; Saldanha & Thompson, 2001). There is evidence that instruction can have 
positive effects on students’ understanding of these concepts (e.g., delMas & Bart, 1989; 
Lindman & Edwards, 1961; Meletiou-Mavrotheris & Lee, 2002; Sedlmeier, 1999), but 
many students can still have conceptual difficulties even after the use of innovative 
instructional approaches and software (Chance, delMas, & Garfield, 2004; Hodgson, 
1996; Saldanha & Thompson, 2001).  

Partially in response to the difficulties students have with learning and understanding 
statistics, a reform movement was initiated in the early 1990s to transform the teaching of 
statistics at the introductory level (e.g., Cobb, 1992; Hogg, 1992). Moore (1997) 
described the reform movement as primarily having made changes in content, pedagogy, 
and technology. As a result, Scheaffer (1997) observed that there is more agreement 
today among statisticians about the content of the introductory course than in the past. 
Garfield (2001), in a study conducted to evaluate the effect of the reform movement, 
found that many statistics instructors are aligning their courses with reform 
recommendations regarding technology, and, to some extent, with teaching methods and 
assessment. Although there is evidence of changes in statistics instruction, a large 
national study has not been conducted on whether these changes have had a positive 
effect on students’ statistical understanding, especially with difficult concepts like those 
mentioned above.  

One reason for the absence of research on the effect of the statistics reform movement 
may be the lack of a standard assessment instrument. Such an instrument would need to 
measure generally agreed upon content and learning outcomes, and be easily 
administered in a variety of institutional and classroom settings. Many assessment 
instruments have consisted of teachers’ final exams that are often not appropriate if they 
focus on procedures, definitions, and skills, rather than conceptual understanding 
(Garfield & Chance, 2000). The Statistical Reasoning Assessment (SRA) was one 
attempt to develop and validate a measure of statistical reasoning, but it focuses heavily 
on probability, and lacks items related to data production, data collection, and statistical 
inference (Garfield, 2003). The Statistics Concepts Inventory (SCI) was developed to 
assess statistical understanding but it was written for a specific audience of engineering 
students in statistics (Reed-Rhoads, Murphy, & Terry, 2006). Garfield, delMas, and 
Chance (2002) aimed to develop an assessment instrument that would have broader 
coverage of both the statistical content typically covered in the first, non-mathematical 
statistics course, and would apply to the broader range of students who enroll in these 
courses. 

 
2. THE ARTIST PROJECT 

 
 The National Science Foundation (NSF) funded the Assessment Resource Tools for 

Improving Statistical Thinking (ARTIST) project (DUE-0206571) to address the 
assessment challenge in statistics education as presented by Garfield and Gal (1999), who 
outlined the need to develop reliable, valid, practical, and accessible assessment items 
and instruments. The ARTIST Web site (https://app.gen.umn.edu/artist/) now provides a 
wide variety of assessment resources for evaluating students’ statistical literacy (e.g., 
understanding words and symbols, being able to read and interpret graphs and terms), 
statistical reasoning (e.g., reasoning with statistical information), and statistical thinking 
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(e.g., asking questions and making decisions involving statistical information). These 
resources were designed to assist faculty who teach statistics across various disciplines 
(e.g., mathematics, statistics, and psychology) in assessing student learning of statistics, 
to better evaluate individual student achievement, to evaluate and improve their courses, 
and to assess the impact of reform-based instructional methods on important learning 
outcomes.  

 
3. DEVELOPMENT OF THE CAOS TEST 

 
An important component of the ARTIST project was the development of an overall 

Comprehensive Assessment of Outcomes in Statistics (CAOS). The intent was to develop 
a reliable assessment consisting of a set of items that students completing any 
introductory statistics course would be expected to understand. Given that a reliable 
assessment could be developed, a second goal was to identify areas where students do 
and do not make significant gains in their statistical understanding and reasoning.  

The CAOS test was developed through a three-year iterative process of acquiring 
existing items from instructors, writing items for areas not covered by the acquired items, 
revising items, obtaining feedback from advisors and class testers, and conducting two 
large content validity assessments. During this process the ARTIST team developed and 
revised items and the ARTIST advisory board provided valuable feedback as well as 
validity ratings of items, which were used to determine and improve content validity for 
the targeted population of students (American Educational Research Association, 
American Psychological Association, and National Council on Measurement in 
Education, 1999). 

The ARTIST advisory group initially provided feedback and advice on the nature and 
content of such a test. Discussion led to the decision to focus the instrument on different 
aspects of reasoning about variability, which was viewed as the primary goal of a first 
course. This included reasoning about variability in distributions, in comparing groups, in 
sampling, and in sampling distributions. The ARTIST team had developed an online 
assessment item database with over 1000 items as part of the project. Multiple choice 
items to be used in the CAOS test were initially selected from the ARTIST item database 
or were created. All items were revised to ensure they involved real or realistic contexts 
and data, and to ensure that they followed established guidelines for writing multiple 
choice items (Haladyna, Downing, & Rodriguez, 2002). The first set of items was 
evaluated by the ARTIST advisory group, who provided ratings of content validity and 
identified important concepts that were not measured by the test. The ARTIST team 
revised the test and created new items to address missing content. An online prototype of 
CAOS was developed during summer 2004, and the advisors engaged in another round of 
validation and feedback in early August, 2004. This feedback was then used to produce 
the first version of CAOS, which consisted of 34 multiple-choice items. This version was 
used in a pilot study with introductory statistics students during fall 2004. Data from the 
pilot study were used to make additional revisions to CAOS, resulting in a second version 
of CAOS that consisted of 37 multiple choice items. 

The second version, called CAOS 2, was ready to launch as an online test in January 
2005. Administration of the online test required a careful registration of instructors, a 
means for students to securely access the test online, and provision for instructors to 
receive timely feedback of test results. In order to access the online tests, an instructor 
requested an access code, which was then used by students to take the test online. As 
soon as the students completed the test, either in class or out of class, the instructor could 
download two reports of students’ data. One was a copy of the test, with percentages 
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filled in for each response given by students, and with the correct answers highlighted. 
The other report was a spreadsheet with the total percentage correct score for each 
student.  

 
3.1. CLASS TESTING OF CAOS 2  

 
The first large scale class testing of the online instruments was conducted during 

spring 2005. Invitations were sent to teachers of high school Advanced Placement (AP) 
and college statistics courses through e-mail lists (e.g., AP community, Statistical 
Education Section of the American Statistics Association). In order to gather as much 
data as possible, a hard copy version of the test with machine readable bubble sheets was 
also offered. Instructors signed up at the ARTIST Web site to have their students take 
CAOS 2 as a pretest and /or a posttest, using either the online or bubble sheet format. 

Many instructors registered their students to take the ARTIST CAOS 2 test as a 
pretest at the start of a course and as a posttest toward the end of the course. Although it 
was originally hoped that all tests would be administered in a controlled classroom 
setting, many instructors indicated the need for out-of-class testing. Information gathered 
from registration forms also indicated that instructors used the CAOS results for a variety 
of purposes, namely, to assign a grade in the course, for review before a course exam, or 
to assign extra credit. Nearly 100 secondary-level students and 800 college-level students 
participated. Results from the analysis of the spring 2005 data were used to make 
additional changes, which produced a third version of CAOS (CAOS 3).  

 
3.2. EVALUATION OF CAOS 3 AND DEVELOPMENT OF CAOS 4 

 
The third version of CAOS (CAOS 3) was given to a group of 30 statistics instructors 

who were faculty graders of the Advanced Placement Statistics exam in June 2005, for 
another round of validity ratings. Although the ratings indicated that the test was 
measuring what it was designed to measure, the instructors also made many suggestions 
for changes. This feedback was used to add and delete items from the test, as well as to 
make extensive revisions to produce a final version of the test, called CAOS 4, consisting 
of 40 multiple choice items. CAOS 4 was administered in a second large scale testing 
during fall 2005. Results from this large scale, national sample of college-level students 
are reported in the following sections.  

In March 2006, a final analysis of the content validity of CAOS 4 was conducted. A 
group of 18 members of the advisory and editorial boards of the Consortium for the 
Advancement of Undergraduate Statistics Education (CAUSE) were used as expert raters. 
These individuals are statisticians who are involved in teaching statistics at the college 
level, and who are considered experts and leaders in the national statistics education 
community. They were given copies of the CAOS 4 test that had been annotated to show 
what each item was designed to measure. After reviewing the annotated test, they were 
asked to respond to a set of questions about the validity of the items and instrument for 
use as an outcome measure of student learning after a first course in statistics. There was 
unanimous agreement by the expert raters with the statement “CAOS measures basic 
outcomes in statistical literacy and reasoning that are appropriate for a first course in 
statistics,” and 94% agreement with the statement “CAOS measures important outcomes 
that are common to most first courses in statistics.” In addition, all raters agreed with the 
statement “CAOS measures outcomes for which I would be disappointed if they were not 
achieved by students who succeed in my statistics courses.” Although some raters 
indicated topics that they felt were missing from the scale, there was no additional topic 
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identified by a majority of the raters. Based on this evidence, the assumption was made 
that CAOS 4 is a valid measure of important learning outcomes in a first course in 
statistics. 

 
4. CLASS TESTING OF CAOS 4 

 
4.1. DESCRIPTION OF THE SAMPLE 

 
In the fall of 2005 and spring of 2006, CAOS 4 was administered as an online and 

hard copy test for a final round of class testing and data gathering for psychometric 
analyses. The purpose of the study was to gather baseline data for psychometric analysis 
and not to conduct a comparative study (e.g., performance differences between traditional 
and reform-based curricula). The recruitment approach used for class testing of CAOS 2 
was employed, as well as inviting instructors who had given previous versions of CAOS 
to participate. A total of 1944 students completed CAOS 4 as a posttest. Several criteria 
were used to select students from this larger pool as a sample with which to conduct a 
reliability analysis of internal consistency. To be included in the sample, students had to 
respond to all 40 items on the test and either have completed CAOS 4 in an in-class, 
controlled setting or, if the test was taken out of class, have taken at least 10 minutes, but 
no more than 60 minutes, to complete the test. The latter criterion was used to eliminate 
students who did not engage sufficiently with the test questions or who spent an excessive 
amount of time on the test, possibly looking up answers. In addition, students enrolled in 
high school AP courses were not included in the analysis. Analysis of data from earlier 
versions of the CAOS test produced significant differences in percentage correct when 
the AP and college samples were compared. Inclusion of data from AP students might 
produce results that are not representative of the general undergraduate population, and a 
comparison of high school AP and college students is beyond the scope of this study. 

A total of 1470 introductory statistics students, taught by 35 instructors from 33 
higher education institutions from 21 states across the United States met these criteria and 
were included in the sample (see Table 1). The majority of the students whose data were 
used for the reliability analysis were enrolled at a university or a four-year college, with 
about one fourth of the students enrolled in two-year or technical colleges. A little more 
than half of the students (57%) were females, and 74% of the students were Caucasian.  

 
Table 1. Number of higher education institutions, instructors, and students per institution 

type for students who completed the CAOS 4 posttest 
 

Institution Type 
Number of 
institutions 

Number of 
instructors 

Number of 
students 

Percent of 
students 

2-year/technical  6 6 341 23.1 

4-year college 13 14 548 37.3 

University 14 15 581 39.5 

Total 33 35 1470  

 
Table 2 shows the mathematics requirements for entry into the statistics course in 

which students enrolled. The largest group was represented by students in courses with a 
high school algebra requirement, followed by a college algebra requirement and no 
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mathematics requirement, respectively. Only 3% of the students were enrolled in a course 
with a calculus prerequisite. 

The majority of the students (64%) took the CAOS 4 posttest in class (henceforth 
refered to as CAOS). Only four instructors used the CAOS test results as an exam score, 
which accounted for 12% of the students. The most common uses of the CAOS posttest 
results were to assign extra credit (35%), or for review prior to the final exam (19%), or 
both (13%). 

 
Table 2. Number and percent of students per course type 

 
Mathematics prerequisite Number of students Percent of students 

No mathematics requirement 398 27.1 

High school algebra  611 41.6 

College algebra  420 28.6 

Calculus 41 2.8 

 
4.2. RELIABILITY ANALYSIS 
 

 Using the sample of students described above, an analysis of internal consistency of 
the 40 items on the CAOS posttest produced a Cronbach’s alpha coefficient of 0.82. 
Different standards for an acceptable level of reliability have been suggested, with lower 
limits ranging from 0.5 to 0.7 (see Pedhazur & Schmelkin, 1991). The CAOS test was 
judged to have acceptable internal consistency for students enrolled in college-level, non-
mathematical introductory statistics courses given that the estimated internal consistency 
reliability is well above the range of suggested lower limits. 

  
5. ANALYIS OF PRETEST TO POSTTEST CHANGES 

 
A major question that needs to be addressed is whether students enrolled in a first 

statistics course make significant gains from pretest to posttest on the CAOS test. The 
total percentage correct scores from a subset of students who completed CAOS as both a 
pretest (at the beginning of the course) and as a posttest (at the end of the course) were 
compared for 763 introductory statistics students.  

 
5.1. DESCRIPTION OF THE SAMPLE 

 
The 763 students in this sample of matched pretests and posttests were taught by 22 

instructors at 20 higher education institutions from 14 states across the United States (see 
Table 3). Students from four-year colleges made up the largest group, followed closely by 
university students. Eighteen percent of the students were from two-year or technical 
colleges. The majority of the students were females (60%), and 77% of the students were 
Caucasian.  

Table 4 shows the distribution of mathematics requirements for entry into the 
statistics courses in which students enrolled. The largest group was represented by 
students in courses with a high school algebra requirement, followed by no mathematics 
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requirement, and a college algebra requirement, respectively. Only about 4% of the 
students were enrolled in a course with a calculus prerequisite.  
Table 3. Number of higher education institutions, instructors, and students per institution 

type for students who completed both a pretest and a posttest 
 

Institution Type 
Number of 
institutions 

Number of 
instructors 

Number of 
students 

Percent of 
students 

2-year/technical  4 4 138 18.1 

4-year college 10 11 395 51.8 

University 6 7 230 30.1 

Total 20 22 763  

 
Table 4. Number and percent of students per type of mathematics prerequisite 

 
Mathematics Prerequisite Number of students Percent of students 

No mathematics requirement 197 25.8 

High school algebra  391 51.2 

College algebra  161 21.1 

Calculus 14 1.8 

 
Sixty-six percent of the students received the CAOS posttest as an in-class 

administration, with the remainder taking the test online outside of regularly scheduled 
class time. Only four instructors used the CAOS posttest scores solely as an exam grade 
in the course, which accounted for 11% of the students. The most common use of the 
CAOS posttest results for students who took both the pretest and posttest was to assign 
extra credit (23% of the students). For 22% of the students the CAOS posttest was used 
only for review, whereas another 16% received extra credit in addition to using CAOS as 
a review before the final exam. For the remainder of the students (29%), instructors 
indicated some other use such as program or course evaluation. 

 
5.2. PRETEST TO POSTTEST CHANGES IN CAOS TEST SCORES 
 

There was an increase from an average percentage correct of 44.9% on the pretest to 
an average percentage correct of 54.0% on the posttest (se = 0.433; t(762) = 20.98, p < 
0.001). Although statistically significant, this was only a small average increase of 9 
percentage points (95% CI = [8.2,9.9] or 3.3 to 4.0 of the 40 items). It was surprising to 
find that students were correct on little more than half of the items, on average, by the end 
of the course. To further investigate what could account for the small gain, student 
responses on each item were compared to see if there were items with significant gains, 
items that showed no improvement, or items where the percentage of students with 
correct answers decreased from pretest to posttest.  
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6. PRETEST TO POSTTEST CHANGES FOR INDIVIDUAL ITEMS 
 

The next step in analyzing pretest to posttest gains was to look at changes in correct 
responses for individual items. Matched-pairs t tests were conducted for each CAOS item 
to test for statistically significant differences between pretest and posttest percentage 
correct. Responses to each item on the pretest and posttest were coded as 0 for an 
incorrect response and 1 for a correct response. This produced four different response 
patterns across the pretest and posttest for each item. An “incorrect” response pattern 
consisted of an incorrect response on both the pretest and the posttest. A “decrease” 
response pattern was one where a student selected a correct response on the pretest and an 
incorrect response on the posttest. An “increase” response pattern occurred when a 
student selected an incorrect response on the pretest and a correct response on the 
posttest. A “pre & post” response pattern consisted of a correct response on both the 
pretest and the posttest. The percentage of students who fell into each of these response 
pattern categories is given in Appendix A. 

The change from pretest to posttest in the percentage of students who selected the 
correct response was determined by the difference between the percentage of students 
who fell into the “increase” and “decrease” categories. This is a little more apparent if it 
is recognized that the percentage of students who gave a correct response on the pretest 
was equal to the percentage in the “decrease” category plus the percentage in the “pre & 
post” category. Similarly, the percentage of students who gave a correct response on the 
posttest was equal to the percentage in the “increase” category added to the percentage in 
the “pre & post” category. When the percentage of students in the “decrease” and 
“increase” categories were about the same, the change tended to not produce a 
statistically significant effect relative to sampling error. When there was a large 
difference in the percentage of students in these two categories (e.g., one category had 
twice or more students than the other category), the change had the potential to produce a 
statistically significant effect relative to sampling error. Comparison of the percentage of 
students in these two “change” categories can be used to interpret the change in 
percentage from pretest to posttest. 

A per test Type I Error limit was set at αc = 0.001 to keep the study-wide Type I Error 
rate at α = 0.05 or less across the 46 paired t tests conducted (see Tables 5 through 9). For 
each CAOS item that produced a statistically significant change from pretest to posttest, 
multivariate analyses of variance (MANOVA) were conducted. The dependent variables 
for each analysis consisted of a 0/1 coded response for a particular item on the pretest and 
the posttest (0 = incorrect, 1 = correct). The two independent variables for each 
MANOVA consisted of the pretest/posttest repeated measure and either type of 
institution or type of mathematics prerequisite. Separate MANOVAs were conducted 
using only one of the two between-subjects grouping variables because the two variables 
were not completely crossed. A p-value limit of 0.001 was again used to control the 
experiment-wise Type I Error rate. If no interaction was found with either variable, an 
additional MANOVA was conducted using instructor as a grouping variable, to see if a 
statistically significant change from pretest to posttest was due primarily to large changes 
in only a few classrooms. 

The following sections describe analyses of items that were grouped into the 
following categories: (a) those that had high percentages of students with correct answers 
on both the pretest and the posttest, (b) those that had moderate percentages of correct 
answers on both pretest and posttest, (c) those that showed the largest increases from 
pretest to posttest, and (d) those that had low percentages of students with correct 
responses on both the pretest and the posttest. Tables 5 through 8 present a brief 
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description of what each item assessed, report the percentage of students who selected a 
correct response separately for the pretest and the posttest, and indicate the p-value of the 
respective matched-pairs t statistic for each item. 
 
6.1. ITEMS WITH HIGH PERCENTAGES OF STUDENTS WITH CORRECT 

RESPONSES ON BOTH PRETEST AND POSTTEST 
 

It was surprising to find several items on which students provided correct answers on 
the pretest as well as on the posttest. These were eight items on which 60% or more of the 
students demonstrated an ability or conceptual understanding at the start of the course, 
and on which 60% or more of the students made correct choices at the end of the course 
(Table 5). A majority of the students were correct on both the pretest and the posttest for 
this set of items. Across the eight items represented in Table 5, about the same percentage 
of students (between 5% and 21%) had a decrease response pattern as had an increase 
response pattern for each item, with the exceptions of items 13 and 21 (see Appendix A). 
The net result was that the change in percentage of students who were correct did not 
meet the criterion for statistical significance for any of these items. 

 
Table 5. Items with 60% or more of students correct on the pretest and the posttest 

 
   % of Students Correct 

Paired t
p Item  Measured Learning Outcome n Pretest Posttest 

1 Ability to describe and interpret the overall 
distribution of a variable as displayed in a 
histogram, including referring to the context of 
the data. 

760 71.5 73.6 0.266 

11 Ability to compare groups by considering 
where most of the data are, and focusing on 
distributions as single entities. 

756 88.0 88.2 0.856 

12 Ability to compare groups by comparing 
differences in averages. 

753 85.3 85.8 0.741 

13 Understanding that comparing two groups does 
not require equal sample sizes in each group, 
especially if both sets of data are large. 

752 61.8 73.5 <0.001 

18 Understanding of the meaning of variability in 
the context of repeated measurements, and in a 
context where small variability is desired. 

746 80.6 80.6 1.00 

20 Ability to match a scatterplot to a verbal 
description of a bivariate relationship. 

748 90.5 92.5 0.132 

21 Ability to correctly describe a bivariate 
relationship shown in a scatterplot when there 
is an outlier (influential point). 

749 73.6 83.7 <0.001 

23 Understanding that no statistical significance 
does not guarantee that there is no effect. 

735 63.1 64.4 0.588 
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Around 70% of the students were able to select a correct description and 
interpretation of a histogram that included a reference to the context of the data (item 1). 
The most common mistake on the posttest was to select the option that correctly 
described shape, center, and spread, but did not provide an interpretation of these 
statistics within the context of the problem. 

In general, students demonstrated facility on both the pretest and posttest with using 
distributional reasoning to make comparisons between two groups (items 11, 12, and 13). 
Almost 90% of the students on the pretest and posttest correctly indicated that 
comparisons based on single cases were not valid. Students had a little more difficulty 
with item 13, which required the knowledge that comparing groups does not require equal 
sample sizes in each group, especially if both sets of data are large. Students appear to 
have good informal intuitions or understanding of how to compare groups. However, the 
belief that groups must be of equal size to make valid comparisons is a persistent 
misunderstanding for some students. 

A majority of students on the pretest appeared to understand that statistical 
significance does not mean that there is no effect (item 23). However, making a correct 
choice on this item was not as persistent as for the items described above; a little more 
than a third of the students did not demonstrate this understanding on the posttest. 

 
6.2. ITEMS THAT SHOWED INCREASES IN PERCENTAGE OF STUDENT 

WITH CORRECT RESPONSES FROM PRETEST TO POSTTEST 
 

There were seven items on which there was a statistically significant increase from 
pretest to posttest, and at least 60% of the students made a correct choice on the posttest 
(Table 6). For all seven items, less than half of the students were correct on both the 
pretest and the posttest (see Appendix A). Whereas between 6% and 16% of the students 
had a decrease response pattern across the items, there were two to five times as many 
students with an increase response pattern for each item, with the exception of item 34. 
This resulted in statistically significant increases from pretest to posttest in the percentage 
of students who chose correct responses for each item. 

