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EDITORIAL1 
 
Welcome to Volume 8 of SERJ! My term as co-editor will expire at the end of this 

year. At that point, I am pleased to note that I will have been co-editor for half of SERJ’s 
existence. The end of my term signals another important transition for SERJ. Please see 
the “Call for Nominations” beginning on page 3 for a description of the job of co-editor, 
and please feel free to self-nominate. I think that Iddo Gal, who overlapped with me as 
co-editor during the first half of my term, would agree that he and I are not true statistics 
education researchers. We served as “caretaker” co-editors, developing the vision and 
maintaining the processes for SERJ as the statistics education research field continues to 
mature.  

The current continuing co-editor, Peter Petocz, is an established statistics education 
researcher. Peter will provide the leadership to publish a special issue on “Qualitative 
Issues in Statistics Education Research” in 2010. See page 5 for more information on this 
special issue. 

It is vital that a second leader in the discipline come forward to join Peter in the role 
of co-editor. Please consider self-nominating or encouraging qualified researchers you 
know to consider the position.  

SERJ has grown in two notable dimensions during my term as co-editor. First, we are 
receiving more manuscripts than in the past. As I write, we have received 18 manuscripts 
in 2009. In 2008 we received our 18th manuscript in June, and in 2007 the 18th manuscript 
arrived in August. Clearly, the field is growing and the number of articles SERJ publishes 
will grow as well. Second, SERJ is now indexed in high-visibility databases such as 
EBSCOhost and PSYCinfo. We are currently in discussions with ERIC to list SERJ as 
well.  

Of course, SERJ continues to face challenges. Our review process is often 
unacceptably slow. As the co-editor managing the review process, I take responsibility 
for the delays that have frustrated authors and reviewers. The Associate Editors and 
reviewers must also accept the workload that accompanies increasing submission rates. 
Thanks to Joan Garfield and her graduate students at the University of Minnesota, we 
have a new database of SERJ reviewers available. The new database will not only expand 
the list of potential reviewers but will also facilitate matching reviewers with manuscripts 
relevant to reviewer expertise. It is difficult to adequately blind the identities of authors 
and reviewers, in light of immediate Web search capabilities and the inclusion of non-
print technologies in some submissions. As Iddo has noted in the past, one of the the 
biggest challenge we face is to mentor researchers, authors, reviewers, and Editorial 
Board members from developing countries. 

As the end of my term approaches, I thank Carmen Batanero, Flavia Jolliffe, Iddo 
Gal, Peter Petocz, Chris Wild, and especially Joan Garfield and Beth Chance for their 
advice, guidance, prodding, and support over the past four years. I have found the 
position of SERJ co-editor to be educational and rewarding.  

I hope that you enjoy the articles published in this first issue of 2009. Thank you for 
the opportunity to serve you as co-editor. 

 
TOM SHORT 

  

                                                      
Statistics Education Research Journal, 8(1), 2, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), November, 2008 
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CALL FOR NOMINATIONS FOR NEW CO-EDITOR: 
STATISTICS EDUCATION RESEARCH JOURNAL2 

 
DEADLINE FOR SUBMISSION OF NOMINATIONS: 15 JULY 2009 

 
The International Association for Statistical Education (IASE) is starting a search 

for the next co-editor of Statistics Education Research Journal (SERJ), its peer-reviewed 
electronic journal. The new editor will serve a four-year term starting 1 January 2010, 
replacing Tom Short (John Carroll U., USA), who will end his four-year tenure at that 
time, and ending 31 December 2013. The new editor will join Peter Petocz (Macquarie 
U., Australia), the continuing co-editor until December 2011.  
 

1. ABOUT SERJ 
 
 SERJ was established in 2002 by IASE to advance research-based knowledge that 
can help to improve the teaching, learning, and understanding of statistics and probability 
at all educational levels and in both formal and informal contexts. SERJ presently 
publishes two issues per year but is likely to move up to three issues per year in coming 
years. The scope of submitted manuscripts represents the growing interest in research and 
in new knowledge that can inform practice in statistics education.  

The SERJ organization includes two co-editors who serve for four years (one is 
replaced every two years), an Assistant Editor in charge of copy-editing and production, 
and an Editorial Board presently comprised of 16 Associate Editors from 10 countries. 
SERJ issues and materials are published on the IASE website, presently hosted by the 
University of Auckland (www.stat.auckland.ac.nz/~iase/). The journal maintains 
autonomy regarding content and process, although some activities are coordinated with 
IASE and its parent organization and SERJ co-publisher, the International Statistical 
Institute (ISI). All journal activities are conducted electronically. Board members meet 
during key international conferences such as ICOTS or ISI Biennial Sessions. SERJ is a 
virtual organization and it operates on the basis of voluntary work by all board members 
and editors. 
 

2. THE CO-EDITORS ROLE AND EXPECTED QUALIFICATIONS   
 
 The co-editors are responsible for overall management of all journal operations. 
They manage peer-review and editorial processes, determine the composition of the 
Editorial Board and the reviewer pool, and initiate and conduct communication with 
prospective authors, reviewers, associate editors, and external stakeholders. The co-
editors are expected to establish editorial policies, set scholarly and quality expectations, 
and uphold acceptance criteria regarding manuscripts. The co-editors should have a 
forward-looking vision and initiate new features and structures, if needed in consultation 
with Board members and others, so as to enable SERJ to respond to the evolving 
knowledge needs in the dynamic area of statistics education. Overall, the co-editors 
should lead the journal to make an important contribution to research and practice in 
statistics education. 
 The qualified individual will have a strong research background in areas which are 
part of statistics education, and be familiar with educational practice in this area. He or 

                                                      
Statistics Education Research Journal, 8(1), 3-4, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), May, 2009 
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she should possess the skills necessary to work with prospective contributors in a 
supportive yet critical spirit, be able to maintain and strengthen international professional 
networks of authors and reviewers, and enhance the Journal's reputation and impact.  
 

3. THE SEARCH PROCESS AND HOW TO MAKE NOMINATIONS  
 
 Review of nominations will begin on 15 July 2009, but nominations should be 
submitted as soon as possible. IASE encourages both nominations of suitable candidates 
and self-nominations from interested individuals. All nominations and self-nominations 
will be considered by the Search Committee, which can also propose additional 
nominees. Candidates or self-nominees are asked to send an academic vita or professional 
resumé, together with a brief statement describing their vision for continuing the growth 
and development of the Journal, and their qualifications for the position. Candidates 
might also be asked to respond to additional questions by the Search Committee.  

Please send nominations (with all supporting materials listed above) or 
questions to the Chair of the Search Committee, Iddo Gal, (U. of Haifa. Israel), at: 
<iddo@research.haifa.ac.il>. (Questions about the practicalities of the editorship can 
also be sent either to the continuing co-editor, Peter Petocz <ppetocz@efs.mq.edu.au> or 
to the departing co-editor, Tom Short <tshort@jcu.edu>).  



5 
 

CALL FOR PAPERS: QUALITATIVE APPROACHES IN 
STATISTICS EDUCATION RESEARCH3 

 
The Statistics Education Research Journal (SERJ), a journal of the International 

Association for Statistical Education (IASE), is planning a special issue for November 
2010, focused on research on the topic of Qualitative Approaches in Statistics Education 
Research. Submission deadlines: Letters of intent by Sept. 14, 2009; Full papers by 
Nov. 2, 2009. The Guest Editors for this issue will be Sue Gordon (University of Sydney, 
Australia, <s.gordon@usyd.edu.au>) and Anna Reid (Macquarie University, Australia, 
<anna.reid@mq.edu.au>). 

 
1. RESEARCHING STATISTICS EDUCATION:  

QUANTITATIVE OR QUALITATIVE 
 
Education is a social activity with strong elements of unpredictability. Students enter 

with a variety of different educational and life experiences, and many of these aspects are 
difficult to analyse using statistical methods – even when the students are studying 
statistics. An obvious way forward is to use research approaches that focus on the social 
and personal aspects of learning. Qualitative research approaches can capture and explain 
the more experiential dimensions of learning, illuminate pedagogical issues, and 
complement and enrich results that may be obtained from quantitative studies. Much 
mainstream research in education utilises qualitative methods to examine learning 
situations, often through analysing linguistic or socio-cultural elements. As with 
quantitative research, qualitative methods must demonstrate rigour and validity according 
to recognised criteria appropriate to these methods. 