Around half of the students on the pretest were able to match a histogram to a 
description of a variable expected to have a distribution with a negative skew (item 3), a 
variable expected to have a symmetric, bell-shaped distribution (item 4), and a variable 
expected to have a uniform distribution (item 5), with increases of about 15 percentage 
points from pretest to posttest for each of the three items. About half of the students 
correctly indicated that a small p-value is needed to establish statistical significance (item 
19), and this increased by 23 percentage points on the posttest. A significant interaction 
was produced for pretest to posttest change by instructor (F(21, 708) = 2.946, p < 0.001). 
Three instructors had a decrease of seven to 23 percentage points from pretest to posttest, 
one instructor had essentially no change, 11 instructors had an increase of 10 to 28 
percentage points, and seven instructors had an increase of 36 to 63 percentage points. 
Five of the post hoc simple effects analyses (Howell, 2002) performed for the pretest to 
posttest change for each instructor produced a statistically significant difference at p < 
0.001. The differential change in the percentage of students who gave a correct response 
may account for the interaction, with some instructors having a small decrease and others 
with relatively large increases. Overall, the majority of instructors (19 out of 22) had an 
increase from pretest to posttest in the percentage of students with correct responses. 

On the pretest, only one third of the students recognized an invalid interpretation of a 
confidence interval as the percentage of the population data values between the 
confidence limits (item 29), which increased to around two thirds on the posttest. There 
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was a statistically significant interaction with instructor [F(21,703) = 3.163, p<.001]. 
There was essentially no change in percentage correct from pretest to posttest for three of 
the instructors. For the other 19 instructors, students showed an increase of 23 to 60 
percentage points. The instructor with the highest increase was not the same instructor 
with the highest increase for item 19. The increase was statistically significant at p <.001 
for the students of only nine instructors, which could account for the interaction. 

 
Table 6. Items with 60% or more of students correct on the posttest  

and statistically significant gain 
 

   % of Students Correct 
Paired t 

p Item  Measured Learning Outcome n Pretest Posttest 

3 Ability to visualize and match a histogram to 
a description of a variable (negatively skewed 
distribution for scores on an easy quiz). 

760 56.7 73.2 <0.001 

4 Ability to visualize and match a histogram to 
a description of a variable (bell-shaped 
distribution for wrist circumferences of 
newborn female infants). 

757 48.0 63.1 <0.001 

5 Ability to visualize and match a histogram to 
a description of a variable (uniform 
distribution for the last digit of phone numbers 
sampled from a phone book). 

758 55.9 71.1 <0.001 

19 Understanding that low p-values are desirable 
in research studies. 

730 49.9 68.5 <0.001 

29 Ability to detect a misinterpretation of a 
confidence level (percentage of population 
data values between confidence limits). 

725 32.6 67.6 <0.001 

31 Ability to correctly interpret a confidence 
interval. 

720 47.1 74.3 <0.001 

34 Understanding of the law of large numbers for 
a large sample by selecting an appropriate 
sample from a population given the sample 
size. 

724 55.3 65.2 <0.001 

 
About half of the students recognized a valid interpretation of a confidence interval 

on the pretest (item 31), which increased to three fourths on the posttest. There was a 
statistically significant interaction with instructor [F(21,698) = 2.787, p<.001]. Students 
of 20 of the instructors had an increase of 23 to 60 percentage points from pretest to 
posttest. The students of the other two instructors had a decrease of 7 and 15 percentage 
changes, respectively, neither of which were statistically significant. The instructor with 
the highest increase was not the same instructor with the highest increase for either item 
19 or item 29. The increase was statistically significant at p <.001 for the students of only 
six instructors, which could account for the interaction.  
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Finally, athough a little more than half of the students could correctly identify a 
plausible random sample taken from a population on the pretest, this increased by 10 
percentage points on the posttest (item 34). Whereas these students showed both practical 
and statistically significant gains on all of the items in Table 6, anywhere from 26% to 
37% still did not make the correct choice for this set of items on the posttest.  

There were thirteen additional items that produced statistically significant increases 
in percentage correct from pretest to posttest, but where the percentage of students with 
correct responses on the posttest was still below 60% (Table 7). Similar to the items in 
Table 6, between 7% and 18% of the students had a decrease response pattern. However, 
for each item, about one and a half to three times as many students had a response pattern 
that qualified as an increase. The net result was a statistically significant increase in the 
percentage of students correct for all thirteen items. 

In general, students demonstrated some difficulty interpreting graphic representations 
of data. Item 2 asked students to identify a boxplot that represented the same data 
displayed in a histogram. Performance was around 45% of students correct on the pretest 
with posttest performance just under 60%. On item 6, less than one fourth of the students 
on the pretest and the posttest demonstrated the understanding that a graph like a 
histogram is needed to show shape, center, and spread of a distribution of quantitative 
data. The 10 percentage point increase from pretest to posttest in percentage of students 
selecting the correct response was statistically significant. Most students (43% on the 
pretest and 53% on the posttest) selected a bar graph with a bell shape, but such a graph 
cannot be used to directly determine the mean, variability, and shape of the measured 
variable. Students demonstrated a tendency to select an apparent bell-shaped or normal 
distribution, even when this did not make sense within the context of the problem. 

The MANOVAs conducted for item 6 responses with type of institution and type of 
mathematics preparation did not produce significant interactions. The MANOVA that 
included instructor as an independent variable did produce a statistically significant 
interaction between pretest to posttest change and instructor (F(21, 732) = 3.224, p < 
0.001). Only one of the post hoc simple effects analyses (Howell, 2002) performed for 
the pretest to posttest change for each instructor produced a statistically significant 
difference at p < 0.001. Two instructors had a small decrease in percentage of students 
correct from pretest to posttest, three instructors had essentially no change, 12 instructors 
had an increase of seven to 18 percentage points, and five instructors had an increase of 
26 to 47 percentage points. The differential increase in percentage of students who gave a 
correct response may account for the interaction. Overall, the general trend was for an 
increase in the percentage of students with correct responses to item 6. 

A very small percentage of students demonstrated a correct understanding of the 
median in the context of a boxplot (item 10) on the pretest, with about a 9% improvement 
on the posttest. Item 10 presented two boxplots positioned one above the other on the 
same scale. Both boxplots had the same median and roughly the same range. The width 
of the box for one graph was almost twice the width of the other graph, with consequently 
shorter whiskers. On the posttest, most students (66%) chose a response that indicated 
that the boxplot with a longer upper whisker would have a higher percentage of data 
above the median. A significant interaction was produced for pretest to posttest change by 
instructor (F(21, 732) = 3.958, p < 0.001). Only one of the post hoc simple effects 
analyses (Howell, 2002) performed for the pretest to posttest change for each instructor 
produced a statistically significant difference at p < 0.001. Five instructors had a decrease 
of six to 14 percentage points from pretest to posttest, two instructors had essentially no 
change, nine instructors had an increase of five to 17 percentage points, and six 
instructors had an  
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Table 7. Items with less than 60% of students correct on the posttest,  
gain statistically significant 

 

   
% of Students 

Correct 
Paired t  

p Item  Measured Learning Outcome n Pretest Posttest 

2 Ability to recognize two different graphical 
representations of the same data (boxplot and 
histogram). 

759 45.5 56.3 <0.001 

6 Understanding that to properly describe the 
distribution (shape, center, and spread) of a 
quantitative variable, a graph like a histogram 
is needed. 

754 15.1 25.2 <0.001 

10 Understanding of the interpretation of a 
median in the context of boxplots. 

754 19.6 28.3 <0.001 

14 Ability to correctly estimate and compare 
standard deviations for different histograms. 
Understands lowest standard deviation would 
be for a graph with the least spread (typically) 
away from the center. 

746 34.3 51.7 <0.001 

15 Ability to correctly estimate standard 
deviations for different histograms. 
Understands highest standard deviation would 
be for a graph with the most spread (typically) 
away from the center. 

747 38.3 46.9 <0.001 

16 Understanding that statistics from small 
samples vary more than statistics from large 
samples. 

747 22.8 31.9 <0.001 

17 Understanding of expected patterns in 
sampling variability. 

746 42.8 50.3 <0.001 

27 Ability to recognize an incorrect interpretation 
of a p-value (prob. treatment is effective). 

717 42.3 52.7 <0.001 

30 Ability to detect a misinterpretation of a 
confidence level (percentage of all possible 
sample means between confidence limits). 

723 31.4 44.2 <0.001 

35 Ability to select an appropriate sampling 
distribution for a population and sample size. 

719 34.5 44.2 <0.001 

38 Understanding of the factors that allow a 
sample of data to be generalized to the 
population. 

715 26.0 37.9 <0.001 

39 Understanding of when it is not wise to 
extrapolate using a regression model. 

710 17.9 24.5 0.001 

40 Understanding of the logic of a significance 
test when the null hypothesis is rejected. 

716 41.9 52.0 <0.001 
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increase of 31 to 61 percentage points. Again, the differential change in the percentage of 
students who gave a correct response may account for the interaction, with some 
instructors having a small decrease and others with relatively large increases. Overall, the 
majority of instructors (15 out of 22) had an increase from pretest to posttest in the 
percentage of students with correct responses. 

Item 14 asked students to determine which of several histograms had the lower 
standard deviation. A little over half of the students answered this item correctly on the 
posttest. The 17 percentage point increase in percentage correct from pretest to posttest, 
however, was statistically significant.  

Item 15 asked students to determine which of several histograms had the highest 
standard deviation. Similar to item 14, a little under half of the students answered this 
item correctly on the posttest. There was about a nine percent increase in percentage 
correct from pretest to posttest. A significant interaction was found for pretest to posttest 
change by course type (F(3, 743) = 5.563, p < 0.001). Simple effects analyses indicated 
that the change from pretest to posttest was statistically significant increase for students 
in courses with no mathematics prerequisite (F(1, 189) = 10.851, p = 0.001) or a high 
school algebra prerequisite (F(1, 383) = 16.460, p < 0.001), but not for students in 
courses with college algebra (F(1, 158) = 1.872 p = 0.173) or calculus (F(1, 13) = 1.918, 
p = 0.189) prerequisites. In fact, the percentage of students correct on item 15 decreased 
for the latter two groups, although the differences were not statistically significant. 

Item 16 required the understanding that statistics from relatively small samples vary 
more than statistics from larger samples. Although the increase was statistically 
significant (p < 0.001), only about one fifth of the students answered this item correctly 
on the pretest and less than a third did so on the posttest. A slight majority of students on 
the posttest indicated that both sample sizes had the same likelihood of producing an 
extreme value for the statistic. A significant interaction was found for pretest to posttest 
change by type of institution (F(2, 744) = 7.169, p < 0.001). Simple effects analyses 
(Howell, 2002) did not produce a significant effect for type of institution on the pretest 
(F(2, 1292) = 2.701, p = 0.068), but the effect was significant on the posttest (F(2, 1292) 
= 9.639, p < 0.001). Thirty-six percent of students enrolled at a four-year college and 
34% of those attending a university gave a correct response on the posttest, whereas only 
17% of those enrolled in a technical or two-year college gave a correct response. The 
percentage of students who gave a correct response was about the same on the pretest and 
posttest for technical and two-year college students, whereas four-year colleges had a 
gain of 9 percentage points and universities had a gain of 16 percentage points. Overall, 
the change in percentage of students who were correct on item 16 was primarily due to 
students enrolled at four-year institutions and universities. 

Item 17 presented possible results for five samples of equal sample size taken from 
the same population. Less than half the students on the pretest and posttest chose the 
sequence that represented the expected sampling variability in the sample statistic. About 
one third of students on the pretest (36%) and the posttest (33%) indicated that all three 
sequences of sample statistics were just as plausible, even though one sequence showed 
an extreme amount of sampling variability given the sample size, and another sequence 
presented the same sample statistic for each sample (i.e., no sampling variability). In 
addition, 74% of the students who gave an erroneous response to item 17 on the posttest 
also selected an erroneous response for item 16. 

There was a statistically significant (p < 0.001) increase from pretest to posttest in the 
percentage of students who indicated that the confidence level indicated the percentage of 
all sample means that fall between the confidence limits (item 30). However, the 
percentage went from 31% on the pretest to 44% on the posttest, so that the majority of 
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students did not indicate this understanding by the end of their statistics courses. A 
significant interaction was produced for pretest to posttest change by instructor (F(21, 
701) = 2.237, p < 0.001). Two instructors had a decrease of 10 and 43 percentage points, 
respectively, from pretest to posttest, one instructor had essentially no change, 17 
instructors had an increase between four and 16 percentage points, and two instructors 
had an increase of 21 and 37 percentage points, respectively. Three of the post hoc simple 
effects analyses (Howell, 2002) performed for the pretest to posttest change for each 
instructor produced a statistically significant difference at p < 0.001. The differential 
change in the percentage of students who gave a correct response may account for the 
interaction, with some instructors having a small decrease and others with relatively large 
increases. Overall, the majority of instructors (19 out of 22) had an increase from pretest 
to posttest in the percentage of students with correct responses. 

Item 27 presented a common misinterpretation of a p-value as the probability that a 
treatment is effective. Forty percent of the students answered correctly on the pretest that 
the statement was invalid, which increased to 53% on posttest. Although the increase was 
statistically significant, nearly half of the students indicated that the statement was valid 
at the end of their respective courses. 

Item 35 asked students to select a graph from among three histograms that 
represented a sampling distribution of sample means for a given sample size. Slightly 
more than one third did so correctly on the pretest, with 10% more students selecting the 
correct response on the posttest. 

Many students did not demonstrate a good understanding of sampling principles. 
Only one fifth of the students on the pretest, and nearly 40% on the posttest made a 
correct choice of conditions that allow generalization from a sample to a population (item 
38). Even though this was a statistically significant gain from pretest to posttest, over 
62% indicated that a random sample of 500 students presented a problem for 
generalization on the posttest (supposedly because it was too small a sample to represent 
the 5000 students living on campus). No statistically significant interactions were 
produced by the MANOVA analyses. 

Only one fifth of the students indicated on the posttest that it is not appropriate to 
extrapolate a regression model to values of the predictor variable that are well beyond the 
range of values investigated in a study (item 39). A significant interaction was produced 
for pretest to posttest change by instructor (F(21, 688) = 4.881, p < 0.001). Two of the 
post hoc simple effects analyses (Howell, 2002) performed for the pretest to posttest 
change for each instructor produced statistically significant differences at p < 0.001. The 
two instructors were both from four-year institutions and had increases of 40 and 61 
percentage points, respectively. Among the other instructors, four had a decrease of five 
to 16 percentage points from pretest to posttest, five instructors had essentially no change 
(between a decrease of five to an increase of five percentage points), seven instructors 
had an increase of six to 19 percentage points, and four instructors had an increase of 23 
to 30 percentage points. The differential change in the percentage of students who gave a 
correct response may account for the interaction, with some instructors having a small 
decrease and a few with relatively large increases. Overall, the majority of instructors (13 
out of 22) had an increase from pretest to posttest in the percentage of students with 
correct responses. 

About half of the students could identify a correct interpretation of rejecting the null 
hypothesis (item 40) on the posttest. Although there was a statistically significant gain in 
correct responses from pretest to posttest, about one third of the students indicated that 
rejecting the null hypothesis meant that it was definitely false, which was five percentage 
points higher than the percentage who gave this response on the pretest. A significant 



43 

 

interaction was produced for pretest to posttest change by instructor (F(21, 694) = 2.392, 
p < 0.001). Two of the post hoc simple effects analyses (Howell, 2002) performed for the 
pretest to posttest change for each instructor produced statistically significant differences 
at p < 0.001. The two instructors were both from four-year institutions and had increases 
of 39 and 55 percentage points, respectively. Among the other instructors, five had a 
decrease of five to 22 percentage points from pretest to posttest, five instructors had 
essentially no change (between a decrease of five to an increase of 4 percentage points), 
nine instructors had an increase of six to 14 percentage points, and three instructors had 
an increase of 21 to 39 percentage points. The differential change in the percentage of 
students who gave a correct response may account for the interaction, with some 
instructors having a small decrease and a few with relatively large increases. Overall, the 
majority of instructors (13 out of 22) had an increase from pretest to posttest in the 
percentage of students with correct responses. 
 
6.3. ITEMS WITH LOW PERCENTAGES OF STUDENTS WITH CORRECT 

RESPONSES ON BOTH THE PRETEST AND THE POSTTEST 
 

Table 8 shows that for a little less than one third of the items on the CAOS test less 
than 60% of the students were correct on the posttest with the change from pretest to 
posttest not statistically significant, despite having experienced the curriculum of a 
college-level first course in statistics. Across all of these items, similar percentages of 
students (between 6% and 30%) had a decrease response pattern as had an “increase” 
response pattern (see Appendix A). The overall result was that none of the changes from 
pretest to posttest in percentage of students selecting a correct response were statistically 
significant. 

Students had very low performance, both pretest and posttest, on item 7, which 
required an understanding for the purpose of randomization (to produce treatment groups 
with similar characteristics). On the posttest, about 30% of the students chose “to increase 
the accuracy of the research results,” and another 30% chose “to reduce the amount of 
sampling error.”  

Students demonstrated some difficulty with understanding how to correctly interpret 
boxplots. Items 8 and 9 were based on the same two boxplots presented for item 10 
(Table 7). Item 8 asked students to identify which boxplot represented a distribution with 
a larger standard deviation. One boxplot had a slightly larger range (difference of 
approximately five units) with an interquartile range that was about twice as large as the 
interquartile range for the other boxplot. Around 59% of the students chose this graph to 
have a larger standard deviation on the posttest. On item 9, only one fifth of the students 
demonstrated an understanding that boxplots do not provide estimates for percentages of 
data above or below values except for the quartiles. The item asked students to indicate 
which of the two boxplots had a greater percentage of cases at or below a specified value. 
The value did not match any of the quartiles or extremes marked in either boxplot, so the 
correct response was that it was impossible to determine. Given that item 9 has four 
response choices, the correct response rate was close to chance level on both the pretest 
and posttest. Fifty-eight percent of students on the posttest indicated that the boxplot with 
the longer lower whisker had a higher percentage of cases below the indicated value, 
similar to the erroneous response to item 10. On the posttest, 48% of the students selected 
the identified erroneous responses to both items 9 and 10. 
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Table 8. Items with less than 60% of students correct on the posttest, 
gain not statistically significant 

 
   % of Students Correct 

Paired t  
p Item Measured Learning Outcome n Pretest Posttest 

7 Understanding of the purpose of 
randomization in an experiment. 

754 8.5 12.3 0.010 

8 Ability to determine which of two boxplots 
represents a larger standard deviation. 

755 54.7 59.2 0.060 

9 Understanding that boxplots do not provide 
accurate estimates for percentages of data 
above or below values except for the quartiles. 

751 23.3 26.6 0.100 

22 Understanding that correlation does not imply 
causation. 

743 54.6 52.6 0.371 

24 Understanding that an experimental design 
with random assignment supports causal 
inference. 

731 58.5 59.5 0.689 

25 Ability to recognize a correct interpretation of 
a p-value. 

712 46.8 54.5 0.004 

26 Ability to recognize an incorrect interpretation 
of a p-value (probability that a treatment is not 
effective). 

719 53.1 58.6 0.038 

28 Ability to detect a misinterpretation of a 
confidence level (the percentage of sample 
data between confidence limits). 

729 48.4 43.2 0.029 

32 Understanding of how sampling error is used 
to make an informal inference about a sample 
mean. 

718 16.9 17.1 0.883 

33 Understanding that a distribution with the 
median larger than mean is most likely 
skewed to the left. 

730 41.5 39.7 0.477 

36 Understanding of how to calculate appropriate 
ratios to find conditional probabilities using a 
table of data. 

719 52.7 53.0 0.909 

37 Understanding of how to simulate data to find 
the probability of an observed value. 

722 20.4 19.5 0.659 

 
Although it was noted earlier that students could correctly identify a scatterplot given 

a description of a relationship between two variables, they did not perform as well on 
another item related to interpreting correlation. About one third (36%) of the students
chose a response indicating that a statistically significant correlation establishes a causal 
relationship (item 22). Item 24 required students to understand that causation can be 
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inferred from a study with an experimental design that uses random assignment to 
treatments. The percentage of students answering this item correctly on the posttest was 
just below the threshold of 60%. 

 Items 25 and 26 measured students’ ability to recognize a correct and an incorrect 
interpretation of a p-value, respectively. There was a noticeable change from pretest to 
posttest in the percentage of students indicating that item 25 was a valid interpretation, 
but the difference was just above the threshold for statistical significance. About 55% of 
the students answered item 5 correctly and 59% answered item 26 correctly on the 
posttest. Results for these two items, along with item 27, indicate that many students who 
identified a correct interpretation of a p-value as valid also indicated that an incorrect 
interpretation was valid. In fact, of the 387 students who answered item 25 correctly on 
the posttest, only 5% also indicated that the statements for items 26 and 27 were invalid. 
For the remainder of these students, 56% thought one of the incorrect interpretations was 
valid, and 39% indicated both incorrect interpretations as valid. 

Students did not demonstrate a firm grasp of how to interpret confidence intervals. 
There was an increase in the percentage of students who incorrectly indicated that the 
confidence level represents the expected percentage of sample values between the 
confidence limits (item 28), although the difference was not statistically significant.  

An item related to sampling variability proved difficult for students. Item 32 required 
students to recognize that an estimate of sampling error was needed to conduct an 
informal inference about a sample mean. Less than 20% of the students made a correct 
choice on the pretest and posttest. A slight majority of the students (54% pretest, 59% 
posttest) chose the option that based the inference solely on the sample standard 
deviation, not taking sample size and sampling variability into account.  

Item 33 required the understanding that a distribution with a median greater than the 
mean is most likely skewed to the left. There was a decrease, though not statistically 
significant, in the number of students who demonstrated this understanding. The 
percentage of those who incorrectly selected a somewhat symmetric, mound-shaped bar 
graph increased from 54% on the pretest to 59% on the posttest. Sixty-four percent of 
those who made this choice on the posttest also incorrectly chose the bell-shaped bar 
graph for item 6 (Table 7) discussed earlier. 

A little more than half of the students correctly indicated that ratios based on 
marginal totals were needed to make comparisons between rows in a two-way table of 
counts (item 36). One third of the students incorrectly chose proportions based on the 
overall total count on the posttest.  