Although previous editions of SERJ contain examples of qualitative approaches to 
research, these approaches seem less utilised compared with other areas of pedagogical 
research. For statisticians, the quantitative approach to research problems seems to be the 
natural one, even when examining aspects of statistics pedagogy. However, different 
research questions are often addressed – and sometimes answered – by different research 
approaches, and there are cases where a qualitative approach, or a ‘mixed methods’ 
approach, is more fruitful than a quantitative one. For some statisticians, qualitative 
approaches to research can seem alien, or not in their area of (statistical) expertise, and 
hence they may try to avoid them. Within statistics, rigour is usually represented by the 
use of statistical techniques; in some cases, this approach is even supported by law in the 
form of government policies for accountability of research funding. Nevertheless, there 
are many situations where a statistical approach contains qualitative elements, for 
instance, the wording or selection of questions for a survey, the decision of what to 
measure and how to measure it, and the very notion of classification.  

In his editorial in volume 6, number 2 of SERJ, Iddo Gal referred to “dynamic data,” 
which he defined as the information that is collected when research is carried out in 
situations where students are using dynamic software packages or interactive applets 
(though the term has a more common use in referring to situations where information is 
used to update a data set). Such data consist of information about what students actually 
did, what they said during the process, and how they interpreted the results. In other 
disciplines, this is sometimes referred to as “observational ethnography” and can embrace 
issues of ethnic diversity, life experience, narrative as inquiry and theory development. 
                                                      
Statistics Education Research Journal, 8(1), 5-6, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), May, 2009 
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This special issue will focus on qualitative approaches to research in statistics education 
with the aim of illuminating practice or theory, highlighting pedagogical issues and 
critically examining and reflecting on diverse perspectives in the teaching and learning of 
statistics at all levels.  

 
2. POSSIBLE TOPICS 

 
Examples of topics that would be relevant for this special issue on Qualitative 

Approaches in Statistics Education Research include, but are not limited to:  
a. Papers reporting the results of empirical studies in statistics education carried out 

using particular qualitative methodologies, or with ‘mixed methods’ approaches. 
b. Papers reporting on dynamic learning situations where students learn through 

using statistical packages, for example, in research in statistics education. 
c. Articles that critically appraise the use of qualitative methods of any type in 

statistics education research. 
d. Reviews of qualitative research in statistics education. 
 

3. SUBMISSION GUIDELINES 
 
Authors are advised to aim for papers in the range of 4000-6000 words of body text 

(not counting abstract, tables and graphs, references, appendices). Manuscripts for the 
special issue will be limited to a maximum of 7500 words of body text, but shorter, 
concise papers are encouraged. All manuscripts will be refereed following SERJ’s regular 
double-blind peer-review process. Manuscripts should be submitted in accordance with 
SERJ’s standard Author Guidelines and using the Template file found on the Journal’s 
website: www.stat.auckland.ac.nz/serj. 

 
4. DEADLINES AND CONTACT INFORMATION 

 
Interested authors should send a letter of intent by Sept. 14, 2009, but preferably 

earlier, with a 150-250 word abstract describing key aspects of the research. This letter 
should be sent by e-mail to SERJ co-editor Peter Petocz: <Peter.Petocz@mq.edu.au>, and 
authors can expect to get a response within two weeks. Authors wishing to send informal 
queries regarding the suitability of a planned paper can also contact Peter. 

Full manuscripts must be submitted by Nov. 2, 2009 at the latest to Peter Petocz at 
the address above, in accordance with the submission guidelines listed earlier. 

Decisions about the suitability of proposed papers and the allocation of accepted 
papers to the special issue or to a regular SERJ issue will be made jointly by the SERJ 
Editors and Guest Editors. 
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MODELING THE GROWTH OF STUDENTS’ 
COVARIATIONAL REASONING DURING AN 

INTRODUCTORY STATISTICS COURSE4 
 

ANDREW S. ZIEFFLER 
University of Minnesota 

zief0002@umn.edu 
 

JOAN B. GARFIELD 
University of Minnesota 

jbg@umn.edu 
 

ABSTRACT 
 
This study examined students’ development of reasoning about quantitative bivariate 
data during a one-semester university-level introductory statistics course. There were 
three research questions of interest: (1) What is the nature, or pattern of change in 
students’ development in reasoning throughout the course?; (2) Is the sequencing of 
quantitative bivariate data within the course associated with differences in the 
pattern of change in reasoning?; and (3) Are changes in reasoning about 
foundational concepts of distribution associated with differences in the pattern of 
change? Covariational and distributional reasoning were measured four times during 
the course, across four cohorts of students. A linear mixed-effects model was used to 
analyze the data, revealing some interesting trends and relationships regarding the 
development of covariational reasoning. 
 
Keywords: Statistics education research; Growth modeling; Topic sequencing 
 

1. THE IMPORTANCE OF UNDERSTANDING COVARIATION 
 
Reasoning about association (or relationship) between two variables, also referred to 

as covariational reasoning, or reasoning about bivariate data, involves knowing how to 
judge and interpret a relationship between two variables. Covariational reasoning has also 
been defined as the cognitive activities involved in coordinating two varying quantities 
while attending to the ways in which they change in relation to each other (Carlson, 
Jacobs, Coe, Larsen, & Hsu, 2002). This type of reasoning may take a very mathematical 
form (e.g., a linear function), a statistical form (reasoning about a scatterplot), or a more 
qualitative form (e.g., causal predictions about events, based on observed associations, 
such as spending more time studying seems to lead to better test grades, as described in 
causal model theory in psychology). Covariational reasoning is also viewed as playing an 
important role in scientific reasoning (Koslowski, 1996; Schauble, 1996). Although 
covariation between events is a necessary but not sufficient basis for inferring a causal 
relationship, it is a basis for making causal inductive inferences in science (Zimmerman, 
2005). 

The concept of covariation may be unique in that it is an important concept in the 
different fields of psychology, science, mathematics, and statistics, and that covariational 
reasoning is described somewhat differently in each discipline. Statisticians may be 
                                                      
Statistics Education Research Journal, 8(1), 7-31, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), May, 2009 



8 
 

surprised that reasoning about covariation, which they think of as a statistical topic 
focusing on bivariate distributions of data, is much more complex than the familiar 
caution that “correlation does not imply causation,” and beyond reasoning about 
scatterplots, correlation, and regression analyses. Indeed, cognitive psychologists 
McKenzie and Mikkelsen (2007) wrote that covariational reasoning is one of the most 
important cognitive activities that humans perform. 

Davis (1964) summed up the goal of education well when he wrote, “The primary 
object of teaching is to produce learning (that is, change), and the amount and kind of 
learning that occur can be ascertained only by comparing an individual’s or a group’s 
status before the learning period with what it is after the learning period” (p. 234). This 
idea of measuring “change” is even more salient in the current era of educational research 
(e.g., see No Child Left Behind Act of 2001; United States Department of Education, 
2005). 

The study described in this paper attempted to examine the development, or change, 
in students’ reasoning about quantitative bivariate data over the span of an entire 
introductory statistics course. Furthermore, this study examined whether students’ 
development of reasoning about quantitative bivariate data can be explained by other 
factors that have been identified in the research literature. 
 

2. REVIEW OF THE LITERATURE 
  

Because of its important role in so many disciplines, covariational reasoning has been 
the focus of research in psychology, science, and mathematics education, in addition to 
statistics education. The research studies related to covariational understanding and 
reasoning are quite diverse, and vary according to the disciplinary field of the researchers. 
Therefore, we summarize in the following section the main contributions from each of 
these different disciplines. 

 
2.1. RESEARCH STUDIES IN PSYCHOLOGY, MATHEMATICS EDUCATION, 

AND SCIENCE EDUCATION 
 

Research by psychologists provides much of the foundational work in covariational 
reasoning. Since the early studies by Inhelder and Piaget (1958), psychologists have 
documented the importance of covariational reasoning in the day-to-day lives of people. 
These studies document that people are surprisingly poor at assessing covariation and that 
prior beliefs about the relationship between two variables have a great deal of influence 
on their judgments of the covariation between those variables (e.g., Jennings, Amabile, & 
Ross, 1982; Kuhn, Amsel, & O’Loughlin, 1988). The psychological research also shows 
that one particular shortcoming that people have when intuitively assessing covariation, is 
to believe that there is a correlation between two uncorrelated events, because they 
believe they are related. Referred to as an illusory correlation, this phenomenon has been 
offered as a cognitive explanation for stereotypic judgments (see Hamilton & Gifford, 
1976; McGahan, McDougal, Williamson, & Pryor, 2000). 

Many of the psychology studies examined how people reason about covariation of 
data in contingency tables (e.g., Kao & Wasserman, 1993). Some of the results have 
found that people have difficulty when the relationship is negative (e.g., Beyth-Marom, 
1982), and that peoples’ covariational judgment of the relationship between two variables 
tends to be less than optimum (i.e., smaller than the actual correlation presented in the 
data or graph) especially when they believe there is a relationship between the two 
variables in question (e.g., Jennings et al., 1982). A consistent finding in several studies is 
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that people have a tendency to form causal relationships based on a covariational analysis 
in almost every situation where they have prior beliefs about the relationship (e.g., Ross 
& Cousins, 1993). 