Eighty percent of the students did not demonstrate knowledge of how to simulate 
data to estimate the probability of obtaining a value as or more extreme than an observed 
value (item 37). In a situation where a person has to predict between two possible 
outcomes, the item asked for a way to determine the probability of making at least four 
out of six correct predictions just by chance. On the posttest, 46% of the students 
indicated that repeating the experiment a large number of times with a single individual, 
or repeating the experiment with a large group of people and determining the percentage 
who make four out of six correct predictions, were equally effective as calculating the 
percentage of sequences of six trials with four or more correct predictions for a computer 
simulation with a 50% chance of a correct prediction on each trial.  
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6.4.  ITEM RESPONSES THAT INDICATED INCREASED MISCONCEPTIONS 
AND MISUNDERSTANDINGS 

 
Whereas some of the items discussed in the previous section showed a drop in the 

percentage of students with correct responses from pretest to posttest, none of these 
differences was statistically significant. There were, however, several items with 
noticeable increases from pretest to posttest in the percentage of students selecting a 
specific erroneous response (Table 9). The change in percentage of students with correct 
responses was statistically significant for four of the six items in Table 9. None of these 
responses produced statistically significant interactions between pretest to posttest 
increases and either type of institution, type of mathematics preparation, or instructor. 
Most of these misunderstandings and misconceptions were discussed in earlier 
presentations of the results. They include selecting a bell-shaped bar graph to represent 
the distribution of a quantitative variable (item 6), confusing random assignment with 
random sampling (item 7), selecting a histogram with a larger number of different values 
as having a larger standard deviation (item 15), inferring causation from correlation (item 
22), use of grand totals to calculate conditional probabilities (item 36), and indicating that 
rejecting the null hypothesis means the null hypothesis is definitely false (item 40).  

 
Table 9. Items with an increase in a misconception or misunderstanding  

from pretest to posttest 
 

   % of Students 
Paired t 

p Item  Misconception or Misunderstanding n Pretest Posttest 

6 A bell-shaped bar graph to represent the 
distribution for a quantitative variable. 

754 43.0 52.8 <0.001 

7 Random assignment is confused with random 
sampling or thinks that random assignment 
reduces sampling error. 

754 36.2 49.2 <0.001 

15 When comparing histograms, the graph with the 
largest number of different values has the larger 
standard deviation (spread not considered). 

747 26.5 33.1 0.002 

22 Causation can be inferred from correlation. 743 27.1 35.9 <0.001 

36 Grand totals are used to calculate conditional 
probabilities. 

719 25.2 33.4 <0.001 

40 Rejecting the null hypothesis means that the null 
hypothesis is definitely false. 

716 26.7 32.4 0.015 

 
Across this set of items, 13% to 17% of the students had a decrease response pattern 

with respect to the identified erroneous response (see Appendix B). For each item, 
between one and a half to two times as many students had an increase response pattern 
with respect to giving the erroneous response. The result was a statistically significant 
increase in the percentage of students selecting the identified responses for four of the 
items. Together, these increases indicate that a noticeable number of students developed 
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misunderstandings or misconceptions by the end of the course that they did not 
demonstrate at the beginning. 

 
7. DISCUSSION 

 
What do students know at the end of their first statistics course? What do they gain in 

reasoning about statistics from the beginning of the course to the end? Those were the 
questions that guided an analysis of the data gathered during the Fall 2005 and Spring 
2006 class testing of the CAOS 4 test. It was disappointing to see such a small overall 
increase in correct responses from pretest to posttest, especially when the test was 
designed (and validated) to measure the most important learning outcomes for students in 
a non-mathematical, first course in statistics. It was also surprising that for almost all 
items, there was a noticeable number of students who selected the correct response on the 
pretest, but chose an incorrect response on the posttest. 

The following three broad groups of items emerged from the analyses: (a) items that 
students seemed to do well both prior to and at the end of their first course, (b) items 
where they showed the most gains in learning, and (c) items that were more difficult for 
students to learn. Although less than half of the students were correct on the posttest for 
all items in the latter category, there was a significant increase from pretest to posttest for 
almost two thirds of the items in this group. Finally, items were examined that showed an 
increase in misconceptions about particular concepts. The following sections present a 
discussion of these results, logically organized by topic areas: data collection and design, 
descriptive statistics, graphical representations, boxplots, normal distribution, bivariate 
data, probability, sampling variability, confidence intervals, and tests of significance. 

 
7.1. DATA COLLECTION AND DESIGN 
 

Students did not show significant gains in understanding some important principles 
of design, namely the purpose of random assignment and that a correlation from an 
observational study does not allow causal inferences to be drawn. In fact, the percentage 
of students demonstrating misconceptions increased in terms of believing that random 
assignment is equivalent to random sampling, or that random assignment reduces 
sampling error, or that causation can be inferred from correlation. 
 
7.2. DESCRIPTIVE STATISTICS 
 

Students seemed to initially understand the idea of variability of repeated measures. 
Whereas a small percentage of students made gains in estimating and identifying the 
histogram with the lowest standard deviation and the graph with the highest standard 
deviation among a set of histograms, around half of all the students did not demonstrate 
this ability on the posttest. It seems that some students understood that a graph that is 
very narrow and clumped in the middle might have less variability, but had different 
ideas about what more variability might look like (e.g., bumpiness rather than spread 
from the center). One misconception that increased from pretest to posttest was that a 
graph with the largest number of different values has the larger standard deviation (spread 
not considered). 
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7.3. GRAPHICAL REPRESENTATIONS 
 

Most students seemed to recognize a correct and complete interpretation of a 
histogram when entering the course, and this did not change after instruction. They did 
make significant gains in being able to match a histogram to a description of a variable. 
There was a small increase in the percentage of students who could recognize different 
graphical representations of the same data, although this was demonstrated by only 
slightly more than half of the students on the posttest. Only a small percentage of students 
made gains in understanding that shape, center and spread were represented by a 
histogram and not a bar graph. One of the most difficult items that showed no significant 
improvement indicated that students failed to recognize that a distribution with a median 
larger than the mean is most likely skewed left. Most students were able to make 
reasonable comparisons of groups using dot plots, and students appeared to gain in their 
understanding that equal sample sizes are not needed to compare groups 
 
7.4. BOXPLOTS 
 

Students seemed to have many difficulties understanding and interpreting boxplots. A 
small percentage of students made significant gains in recognizing and interpreting the 
median in the context of a boxplot. On the posttest, many students seemed to think that 
the boxplot with the longer lower whisker had a higher percentage of cases below an 
indicated value or that the boxplot with a longer upper whisker would have a higher 
percentage of data above the median. Similarly, students did not associate a larger 
interquartile range with a larger standard deviation, given two boxplots with about the 
same range. There was no apparent gain in students’ understanding that boxplots provide 
only estimates of percentages at the quartiles. 

 
7.5. NORMAL DISTRIBUTION 
 

Students tended to select responses across various items that showed a normal 
distribution, suggesting a tendency to select a graph that is like a normal distribution 
regardless of whether it makes sense to do so within the context of the problem. 
Presented with an item that reported a median that is noticeably greater than the mean, 
most students selected a more symmetric, bell-shaped histogram instead of a histogram 
that is skewed to the left. Many students incorrectly selected a somewhat symmetric, 
mound-shaped bar graph as a graph that would indicate shape, center and spread, rather 
than a histogram that was not bell shaped.  
 
7.6. BIVARIATE DATA 
 

Students seemed to do a good job at the beginning of their courses with matching a 
scatterplot to a verbal description, indicating that they understood how a positive linear 
relationship was represented on a scatterplot. However, although statistically significant, 
only a small percentage of students showed gains in recognizing that it is not legitimate to 
extrapolate using values outside the domain of values for the independent variable when 
using a regression model. About three fourths of the students did not demonstrate this 
understanding on the posttest. Of course, it cannot be determined whether the difficulty 
comes from students not understanding this idea, students not identifying this idea as the 
focus on the question asked, or the topic not being covered in the course. 
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7.7. PROBABILITY 
 

The probability topics presented in the CAOS 4 test were quite difficult for students. 
Students showed no gains from pretest to posttest on items that required identification of 
correct ratios to use when constructing probabilities from a two-way table, or knowing 
how to simulate data to find the probability of an outcome. 
 
7.8. SAMPLING VARIABILITY 
 

Students demonstrated difficulty with understanding sampling variability and 
sampling distributions. There was only a small increase in the percentage of students who 
demonstrated an understanding that statistics from relatively small samples vary more 
than statistics from larger samples, an understanding of expected patterns in sampling 
variability, or an understanding of factors that allow generalization from a sample to a 
population. Similarly, only a small percentage showed gains on an item that had them 
select a histogram representing a sampling distribution from a given population for a 
particular sample size. One of the most difficult items expected them to use sampling 
error as an appropriate measure when making an informal inference about a sample mean. 
  
7.9. CONFIDENCE INTERVALS 
 

Students did not demonstrate an understanding of confidence intervals. Whereas three 
fourths of the students recognized a valid interpretation of a confidence interval on the 
posttest, many of these same students indicated that the invalid statement also applied, as 
if the two statements had the same interpretation. About two thirds of the students 
understood that a confidence level does not represent the percentage of population values 
between the confidence limits. There was an increase in the percentage of students who 
incorrectly indicated that a confidence level represents the expected percentage of sample 
values between the confidence limits. The majority of students on the posttest also 
incorrectly indicated that a confidence level indicated the percentage of all sample means 
that fall between the confidence limits.  
 
7.10.  TESTS OF SIGNIFICANCE 
 

Many students entered the course already recognizing that lack of statistical 
significance does not mean no effect. Most students indicated on the posttest that a low p-
value is required for statistical significance. A small percentage of students made gains in 
identifying a correct interpretation of a significance test when the null hypothesis is 
rejected, although almost half did not demonstrate this understanding on the posttest. 
However, although a little over half of the students recognized a correct interpretation of 
a p-value, the majority of these students also responded that an incorrect interpretation 
was valid, indicating that many students hold both types of interpretation without 
recognizing the contradiction. 
 

8. SUMMARY 
 

The CAOS test provides valuable information on what students appear to learn and 
understand after completing a college-level, non-mathematical first course in statistics. 
Across college-level first courses in statistics at a variety of institutions, there were some 
concepts and abilities that many students demonstrated at the start of a course. These 
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included recognizing a complete description of a distribution and understanding how 
bivariate relationships are represented in scatterplots. Most students also demonstrated an 
ability to make reasonable interpretations of some graphic representations by the end of a 
course. However, the results indicate that many students do not demonstrate a good 
understanding of much of the content covered by the CAOS 4 test, content that statistics 
faculty agreed represents important learning outcomes for an introductory statistics 
course. At the end of their respective courses, students still had difficulty with identifying 
appropriate types of graphic representations, especially with interpreting boxplots. They 
also did not demonstrate a good understanding of important design principles, or of 
important concepts related to probability, sampling variability, and inferential statistics. 

It should be noted that all items on the CAOS test were written to require students to 
think and reason, not to compute, use formulas, or recall definitions, contrary to many 
instructor-designed exams on which there may be more pretest to posttest gains. 
However, the CAOS test was purposefully designed to be different from the traditional 
test written by course instructors. During interviews and on surveys conducted to evaluate 
the ARTIST project, many instructors communicated that they were quite surprised when 
they saw their students’ scores. They reported that they found the CAOS test results quite 
illuminating, causing them to reflect on their own teaching in light of the test results. That 
is one of the most important purposes of the CAOS test, to provide information to 
statistics instructors to allow them to see if their students are learning to think and reason 
about statistics, and to promote changes in teaching to better promote these learning 
goals.  

The CAOS test is now available for research and evaluation studies in statistics 
education. Instructors and researchers can register to use the CAOS test at the ARTIST 
website (https://app.gen.umn.edu/artist/). Plans are currently underway for the 
development of a collaborative effort among many institutions to gather large amounts of 
test data (including CAOS) and instructional data online as a way to promote future 
research on teaching and learning statistics at the college level. In addition, there is a need 
to conduct studies that explore particular activities and sequences of activities in helping 
to improve students’ statistical reasoning as they take introductory statistics courses. 
Given the internal reliability of the CAOS test for students in non-mathematical 
introductory college statistics courses, and that it has been judged to be a valid measure of 
important learning outcomes for students enrolled in such courses, we hope that CAOS 
will facilitate these much needed studies. 
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APPENDIX A: PERCENT OF STUDENTS WITH ITEM RESPONSE 
PATTERNS FOR SELECTED CAOS ITEMS 

 
   Item Response Patterna 

Item  Measured Learning Outcome n Incorrect Decrease Increase 
Pre & 
Post 

1 Ability to describe and interpret the 
overall distribution of a variable as 
displayed in a histogram, including 
referring to the context of the data. 

760 8.6 17.9 20.4 53.2 

2 Ability to recognize two different 
graphical representations of the same 
data (boxplot and histogram). 

759 26.0 17.8 28.6 27.7 

3 Ability to visualize and match a 
histogram to a description of a variable 
(neg. skewed distribution for scores on 
an easy quiz). 

760 20.8 6.1 22.5 50.7 

4 Ability to visualize and match a 
histogram to a description of a variable 
(bell-shaped distribution for wrist 
circumferences of newborn female 
infants). 

757 26.6 10.3 25.5 37.6 

5 Ability to visualize and match a 
histogram to a description of a variable 
(uniform distribution for the last digit of 
phone numbers sampled from a phone 
book). 

758 23.0 5.9 21.1 50.0 

6 Understanding to properly describe the 
distribution of a quantitative variable, 
need a graph like a histogram that places 
the variable along the horizontal axis 
and frequency along the vertical axis. 

754 68.0 6.8 16.8 8.4 

7 Understanding of the purpose of 
randomization in an experiment. 

754 81.2 6.5 10.3 2.0 

8 Ability to determine which of two 
boxplots represents a larger standard 
deviation. 

755 21.3 19.5 24.0 35.2 

9 Understanding that boxplots do not 
provide estimates for percentages of data 
above or below values except for the 
quartiles. 

751 59.7 13.7 17.0 9.6 

aIncorrect = incorrect on both the pretest and posttest; Decrease = correct pretest, incorrect 
posttest; Increase = incorrect pretest, correct posttest; Pre & Post = correct on both the pretest and 
posttest. 
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   Item Response Patterna 

Item  Measured Learning Outcome n Incorrect Decrease Increase 
Pre & 
Post 

10 Understanding of the interpretation of a 
median in the context of boxplots. 

754 62.3 9.4 18.0 10.2 

11 Ability to compare groups by considering 
where most of the data are, and focusing 
on distributions as single entities. 

756 3.8 7.9 8.2 80.0 

12 Ability to compare groups by comparing 
differences in averages. 

753 4.8 9.4 10.0 75.8 

13 Understanding that comparing two groups 
does not require equal sample sizes in 
each group, especially if both sets of data 
are large. 

752 15.4 11.0 22.7 50.8 

14 Ability to correctly estimate and compare 
standard deviations for different 
histograms. Understands lowest standard 
deviation would be for a graph with the 
least spread (typically) away from the 
center. 

746 38.6 9.7 27.1 24.7 

15 Ability to correctly estimate standard 
deviations for different histograms. 
Understands highest standard deviation 
would be for a graph with the most spread 
(typically) away from the center. 

747 37.1 16.1 24.6 22.2 

16 Understanding that statistics from small 
samples vary more than statistics from 
large samples. 

747 60.2 7.9 17.0 14.9 

17 Understanding of expected patterns 
in sampling variability. 

746 37.3 12.5 20.0 30.3 

18 Understanding of the meaning of 
variability in the context of repeated 
measurements and in a context where 
small variability is desired. 

746 7.6 11.8 11.8 68.8 

19 Understanding that low p-values are 
desirable in research studies. 

730 21.1 10.4 32.7 35.8 

20 Ability to match a scatterplot to a 
verbal description of a bivariate 
relationship. 

748 1.9 5.6 7.6 84.9 
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   Item Response Patterna 

Item  Measured Learning Outcome n Incorrect Decrease Increase 
Pre & 
Post 

21 Ability to correctly describe a bivariate 
relationship shown in a scatterplot when 
there is an outlier (influential point). 

749 7.1 9.2 19.4 64.4 

22 Understanding that correlation does not 
imply causation. 

743 27.5 19.9 17.9 34.7 

23 Understanding that no statistical 
significance does not guarantee that 
there is no effect. 

735 17.6 18.1 19.3 45.0 

24 Understanding that an experimental 
design with random assignment supports 
causal inference. 

731 20.1 20.4 21.3 38.2 

25 Ability to recognize a correct 
interpretation of a p-value. 

712 23.5 22.1 29.8 24.7 

26 Ability to recognize an incorrect 
interpretation of a p-value (probability 
that a treatment is not effective). 

719 19.5 22.0 27.4 31.2 

27 Ability to recognize an incorrect 
interpretation of a p-value (probability 
that a treatment is effective). 

717 28.5 18.8 29.3 23.4 

28 Ability to detect a misinterpretation of a 
confidence level (the percentage of 
sample data between confidence limits) 

729 33.5 23.3 18.1 25.1 

29 Ability to detect a misinterpretation of a 
confidence level (percentage of 
population data values between 
confidence limits). 

725 24.4 8.0 43.0 24.6 

30 Ability to detect a misinterpretation of a 
confidence level (percentage of all 
possible sample means between 
confidence limits) 

723 38.9 16.9 29.7 14.5 

31 Ability to correctly interpret a 
confidence interval. 

720 16.0 9.7 36.9 37.4 

32 Understanding of how sampling error is 
used to make an informal inference 
about a sample mean. 

718 70.2 12.7 13.0 4.2 

aIncorrect = incorrect on both the pretest and posttest; Decrease = correct pretest, incorrect 
posttest; Increase = incorrect pretest, correct posttest; Pre & Post = correct on both the pretest and 
posttest. 
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   Item Response Patterna 

Item  Measured Learning Outcome n Incorrect Increase Decrease 
Pre & 
Post 

33 Understanding that a distribution with 
the median larger than mean is most 
likely skewed to the left. 

730 36.6 23.7 21.9 17.8 

34 Understanding of the law of large 
numbers for a large sample by selecting 
an appropriate sample from a population 
given the sample size. 

724 19.1 15.7 25.7 39.5 

35 Understanding of how to select an 
appropriate sampling distribution for a 
particular population and sample size. 

719 39.4 16.4 26.1 18.1 

36 Understanding of how to calculate 
appropriate ratios to find conditional 
probabilities using a table of data. 

719 25.7 21.3 21.6 31.4 

37 Understanding of how to simulate data 
to find the probability of an observed 
value. 

722 67.3 13.2 12.3 7.2 

38 Understanding of the factors that allow a 
sample of data to be generalized to the 
population. 

715 50.5 11.6 23.5 14.4 

39 Understanding of when it is not wise to 
extrapolate using a regression model. 

710 63.9 11.5 18.2 6.3 

40 Understanding of the logic of a 
significance test when the null 
hypothesis is rejected. 

716 31.6 16.5 26.5 25.4 

aIncorrect = incorrect on both the pretest and posttest; Decrease = correct pretest, incorrect 
posttest; Increase = incorrect pretest, correct posttest; Pre & Post = correct on both the pretest and 
posttest. 
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APPENDIX B: PERCENT OF STUDENTS WITH ITEM RESPONSE PATTERNS 
FOR CAOS ITEMS ASSESSING MISUNDERSTANDING AND 

MISCONCEPTIONS 
 

   Item Response Patterna 

Item  Misconception or Misunderstanding n Neither Decrease Increase 
Pre & 
Post 

6 A bell-shaped bar graph to represent 
the distribution for a quantitative 
variable. 

754 31.6 15.6 25.5 27.3 

7 Random assignment is confused with 
random sampling or thinks that random 
assignment reduces sampling error. 

754 36.5 14.3 27.3 21.9 

15 When comparing histograms, the graph 
with the largest number of different 
values has the larger standard deviation 
(spread not considered). 

747 52.9 14.1 20.6 12.4 

22 Causation can be inferred from 
correlation. 

743 50.9 13.2 22.1 13.9 

36 Grand totals are used to calculate 
conditional probabilities. 

719 51.3 15.3 23.5 9.9 

40 Rejecting the null hypothesis means 
that the null hypothesis is definitely 
false. 

716 50.4 17.2 22.9 9.5 

 
aNeither = did not select the response on either the pretest or the posttest; Decrease = response 
selected on pretest, but not on the posttest; Increase = response not selected on the pretest, selected 
on the posttest; Pre & Post = response selected on both the pretest and posttest. 
 
 
 



59 

 

 

EVALUATION OF DISTANCE LEARNING IN AN 
“INTRODUCTION TO BIOSTATISTICS” CLASS:  

A CASE STUDY4 
 

SCOTT R. EVANS 
Harvard University Extension School 

evans@sdac.harvard.edu 
 

RUI WANG 
Harvard University Extension School 

rwang@hsph.harvard.edu 
 

TZU-MIN YEH 
Harvard University Extension School 

tyeh@hsph.harvard.edu 
 

JEFF ANDERSON 
Harvard University Extension School 

janderson@sdac.harvard.edu 
 

RAMMY HAIJA 
Harvard University Extension School 

rammyhaija@hotmail.com 
 

PAUL MADOC MCBRATNEY-OWEN 
Harvard University Extension School 

mcbratn2@fas.harvard.edu 
 

LYNNE PEEPLES 
Harvard University Extension School 

lpeeples@hsph.harvard.edu 
 

SUBIR SINHA 
Harvard University Extension School 

ssinha@sdac.harvard.edu 
 

VANESSA XANTHAKIS 
Harvard University Extension School 

vxanthakis@mclean.harvard.edu 
 

NATASA RAJICIC 
Harvard University Extension School 

nrajicic@hsph.harvard.edu 
 

JIAMENG ZHANG 
Harvard University Extension School 

jiamengz@hsph.harvard.edu 
                                                      
Statistics Education Research Journal, 6(2), 59-77, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), November, 2007 



60 

 

 

ABSTRACT 
           
Biostatistics is not universally available in colleges/universities and is thus an 
attractive course to offer via distance education. However, evaluation of the impact 
of distance education on course enrollment and student success is lacking. We 
evaluated an “Introduction to Biostatistics” course at Harvard University that 
offered the distance option (Spring 2005).We assessed the effect on course enrollment 
and compared the grades of traditional students with non-traditional students, as well 
as with historical traditional students (Fall 2004). We further compared course 
evaluations from the inaugural semester with the distance option to evaluations from 
the prior semester. No evidence of dissimilarities was noted with respect to overall 
course grade averages or course evaluations.   

 
Keywords: Statistics education research; Biostatistics; Distance education  
 

1. INTRODUCTION 
 

Time and geographical constraints make distance education a convenient and 
appealing option for many students. Wegman and Solka (1999) note that distance 
education is a wave of the future, particularly with a recent increased emphasis on re-
educating a work force engaged in a lifetime of learning. Gilmour (2002) notes that 
distance education courses are likely to rise with expanding access to the Internet. 
Increases in the number of classes offered with a distance option, and in the number of 
distance students, have been observed at many colleges and universities. According to a 
recent national survey by the Sloan Consortium (Allen & Seaman, 2005), an online 
education group, at least 2.3 million people took an online course in 2004 and two-thirds 
of institutions offering traditional undergraduate-level courses also offer online courses, 
and similarly for graduate-level course offerings. The Harvard University Extension 
School initiated a distance education program with a single course enrolling four distance 
students in 1997-1998. This program has grown to 55 courses offered with a distance 
option in 2004-2005 and 75 courses being offered in 2005-2006. 

Biostatistics courses are not universally offered at colleges and universities (e.g., 
institutions without graduate programs in public health and/or medicine frequently do not 
offer courses in biostatistics). However, the demand for biostatistics courses is high due 
to the increasing needs of medical students, pre-medical students, public health students, 
as well as employees in the pharmaceutical and biotechnology industries, research 
hospitals, government, and academia. Thus, an “Introduction to Biostatistics” course is a 
particularly attractive course to offer via distance education. However, careful evaluation 
of the effectiveness of such a course on student learning and student evaluation is lacking. 

An “Introduction to Biostatistics” course offered at Harvard University was 
evaluated. Grades of traditional students were compared to non-traditional students 
enrolled in a course open to both traditional and non-traditional students in the spring of 
2005. Traditional students in the course were further compared to historical traditional 
students (Fall 2004) to investigate whether the distance version of the course affected the 
traditional students in terms of grades and evaluation scores. In addition, course 
evaluations for the semester in which the course was offered with a distance option 
(Spring 2005) and for the semster in which the course was offered only traditionally (Fall 
2004) were compared.  

We summarize the results of this research in the following sections. We describe the 
methods of delivery for distance education, discuss pros and cons associated with 
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distance education, and summarize prior evaluations of distance learning in statistics and 
biostatistics in Section 2. In Section 3, we describe the objectives and methods of our 
study. In Section 4, we describe the results of our study, and then conclude with a 
discussion of limitations, recommendations, and future research in Section 5. 

 
2. DISTANCE EDUCATION 

 
Although distance education has become common, its use is controversial and 

research suggests that its effectiveness is variable and inconsistent (Rooney et al., 2006; 
Rivera, McAlister, Khris, & Margaret, 2002; Li, 2002). Many research studies, whether 
comparison or case studies, have shown that distance learning is as favorable as 
classroom learning and that distance students are satisfied, and have similar grades or test 
results, compared to traditional students (Phipps & Merisotis, 1999; Johnson, Aragon, 
Shai, & Palma-Rivas, 1999; Russell, 1999; Merisotis & Phipps, 1999; Bourne, McMaster, 
Rieger, & Campbell, 1997; Gagne & Shepherd, 2001). A meta-analysis by Allen, 
Bourhis, Burrell, and Mabry (2002) demonstrated little difference in satisfaction levels of 
students between the traditional and distance educational formats. However, other 
research suggests that distance students may not be learning the material as well as those 
enrolled in traditional classes (Clow, 1999), and that use of the Internet merely to post 
materials and return homework may result in poorer learning than in traditional classes 
(Hiltz, Coppola, Rotter, & Turoff, 2001).  

An e-mail to the group list of the American Statistical Association’s (ASA) Section 
on Teaching Statistics in the Health Sciences (TSHS) requesting guidance from 
experienced distance education instructors in preparation for this “Introduction to 
Biostatistics” course generated numerous responses, with varying degrees of support. 
“Distance Education: How’s it working?” was a panel discussion at Joint Statistical 
Meetings (JSM), 2004, and the aforementioned e-mail discussions resulted in an invited 
session, “Distance Learning in the Health Sciences” at JSM 2005, sponsored by the 
Section for TSHS. The Section on TSHS also sponsored a roundtable luncheon, 
“Distance Education in Biostatistics” at JSM 2005, and the Boston Chapter of ASA 
hosted a mini-conference on Distance Learning, “Distance Education, The Way of the 
Future?” Open discussions at these meetings suggested that research regarding the 
effectiveness of student learning in distance courses is needed. Many observations 
regarding the advantages and disadvantages of such courses were discussed (and are 
outlined in Section 2.2). 
 
2.1. METHODS OF DELIVERY  

 
Distance education is a very broad term that encompasses several methods of 

delivery. Although distance education is generally thought of as a recent development 
using state-of-the-art technology, correspondence courses are a form of non-electronic 
distance education that have been in use for many years. Typically, students register for 
the course and then receive a course packet including a syllabus, reading instructions, and 
homework problems. Completed homework assignments are sent by the student to the 
corresponding instructor by postal mail or fax. The instructor corrects the assignment, 
provides comments, and returns the graded homework. These courses are often self-paced 
and do not necessarily adhere to a strict semester schedule. 

Online delivery has become a widely-used method due to its rapid delivery and 
response time. It may take the form of a lecture post in which the instructor posts a 
documented lecture and instructions online. Students read the lecture and then post 
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questions for response from the instructor and other students. It may also take the form of 
a lecture feed where the instructor may lecture to an attending group of students while 
being recorded, and then the lecture is made available for access. Videos may be made 
available at specified remote sites where groups of students congregate to view the video 
together at specified times, or online where students can individually view videos with 
use of the Internet. Online delivery may also be synchronized such that distance students 
log-on to a course website at the scheduled time of the course to view the lecture live, and 
can interactively communicate with the instructor while the lecture is being taught. Such 
courses are usually offered on a standard school semester schedule. Thus students must 
keep up with the lectures or risk falling behind in the course. Live chat room sessions 
often serve as an additional communication supplement. 

A number of software tools are available to facilitate or supplement distance 
education, such as WebCT (Web Course Tools), Blackboard®, NetMeeting, Centra®, and 
Elluminate Live!®, and Moodle. WebCT, developed for academic use by Dr. Murray 
Goldberg and a group of colleagues at the University of British Columbia, and 
Blackboard provide many features such as announcements, bulletin boards, chat rooms, 
virtual classrooms, group forums, private e-mail, searching, quizzes, surveys, student 
home pages, glossary, syllabus, contact information, digital drop box, and gradebook 
(Kendall, 2001; Wernet, Olliges, & Delicath, 2000). [In February 2006, Blackboard Inc. 
completed a merger with WebCT Inc.]. Microsoft® NetMeeting is a Windows-based 
application that can be used for synchronous activities. It allows synchronous chatting, 
application sharing, and file sharing. Tools built into NetMeeting include whiteboard, 
chat, file transfer, program sharing, and remote desktop sharing. Centra® is a web-based 
software application that enables real-time communication collaboration and learning 
with features of virtual classes, web seminars, and eMeetings. Elluminate Live!® creates a 
real-time virtual classroom environment for distance learning and collaboration, with its 
many components such as two-way audio, live video, shared whiteboards, instant 
messaging, application sharing, and breakout rooms. Moodle, a course management 
system (CMS) created by Martin Dougiamas at Curtin University, Australia, is a free, 
open source software package designed to help educators create effective online learning 
communities. It has many of the above features in addition to blogs, wikis, database 
activities, peer assessment, and multi-language support, and can readily be extended by 
creating plugins for specific new functionality.   

 
2.2. ADVANTAGES AND DISADVANTAGES  

 
Several advantages and disadvantages associated with distance education have been 

identified. Many generally apply to various courses; some are of increased importance in 
statistics and biostatistics. 
 

Advantages of distance education include the following: 
1. There may be no alternative for many students. For example, many 

undergraduate colleges do not offer courses in biostatistics. Distance courses 
can provide the opportunity for students from such colleges to take 
biostatistics courses. More generally, distance education offers flexibility and 
convenience, allowing geographically isolated students, and students with 
conflicting time commitments, to continue their education. A distance option 
also provides students with the opportunity to take two courses that are 
offered at the same time. Further, the distance option may allow students the 
opportunity to take a course from a prominent expert in the field. 
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2. If the distance option includes video, then students have the ability to watch 
the video as many times as desired. If the student finds the course material 
difficult, or the student misses a class, then the video may provide a useful 
learning tool. Stephenson (2001) notes that distance students may take a 
break when tired by stopping the video, whereas students in a traditional 
course do not have the same luxury. Because the material is always available, 
students have control over the pace of learning. This can be particularly 
important for courses in statistics or biostatistics in which students often 
struggle with statistical concepts and notation. 

3. Distance education may sharpen teaching skills, as both diligent preparation 
and careful delivery are required to teach a distance education course.  

4. Successful programs of teaching statistics via distance have been 
documented. Speed and Hardin (2001) present the results of developing 
technology mediated instructional material (TMIM) for graduate level 
statistics courses presented to students at local and distance sites. 
Improvements are also possible as teachers learn how to teach, and students 
learn how to learn, using distance education resources.  

5. Online learning may be cost effective because internet-based courses can be 
made available to an almost infinite number of students (Katz & Yablon, 
2003b). However, cost effectiveness of using online technologies in distance 
education is still uncertain (Phelps, Wells, Ashworth, & Hahn, 1991), as 
human capital and the costs of conversion are expenses that can easily be 
underestimated (Ng, 2000). Carr (2001) argues that only in large courses, 
with many sections, would cost savings be possible. The startup costs, 
maintenance costs, and personnel costs should be factored in to arrive at a 
true cost of a distance-learning program (Valentine, 2002). Hillstock (2005) 
further argues that distance learning as a way to save money is a 
misconception. Notably, some responses to the TSHS group list indicated 
instructors’ fear of job insecurity due to the availability of distance courses.  

6. Instructors who have recorded lectures (e.g., videotapes) from prior semesters 
may use these recordings in future classes. This may be an attractive option 
when an instructor is sick or traveling, or if an instructor feels that he or she 
explained a topic particularly well in a specific recorded lecture. 

 
Several disadvantages of distance education have been observed or theorized 

including the following: 
1. Distance education may allow students to become lazy, using the online 

component as a crutch. A student may feel that missing a class can be 
justified with the availability of online videos that can be viewed at a later 
time. As a result, students may fall behind more frequently. This can be 
particularly problematic in statistics and biostatistics courses where 
comprehension of later concepts is conditional upon comprehension of earlier 
topics. Students may not be able to recover in such courses. 

2. In many forms of distance education, there is no live communication between 
the distance student and the instructor. Many instructors feel that the face-to-
face contact and the student/teacher interaction are critical to learning. Lack 
of this personal element also makes it more difficult for instructors to 
stimulate, motivate, or excite students. Students can feel a sense of isolation 
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and a lack of support. Students in statistics and biostatistics may need 
feedback on difficult concepts or computing issues. 

3. Non-verbal communication such as body language and facial expressions, as 
well as verbal cues, cannot be conveyed with distance education. Often 
instructors can recognize whether a class is “getting it” by facial expressions 
of the students in traditional courses. The “reading” of such students is not 
possible in distance courses. 

4. Group projects may be more difficult for distance students as it may not be 
possible for students to meet face-to-face. Therefore, students may not be 
able to learn from each other as effectively. Furthermore, there may be less 
satisfaction without group interaction. 

5. “Asynchronous” distance students are at a time disadvantage as they do not 
have the opportunity to ask direct questions in a timely manner (if at all). 
There are typically delays in both video access and receiving graded 
homework assignments. 

6. Technology problems may create a disadvantage for distance students. 
Students must often solve computing hardware or software issues on their 
own. Foster (2003) notes that the mathematical notation involved in 
biostatistics and statistics may also create technological obstacles with 
respect to software. Such technology issues make it difficult to provide 
students with equal access to course materials. 

7. Distance courses may become “watered-down” because instructors 
(intentionally or subconsciously) may be sympathetic to the additional 
complications involved with distance education. This could jeopardize 
education quality. 

8. Teaching distance education courses requires more diligence and preparation 
than traditional courses. Lectures need to be self-explanatory (Bruce, Bond, 
& Jones, 2002). Instructors often underestimate the time and resources 
needed for development of course materials. The volume of e-mail created 
from distance students may increase dramatically for the instructor and 
teaching assistants. 

9. Institutions are often not well prepared for offering distance courses, and 
methods of delivery may not be sufficient for effective learning. Due to 
budget limitations, instructors may not have sufficient school support (e.g., 
funding) and access to resources for dealing with the issues created by 
distance education. 

10. Distance education may create more problems with cheating and academic 
honesty. It may be more difficult to assess whether students have completed 
their own work. 

 
2.3. EVALUATION OF DISTANCE LEARNING IN BIOSTATISTICS AND 

STATISTICS 
 
A few evaluations of distance learning in statistics have been published. Katz and 

Yablon (2003a), through use of an external control group, found that students in an 
internet-based “Introduction to Statistics” course achieved similar grades, were 
characterized by a higher locus of control, and had higher motivation and satisfaction 
than students in a lecture-based course. Traditional students had higher levels of self-
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esteem, however. Katz and Yablon (2003b) further suggest that as students gain more 
experience with distance learning, students become more at ease and develop positive 
attitudes toward this educational format. 

Harrington (1999) compared grades of incoming Masters of Social Work (MSW) 
students in traditional versus distance statistics courses. Students with high prior grade 
point averages (GPAs) performed similarly regardless of registration status (distance or 
traditional). However, students with low GPAs performed better than traditional students. 

Stephenson (2001) compared grades of distance and traditional students in an 
“Applied Statistics for Industry” course and found that traditional students had slightly 
higher grade point averages, but noted that the differences may be due to random 
variation. 

McGready (2006) conducted a non-randomized study comparing the exam grades of 
on-campus and on-line students in a “Statistical Reasoning in Public Health” course at 
Johns Hopkins University. The study consisted of separate independent lectures (but 
using the same slide set) for the distance and traditional versions of the course. The 
distance version of the course utilized streaming audio and synced slides. No statistically 
significant between-group differences were identified.  
 

3. METHOD 
 
3.1. INTRODUCTION TO BIOSTATISTICS 

 
“Introduction to Biostatistics” (STAT E-102) at the Harvard University Extension 

School was an introduction to statistical methods course used in the public health, 
biological, and medical sciences. Topics included descriptive statistics, performance 
characteristics of diagnostic tests, graphical methods, estimation, hypothesis testing, p-
values, confidence intervals, correlation, linear regression, and clinical trials. The course 
did not require any formal pre-requisites and was offered for graduate or undergraduate 
credit.  

The Instructor for the course had a PhD (Biostatistics) with a primary appointment in 
the Harvard School of Public Health. Seven experienced Teaching Assistants (TAs) were 
involved with the course. Six of the TAs had master’s degrees (4 Biostatistics/Statistics, 1 
Epidemiology, 1 Mathematics) and one had a PhD (Biostatistics). 

The course had one two-hour lecture per week (also available via video) with five 
optional TA help sessions offered throughout the week. Six homework assignments were 
collected during the semester. Graduate students also completed two projects. Grades for 
graduate students were determined by the midterm exam (30%), the final exam (30%), 
homework (20%), and the projects (20%). Grades for undergraduates were determined by 
the midterm exam (35%), the final exam (40%), and homework (25%). 

Students were required to learn a software package of their choice. Support was 
provided for STATA, with weekly TA sessions (for local students only) and handouts. 
The course text was Principles of Biostatistics by Pagano and Gauvreau (2000).  

The course had an extensive and active website. All course materials were posted on 
the website, including the syllabus, lecture notes, lecture videos, homework assignments 
and solutions, project assignments and solutions, computing (STATA) handouts, course 
announcements, and a history of questions and answers. A course e-mail distribution list 
provided the opportunity for students to ask questions of the TAs and communicate with 
other students, and further provided the TAs with the opportunity to make 
announcements regarding homework assignments and exams. 
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3.2. VIDEO DELIVERY AND DISTANCE METHODS 
 
Lectures available on the course website used streaming video technology (i.e., video 

that is sent to the user as it is viewed) along with standard Internet browser software. The 
video window appeared on the left side of the screen, the controls below it adjusted the 
video, and the supplementary course materials were displayed on the right side of the 
screen. The advantage of streaming video is that, like TV or radio, students receive the 
images and audio just before they see and hear them. This is much quicker than waiting 
for the entire video file to download before viewing it, as is the case with static images on 
the Web. The disadvantage is that in order to decrease file size and allow for a steady 
stream of data, the video must be compressed, shrinking the image from full size. 

Lectures were typically available within 48 hours after they were presented on 
campus. Recorded lectures were available only to registered students; lectures were 
password protected after the second week of class. 

Students downloaded and installed current versions of one of the supported video 
players before attempting to view the lectures. Students were responsible for ensuring 
that they had the necessary computer hardware and software, including course-specific 
software needed to complete course assignments. Harvard University did not provide 
equipment or software. No toll-free dial-in access was available.  

Lecture notes were primarily in PowerPoint, allowing use of an automated time-
stamp file as an aid in producing the video and in synchronizing the slides with the video. 
However, a manual time-keeper also recorded the timing of the slides, as other non-
PowerPoint slides were also utilized. 

Students living in the six-state New England area (Connecticut, Maine, 
Massachusetts, New Hampshire, Rhode Island, and Vermont) were required to take all 
classroom examinations on campus as scheduled. Distance education students outside the 
New England area arranged to take their exams off site and submitted a completed 
distance education proctored exam form to Academic Services at least two weeks in 
advance.  

Distance students could submit homework via e-mail, fax, or postal mail through a 
centralized address at the Harvard Extension School. 

 
3.3. OBJECTIVES 

 
“Introduction to Biostatistics” was taught at the Harvard Extension School in each of 

the Fall 2004 and Spring 2005 semesters. The course was taught traditionally (without a 
distance option, e.g., without video) in Fall 2004. However, in Spring 2005, the course 
was offered with a distance option that included video access for all students in the 
course. Students could register for the course (hereafter termed registration status) as 
distance students, traditional students, or hybrid students (i.e., students that attend some 
live lectures of their choice in person but use the video for other lectures). Non-traditional 
students consisted of hybrid and distance students combined.  

This research has several objectives:  
1. To examine the effect on enrollment of adding a distance option to an 

Introduction to Biostatistics course. 
2. To evaluate the “distance effect” by a comparison of grades of non-traditional 

students vs. traditional students in Spring 2005. The traditional students in 
this course provide a unique “internal” control group that can be utilized to 
evaluate the distance effect. Semester-to-semester variation is eliminated by 
the use of this internal control group.  
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3. To evaluate the “video effect” by a comparison of grades between traditional 
students in a course with a distance option that included access to lecture 
videos (Spring 2005) and traditional students in the same course offered 
without a distance option, and thus without video access (Fall 2004). 
Variation due to registration status is eliminated by using only traditional 
students in the control group. 

4. To compare course evaluations for the two semesters. Because course 
evaluations are anonymous, the registration status of a responder cannot be 
determined. Thus evaluation of a distance effect, or a video effect, with 
respect to evaluations is not possible. 

 
3.4. RESEARCH QUESTIONNAIRE AND SCHOOL SUPPORT 

 
An “Information for Research Subjects and Research Questionnaire” was provided to 

students enrolled in each class. The questionnaire provided the students with a description 
of the study, information regarding confidentiality, potential risks and benefits, time 
commitment, and whom to contact with questions. The Information for Research Subjects 
and Research Questionnaire was reviewed and approved (judged exempt) by the Human 
Subjects Committee at the Harvard School of Public Health and by the Research Review 
Committee at Academic Services at the Harvard Extension School. As per the request of 
these committees, the instructor did not view the questionnaire until grades were 
finalized. A student signature was also required to include the student’s grade in this 
evaluation. Students were treated equally regardless of their decision to participate. 

The one-page Research Questionnaire collected data such as demographics, 
educational level, place of employment, whether the student had a prior statistics or 
biostatistics course, whether the student was a mathematics or statistics major, and 
whether the course was a requirement.  

The Extension School provided funding for two Faculty Aides (i.e., students that 
required research experience in order to complete their program) to assist with this 
research project. 
 
3.5. STATISTICAL CONSIDERATIONS AND METHODS 
 

 Descriptive statistics are used to describe the study sample. In general, categorical 
variables are summarized with counts and percentages. Continuous variables are 
summarized by displaying descriptive statistics (n, mean, standard deviation, and 
median). A bar graph is used to display student enrollment over time. Between-group 
comparisons are performed using Wilcoxon Rank Sum tests for continuous baseline 
variables and grades, Fisher’s exact tests for categorical baseline variables, and the mean 
score test (Stokes, Davis, & Koch, 1995) was used to compare the evaluations. 
Confidence intervals (CIs) using the t distribution are used to estimate evaluation rating 
differences. Exact CIs are used to estimate between-group difference in grades.  

All significance testing is performed at the 0.05 level and all reported p-values are 
two-sided. There is no adjustment for multiple testing, therefore results should be 
interpreted with caution.  
 



68 

 

 

4. RESULTS 
 

4.1. ENROLLMENT 
 
A substantial enrollment increase (100%) was noted when the distance option was 

offered. Figure 1 displays enrollment for the past six semesters (all taught by the same 
instructor) for this course. It is notable that this increase occurred without targeted 
advertising of the distance option. The course enrollment consisted of only 10% distance 
students but 39% hybrid students. This suggests that the freedom and flexibility of lecture 
or video availability offered by the hybrid option was particularly attractive to students. 

 

 
 

Figure 1. Student enrollment over time 
 

4.2. DEMOGRAPHICS AND BASELINE CHARACTERISTICS 
 
Table 1 displays demographic and baseline characteristics of students in the courses 

by semester. These data were collected via a questionnaire to assess similarity of the 
comparison groups at baseline (i.e., upon entering the course). Summaries are provided 
only for students who signed the Research Questionnaire. No significant differences 
between comparison groups are noted with respect to age, gender, race, education, and 
place of work. Further, the proportions of students that were graduate students, had a 
prior statistics course, were mathematics or statistics majors, and for which this was a 
required course were also not dissimilar. 
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Table 1. Summary of Student Demographics and Baseline Characteristics 
 

Variable Fall 2004 
(n=52) 

Spring 2005   
Trad. 