A different focus is found in studies conducted by mathematics education researchers 
on covariational reasoning, which is used extensively in both algebra (Nemirovsky, 1996) 
and calculus (Thompson, 1994). Many of these studies have examined students’ 
understanding of functions, or aspects of bivariate reasoning that are commonly used in 
algebra and calculus (e.g., Carlson et al., 2002). In particular, studies have suggested that 
this type of reasoning plays a major role in students’ understanding of the derivative, or 
rate of change (e.g., Carlson et al.), and that this interpretation of covariation is slow to 
develop among students (e.g., Monk & Nemirovsky, 1994; Nemirovsky, 1996). Studies 
from mathematics education have also shown that not only is students’ ability to interpret 
graphical and functional information slow to develop, but that students tend not to see the 
graph of a function as depicting covariation (Thompson, 1994). 

Research studies in science education research have examined aspects of covariation 
found in both the psychological studies (e.g., confusing correlation and causation; e.g., 
Adi, Karplus, Lawson, & Pulos, 1978) and the mathematical studies of covariation (e.g., 
reasoning about lines and functions in the context of science problems; e.g., Wavering, 
1989). A third type of science education study focuses on more of the statistical aspects 
of science. For example, Kanari and Millar (2004) examined students’ approaches to data 
collection and interpretation as they investigated relationships between variables, as part 
of students’ ability to reason from data. The authors found that students of all ages had a 
much lower success rate in investigations where the dependent variable did not covary 
with the independent variable, than in those where it did covary. They suggested that 
school science investigations should include both covariation and non-covariation cases 
to develop students’ covariational reasoning. 

 
2.2. COVARIATIONAL REASONING AND JUDGMENTS IN STATISTICS 

EDUCATION RESEARCH 
 

The newly emerging field of statistics education research includes studies of students’ 
covariational reasoning in the context of instruction in statistics. The impact of computers 
in developing students’ covariational reasoning was studied by Batanero, Estepa, Godino, 
and Green (1996) and Batanero, Estepa, and Godino (1997). They identified several 
misconceptions and errors students make when reasoning about covariation. For example, 
these studies revealed the persistence of a unidirectional misconception, meaning that 
students only perceive a relationship between two variables if it is positive. 

Both studies also showed that students maintained their causal misconception 
throughout the duration of the experiments, and that students had problems with several 
aspects associated with covariational reasoning, such as distinguishing between the role 
of independent and dependent variables and reasoning about relationships that were 
negative. Finally, students realized that the absolute value of the correlation coefficient 
was related to the magnitude of the relationship, but did not relate that idea to the spread 
of scatter around the regression line. 

Other studies have examined students’ covariational reasoning as they study 
regression and reported some of the difficulties associated with this topic including 
problems with interpretation (e.g., Sánchez, 1999), and problems with the coefficient of 
determination, or R2 (Truran, 1997). Konold (2002) presented a different view of 
whether or not people can make accurate covariational judgments when presented with 
contingency tables or scatterplots. He suggested that people are not poor at making these 
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judgments, but rather they have trouble decoding the ways in which these relationships 
are displayed (e.g., scatterplots or contingency tables). 

In a study of younger children, Moritz (2004) had students translate verbal statements 
to graphs and also translate a scatterplot into a verbal statement. The students were also 
given a written survey that included six or seven open-ended tasks involving familiar 
variables. The variables were chosen so that students would expect a positive covariation, 
but the data given in the task represented a negative covariation. Moritz found many of 
the same student difficulties as other studies have revealed: that students often focused on 
isolated data points rather than on the global data set (e.g., Ben-Zvi & Arcavi, 2001); that 
students would often focus on a single variable rather than the bivariate data; and that 
several students had trouble handling negative covariations when they are contradictory 
to their prior beliefs. 

Two design experiments investigated the role of technology in helping students 
reason about bivariate data, and how students differentiate between local and global 
variation in bivariate data. Gravemeijer’s (2000) results suggested that students need an 
idea of the global trend (prior expectation) and that students have a hard time 
distinguishing between arbitrary and structural covariation. He suggested that students 
examine and compare several univariate data sets (time series) as an introduction to 
examining bivariate data. 