(n=43) 
Hybrid 
(n=28) 

Distance 
(n=8) 

Total 
(n=79) p-valuea p-valueb 

Age 
(Mean/SD/Median) 

31/9/28 29/8/26 29/7/27 35/10/39 30/8/26 .508 .283

Gender (n, %)      .468 .503
 Male 17 (33%) 11 (26%) 9 (32%) 3 (37%) 23 (29%)   
 Female 35 (67%) 32 (74%) 19 (68%) 5 (63%) 56 (71%)   
Race (n, %)      .490 .726
 White  37 (71%)   34 (79%) 18 (64%) 6 (75%) 58 (73%)   
 Black 1 (2%) 2 (5%) 2 (7%) 0 (0%) 4 (5%)   
 Hispanic 3 (6%) 1 (2%) 0 (0%) 0 (0%) 1 (1%)   
 Asian 10 (19%) 5 (12%) 6 (21%) 1 (13%) 12 (15%)   
 Native American 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)   
 Other 1 (2%) 1 (2%) 2 (7%) 1 (13%) 4 (5%)   
Educationc (n, %)        
 Bachelor’s 50 (96%) 37 (86%) 24 (86%) 6 (75%) 67 (85%) .763 .135 
 Master’s 11 (21%) 8 (19%) 5 (18%) 0 (0%) 13 (16%) .762 .802 
 PhD 5 (10%) 1 (2%) 1 (4%) 1 (13%) 3 (4%) .589 .217
 MD 3 (6%) 1 (2%) 1 (4%) 1 (13%) 3 (4%) .589 .624
 Prior Stat Course 31 (60%) 24 (56%) 11 (39%) 5 (63%) 40 (51%) .370 .835 
 Math/Stat Major 2 (4%) 1 (2%) 1 (4%) 0 (0%) 2 (3%) >.995 >.995
 Required Class 14 (17%) 16 (37%) 8 (29%) 3 (38%) 27 (34%) .636 .376
Workplace (n, %)  .907 .303 
 Student 8 (15%) 3 (7%) 2 (7%) 1 (13%) 6 (8%)   
 Academic  6 (12%) 7 (16%) 10 (36%) 0 (0%) 11 (22%)   
 Hospital 10 (19%) 14 (33%) 6 (21%) 4 (50%) 24 (30%)   
 Pharmaceutical 6 (12%) 1 (2%) 1 (4%) 0 (0%) 2 (3%)   
 Biotechnology 8 (15%) 4 (9%) 3 (11%) 1 (13%) 8 (10%)   
 Government 3 (6%) 2 (5%) 0 (0%) 1 (13%) 3 (4%)   
 Other 11 (21%) 12 (30%) 6 (21%) 1 (13%) 19 (24%)   
Credit Level (n, %)      >.995 .538
 Graduate 25 (48%) 24 (56%) 17 (61%) 4 (50%) 45 (57%)   
 Undergraduate 27 (52%) 19 (44%) 11 (39%) 4 (50%) 34 (43%)   

aTraditional students vs. non-traditional students in Spring 2005. bTraditional students in Spring 2005 vs. 
traditional students in Fall 2004. cResponses are not mutually exclusive. 
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Table 2. Summary of Student Grades (Spring 2005 Traditional vs. Non-Traditional) 
 

Variable 
(Mean/SD/Median) Total Traditional Hybrid  Distance  

 
p-valuea 
 

Difference 
(95% CI)b 

Difference 
(95% CI)c 

Difference 
(95% CI)d 

Total (n) 79 43 28 8     
Overall grade  88/11/91 89/12/91 89/9/91 85/13/87 0.82 (-4.2, 5.3) (-13.3, 6.3) (-4.5, 5.4) 
Exam average 82/14/85 82/15/83 83/12/85 78/19/83 0.83 (-5.0, 7.5) (-17.5, 7.5) (-7.5, 7.5) 
Homework average 92/8/94 92/8/95 93/7/95 91/5/93 0.66 (-1.7, 2.5) (-5.5, 2.3) (-2.3, 2.3) 
Project average 94/7/96e 94/7/97f 94/7/96g 89/8/89h 0.47 (-1.5, 4.0) (-14.5, 1.5) (-3.5, 2.0) 

aWilcoxon rank sum test comparing Spring 2005 traditional vs. non-traditional students (hybrid and distance combined), stratified by credit level. 
bExact CI for Spring 2005 traditional vs. non-traditional students.  
cExact CI for Spring 2005 traditional vs. distance students.  
dExact CI for Spring 2005 traditional vs. hybrid students (Hodges & Lehmann, 1963; Lehmann, 1975). 
en = 45. fn = 24. gn = 17.. 8n = 4. 
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4.3. GRADES 
 

Evaluation of the Distance Effect We compared the grades (overall course average, 
exam average, and homework average) of the traditional students to the non-traditional 
students in Spring 2005 in order to evaluate the distance effect, stratifying by credit level 
(graduate or undergraduate). The independent variable was registration status, and the 
dependent variable was grade. Results are displayed in Table 2.  

No statistically significant differences between traditional versus non-traditional 
students (Spring 2005) were noted with respect to overall course average, exam average 
(i.e., equally weighted average of the midterm and final exams), homework average, or 
project average. CI estimates (95%) for the difference between traditional and non-
traditional students indicate that group differences for the overall median grade may be as 
large as 5 points in either direction. 
 

Evaluation of the Video Effect We further compared the traditional students in 
Spring 2005 to the traditional students from Fall 2004 to evaluate the video effect, 
stratifying by credit level (graduate or undergraduate). The independent variable was 
semester and the dependent variable was grade. Table 3 displays the results.  

Statistically significant differences with respect to exam average were noted between 
traditional students in Spring 2005 and Fall 2004, with the students in Spring 2005 
performing worse. Confidence interval estimates indicate that median group differences 
for the overall grade may be as large 12.5 points. This is believed to be caused by 
(unintentional) semester-to-semester variation in exam difficulty. However, one cannot 
rule out a detrimental effect of the distance option on traditional students, potentially due 
to camera distractions in class or a diversion of the instructors’ attention to address 
distance student needs. No statistically significant differences were noted with respect to 
overall course average, homework average, or project average.  

 
Table 3. Summary of Student Grades (Fall 2004 Traditional vs. Spring 2005 Traditional) 
 

Variable 
(Mean/SD/Median) 

Fall 2004 
Total 

Spring 2005 
Traditional 

 
p-valuea 

 

Difference 
(95% CI)b 

Total (n) 52 43   
Overall grade  92/10/95 89/12/91 0.11 (-7.6, 0.8) 
Exam average 91/11/95 82/15/83 <0.01 (-12.5, -2.5) 
Homework average 90/10/94 92/8/95 0.51 (-1.3, 2.7) 
Project average 92/6/93c 94/7/97d 0..08 (0.0, 6.0) 

aWilcoxon rank sum test comparing Fall 2004 vs. Spring 2005 traditional students, stratified by 
credit level. bExact CI for Fall 2004 vs. Spring 2005 traditional students (Hodges & Lehmann, 
1963; Lehmann, 1975). cn=25. dn=24. 
 
4.4. COURSE EVALUATIONS 

  
Course evaluations were voluntary, anonymous, and were not reviewed by the 

instructor until grades had been finalized and submitted. Thus, we were unable to 
distinguish evaluations by registration status. However, we compared the evaluations 
from Spring 2005 to the evaluations from Fall 2004 to examine if the addition of the 
distance option affects course evaluations. In particular, we compared responses to “rate 
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the course overall” and “rate the instructor overall.” Each was rated on a scale from 1 
(poor) to 5 (very good). The dependent variables were evaluation scores for the course 
and the instructor, and the independent variable was semester. Results are displayed in 
Table 4. No significant differences between semesters were noted with respect to the 
overall course rating or the overall instructor rating. The CIs for the mean difference of 
the evaluations between semesters (Spring 2005 minus Fall 2004) provide ranges of 
potential differences between evaluations for the overall course and the overall instructor 
ratings. 
 

Table 4. Course Evaluation Summary 
 

Overall Rating Fall 2004 Spring 2005 p-valuea 95% CIb 
Course     
  n 50 58 
  Mean 3.94 4.09  (-0.18, 0.47) 
  S.D. 0.87 0.82   
  Response  n(%)   .37  

1 1 (2%) 1 (2%)   
2 2 (4%) 1 (2%)   
3 8 (16%) 8 (14%)   
4 27 (54%) 30 (51%)   
5 12 (24%) 18 (31%)   

Instructor     
  n 47 57   
  Mean 4.02 4.25  (-0.09, 0.54) 
  S.D. 0.94 0.66   
  Response  n(%)   .16  

1 1 (2%) 0 (0%)   
2 1 (2%) 0 (0%)   
3 11 (24%) 7 (12%)   
4 17 (36%) 29 (51%)   
5 17 (36%) 21 (37%)   

aMean score test (Stokes, Davis, & Koch, 1995).  
bNormal approximation (Spring 2005 minus Fall 2004). 

 
4.5. OTHER OBSERVATIONS 
 

Several other observations regarding the distance version of the course are worth 
noting, including organizational, instructor, and student issues. 

 
Organizational Issues Purchasing the course text and appropriate software for the 

course was more difficult for distance students as they did not have access to the campus 
book store. We identified websites (e.g., software company websites) from which 
students could purchase the necessary materials, and provided links to these websites 
from the course website. 

Students had different computing platforms, as well as different versions of software. 
Documents posted on the course website contained special characters/symbols (e.g., 
statistical notation such as Greek letters, etc.). Some students had difficulty with their 
software correctly recognizing statistical notation due to the different software versions. 
Creating pdf files alleviated the problem; however, students still had to download 
appropriate fonts to view the lecture notes. 
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Instructor Issues There was a substantial increase in the volume of e-mail for the 
instructor and the teaching assistants. This increase could be due in part to the increase in 
enrollment, but may also be due to the fact that e-mail is the only method of 
communication for the distance students or that iterative communication between 
students and instructors/TAs is necessary for biostatistics courses. Homework 
submissions via e-mail can also get blocked by spam filters. 

In traditional courses, homework is submitted in class by all students, and thus an 
instructor has all student homework organized into a single location. However, with the 
distance education option, there was an increase in the proportion of homework 
assignments that were submitted by fax and e-mail, making it more difficult to keep track 
of submitted homework. This may be more of an issue in courses such as biostatistics, 
when frequent homework assignments are part of the course structure and it is necessary 
to regularly provide feedback to students. 

The instructor learned to avoid phrases such as “over here” when using a laser pointer 
during lectures, as distance students were not able to view where the instructor was 
pointing. Instead, the instructor used phrases such as “in the upper right-hand corner.” 
This can be potentially problematic with graphs, figures, and other non-text slides often 
used in biostatistics courses to illustrate concepts and visualize analyses. 

 
Student Issues Homework was returned to distance students using postal mail, and 

thus could take a couple of weeks to reach distance students that lived outside of the 
United States. A few distance students noted that this was a significant disadvantage. 

Distance students cannot attend help sessions. Although access to the instructor and 
all of the TAs was available during the course, some distance students believed that not 
being able to attend help sessions was a significant disadvantage. This can be potentially 
problematic when students have to learn how to use statistical software. 

Some students noted that something was lost when watching the video versus the live 
lecture, comparing it to watching a concert live versus watching it on television. 

A few semi-local students stated that the availability of the video provided time to 
study that would otherwise be spent commuting. Notably, commuting to live lectures for 
our course involves commuting and parking in a congested area (Harvard Square in 
Cambridge, Massachusetts, USA). 

 
5. DISCUSSION 

 
In this study, we observed an increase in enrollment in an “Introduction to 

Biostatistics” course offered with a distance option. Notably, enrollment doubled from 
the previous semester, with the “hybrid” option appearing particularly attractive to 
students. We failed to identify a significant distance effect with regard to student grades. 
We found a statistically significant video effect with respect to exam grades: Traditional 
students in a course that offered a distance option performed worse than traditional 
students in a purely traditional course. However, we believe that these differences in 
grades are likely due to unintentional semester-to-semester variability in exam difficulty, 
but cannot rule out a potential detrimental effect of the distance option on traditional 
students. We note, however, that no differences between overall grade point averages 
were detected. No evaluation differences were noted between the semesters that offered a 
distance option compared to the semester that offered the course only traditionally. 

We acknowledge possible limitations of this study due to several potential sources of 
bias. Because this is a non-randomized study, it is possible that comparison groups were 
different at baseline (selection bias). Our data do not rule out the possibility that either  
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(1) non-traditional students are superior students but distance delivery is inferior, or (2) 
non-traditional students are inferior students but distance delivery is superior. The 
“distance effect” is not solely the distance delivery effect, but is actually a combination of 
this effect and differences between traditional and non-traditional students. If there are 
differences between traditional and non-traditional students, then it is difficult to estimate 
one important parameter of interest: the difference between how a student would perform 
in the course from a distance versus how the student would perform in the course if they 
took the course traditionally. In an attempt to identify dissimilarities between traditional 
and non-traditional students, we collected “baseline” data using the questionnaire and 
failed to find significant differences between comparison groups for some important 
variables. However, group differences may exist with respect to other important 
characteristics that we were not able to identify or measure. Many distance students do 
not have the option to take the course traditionally due to geographic or time constraints, 
and for these students, the important question is whether they can successfully complete 
the course. It is also possible that our reference group (i.e., traditional students) is not 
representative of all traditional students. We are able to study only the students that 
happen to enroll into our course. We also note that the semester-to-semester variability in 
exams and assignments, and the tendency for an instructor to revise his or her teaching 
methods over time, could affect the between semester comparisons. Furthermore, because 
we were able to use data only from students that signed the Research Questionnaire 
(52/71, 73%, in Fall 2004 and 79/140, 56%, in Spring 2005), it is possible that a 
volunteer bias could affect group comparisons of baseline data. Another limitation is that 
we do not have data regarding classroom attendance. Lastly, it is important to note the 
possibility of informative drop-out. For example, if all students that perform poorly early 
in the course drop out, leaving only the students that perform well (and this drop-out is 
more prevalent in one comparison group than another), then group comparisons would be 
biased. However, we have no data to conduct such an evaluation.  

We further stress that our results should not be generalized broadly due to the 
differences in distance methods of delivery. More studies will be needed to investigate 
whether our results may be generally applicable to “Introduction to Biostatistics” courses 
with asynchronous video as an option, or if these results apply only to our university. Our 
study is not definitive, but it is a first step in providing valuable information that can be 
used as a basis for future research. 

Based on our experience, we offer the following recommendations and comments for 
instructors of distance courses: 

1. Instructors may wish to consider themselves students of the distance 
education process, and attempt to search for ways to understand the unique 
method of delivery and communication, and how it affects student learning. 
Attempt to identify ways to help students learn under this system. Learning 
statistical software can be particularly difficult for students without timely 
feedback. 

2. Provide avenues of communication, such as e-mail, for which relatively 
timely responses can be delivered. For example, if you have very experienced 
TAs (as in this course), then assign specific TAs to communicate with 
distance students via e-mail. This approach should be pursued cautiously, as 
more instructor control and oversight will likely be required with 
inexperienced TAs. Whether e-mail is directed by the instructor or TAs, it is 
important to regularly respond to e-mail. Several web-based course 
management tools, such as WebCT and Blackboard, can be helpful as 
bulletin boards. Chat rooms, wikis, and blogs can also allow and facilitate 
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class discussions. Additionally, on-line testing and students’ performance 
feedback can be done with the use of these tools.  

3. Create a comprehensive website that provides timely course materials and 
answers to common questions using software tools, such as WebCT or 
Blackboard. Providing handouts for statistical software is helpful for 
students. This will help to reduce the number of student questions.  

4. Make sure that there is adequate school support, including appropriate 
technology with high quality sound and video, as well as support for 
distributing homework and for arranging of proctored exams.  

5. Be prepared for more work. Allow more time for preparation and interaction 
with distance students. (It is thus appropriate for the instructors and TAs to be 
appropriately compensated. The Harvard Extension School increases 
compensation for distance education courses.) 

6. Learn to be flexible and adaptable to distance student needs. Create a 
balanced approach of understanding the potential difficulties for distance 
students, and maintaining academic integrity, by requiring students to be 
responsible with assignments and exams. 

7. Discuss the ownership and future use of videotapes with the school. Legality 
questions may arise regarding the future use of such videotapes. 

 
Distance education remains a controversial topic. However, distance education is here 

to stay for the foreseeable future. More extensive evaluations of the effectiveness of 
distance learning through comparisons of distance versus traditional students using 
internal control groups are needed. Such evaluations may be difficult as the distinction 
between online and traditional courses begins to blur; many traditional courses are also 
beginning to incorporate more online components such as message boards, chat rooms, 
and the electronic filing of homework. Evaluations of other biostatistics/statistics courses, 
and other methods of delivery, are also needed. Methods to enhance student learning in 
such courses should be researched. Instructors should realize that they are also students 
and, therefore, need to learn how to teach in the realm of distance education.  
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ABSTRACT 
 
Recent research in statistical reasoning has focused on the developmental process in 
students when learning statistical reasoning skills. This study investigates statistical 
reasoning from the perspective of individual differences. As manifestation of 
heterogeneity, students’ prior attitudes toward statistics, measured by the extended 
Survey of Attitudes Toward Statistics (SATS), are used (Schau, Stevens, Dauphinee & 
DeVecchio, 1995). Students’ statistical reasoning abilities are identified by the 
Statistical Reasoning Assessment (SRA) instrument (Garfield 1996, 1998a, 2003). 
The aim of the study is to investigate the relationship between attitudes and reasoning 
abilities by estimating a full structural equation model. Instructional implications of 
the model for the teaching of statistical reasoning are discussed. 
 
Keywords: Statistics education research; Statistical reasoning; Achievement 
motivations; SATS; SRA; Structural equation modelling 
 

1. INTRODUCTION 
 
Recent research into statistical reasoning about variation, distribution, and sampling 

distributions has created important insights into the developmental process of statistical 
reasoning skills. Most research has focused on the identification of subsequent, 
hierarchically-ordered stages of reasoning development by means of qualitative research 
methods such as thinking-aloud sessions and in-depth interviews. Two recent special 
issues of this journal (SERJ, Ben-Zvi & Garfield, 2004b; Garfield & Ben-Zvi, 2005) and 
an edited volume (Ben-Zvi & Garfield, 2004a) contain a wealth of such empirical studies 
into the cognitive process of developing reasoning abilities and of instructional tools that 
might foster these developments. The present research investigates statistical reasoning 
from a somewhat different perspective. It examines individual differences among 
students learning statistics and statistical reasoning. These individual differences 
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demonstrate much variability: Students enter learning processes with different 
background characteristics and different perceptions of the learning context. As a 
manifestation of students’ heterogeneity, this study uses students’ prior attitudes toward 
statistics. The main aim of this study is to investigate the relationship between students’ 
attitudes toward statistics and their prior statistical reasoning abilities when entering an 
introductory statistics course.  

Contemporary research in statistics education distinguishes an array of different but 
related cognitive processes in learning statistics: statistical literacy, statistical reasoning, 
and statistical thinking. See for example the special section of the Journal of Statistics 
Education (Short, 2002), the two special issues of SERJ (Ben-Zvi & Garfield, 2004b; 
Garfield & Ben-Zvi, 2005), Ben-Zvi and Garfield (2004a), and Pfannkuch and Wild 
(2004). The demarcation of these three cognitive processes not being complete, it is well 
accepted that statistical literacy represents the most basic skills (Ben-Zvi & Garfield, 
2004c). Gal (2004) distinguishes two interrelated components in statistical literacy: the 
ability to “interpret and critically evaluate statistical information, data-related arguments, 
and stochastic phenomena,” and the ability to “discuss or communicate” these (see also 
Rumsey, 2002). Statistical reasoning is the ability to “explain why a particular result is 
expected or has occurred, or explain why it is appropriate to select a particular model or 
representation” (delMas, 2004a; see also Garfield & Chance, 2000; Garfield, 2002). 
Statistical thinking involves an “understanding of why and how statistical investigations 
are conducted and the ‘big ideas’ that underlie statistical investigations” (Ben-Zvi & 
Garfield, 2004; see also Pfannkuch & Wild, 2004; Chance, 2002). Literacy, reasoning, 
and thinking are to some extent achieved even before formal schooling in statistics takes 
place. Those naïve conceptions learned outside school can be correct or incorrect in 
nature.  

In the 1970s, cognitive research into statistical and probabilistic reasoning revealed 
several categories of fallacies in human reasoning, with examples such as the ‘Law of 
small numbers,’ the ‘Representativeness misconception’ (Kahneman, Slovic, & Tversky, 
1982), the ‘Outcome orientation’ (Konold, 1989), and the ‘Equiprobability bias’ 
(Lecoutre, 1992). Most of that research is documented in the seminal work of Kahneman 
et al. (1982), as cited in Garfield and Ahlgren (1988). In the decades thereafter, following 
the reform movement in statistics education, research shifted its focus from probabilistic 
reasoning to reasoning with data (Pfannkuch & Wild, 2004), as evidenced in the topics of 
the recent series of SRTL research forums and the compilation of their major 
contributions in Ben-Zvi and Garfield (2004a).  

Another important development in recent decades is the design of assessment 
instruments for statistical literacy, reasoning, and thinking (delMas, 2002; Garfield & 
Ben-Zvi, 2004a). Paraphrasing Chance (2002), ‘if not assessed, it cannot be valuable,’ 
and assessment instruments were needed to match the focus on literacy, reasoning, and 
thinking. Several instruments also grew out of the need for assessment tasks that could be 
used in the context of research projects. Quantitative assessment instruments are still 
scarce, and are all derived from the first and most prominent instrument in the field: 
Statistical Reasoning Assessment (SRA). The SRA was developed by Konold and 
Garfield (Konold, 1989; Garfield, 1996, 1998a, 2003) as part of a project evaluating the 
effectiveness of a new statistics curriculum in U.S. high schools. The instrument is based 
on the well-described classes of misconceptions and their antipodes, the learned or 
unlearned correct conceptions, that emerged from the cognitive science research into 
reasoning fallacies (Garfield, 2003; Garfield & Ahlgren, 1988). In current terminology – 
the SRA was developed long before recent discussions on the demarcation of literacy, 
reasoning, and thinking – fallacies addressed in the SRA are of all three types. Being 
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designed in the earlier stages of the reform movement in statistics education (Ben-Zvi & 
Garfield, 2004c), the SRA focuses both on statistical and probabilistic reasoning. Newer 
assessment instruments, related to the SRA but focusing more strongly on reasoning with 
data, are currently being developed in the framework of the Assessment Resource Tools 
for Improving Statistical Thinking (ARTIST) project (delMas, 2004b; see also 
https://app.gen.umn.edu/artist/). As newer instruments were not yet available, the SRA 
was the most appropriate tool at the time of this study to assess students’ reasoning 
abilities in the large-scale applications typical of educational practice. 

Empirical studies on statistical reasoning focus predominantly on the cognitive 
developmental process students go through when learning reasoning abilities, and on the 
instructional tools that may foster these developments. The large majority of these studies 
are empirical in nature in that they use descriptions, often achieved by thinking-aloud 
sessions or interviews of the cognitive states of students, to reconstruct a developmental 
trajectory (Ben-Zvi & Garfield, 2004a). Garfield and Ben-Zvi (2004b, p. 399) ascertain 
“It may seem strange, given the quantitative nature of statistics, that most of the studies 
… include analyses of qualitative data, particularly videotaped observations or 
interviews.” Yet such studies allow identification of different states of students’ 
reasoning abilities and subsequent stages in the developmental process. Our study 
chooses a different perspective based on individual differences in student-related factors 
by investigating the role of non-cognitive individual differences in the cognitive 
development of students. This type of study has, at least in the context of statistics and 
mathematics education, a long tradition (Gal & Garfield, 1997; McLeod, 1992). In 
conceptualizing the non-cognitive domains of education, McLeod (1992) distinguishes 
among emotions, attitudes and beliefs. In most studies of learning processes in statistical 
education, the focus is on beliefs and attitudes, rather than emotions; see for example Gal 
and Ginsburg (1994) and Gal and Garfield (1997). Probably the best known, and 
certainly most validated, model on the role of attitudes in learning statistics is the model 
developed by Schau and co-authors (Schau, Stevens, Dauphinee & DeVecchio 1995). 
The Schau-model is based on the expectancy-value model for achievement motivations 
designed by Eccles and Wigfield (Eccles & Wigfield, 2002; Wigfield & Eccles, 2000, 
2002). In that model, students’ expectancies for success and the value they contribute to 
succeeding are important determinants of their motivation to perform achievement tasks. 
Expectancy for success crystallizes in two different concepts: belief in one’s own ability 
to perform a task, and a perception of the task demand. Subjective task value is generally 
modeled in a single concept, comprising several aspects: attainment value (importance of 
doing well on a task), intrinsic value (interest in and enjoyment gained from doing the 
task), utility value (usefulness), and costs (spent efforts) (Eccles, 2005). The contribution 
of Schau and co-authors to the development of the expectancy-value model of 
achievement motivations is two-fold. First, they designed the SATS measurement 
instrument to adapt the generic expectancy-value model to the statistical domain (Schau 
et al., 1995; Dauphinee, Schau & Stevens, 1997). Second, they extended the generic 
model by introducing new concepts obtained by disentangling the broad task-value 
concept of the expectancy-value model. In the first 28-item version of SATS, the task-
value concept is broken up into an affective concept, focusing most on the enjoyment 
aspect of intrinsic values, and a valuation concept, focusing on the remaining components 
of attainment and utility values. The model of the first version thus contains two 
expectancy factors that deal with students’ beliefs about their own ability and perceived 
task difficulty, Cognitive Competence and Difficulty, and two subjective task-value 
concepts that encompass students’ feelings toward and attitudes about the value of the 
subject, Affect and Value (Schau, 2003). Empirical research, both within the statistics 
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domain (Dauphinee et al., 1997; Sorge & Schau, 2002; Hilton, Schau, & Olsen, 2004) 
and in other academic domains (Tempelaar, Gijselaers, Schim van der Loeff, & Nijhuis, 
2007) supports the distinction of these affective and valuation aspects. In a second, 36-
item version of SATS (C. Schau, personal communication, November 30, 2003), two 
more concepts are introduced: Interest and Effort. The Interest concept shapes the interest 
aspect of the intrinsic value component in the expectancy-value model, whereas the 
Effort concept shapes the perceived costs component in the subjective task-value (Eccles, 
2005). To the knowledge of the authors, no empirical studies based on the extended 
SATS instrument have yet been published. Empirical studies of the 28-item version of 
SATS, referred to above, focus on the structure of attitudes alone, or on the structure of 
attitudes in relation to statistics course performances. The context of these studies is 
thereby slightly different from most studies in the expectancy-value framework that focus 
primarily on the relation between attitudes and learning task choices (such as course 
selection) rather than learning task outcomes. 

The main contribution of this paper is to investigate the dependency of students’ prior 
reasoning abilities on their attitudes toward statistics when entering an introductory 
statistics course. In the formulation of this research question, attitudes are hypothesized to 
be causal to statistical reasoning abilities. The hypothesized direction of causality is in 
agreement with process models of learning (see for example Garfield, Hogg, Schau, & 
Whittinghill, 2002), in which affective, student-related factors are regarded as 
determinants for cognitive, learning-outcome-related factors. In addition, attitudinal 
variables possess a trait-like nature, in contrast to reasoning abilities that possess a state-
like nature. Therefore, the hypothesized causal direction follows the general modeling 
pattern of stable traits determining malleable states. In order to do so we start the 
empirical third section by developing confirmatory latent factor models for attitudes, 
based on the extended SATS instrument, and for statistical reasoning, based on the SRA 
instrument. Subsequently, these factor models are integrated into a full structural 
equation model that explains reasoning abilities by attitude factors. To be able to put this 
relationship into perspective, two further cognitive constructs are added to this model: 
course performance measured by quiz and final exam scores. This extension allows 
characterizing reasoning abilities not only by their direct relationship with attitudinal 
variables, but also by a comparison of that relationship with the ones between attitudes 
and course performances.  

One of the implications of our model is that where different learning approaches 
provide alternative routes to achieve traditional course performances, perhaps one more 
efficiently than the others but all contributing to the same learning goal, this seems not to 
be true for statistical reasoning abilities. Some learning approaches really hinder 
achievement of reasoning skills. The model outcomes thus have strong implications for 
the development of instructional programs in statistical reasoning, which is one of the 
topics discussed in the concluding section. 
 

2. METHOD 
 

2.1. PARTICIPANTS AND PROCEDURE 
 
In this study, the statistical reasoning of students participating in the “International 

Business” and “International Economics” programs of the Maastricht University was 
investigated. A large number of students, 842 and 776 respectively, from these two 
programs participated in the first year, first semester course Quantitative Methods (QM) 
in 2004/05 and 2005/06. This is a compulsory introduction to mathematics and statistics 
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for all students. Of these 1618 students, 64% were male and 36% were female. Another 
relevant decomposition was that 39% students had a Dutch secondary school diploma, 
versus 61% students with non-Dutch diplomas (most of them of German nationality).  

Part of the data analyzed in this study comes from regular student quizzes and 
examinations. In the QM course, three assessment instruments are applied. One is a final 
exam, in multiple-choice format, covering both statistics and mathematics. Items in the 
exam focus on students’ ability to apply statistical and mathematical methods; those in 
statistics are motivated by the Advanced Placement Statistics exams (e.g., 
http://apcentral.collegeboard.com). Secondly, both for statistics and mathematics, three 
quizzes are taken spread over the eight weeks of the course. Quizzes are optional; they 
give rise to bonus points for the exam score. In practice, all students participate in most of 
the quizzes. For this study, quiz scores are aggregated over the three quizzes. The third 
assessment instrument is a student project. For this project, students collect personal data 
by completing several self-report instruments concerning their study approach and 
preferred strategies. Later on, they perform an explorative analysis of these data. Students 
are informed that the self-reported data are also used for three additional purposes: to 
provide study advice to students who have adopted an inefficient study approach, for 
course-improvement purposes, and for research. The project is compulsory, and assessed 
with pass/fail. Because students can acquire feedback on their project in several stages of 
its development, the final assessment of it is not very informative, and is not included in 
this study. 

 The SATS and the SRA were the first self-report instruments to be administered 
during the first days of the course. Responses to both surveys therefore reflect students’ 
prior attitudes and beliefs toward statistics and their prior reasoning abilities. Scores 
cannot be influenced by impressions of the educational process, nor by knowledge 
achieved in the course itself. 

Both instruments are quantitative in nature, and generate observations that can be 
regarded as proxies for the underlying, but unobservable, theoretical constructs. 
Therefore, the investigation of the relationship between attitudes and reasoning abilities 
requires the estimation of two confirmatory latent factor models for attitudes on the one 
side, and for statistical reasoning on the other, as well as the integration of both these 
factor models into a full structural equation model. To this model, we add two indicators 
of course performance: latent variables measuring the strongly cognitive-based scores in 
the final exam, and the more effort-based scores in quizzes. The primary reason for doing 
so is that it allows for characterization of the particular position statistical reasoning takes 
within the spectrum of different performance indicators. 

 
2.2. MEASURES 

 
Statistical reasoning abilities The Statistical Reasoning Assessment (SRA) is a test 

consisting of 20 multiple-choice or multiple-answer items developed by Konold and 
Garfield as part of a project evaluating the effectiveness of a new statistics curriculum in 
U.S. high schools (Konold, 1989; Garfield, 1996, 1998a, 2003). Each item in the SRA 
describes a statistics or probability problem and offers four to eight choices of responses. 
Most responses include a statement of reasoning, explaining the rationale for a particular 
choice. For every item, one response corresponds to a category of correct reasoning; all or  
most of the other responses correspond to categories of misconceptions. For a full 
description of the individual items and the eight correct reasoning scales and eight 
misconceptions scales, see Garfield (1998a, 2003); Table 1 summarizes the scales of the 
description of the individual items and the eight correct reasoning scales and eight 
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Table 1. SRA Correct reasoning scales and misconceptions scales; 
based on Garfield (2003). 

 
Correct Reasoning Scales:  
Prob: Correctly interprets probabilities. Assesses the understanding and use of ideas of 

randomness and chance to make judgments about uncertain events. 
Aver: Understands how to select an appropriate average. Assesses the understanding of what 

measures of center tell about a data set, and which are best to use under different 
conditions. 

Comp: Correctly computes probability, both understanding probabilities as ratios, and using 
combinatorial reasoning. Assesses the knowledge that in uncertain events not all 
outcomes are equally likely, and how to determine the likelihood of different events 
using an appropriate method. 

Indep: Understands independence.  
Sampl: Understands sampling variability.  
Correl: Distinguishes between correlation and causation. Assesses the knowledge that a 

strong correlation between two variables does not mean that one causes the other. 
2Way: Correctly interprets two-way tables. Assesses the knowledge of how to judge and 

interpret a relationship between two variables, knowing how to examine and interpret 
a two-way table. 

LrgS: Understands the importance of large samples. Assesses the knowledge of how samples 
are related to a population and what may be inferred from a sample; knowing that a 
larger, well-chosen sample will more accurately represent a population; being 
cautious when making inferences made on small samples. 

 
Misconception scales: 
AverMc: Misconceptions involving averages. This category includes the following pitfalls: 

believing averages are the most common number; failing to take outliers into 
consideration when computing the mean; comparing groups based on their averages 
only; and confusing mean with median. 

OutcO: Outcome orientation. Students use an intuitive model of probability that leads them 
to make yes or no decisions about single events rather than looking at the series of 
events; see Konold (1989). 

High%: Good samples have to represent a high percentage of the population. Size of the 
sample and how it is chosen are not important, but it must represent a large part of 
the population to be a good sample. 

Small: Law of small numbers. Small samples best resemble the populations from which they 
are sampled, so are to be preferred over larger samples. 

Repre: Representativeness misconception. In this misconception the likelihood of a sample is 
estimated based on how closely it resembles the population. Documented in 
Kahneman, Slovic, & Tversky (1982). 

Cause: Correlation implies causation. 
EquiPr: Equiprobability bias. Events of unequal chance tend to be viewed as equally likely; 

see Lecoutre (1992). 
Groups: Groups can be compared only if they have the same size. 

 
description of the individual items and the eight correct reasoning scales and eight 
misconceptions scales, see Garfield (1998a, 2003); Table 1 summarizes the scales of the 
instrument. In the design process of the instrument, the authors included several stages 
directed at achieving good validity and reliability. With regard to criterion-related 
validity, Garfield (2003) reports extremely low correlations with different course 
outcomes, suggesting statistical reasoning and misconceptions are unrelated to course 
performance. In addition, Garfield (2003) reports satisfactory test-retest reliabilities, but 
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low internal consistency reliability coefficients, implying that scales and misconception 
scales respectively appear not to measure one single ability or trait.  

In terms of the classification into the more recently developed categories of statistical 
literacy, reasoning, and thinking, the allocation of individual reasoning abilities and 
misconceptions to these three classes is not obvious. Aver, TWay, AverMc, High%, and 
Groups refer to basic data-related skills, and seem to fit best in the literacy category. At 
the other extreme, Comp, Sampl, Correl, Small, Cause, and EquiPr involve probability 
and statistical theory related concepts, and might better suit the thinking category. The 
remaining scales, referring to notions of probability and uncertainty, would then fit the 
reasoning category. We return to this issue when discussing descriptive statistics of SRA 
data obtained from this study and a limited number of other studies that provide empirical 
data on the instrument: Garfield (1998b, 2003), Garfield and Chance (2000), Liu (1998) 
and Sundre (2003). 

 
Attitudes and beliefs toward statistics Attitudes are measured with the Survey of 

Attitudes Toward Statistics (SATS) developed by Schau and co-authors (Schau et al., 
1995; Dauphinee et al., 1997). There are two existing versions of the SATS, both 
consisting of seven-point Likert-type items measuring aspects of post-secondary students’ 
statistics attitudes. The 28-item version of SATS contains four scales, as indicated below. 
Each scale is accompanied by two examples of items, one positively and one negatively 
worded: 

• Affect (six items) - measuring positive and negative feeling concerning statistics, 
the enjoyment aspect of intrinsic value: I like statistics; I am scared by statistics. 

• Cognitive Competence (six items) - measuring attitudes about intellectual 
knowledge and skills when applied to statistics, the self-concept of one’s ability 
component in the expectancy-value model: I can learn statistics; I have no idea of 
what’s going on in statistics. 

• Value (nine items) - measuring attitudes about the usefulness, relevance, and worth 
of statistics in personal and professional life, the utility and attainment components 
of task value: I use statistics in my everyday life; I will have no application for 
statistics in my profession. 

• Difficulty (seven items) - measuring attitudes about the difficulty of statistics as a 
subject, the perception of the task demand: Statistics formulas are easy to 
understand; Statistics is highly technical. 

Schau et al. (1995), Dauphinee et al. (1997), and Harris and Schau (1999) elaborate 
on the development process of the instrument. The instrument is freely available from the 
internet (Schau, Dauphinee, Del Vecchio, & Stevens, 1999). Validation research in two 
very large samples of undergraduate students has shown that a four-factor structure 
provides a good description of responses to the SATS-instrument (Dauphinee et al., 
Hilton et al., 2004).  

Recently, Schau has developed a 36-item version of the SATS, containing two 
additional scales, each covered by four, positively worded, items (Schau, personal 
communication, November 30, 2003). These scales, with one item example, are  

• Interest (four items) - students’ level of individual interest in statistics, the interest 
aspect of intrinsic value: I am interested in learning statistics. 

• Effort (four items) - amount of work the student expends to learn statistics, the 
perceived cost component of task value: I plan to work hard in my statistics course. 
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2.3. DATA ANALYSIS 
 
Parceling The very first step in the data analysis is to reverse the negatively worded 

items in the SATS instrument, such that for all items a higher score corresponds to a more 
positive attitude. This step is worthwhile to mention because it requires attentiveness in 
the interpretation of the construct Difficulty. High scores for Difficulty express a more 
positive attitude, implying that a better name for the Difficulty scale would have been 
‘perceived lack of difficulty.’ The second step of analysis is the parceling of the SATS 
data, following earlier empirical work by Schau and co-authors (Schau et al., 1995; 
Dauphinee et al., 1997; Hilton et al., 2004). The technique of item parceling, where items 
from the same subscale are aggregated into several parcels or miniscales, has been 
adopted in empirical studies for several reasons: to obtain more continuous and normally 
distributed observed data, to reduce the number of model parameters to achieve a more 
attractive variable to sample size ratio, and to get more stable parameter estimates 
(Bandalos, 2002; Hau & Marsh, 2004; Marsh, Hau, Balla, & Grayson, 1998).  

In parceling items, Hau and Marsh (2004) advise not to reduce the number of 
indicators for each latent construct beyond a minimum of three. Next, they recommend to 
counterbalance skewness in the presence of strong non-normality by creating parcels out 
of item pairs with opposite skew. In order to determine the relevance of this 
recommendation of counterbalancing skewness for our data set, the degree of non-
normality of the data was calculated as a preliminary step to parceling. In the data of the 
first four SATS factors, no indications of non-normality were found in any of the self-
reported questionnaires beyond Hau and Marsh’s (2004) category of ‘moderately non-
normal,’ implying skew = 1.0 and kurtosis = 1.5. Items corresponding to the constructs 
Interest and especially Effort were however much more strongly skewed.  

In the empirical analyses of their 28-item SATS data, Schau et al. (1995), Dauphinee 
et al. (1997), and Hilton et al. (2004) adopt an item parceling scheme based on balancing 
with respect to the positively and negatively worded items, size of parcel means, standard 
deviations, and skew (see Schau et al.). Their parceling solution contains two parcels for 
Affect, Cognitive Competence, and Difficulty each; only Value contains three. Given the 
rule of thumb of at least three parcels per factor and the advice to counterbalance skew as 
much as possible, it was decided to apply a parceling scheme different from Schau and 
co-authors, based only on skewness, and resulting in exactly three parcels per factor. 

 
Statistical analyses This study integrates several techniques of structural equation 

modeling (SEM). A SEM model is distinct from a path or regression model in that it 
hypothesizes that crucial variables, such as attitudes in this study, are not directly 
observable and are better modeled as latent variables than as observable ones. In doing 
so, a SEM model makes it possible to distinguish two different types of errors: errors in 
equations, as does the path model, and errors in the observation of variables. Making this 
distinction is especially worthwhile when errors in important constructs have rather 
different sizes. Studying reliabilities of several achievement motivations, and their 
variation over subjects, suggests that this argument applies to this study. In this study, 
SEM models were estimated with LISREL (version 8.54) using maximum likelihood 
estimation. For further discussion of SEM see for example Byrne (1998), Kline (2005), 
and Schumacker and Lomax (2004). 

The standard approach to estimate a SEM distinguishes two steps (Schumacker & 
Lomax, 2004). In the first phase of the two-step model building approach, measurement 
models for all latent variables in the model are estimated. Measurement models are in 
general factor models that allow factors, also called traits, and the uniqueness, that is the 
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errors in indicators, to be correlated. In our study, we need to estimate three of such 
‘correlated trait’ (CT), ‘correlated uniqueness’ (CU), and ‘confirmatory factor analysis’ 
(CFA) models: for the SATS data, for the SRA data, and for course performance data. In 
the second model building step, the structural part of the SEM is estimated. This 
structural part specifies the relationships between the independent and dependent latent 
variables. In contrast to the estimation of the measurement models, the estimation of 
structural relationships is to some extent explorative in nature. The structural part of the 
full structural equation model is not a priori restricted, except for several hypotheses with 
regard to the direction of the relationship. For the estimation of these structural parts, two 
different model modification procedures are applied. The first is called model trimming 
(Kline, 2005) or backward search (Schumacker & Lomax, 2004). Starting from a full 
matrix of structural path coefficients, one by one, parameters are restricted to zero if they 
prove non-significant, until all remaining structural parameters are significant. The 
second approach is called model building (Kline, 2005) or forward search (Schumacker 
& Lomax, 2004). It starts from a zero matrix of structural paths coefficients, and frees 
parameters one by one, in the order indicated by the value of the modification indices, up 
to point where no more significant improvement in fit is achieved. Because in both 
approaches subsequent models are nested, the chi-square difference statistic can be used 
to assess model fit. In all five subjects, both forward and backward searches converge to 
the same final model. Model modification is a form of explorative analysis, and brings 
along the risk of capitalization on chance.  

With large sample sizes as in our study, the χ2 test statistic is known to always reject 
in any formal test of significance (Byrne, 1998; Marsh & Yeung, 1996). For that reason, 
and following Marsh and Yeung (1996), and Hilton et al. (2004), emphasis is placed on 
the Root Mean Square Error of Approximation (RMSEA), the Goodness-of-Fit Index 
(GFI), the Non-Normed Fit Index (NNFI; termed Tucker-Lewis Index or TLI in Marsh & 
Yeung, 1996), the Comparative Fit Index (CFI) and the Relative Fit Index (RFI, termed 
Relative Noncentrality Index or RNI in Marsh & Yeung, 1996), and the normed version 
of the χ2 test statistic: χ2/df. For the last index, no clear-cut guidelines exist; values in the 
range of 2.0 to 5.0 are acceptable, with lower values indicating better fit. For RMSEA, 
values ≤ 0.05 indicate good fit, values ≤ 0.08 indicate reasonable fit. The indices GFI, 
NNFI, CFI, and RFI, all normally lie in the range 0.0 – 1.0, with higher values indicating 
better fit. As a benchmark for good fit, the value 0.90 is often used (Kline, 2005). 

The covariance matrixes required for estimation are available from the authors upon 
request. 

 
3. RESULTS 

 
3.1. DESCRIPTIVE STATISTICS OF ATTITUDES AND BELIEVES TOWARD 

STATISTICS 
 
Descriptive statistics of the SATS scales are exhibited in Table 2 and Figure 1. All 

attitudes are measured using a Likert 1-7 scale. Because all scale means, except for 
Difficulty, are larger than the neutral value of four, students in our sample express 
positive attitudes toward statistics for Affect, Cognitive Competence, Value, Interest, and 
Effort. Means and standard deviations are in line with values reported in Schau (2003) 
found as pre-test scores in a large class of undergraduate U.S. students; Affect, Cognitive 
Competence, and Value are slightly more positive in our sample, Difficulty is equal. In 
comparing our European data with data from U.S. studies, it is important to realize that 
participants in our study are all in economics and business programs. These programs 
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require students to take math classes in high school through at least intermediate level. 
Cronbach α reliability coefficients of these four scales are satisfactory, and again in line 
with intervals of values reported in Schau (2003) from several empirical studies by Schau 
and co-researchers. No empirical studies exist at this moment that incorporate the new 
scales of the 36-item SATS version: Interest and Effort. In our study, both these attitudes 
are clearly positive on average, with (planned) Effort taking a very strong position with a 
mean of 6.37 on a 1-7 scale. Figure 1 indicates that due to the high scores on Effort, 
skewness is an issue for this scale, and not for the other scales. 

 
Table 2. Scale means, standard deviations, and Cronbach α’s for attitudes toward 
statistics in our study (n=1458) and as reference, values reported in Schau (2003) 
 
 Mean (Standard deviation) Cronbach α 
 this study Schau (2003) this study Schau (2003) 
Affect 4.52 (1.10) 4.03 (1.14) 0.82 0.80 – 0.89 
Cognitive Competence 5.08 (0.89) 4.91 (1.09) 0.78 0.77 – 0.88 
Value 5.05 (0.83) 4.86 (1.01) 0.78 0.74 – 0.90 
Difficulty 3.59 (0.77) 3.62 (0.78) 0.68 0.64 – 0.81 
Interest 5.07 (0.99)  0.80  
Effort 6.37 (0.72)  0.76  
 

affect cognitive 
competence

value difficulty interest effort (planned)

1,00

2,00

3,00

4,00

5,00

6,00

7,00

911
1.288

541
1.097
1.150
986
1.217

797

1.355
631

676
784

1.087
1.298
1.226
91
663

1.223
49
1.304
1.069
906
1.150
1.410

1.457
1.455
946
803
1.127
1.247

132
1.456

 
Figure 1. Descriptives of SATS scales (n=1458) 



88 

 

 

3.2. DESCRIPTIVE STATISTICS OF STATISTICAL REASONING ABILITIES 
 
Descriptive statistics of the SRA data, similar to those reported in Garfield (1998b, 

2003), Garfield and Chance (2000) and Liu (1998), are exhibited in Table 3. Because the 
maximum score of the several scales varies with the total number of answer options 
corresponding to the scale, the table presents the means of the several scales expressed as 
a proportion, that is, on a [0-1] scale. In addition to scores on eight reasoning skills, and 
eight misconceptions, the aggregated correct reasoning score (Correct) and aggregated 
misconceptions (Misconcep) are reported. The aggregated scores are obtained in the same 
way as in the studies by Garfield and co-authors by taking the sum over all correct 
reasoning and misconception items, and re-expressing them as a proportion. Because the 
number of items per scale ranges from 1 to 5, different scales have a different weight in 
the total score, so aggregated scores are to be regarded as weighted averages. Data 
reported by Garfield and co-authors are restricted to means. 