This approach was used by Cobb, McClain, and Gravemeijer (2003) to help students 
view bivariate data as distributed in two-dimensional space, to see scatterplots as 
situational texts, and to track the distribution of one variable across the other (scan 
vertically rather than diagonally). Using the Minitools software (Cobb, Gravemeijer, 
Bowers, & Doorman, 1997) students examined the “vertical variation” across levels of x 
in graphs of bivariate data. Students were asked to compare differences in the distribution 
of the y-variable at different levels of the x-variable (see Figure 1). 

 

 
 
Figure 1. Minitools software allows students to start looking at the local variation for 

different values on the x-axis in addition to the global trend 
 
The results of their study suggested that the shape of a distribution is a better place to 

start than is variability and that there be a continued focus on relative density and on the 
shape of the data within vertical slices. They also suggested that an emphasis on shape 
could lead to a discussion of strength and direction in a bivariate plot and that the focus 
on vertical distribution could lead to a more intuitive idea of the line of best fit. 
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2.3. UNIVARIATE DISTRIBUTION AS THE FOUNDATION FOR 
COVARIATIONAL REASONING 

 
Recent research has pointed to the importance of building up a foundation for 

covariation upon the building blocks of distribution (e.g., Cobb, 1998; Cobb et al., 2003; 
Gravemeijer, 2000; Konold, 2002; Konold & Higgins, 2003). Cobb et al. and 
Gravemeijer (2000) have suggested that a deep understanding of characteristics of 
distribution – such as shape, center and variation – is important foundational knowledge 
in a complete understanding of bivariate data. Building on the ideas of distribution is also 
congruent with Ben-Zvi and Garfield’s (2004) recommendation of focusing on big ideas 
to provide a foundation for course content and develop the underpinnings of statistical 
reasoning. 

Cobb et al. (2003) have hypothesized that a focus on graphs and shape is an important 
piece of statistics students’ development. They suggested that a focus on shape will make 
it easier for students to transition to reading a bivariate plot (scatterplot) because students 
were able to find it reasonable to talk about and compare the distribution within different 
vertical slices of the bivariate distribution. This, in turn, will “provide a basis for a 
subsequent focus on trends and patterns in an entire data set” (Cobb et al., p. 84). 
Gravemeijer (2000) also suggested that students begin by comparing univariate data sets, 
but instead of the focus on shape in the vertical slices, he posited that the median might 
be a better comparison. He purported that students can then focus on a global trend by 
examining the median of the vertical distribution across measures of the horizontal (x) 
variable. Still other statistics educators have suggested that variation might be the piece 
of pre-requisite knowledge that mandates the most attention, pointing out that in fact, 
covariation concerns the correspondence of variation among two or more variables (e.g., 
Moritz, 2004).  

 
2.4. SUMMARY OF THE RESEARCH 

 
 Looking at the studies across the different disciplines, we note the following general 

findings: 
• Students’ prior beliefs about the relationship between two variables have a great 

deal of influence on their judgments of the covariation between those variables; 
• Students often believe there is a correlation between two uncorrelated events 

(illusory correlation); 
• Students’ covariational judgments seem to be most influenced by the joint 

presence of variables and least influenced by the joint absence of variables; 
• Students have difficulty reasoning about covariation when the relationship is 

negative; 
• Students’ covariational judgment of the relationship between two variables tends 

to be less than optimum (i.e., smaller than the actual correlation presented in the 
data or graph); and 

• Students have a tendency to form causal relationships based on a covariational 
analysis. 

Taken as a whole, the research on covariational reasoning has examined many 
questions about misconceptions and difficulties that students have in reasoning about 
covariation, and has suggested methods for introducing and developing these ideas. 
However, there are many research questions yet unanswered. With enrollment in 
undergraduate statistics courses increasing (College Board, 2003) it is important that 
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educators strive to understand and improve students’ ability to reason with and 
understand covariation. 

Although researchers have examined peoples’ covariational reasoning on both 
dichotomous and continuous variables, there have been few studies that have examined 
the development of students’ reasoning about covariation in an introductory statistics 
course and the optimal placement of bivariate quantitative data analysis. The literature 
reviewed has suggested that students’ reasoning about covariation could be influenced by 
several factors, including students’ developing reasoning about univariate distribution. 
Therefore, three research questions were used to frame this study: 

1. What is the nature, or pattern of change in students’ development in reasoning 
about quantitative bivariate data throughout an introductory statistics course? 