 
Table 3. Scale means and standard deviations for statistical reasoning abilities in our 
study (n=1499) and as reference, post-course values US college students reported in 

Garfield (2003) 
 

 Mean (Standard deviation)  Mean (Standard deviation) 
 this study Garfield (2003)  this study Garfield (2003) 
Prob 0.75 (0.29) 0.68 AverMc 0.46 (0.27) 0.30 
Aver 0.71 (0.27) 0.61 OutcO 0.22 (0.17) 0.23 
Comp 0.40 (0.25) 0.46 High% 0.15 (0.23) 0.09 
Indep 0.64 (0.29) 0.63 Small 0.28 (0.27) 0.29 
Sampl 0.28 (0.30) 0.22 Repre 0.12 (0.22) 0.17 
Correl  0.66 (0.47) 0.51 Cause 0.28 (0.37) 0.10 
Twow 0.74 (0.40) 0.65 EquiPr 0.57 (0.33) 0.56 
LrgS 0.71 (0.33) 0.68 Groups 0.29 (0.46) 0.60 
Correct 0.58 (0.13) 0.55 Misconcep 0.29 (0.10) 0.27 
 
Outcomes of our study and those reported in Garfield (2003) are remarkably similar, 

although the composition of groups of participating students is rather different. Garfield’s 
study refers to U.S. college students surveyed at the end of an introductory course 
statistics, our study to European university students at the start of such an introductory 
course. Of the correct reasoning scales, Prob and Twow are amongst those with highest 
mastery level, and Comp and Sampl with lowest. Of the misconception scales, EquiPr 
and Groups are high in all studies (in our sample, Groups somewhat less), and High%, 
Repre and Cause are low. 

Conceptions for which we find higher scores than reported in the Garfield studies are 
Aver, Correl, and Twow. The misconception for which our data indicate a remarkably 
low relative score is Groups. Of these four scales, three are characterized earlier as being 
part of the category of statistical literacy. This agrees with the difference in timing of the 
instrument, as a pre-test in our study, and a post-test in other studies. Not (recently) 
educated in introductory statistics, it is not surprising that students in our study score 
relatively high on statistical literacy components, but low on a statistical thinking related 
component as MC6 (correlation implies causation), typically an important concept to be 
taught in an introductory course.  

As a last observation on average levels of reasoning skills and misconceptions, the 
high rate of correct answers is noticeable. Of the eight correct reasoning skills, five have 
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means of above 65% correct. Of the eight misconception scales, only two have means 
larger than 30%. 

 
3.3. MEASUREMENT MODEL OF ATTITUDES AND BELIEFS TOWARD 

STATISTICS 
 
As a first step in the modeling of the SATS data, an explorative factor analysis was 

performed (principal components, varimax rotation). The eigenvalue criterion identifies 
six factors. The scree-criterion demonstrates a large jump at four factors, and a smaller 
jump at six factors. The newly created scales Interest and Effort clearly qualify as 
independent factors. The same is true for the scale Value. However, items in the scales 
Affect, Cognitive Competence, and Difficulty are strongly correlated. This finding 
coincides with other empirical studies on SATS: Schau et al. (1995), Dauphinee et al. 
(1997), Hilton et al. (2004), and Cashin and Elmore (2005). On the basis of these high 
correlations, Cashin and Elmore (2005) decide to reduce the three scales Affect, 
Cognitive Competence, and Difficulty into one latent factor, whereas in the other three 
studies they are modeled as separate, but correlated, latent factors. We followed the last 
approach estimating a six-factor confirmatory factor model on parcelled attitudes data 
allowing a correlated traits (CT) structure but without cross-loadings in the factor loading 
matrix and no correlated uniqueness (CU) factor. Table 4 contains fit indices of this CT 
factor model, Figure 2 the structure of the factor model, including estimated trait 
correlations. 

 
Table 4. Fit indices of six-factor correlated traits confirmatory factor models of attitudes 

toward statistics 
 

 χ2 df RMSEA GFI NNFI CFI RFI 
CT 6CFA model  701.80 123 .057 .95 .97 .97 .96 
 
Fit indices indicate that the hypothesized correlated traits factor model fits the data 

quite well. Having confirmed the six-factor model, the correlation structure of latent 
factors depicted in Table 5 deserves prime interest. Table 5 demonstrates that twelve out 
of fifteen trait correlations are significant. Only three trait correlations appear to be non-
significant and are restricted to zero in the estimation of the final version of the factor 
model, with the other correlations freed. 

 
Table 5. Estimated latent factor correlations of attitudes toward statistics 

 
 Affect Cognitive 

Competence 
Value Difficulty Interest Effort 

Affect 1.00      
Cognitive Competence 0.80 1.00     
Value 0.40 0.43 1.00    
Difficulty 0.61 0.62 - 1.00   
Interest 0.42 0.35 0.63 - 1.00  
Effort - 0.17 0.34 -0.28 0.44 1.00 
   Note. All reported correlations are significant at p < 0.000001. 
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Figure 2. Correlated traits factor model as measurement model for attitudes toward 

statistics. Values are standardized parameter estimates. All values shown are statistically 
significant, p < 0.05. AFFECT, Affect; COGNC, Cognitive Competence; VALUE, Value; 

DIFFIC, Difficulty; INTEREST, interest; EFFORT, (planned) effort. 
 
When interpreting the trait correlation structure, the first issue that comes up is the 

effect of disentangling the broad task value concept into Affect, related to liking the 
subject, and Value, related to the importance attached to the subject. The correlation 
between latent factors Affect and Value (r = 0.40) is, relative to other correlations, 
modest. This indicates that Affect and Value are clearly empirically distinguishable 
constructs. The correlation between Value and Difficulty is insignificant, indicating that 
the attached value is independent to the lack of perceived difficulty. A third observation 
refers to the by far largest correlation, namely between Affect and Cognitive 
Competence. This is in itself a remarkable fact: Affect is achieved by decomposing the 
task value component into affective and utility-related factors, but from this analysis it 
appears that Affect is much more strongly related to the expectancy component Cognitive 
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Competence, than to Value. This once again confirms the usefulness of the affect 
extension of the expectancy-value model. The strong correlation we found is comparable 
to the results found in Dauphinee et al. (1997) and Hilton et al. (2004).  

The relationship between the two factors Interest and Effort and the other four factors 
is primarily through Value. Interest is unrelated to Difficulty, and Effort is unrelated to 
Affect and negatively related to Difficulty. That last negative relationship seems to be an 
consequence of rational study behavior; students who regard statistics as difficult plan to 
invest more study effort than students regarding the subject as less difficult. However, it 
is at odds with the expectancy-value model, where that relation has the opposite sign. The 
different outcome is best explained by the context in which the model is used; whereas 
the expectancy-value model is primarily based on the selection of learning tasks (such as 
choosing one course in favor of another), the context of this study is the intensity of 
performance, given the required learning tasks. In the expectancy-value model, Effort is 
assumed to be an intermediate outcome variable. For this interpretation to be true, the 
correlations between Effort and its predictors are expected to be strongly positive. This is 
not the case, except possibly for Interest. Two potential explanations for the weaker than 
expected relationship between Effort and its predictors are available. First, Effort is an 
ex-ante measure, and planned effort might quite well diverge strongly from ex-post 
measured, realized effort. Second, planned Effort scores seem to be a composition of two 
rather different underlying mechanisms that can make the relationships of this variable to 
other attitudinal constructs ambiguous. On the one side, students with high achievement 
motivation are assumed to spend large efforts in their learning, so planned effort acts as a 
proxy for achievement motivation. On the other side, planned effort might act as a proxy 
for students’ learning approaches; students with a tendency to a memorizing type of 
learning tend to invest more effort in their learning than students with a learning approach 
focused on understanding. In general, the latter deep learning approach is regarded as 
better, and at least more efficient, than the first mentioned surface learning approach. For 
that reason, it might be expected that students with a tendency towards deep learning will 
have more positive attitudes, making deep learning positively related to the several 
attitudinal variables, and surface learning negatively related. If this is true, the 
relationship between Effort and attitudinal variables is the result of two counterbalancing 
forces: higher planned effort levels when being motivated, but lower planned effort levels 
when relying on efficient, deep learning approaches. In the subsection discussing the 
outcomes of the full structural equation model, we further elaborate on this issue. 

 
3.4. MEASUREMENT MODEL OF STATISTICAL REASONING ABILITIES 

 
Previous empirical studies of the SRA instrument have used aggregated correct 

conceptions, and aggregated misconceptions, as scales, with the eight correct reasoning 
ability scores and the eight misconception scores as items. This would suggest a 
measurement model with the two aggregated reasoning abilities as latent constructs, and 
the correct reasoning ability and aggregated variables as indicators. However, Garfield 
(1998b), Garfield and Chance (2000) and Liu (1998) point out that this modeling 
approach has important drawbacks. In their studies, as in ours, the correlations between 
reasoning ability scores are low, mostly insignificant, and quite often of opposite signs. 
This is problematic in terms of scale construction, because it gives rise to low values of 
instrument reliability. In the present data set analyzed in this study, the Cronbach-α 
reliability of the correct reasoning scales is 0.34, whereas for the misconception scales, 
the reliability α is 0.10. These values are too low to warrant meaningfulness of 
aggregated constructs. Elsewhere, we have investigated the reliability of aggregated 
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scales for a much larger sample, and have come to similar conclusions (Tempelaar, 
2004). Deleting individual items with extreme p-values, as suggested in Liu (1998), 
appears to have little impact on reliabilities in our data.  

Inspection of the correlation matrix depicted in Table 6 does however expose a 
pattern in correlations that suggests an alternative approach for modelling the outcomes 
of the SRA-instrument. Correlations within the group of correct reasoning scales, and 
within the group of misconceptions are, without exception, low. However, in the 
rectangular part of the correlation matrix containing the correlations between correct 
reasoning skills and misconceptions, seven out of eight columns contain exactly one 
highly significant and strongly negative correlation. This is not surprising; from the 
definition of for example Prob and OutcO, it is apparent that outcome orientation, that is 
the use of an intuitive and incorrect probability model, is at odds with correctly 
interpreting probabilities. And in some cases, the strong negative correlations between 
several correct conceptions and misconceptions find their origin in the fact that the 
concepts are based on different options of the same multiple choice items, which would 
lead to negative correlations by construct (although several multiple choice items allow 
for multiple answers). 

 
Table 6. Correlations between SRA correct reasoning and misconceptions scales being 

significant at p = 0.01; values in bold exceed 0.30 in absolute value 
 
 Prob Aver Comp Indep Sampl Correl Twow LrgS 
Prob 1.00        
Aver  1.00       
Comp 0.09  1.00      
Indep  0.08 -0.16 1.00     
Sampl  0.10 0.08 -0.07 1.00    
Correl 0.09 0.17    1.00   
Twow 0.13 0.13    0.09 1.00  
LrgS  0.10 0.09  0.07 0.09 0.09 1.00 
AverMc  -0.43   -0.26    
OutcO -0.42  -0.22 -0.13    -0.32 
High%      0.08  0.11 
Small  -0.10 -0.09 0.07 -0.69   -0.16 
Repre   -0.21 -0.69 0.08    
Cause  -0.08   -0.07 -0.46   
EquiPr   -0.80 0.20 -0.12 0.09   
Groups         
 AverMc OutcO High% Small Repre Cause EquiPr Groups 
AverMc 1.00        
OutcO  1.00       
High%   1.00      
Small    1.00     
Repre     1.00    
Cause 0.14  -0.07  0.10 1.00   
EquiPr    0.12 -0.10  1.00  
Groups 0.07  0.09     1.00 
 
Taking this pattern of correlations into account, we suggest a different method of 

aggregating scales scores instead of calculating total correct and misconception scores. 
On the basis of the strong negative correlations between seven pairs of one correct 
reasoning scale and one misconception scale, a pair-wise aggregation process seems to be 
more appropriate than aggregation over all correct, and all incorrect answers. To 
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investigate this option, an exploratory factor analysis was performed. This factor analysis 
resulted in a seven-factor solution, with five factors composed of pairs of one correct 
conception and one misconception, having factor loadings of opposite signs: Comp and 
EquiPr, Sampl and Small, Indep and Repre, Prob and OutcO, and Correl and Cause. The 
remaining two factors are composed of Aver, Twow, LrgS, and AverMc; and High% and 
Groups, respectively. All factor loadings have the expected signs: positive for correct 
conceptions, negative for misconceptions.  

Subsequently, a measurement model was estimated taking the outcome of the 
explorative factor analysis as its basis. No cross-loadings were allowed but, similar to the 
estimation of the attitudes measurement model, trait correlations were allowed. In 
addition, uniqueness correlations were allowed for those reasoning abilities and 
misconceptions that shared an item. Of the 21 trait correlations, only four appear to be 
significant. This does not come as a surprise, given the many insignificant correlations in 
Table 6. All 10 uniqueness correlations appear to be significant. The final measurement 
model for reasoning abilities is depicted in Figure 3; the fit indices of the final model are 
reported in Table 7. The fit of the CTCU 7 CFA model is good. 

 
Figure 3. Correlated traits, correlated uniqueness factor model as measurement model 

for statistical reasoning abilities. Values are standardized parameter estimates. All 
values shown are statistically significant, p < 0.05. CC, SRA1..7, latent reasoning factors. 
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Table 7. Fit indices of seven-factor correlated traits confirmatory factor models of 
statistical reasoning abilities 

 
 χ2 df RMSEA GFI NNFI CFI RFI 
CTCU 7CFA model  355.00 98 0.042 0.97 0.93 0.94 0. 90 
 
Judging from the good fit of this measurement model, an important conclusion with 

regard to the SRA instrument becomes apparent. When using SRA as an instrument to 
assess statistical reasoning, it is less attractive to aggregate all correct scales and all 
misconception scales into constructs like total correct reasoning and total misconceptions, 
given the limited reliability of such constructs. As an alternative, composing latent 
reasoning constructs on which both correct and misconception scales load seems to offer 
higher reliability.  

 
3.5. FULL STRUCTURAL EQUATION MODEL OF ATTITUDE AND BELIEFS, 

STATISTICAL REASONING ABILITIES, AND COURSE PERFORMANCE 
 
The final step in the analysis regards the integration of both measurement models. 

This includes the not explicitly elaborated model for course performances, specifying the 
two latent course performances EXAM and QUIZ. Both course performance constructs 
are measured by two indicators: a score for mathematics and a score for statistics. The 
relationships that link the latent factors in the three measurement parts constitute the 
structural part of the model. The estimation of the structural parameters is similar to the 
estimation of trait correlations in the measurement models; no a priori restrictions apply 
as to what parameters are restricted to zero and which are set free. Two modification 
directions were applied: model building and model trimming. Both methods converge to 
the model depicted in Figure 4. Figure 4 does not make explicit the estimated correlations 
between latent factors; the same correlation structure as visible in Figures 2 and 3 was 
however used in the estimation of the full model. Table 8 reports fit indices of that model 
and indicates good fit. Table 9 describes the standardized parameter estimates or β-
coefficients of the structural part of the model. 

 
Table 8. Fit indices of full structural model of attitudes toward statistics, statistical 

reasoning abilities, and course performance 
 

 χ2 df RMSEA GFI NNFI CFI RFI 
SEM  1599.26 620 0.035 0.94 0.96 0.97 0.94 
 
Table 9. Standardized estimates of the structural part of the full structural model of 
attitudes toward statistics, statistical reasoning abilities, and course performance 
 

 Affect Cog Comp Value Difficulty Interest Effort SRA4 
SRA1       -0.10  
SRA2    0.09  -0.09  
SRA3        
SRA4   0.08   -0.10  
SRA5    0.18    
SRA6    0.10 -0.08   
SRA7   0.07   -0.12  
EXAM  0.39  -0.17   0.56 
QUIZ  0.34  -0.17  0.09  
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Figure 4. Structural equation model of attitudes toward statistics, statistical reasoning abilities, and course performance. Values are 

standardized parameter estimates. All values shown are statistically significant, p < 0.05. AFFECT, Affect; COGNC, Cognitive Competence; 
VALUE, Value; DIFFIC, Difficulty; INTEREST, interest; EFFORT, (planned) effort, SRA1..7, latent reasoning factors; EXAM, QUIZ, latent 

course performance factors
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The final structural model allows several interpretations. Students’ self-ability belief, 
Cognitive Competence, is a strong predictor of both latent course performance factors, 
with β-values of 0.39 and 0.34. This is in agreement with many studies on the 
expectancy-value model, and self-concept or self-efficacy research. The relationships 
between statistical reasoning and the two course performance factors are weak, which is 
in line with the low correlations between SRA constructs and course performance found 
in several studies. In our study, only SRA4, the latent factor composed of four correct 
conceptions and misconceptions related to the ability to interpret probabilities, has a 
significant and strong impact on the latent exam factor. 

The second direct effect from attitudinal variables on course performances stems 
from the other expectancy construct of perceived task demand: (lack of) Difficulty. The 
relationship is reversed, with β-values of -0.17. This outcome is somewhat surprising; the 
expectancy-value model would predict a positive relationship. However, the relationship 
is robust; using a split-sample approach (and path analysis), it is confirmed in subsamples 
composed in several ways. The bivariate relationship between Difficulty and performance 
is however absent; the negative relation we find is present only in a simultaneous relation 
between Cognitive Competence, Difficulty, and course performance. It should thus be 
interpreted as a process of underestimation of task demand by students with an above 
average ability belief. 

The reduced form squared multiple correlations of both course performance latent 
factors EXAM and QUIZ are equal to 0.10. This means that the combined effect of both 
direct paths from SATS variables to EXAM and QUIZ, and the indirect paths from SATS 
via SRA to the two course performance factors, explains 10% of the total variation in 
both course performances. In the decomposition of explained variation into direct and 
indirect effects, it becomes clear that the contribution of the indirect effect can be 
ignored: less than 0.5%. The dominance of direct over indirect effects is due to the fact 
that relations between SATS and SRA are weak, and much weaker than relations between 
SATS and performance. In line with the expectancy-value model, attitudes have a 
positive impact on reasoning abilities through the variables Value and (perceived lack of) 
Difficulty. In contrast to predictions based on the expectancy-value model, the Effort 
variable has a negative impact on four of the seven latent reasoning factors. The negative 
relationship is consistent: β-coefficients of Effort to the several SRAs are either 
significantly negative, or zero, but never positive. Although a negative relation may 
appear counter-intuitive, it is in line with related research on the relationship between 
preferred learning approaches and reasoning abilities, where it was found that a tendency 
to surface learning negatively influences statistical reasoning (Tempelaar, 2004; 
Tempelaar, Gijselaers, & Schim van der Loeff, 2006; Tempelaar, Schim van der Loeff, 
Gijselaers, Crombrugghe, 2007). Planned effort being a proxy of both achievement 
motivation and a non-efficient learning approach (see the above discussion of the 
measurement model of attitudes), will give rise to diverse relationships between learning 
outcomes and the Effort variable. Learning performances that allow for alternative 
learning paths – such as memorizing versus understanding – are expected to demonstrate 
a positive relationship with planned effort. For these learning performances, the 
achievement motivation component in planned effort is dominant; students who are 
prepared to work hard will achieve better performances. In our study, quiz scores for both 
mathematics and statistics are the ultimate example of such type of course performances. 
Quizzes are designed to be accessible for all students and the bonus points they bring 
about are especially helpful for students at risk of not passing the course. This makes it 
plausible that the motivation component in planned effort dominates the learning 
approach component, which explains the positive relationship between Effort and Quiz. 
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The opposite case is constituted by the SRA factors. Because the SRA is administered as 
an entry measurement unrelated to course grading, any direct effect of achievement 
motivation can assumed to be absent. And because statistical reasoning is not part of any 
secondary education of most students in this study, indirect effects – taking advantage of 
having been highly motivated in secondary school – will at most be very modest. As a 
result, the learning approach component in planned effort is expected to be dominant, 
which quite well explains the negative relationships found between EFFORT and four of 
the SRA factors. In this spectrum of course performances, the scores on the exam take an 
intermediate position. Being the course performance measurement, they certainly contain 
a strong achievement motivation component. At the same time, exams are certainly much 
less accessible than quizzes, which feeds the learning approach component. In the 
aggregation, the two effects are counterbalancing, which quite well might explain the 
latent factor EXAM being unrelated to Effort. 

 
4. CONCLUSIONS 

 
In this study the affect-extended version of the expectancy-value model (Schau et al., 

1995; Dauphinee et al., 1997; Hilton et al., 2004) was adopted as an achievement 
motivation model. Our data corroborate this extension, in the sense that affect and value 
turn out to be clearly distinguishable constructs, as well as in the sense that these 
variables play a distinctive role in the relationships with reasoning abilities and course 
performance. To our knowledge this study is the first to apply the 36-item SATS version, 
with the new scales Interest and Effort. Both scales appear to be a valuable addition to the 
instrument. The latent trait correlations in Table 5 demonstrate that the two factors are 
well identified constructs. However, correlational analysis suggests that Effort might be 
composed of two rather different characteristics. Therefore, a decomposition of this scale 
into an achievement motivation aspect and a learning approach aspect is called for. The 
latter aspect has the interpretation that students with a surface learning approach will 
typically achieve high scores on this Effort variable, because they invest large amounts of 
time for learning subjects by memorization.  

Through a factor-analytic study, we conclude that a factor model with most factors 
being composed of pairs of one reasoning ability and one misconception provides an 
appropriate measurement model. This shows that the SRA-instrument used by Garfield 
(1998b, 2003), Garfield and Chance (2000) and Liu (1998) is not flawed. In studies by 
these authors only two aggregate scales, one for statistical reasoning abilities and one for 
statistical misconceptions, are employed. They point out that these aggregate scales have 
shortcomings in view of the low values of correlations between the scales that constitute 
both aggregate scales, which results in low reliabilities. Our results imply that the finding 
of low correlations does not invalidate the instrument, but that alternative measurement 
models other than the one based on aggregate scales should be used.  

This study adds support to previous findings of the absence of a strong relationship of 
misconceptions and their counterpart, the reasoning abilities, with students’ course 
performances. This is demonstrated in studies where statistical reasoning is regarded as 
one of the several learning outcomes of the course and assessed simultaneously with 
these other course performances (Garfield, 1998b, 2003; Garfield and Chance, 2000; and 
Liu, 1998). In the present study along with those of Tempelaar (2004) and Tempelaar et 
al. (2006), it is also demonstrated in a second type of studies, where statistical reasoning 
is regarded as part of the prior knowledge state of the student and assessed before the start 
of the course. Are these studies, given their conclusions that SRA components are only 
weakly or even un-related to different course performance indicators, uninformative? We 
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would argue that the opposite is true; exactly because of these absent relationships, they 
are informative. In general, different components of statistical knowledge, measured as 
course performance scores, tend to be substantially correlated. For example, in this study 
the correlation between latent course performance factors EXAM and QUIZ equals r = 
0.69. And investigating the relationships among three rather different types of course 
performances, final exam scores, quiz scores, and homework scores, we find similar 
substantial correlations. Because the SRA-instrument was developed to assess statistical 
reasoning mastery achieved in high school statistics programs, the natural hypothesis is 
that SRA-scores correlate with the several course performances in the same way as the 
other components of course performances do. But they clearly do not do so. It is these 
unexpected low correlations that make studies such as ours informative, rather than the 
case that the expected, substantial positive correlations would have been found. 

The absence of substantial relationships can be well explained in the context of naïve 
theories that are an element of the new theory of learning, as elaborated in Bruer’s (1993) 
‘Schools for thought.’ Naïve theories or misconceptions are informal, self-acquired 
elements of science knowledge, inconsistent with formal science. Students can possess 
formal knowledge and naïve knowledge at the same time; the learning of formal 
knowledge does not automatically imply that naïve knowledge is unlearned. In spite of 
having mastered the formal knowledge, students tend to solve scientific problems with 
their naïve knowledge, especially when they are confronted with these problems outside a 
school context. And, worst of all, formal knowledge tends to be forgotten much faster 
than naïve knowledge. Empirical outcomes of studies using the SRA-instrument are in 
line with these observations. Absence of substantive relationships is compatible with the 
hypothesis that both statistical reasoning abilities and statistical misconceptions are part 
of students’ naïve statistical knowledge; the first category naïve and correct, the second 
category naïve but incorrect. More research to investigate the role of naïve theories in 
learning and the development of naïve knowledge over time is necessary. This is 
particularly relevant because the reform movement in statistics education has called for a 
more prominent position of statistical reasoning, and the related domains of statistical 
literacy and thinking in the statistics curriculum. So it is the reformed curriculum, more 
than any traditional curriculum, that requires resolving the instructional challenge of 
unlearning statistical misconceptions before being able to replace them with proper 
reasoning abilities. 

Empirical studies as documented in special issues of SERJ (Ben-Zvi & Garfield, 
2004b; Garfield & Ben-Zvi, 2005) and in Ben-Zvi & Garfield (2005) conclude that in 
order to learn reasoning and to unlearn misconceptions, the use of specific educational 
tools is indispensable. This study suggests that the use of these tools is probably only part 
of the solution of the instructional challenge. A strong dependency on these instructional 
tools might be at odds with educational principles on which student-centered programs 
are based, in the sense that they limit students’ own responsibility to organize the learning 
process. The outcomes of this study might bring forward some further limitations. In 
most learning processes students enter the learning context with a given set of 
background characteristics, such as a preference for deep learning versus surface 
learning. Most of these contexts allow all students to achieve satisfactory learning 
outcomes, be it along different learning paths. As a concrete example, our structural 
equation model suggests that both surface learning oriented students and deep learning 
oriented students can achieve adequate course performance scores. But our empirical 
analyses also suggest that statistical reasoning might be the odd man out in this context; 
the learning of statistical reasoning seems not easily to assimilate to the variation in 
students’ background characteristics as preferred learning approach, as is the case with 
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other cognitive goals. If this conclusion is correct, it implies we need an even broader 
range of educational tools than already described in the sources referred to earlier; more 
than content, the tools should address general learning approaches. 
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PAST IASE CONFERENCES6 
 

SRTL-5 
THE FIFTH INTERNATIONAL RESEARCH FORUM ON STATISTICAL 

REASONING, THINKING, AND LITERACY 
Coventry, UK, August 11 - 17, 2007 

 
Reasoning about Statistical Inference: 

Innovative Ways of Connecting Chance and Data. 
 

The fifth 
research forum in 
a series of 

international research forums on statistical reasoning, thinking and literacy was held 
at the Centre for New Technologies Research in Education of the University of 
Warwick, England. This particular gathering of researchers played an important role 
in advancing our understanding of the richness and depth of reasoning about informal 
inference, a natural development of previous foci on variability and distribution. The 
forum was sponsored by The Royal Statistical Society (UK), The American Statistical 
Association (ASA) Section on Statistical Education, the Institute of Education, 
University of Warwick, and the School of Education, University of Leicester. 

Twenty-four researchers in statistics education from seven countries shared their 
work, discussed important issues, and initiated collaborative projects in a stimulating 
and enriching environment. Sessions were held in an informal style, with a high level 
of interaction. With emphasis on reasoning about informal inference, a wide range of 
research projects were presented spanning learners of all ages, as well as teachers and 
practitioners in the workplace. These demonstrated an interesting diversity in research 
methods, theoretical approaches, and points of view. As a result of the success of this 
gathering, plans are already underway for the next gathering (SRTL-6) in 2009.   

The research forum proved to be very productive in many ways. Progress was 
made towards identifying the key elements of statistical inference and in locating the 
range of resources that might be brought to bear in supporting engagement with those 
powerful ideas. Several types of scientific publications will be produced including 
proceedings on the Forum Website (http://srtl.stat.auckland.ac.nz/), papers in refereed 
journals, and a special issue of Statistics Education Research Journal, expected in 
2008, with Dave Pratt and Janet Ainley as guest editors. These outcomes will all 
serve as a rich resource for statistics educators and researchers. 

Dave Pratt (Institute of Education, University of London) and Janet Ainley 
(University of Leicester) led the local planning and organizing prior to the SRTL-5 
gathering. Yvette Kingston, supported by Peter Johnston-Wilder and Theodosia 
Prodromou (all University of Warwick) ensured that the forum ran smoothly and was 
able to meet its objectives. Thanks to the efforts of this group, participants were able 
to not only enjoy each other’s creative efforts during the scientific programme but 
also to appreciate the local culture through a variety of social events that helped to 
build a sense of a community amongst the researchers. 

For further information please contact the SRTL co-chairs: 
Joan Garfield, jbg@umn.edu and Dani Ben-Zvi, dbenzvi@univ.haifa.ac.il 
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IASE SATELLITE CONFERENCE ON  
ASSESSING STUDENT LEARNING IN STATISTICS 

Guimarães, Portugal, August 19-21, 2007 
 

The meeting was held on August 19-21, 2007 in Guimarães, Portugal, immediately 
prior to ISI-56 in Lisbon. The Satellite involved papers on many aspects of assessing 
student learning in statistics. Over 40 papers were presented along with a number of 
posters and a discussion of examination questions.  

The complete proceedings, published also on CD, is freely available at  
http://www.swinburne.edu.au/lss/statistics/IASE/CD_Assessment/index.htm 
Papers presented at the conference are also available at 
http://www.stat.auckland.ac.nz/~iase/publications.php?show=sat07 

 
ISI-56 

THE 2007 SESSION OF THE INTERNATIONAL STATISTICAL INSTITUTE 
Lisboa, Portugal, August 22 – 29, 2007 

 
The 56th Session of the International Statistical Institute (ISI) was held in Lisboa, 

Portugal. The International Association for Statistical Education (IASE) organized 10 
statistics education sessions for ISI-56. It is planned that the papers presented in the IASE 
sponsored sessions will be available at the website:   

http://www.stat.auckland.ac.nz/~iase/publications.php  
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FORTHCOMING IASE CONFERENCES 
 

JOINT ICMI /IASE STUDY 
STATISTICS EDUCATION IN SCHOOL MATHEMATICS:  

CHALLENGES FOR TEACHING AND TEACHER EDUCATION 
Monterrey, Mexico, June 30 to July 4, 2008 

 
The International Commission on Mathematical 

Instruction (ICMI, http://www.mathunion.org/ICMI/) and 
the International Association for Statistical Education 
(IASE, http://www.stat.auckland.ac.nz/~iase/) are pleased 
to announce the Joint ICMI /IASE Study - Statistics 
Education in School Mathematics: Challenges for Teaching 
and Teacher Education.  

Following the tradition of ICMI Studies, this Study will 
comprise two parts: the Joint Study Conference and the production of the Joint Study 
book. The Joint Study Conference will be merged with the IASE 2008 Round Table 
Conference. 

The Joint Study Conference (ICMI Study and IASE Round Table Conference) will 
take place at the Instituto Tecnológico y de Estudios Superiores, Monterrey, Mexico 
(http://www.mty.itesm.mx/), from June 30 to July 4, 2008. Participation in the 
Conference is only by invitation, based on a submitted contribution and a refereeing 
process. Accepted papers will be presented in the Conference and will appear in the 
Proceedings that will be published by ICMI and IASE as a CD-ROM and on the Internet.  

The second part of the Joint Study – the Joint Study book – will be produced after the 
conference and will be published in the ICMI Study Series. Participation in the Joint 
Study Conference does not automatically assure participation in the book, since a second 
selection and rewriting of selected papers will be made after the conference. 

More information: Carmen Batanero, batanero@ugr.es 
Website: http://www.stat.auckland.ac.nz/~iase/temp/RoundTable2008Announce.htm 
 

ICME-11 
INTERNATIONAL CONGRESS ON MATHEMATICAL EDUCATION 

TOPIC STUDY GROUP #13  
RESEARCH AND DEVELOPMENT IN THE TEACHING AND LEARNING OF 

PROBABILITY 
Monterrey, Mexico – July 6 - 13, 2008 

 
Probability and statistics education are relatively new disciplines. Both have only 

recently been introduced into main stream school curricula in many countries. While 
application-oriented statistics is undisputed in its relevance, discussion about 
probability is more ambivalent. When probability is reduced to its classical 
conception, mainly based on combinatorics or its formal treatment in higher 
mathematics, it can be seen as irrelevant, and may be abandoned to leave only the 
statistical element of the stochastics discipline. However, we believe that there are 
some powerful arguments in favour of a strong role for probability within stochastics 
curricula.  
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We invite submissions related to the following topics: 
Individuals’ corner 

• Students’ understanding and misunderstanding of fundamental probabilistic 
concepts 

• Ideas of probability in young children 
Impact of technology 

• The use of technology for students’ learning of probability 
• Using specific software to study probability and sampling distributions 
• Special issues in e-learning 

Teacher’s corner 
• Teacher education on the topic of probability 
• Teachers’ conceptions about teaching probability 

Fundamental ideas 
• The probabilistic idea of random variable; distribution, expectation 
• The central limit theorem; convergence 
• Bayes’ theorem and conditional probability; independence; exchangeability 
• Probabilistic modelling – a probabilistic look at distributions 

 
TEAM CHAIRS 

Manfred Borovcnik (Austria), manfred.borovcnik@uni-klu.ac.at 
Dave Pratt (U.K.), d.pratt@ioe.ac.uk 
Silvia Alatorre Frenk (Mexico), alatorre@solar.sar.net 

 
TEAM MEMBERS 

Carmen Batanero (Spain), batanero@ugr.es 
Wu Yingkang (China) , ykwu@math.ecnu.edu.cn 

 
Website: http://tsg.icme11.org/tsg/show/14 
 

ICME-11 
INTERNATIONAL CONGRESS ON MATHEMATICAL EDUCATION 

TOPIC STUDY GROUP #14  
RESEARCH AND DEVELOPMENT IN THE TEACHING AND LEARNING OF 

STATISTICS 
Monterrey, Mexico – July 6 - 13, 2008 

 
Statistics education is a growing field of research and development at school and 

university level. The topic group will focus on presenting and discussing recent 
research. 

Statistics at school level is usually taught in the mathematics classroom in 
connection with learning probability. Inferential statistics is based on basic 
understandings of probability. Our topic includes probabilistic aspects in learning 
statistics, whereas research with a specific focus on learning probability is being 
discussed Topic Study Group #13 of ICME. 

We are open to all kinds of relevant research papers, but our specific focus will be 
on the following topics: 

• Students’ thinking and reasoning about distributions (including variability, 
comparing distributions)  
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• Students’ making inferences from data (from informal inference to more formal 
inference, inference from sample to population or process, from data to context, 
role of models and probability)  

• Statistical literacy  
• Role of technology (tools, applets, internet)  
• Research on teachers and teaching of statistics 

 
TEAM CHAIRS 

Rolf Biehler (Germany), biehler@mathematik.uni-kassel.de  
Mike Shaughnessy (USA), mikesh@pdx.edu  

 
TEAM MEMBERS 

Omar Rouan (Morocco), orouan@yahoo.com  
Ernesto Sánchez (Mexico), esanchez@cinvestav.mx  
Jane Watson (Australia), Jane.Watson@utas.edu.au  

 
Website: http://tsg.icme11.org/tsg/show/15 

 
ISI-57 

THE 2009 SESSION OF THE INTERNATIONAL STATISTICAL INSTITUTE 
Durban, South Africa, August 16 – 22, 2009 

 
IASE sponsored Invited Paper Meetings for 57th 

Session in Durban are being organised by Helen 
MacGillivray (Australia, h.macgillivray@qut.edu.au). The 
IASE Programme Committee for ISI-57 has chosen the 
theme - Statistics Education for the Future. 

 
More information is available at: 
http://www.statssa.gov.za/isi2009/ 

 
 

SRTL-6 
THE SIXTH INTERNATIONAL RESEARCH FORUM ON STATISTICAL 

REASONING, THINKING, AND LITERACY  
Brisbane, Australia, 2009 

 
The sixth SRTL forum will 
be organized at University of 
Queensland, Brisbane.  

 
The forum coordinator is Katie Makar (k.makar@uq.edu.au). 
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ICOTS-8 
DATA AND CONTEXT IN STATISTICS EDUCATION: 

TOWARDS AN EVIDENCE-BASED SOCIETY 
Ljubljana, Slovenia, July 11-16, 2010 

 
The 2010 International Conference on 

Teaching Statistics will be held in the city of 
Ljubljana, Slovenia, July 11-16. It is being 
organised by the IASE and the Slovenian 
Statistical Association. The venue will be the 
Ljubljana Cultural and Congress Centre. 

Statistics educators, statisticians, teachers and 
educators at large are invited to contribute to the 
scientific programme. Types of contribution 

include invited papers, contributed papers, and posters. No person may author more 
than one Invited Paper at the conference, although the same person can be co-author 
of more than one paper, provided each paper is presented by a different person. 

Voluntary refereeing procedures will be implemented for ICOTS-8. Details of 
how to prepare manuscripts, the refereeing process and final submission 
arrangements will be announced later. 
 
INVITED PAPERS 

Invited Paper Sessions are organized within 10 Conference Topics as follows.  
 

Topics and Topic Convenors 
1.   Data and Context in Statistics Education: Towards an Evidence-based Society. 
      Brian Phillips (Australia)    bphillips@swin.edu.au 
      Irena Ograjensek (Slovenia)   irena.ograjensek@ef.uni-lj.si 
2.   Statistics Education at the School Level. 
      Mike Shaughnessy (USA)   mikesh@pdx.edu 
      Doreen Connor (UK)   doreen.connor@ntu.ac.uk 
3.   Learning to Teach Statistics. 
      Katie Makar (Australia)   k.makar@uq.edu.au 
      Joachim Engel (Germany)   engel@math.uni-hannover.de 
4.   Statistics Education at the Post Secondary Level. 
      Elisabeth Svensson (Sweden)   elisabeth.svensson@esi.oru.se 
      Larry Weldon (Canada)   weldon@sfu.ca 
5.  Assessment in Statistics Education. 
      Beth Chance (USA)   bchance@calpoly.edu 
      Iddo Gal (Israel)   iddo@research.haifa.ac.il 
6.   Statistics Education, Training and the Workplace. 
      Gabriella Belli (USA)   gbelli@vt.edu 
      Peter Petocz (Australia)   peter.petocz@mq.edu.au 
7.   Statistics Education and the Wider Society. 
      Richard Gadsden (UK)   R.J.Gadsden@lboro.ac.uk 
      Oded Meyer (USA)  meyer@stat.cmu.edu 
8.   Research in Statistics Education. 
      Arthur Bakker (The Netherlands)   a.bakker@fi.uu.nl 
      Tim Burgess (New Zealand)  t.a.burgess@massey.ac.nz 
9.   Technology in Statistics Education. 
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      Deborah Nolan (USA)   nolan@stat.berkeley.edu 
      Paul Darius (Belgium)   paul.darius@biw.kuleuven.be 
10. An International Perspective on Statistics Education. 
      Delia North (South Africa)   northd@ukzn.ac.za 
      Enriqueta Reston (Phillipines)   edreston@usc.edu.ph 
 
Session themes within each Topic are currently being discussed. The themes and 

Session organizers with email contact will be available on the ICOTS-8 web site 
http://icots8.org/, under “Scientific Programme” by June 2008. Those interested in 
submitting an invited paper should contact the appropriate Session Organiser before 
December 1, 2008. 
 
CONTRIBUTED PAPERS 

Contributed paper sessions will be arranged in a variety of areas. Those interested 
in submitting a contributed paper should contact either Gilberte Schuyten 
(Gilberte.Schuyten@UGent.be), John McKenzie (mckenzie@babson.edu), or Flavia 
Jolliffe (F.Jolliffe@kent.ac.uk) before September 1, 2009. 
 
POSTERS 

Those interested in submitting a poster should contact Mojca Bavdaz 
(mojca.bavdaz@ef.uni-lj.si) or Alesa Lotric Dolinar (alesa.lotric.dolinar@ef.uni-lj.si) 
before January 15, 2010. 
 
GENERAL ISSUES 

More information is available from the ICOTS-8 web site at http://icots8.org/ 
which will continue to be updated over the next three years, or from the ICOTS IPC 
Chair John Harraway, (jharraway@maths.otago.ac.nz), the Programme Chair Roxy 
Peck (rpeck@calpoly.edu), and the Scientific Secretary Helen MacGillivray 
(h.macgillivray@qut.edu.au). 
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OTHER PAST CONFERENCES 
 

USCOTS 2007  
UNITED STATES CONFERENCE ON TEACHING STATISTICS 

Columbus OH, USA, May 17-19, 2007 
 

The second biennial United States Conference on 
Teaching Statistics (USCOTS 07) was held on May 17-19, 
2007 at the Ohio State University in Columbus, Ohio, 
hosted by CAUSE, the Consortium for the Advancement of 

Undergraduate Statistics Education. The target audience for USCOTS was teachers of 
undergraduate and AP statistics, from any discipline or type of institution.  

Materials for most of the talks are available at USCOTS page: 
http://www.causeweb.org/uscots/program/ 
 

2007 JOINT STATISTICAL MEETINGS 
Salt Lake City UT, USA, July 29 - August 2, 2007 

 
JSM (the Joint Statistical Meetings) is the largest gathering of statisticians held in 

North America. It is held jointly with the American Statistical Association, the 
International Biometric Society (ENAR and WNAR), the Institute of Mathematical 
Statistics, and the Statistical Society of Canada. Some materials are available at 
http://www.amstat.org/meetings/jsm/2007/. 
 

JOINT SOCR (STATISTICS ONLINE COMPUTATIONAL RESOURCE)  
CAUSEWAY CONTINUING EDUCATION WORKSHOP 2007 

UCLA, Los Angeles CA, USA, August 6-8, 2007 
 

The 2007 joint SOCR/CAUSEway continuing education 
workshop aimed at demonstrating the functionality, utilization 
and assessment of the current UCLA, SOCR and CAUSEweb 
resources. This workshop appealed to AP teachers and college 
instructors of probability and statistics classes who have 
interests in exploring novel IT-based approaches for 
enhancing statistics education.  

Workshop materials, including the Workshop Handbook, are freely available at 
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Events_SOCR_CAUSEway_Workshop2007 

 
9TH INTERNATIONAL CONFERENCE OF THE MATHEMATICS 

EDUCATION INTO THE 21ST CENTURY PROJECT 
MATHEMATICS EDUCATION IN A GLOBAL COMMUNITY 

Charlotte NC, USA, September 7 - 13, 2007 
 

The Mathematics Education into the 21st Century Project 
was founded in 1986 and is dedicated to the planning, writing 
and disseminating of innovative ideas and materials in 
Mathematics and Statistics Education. Conference materials and 

presented papers are available at: math.unipa.it/~grim/21_project/21_charlotte_2007.htm 
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OTHER FORTHCOMING CONFERENCES 
 

INTED 2008  
INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT 

CONFERENCE 
Valencia, Spain, March 3 – 5, 2008 

 
On behalf of the INTED 2008 Organizing Committee we would like to invite you to 

participate in the International Technology, Education and Development Conference in 
Valencia (Spain) on the 3rd, 4th and 5th of March, 2008.  

The general objective of INTED 2008 conference is the promotion of international 
collaboration in the field of technology, engineering, and science education. INTED 2008 
provides an International Forum for researchers, engineers, professors, educational 
scientists and technologists in the areas of Education, Science, and Technology. It will be 
an excellent opportunity to present, demonstrate and discuss research, development, 
applications, and the latest innovations and results in the field of Higher Education and 
Industry. 

More information: inted2008@iated.org 
Website: http://www.iated.org/inted2008/ 
 

2008 JOINT STATISTICAL MEETINGS 
Denver CO, USA, August 3 - 7, 2008 

 
JSM (the Joint Statistical Meetings) is the largest gathering of statisticians held in 

North America. It is held jointly with the American Statistical Association, the 
International Biometric Society (ENAR and WNAR), the Institute of Mathematical 
Statistics, and the Statistical Society of Canada. Attended by over 5000 people, activities 
of the meeting include oral presentations, panel sessions, poster presentations, continuing 
education courses, exhibit hall (with state-of-the-art statistical products and 
opportunities), career placement service, society and section business meetings, 
committee meetings, social activities, and networking opportunities. Denver, the host city 
for JSM 2008, offers a wide range of possibilities for sharing time with friends and 
colleagues.  

More information: jsm@amstat.org 
Website: http://www.amstat.org/meetings/jsm/2008/ 

 
10TH INTERNATIONAL CONFERENCE OF THE MATHEMATICS 

EDUCATION INTO THE 21ST CENTURY PROJECT 
MODELS IN DEVELOPING MATHEMATICS EDUCATION 

Dresden, Saxony, Germany, September 11 – 17, 2009 
 

The Mathematics Education into the 21st Century Project was 
founded in 1986 and is dedicated to the planning, writing and 
disseminating of innovative ideas and materials in Mathematics 

and Statistics Education. You are invited to attend our 10th anniversary project 
conference to be held in the historic city of Dresden, Germany. The chairman of the 
Local Organising Committee will be Prof. Dr. Ludwig Paditz of the Dresden University 
of Applied Sciences. 

More information: Alan Rogerson, arogerson@inetia.pl 
Website: http://math.unipa.it/~grim/21_project/21_project_Dresden_2009.pdf 
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