2. Is the sequencing of quantitative bivariate data within a course associated with 
differences in the pattern of change in students’ reasoning about quantitative 
bivariate data? 

3. Are changes in students’ reasoning about the foundational concepts of 
distribution associated with differences in the pattern of change in students’ 
reasoning about quantitative bivariate data? 

 
3. METHODOLOGY 

 
3.1. OVERVIEW OF STUDY 

 
This study took place during the fall semester of the 2005/2006 school year. It 

involved four cohorts of a one-semester (three credit hours), non-calculus based 
introductory statistics course taught in the College of Education at a mid-western 
university in the United States of America. Two different instructors taught these four 
cohorts. All four cohorts met in a computer lab two times a week for an hour and fifteen 
minutes each time. Each of these cohorts had an enrollment of about 30 students.  

This study utilized linear mixed-effects models (LMM) to examine change in 
students’ development of reasoning about quantitative bivariate data. Because the 
modeling of change requires individuals to be measured on the same concept in temporal 
sequence, a repeated-measures, or longitudinal design was employed. Students enrolled 
in a collegiate level introductory statistics course were assessed on their reasoning about 
quantitative bivariate data four times during a semester. Examining the change in 
students’ reasoning about quantitative bivariate data over these four time points addressed 
the first research question. 

To examine the association between course sequencing and the patterns of change in 
students’ reasoning about quantitative bivariate data, the two instructors of the course 
used in the study were used as blocks to randomly assign each cohort of the course to one 
of two different course sequences (see Table 1). These two sequences both started with 
the topics of sampling and exploratory data analysis (EDA). Then the first sequence 
continued with the topic of quantitative bivariate data followed by sampling distributions, 
probability, and inference. The second sequence followed EDA with sampling 
distributions, probability, inference, and ended the course with the topic of quantitative 
bivariate data. 
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Table 1. The two sequences taught fall semester 2005 
 

Sequence 1: 
Sampling → EDA → Bivariate Data → Sampling Distribution → Probability → Inference 
(6 Days)     (7 Days)          (4 Days)                   (3 Days)                    (2 Days)        (6 Days) 
 
Sequence 2: 
Sampling → EDA → Sampling Distribution → Probability → Inference → Bivariate Data 
(6 Days)     (7 Days)             (3 Days)                   (2 Days)          (6 Days)           (4 Days) 
 

To examine whether changes in students’ reasoning about the foundational concepts 
of distribution were associated with changes in the development of students’ reasoning 
about quantitative bivariate data, students were also assessed on their distributional 
reasoning four times during the course of the semester. 
 
3.2. SETTING 

 
The study participants consisted of n = 113 undergraduate students. These students 

were typically female social science majors (84% females and 16% males) who were 
enrolled in the course to complete part of their graduation requirements. These students 
belong to the larger population of undergraduate social science majors who take an 
introductory statistics course in an Educational Psychology department. 

This particular introductory statistics course was designed so that it was aligned with 
recent Guidelines for the Assessment and Instruction in Statistics Education (GAISE; see 
American Statistical Association, 2005a) endorsed by the American Statistical 
Association (American Statistical Association, 2005b). In addition, the course materials 
were based on what has been learned from research literature on teaching and learning 
statistics. The unit on quantitative bivariate data was designed to help students avoid 
common errors and difficulties identified in the research literature and to build a solid 
understanding and good reasoning based on the results of best practices and research 
results. Overall, the research literature guided both the structure of the course (i.e., scope 
and sequence) and the instructional methods (i.e., activities, technologies, and 
discussions) used within the course. The course included collecting and analyzing real 
data sets, software programs to illustrate abstract concepts, and many active learning 
techniques. Lesson plans for every instructional session were created during the initial 
design phase of the course in the summer of 2004, which included class goals, discussion 
questions, and a sequence of activities. These lesson plans helped provide more 
consistency across multiple cohorts of the course taught by different instructors. These 
materials were used, evaluated, and revised during the two semesters prior to the study.  

The two instructors teaching the four cohorts followed identical lesson plans 
throughout the duration of the course and met regularly to help ensure consistency among 
the cohorts. Both of the instructors had helped develop the course materials and had 
taught the course multiple times prior to the time of this study. Both instructors were 
experienced teachers, having both high school and college teaching experience, and were 
doctoral students in the Quantitative Methods in Education (QME) program with a 
concentration in Statistics Education, so they were also familiar with the current statistics 
education guidelines and relevant research. 
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3.3. INSTRUMENTS 
 

Three instruments were administered to students to collect data on their reasoning and 
their background characteristics. These were: 1) the Bivariate Reasoning Assessment, 2) 
the Distributional Reasoning Scale, and 3) the Student background survey. Descriptions 
of each instrument follow. 
 

Bivariate Reasoning Assessment (BR) Students’ covariational reasoning was 
measured using the quantitative bivariate data scale from the Assessment Resource Tools 
for Improving Statistical Thinking (see Appendix for the instrument; Garfield, delMas, & 
Chance, n.d.). The eight forced-choice items assessed reasoning and interpretation 
regarding the correlation coefficient and relationships between the correlation coefficient 
and the display of data in a scatterplot. These items seem aligned with important aspects 
of bivariate reasoning indentured in the statistics education literature (e.g., Mortiz, 2004). 
 

Distributional Reasoning Scale (DR) Ten items from the Comprehensive 
Assessment of Outcomes in a First Statistics Course (CAOS; available from ARTIST, 
Garfield et al., n.d.) were used to measure students’ reasoning about univariate 
distribution. Experts have identified these items as focusing on reasoning about univariate 
distribution. They included items on interpreting different graphical displays, drawing 
conclusions from data, and reasoning about variation. 
 

Student Background Survey (SBS) To help determine whether the randomization 
process was effective, and also to identify which covariates might be important in 
explaining the pattern of students’ development of reasoning about bivariate data, several 
different instruments were combined and used to gather data. These survey items 
assessed students’ prior mathematical (10 items) and statistical (30 items) knowledge, as 
well as identifying students’ academic background (4 items) and prior coursework in 
mathematics, statistics, and computer science (15 items). Each of these instruments is 
described in much greater detail in Zieffler (2006). 
 

Instrument administration Each of the research instruments was administered on the 
first day of class (Session 1) to obtain baseline measures. The BR and DR instruments 
were also administered during three other class periods (Session 14, Session 25, and 
Session 29). These assessments were administered in Session 14 and Session 25 because 
those were the two classroom sessions that immediately preceded instruction of bivariate 
data for each of the two course sequences listed in Table 1. The assessment was also 
given during the last classroom session of the semester (Session 29).  

The items from these two instruments were combined into one comprehensive 
instrument to ease the actual administration, and the items were randomized for each of 
the four administrations. This comprehensive instrument was administered during class 
time to ensure test security and integrity. Because of the difficulty associated with 
assessing students multiple times without feedback, students were offered extra credit to 
participate in the study. 
 
3.4. DATA ANALYSIS 
 

In this section, the analysis used to answer each of the research questions is 
described. Before these descriptions are offered, a brief explanation of linear mixed-
effects models, the primary analysis method used, is given.  
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Linear mixed-effects models Researchers interested in studying change are generally 
interested in answering two types of questions about change (Boyle & Willms, 2001). 
The first of these questions of interest is how to “characterize each person’s pattern of 
change over time,” and the second asks about “the association between predictors and the 
patterns of change” (Singer & Willett, 2003, p. 8). The statistical models that researchers 
use to examine change go by a variety of names – random coefficients models, mixed-
effects models, hierarchical linear models (HLM), or multilevel models are just a few. 
These models provide a statistical methodology that allows researchers to answer both 
types of questions about change, and in addition have many advantages over traditional 
statistical methods such as RM-MANOVA, including the accommodation of missing data 
(e.g., Collins, Schafer, & Kam, 2001) and flexibility in model specification which can 
lead to greater power and efficiency in estimation (e.g., Verbeke & Molenberghs, 2000). 

The linear mixed-model (LMM) used for this study is a multi-level regression model 
that incorporates two components: a level-1 linear model that describes intra-individual 
(within subjects) change, and a level-2 conditional model that describes systematic inter-
individual (between subjects) differences in change. In the level-1 model, time is used as 
the independent variable for predicting individual students’ baselines (starting points) and 
trajectories (shape or pattern of the curve) in their reasoning about bivariate data. The 
level-2 models allow us to determine the extent that those baselines and trajectories vary 
as a function of one or more covariates (i.e., other measured variables, such as previous 
achievement, that are used to differentiate individuals). For a more detailed explanation 
of the LMM methodology, see Verbeke and Molenberghs (2000) or Raudenbush and 
Bryk (2002). 
 

Unconditional model analysis To explore students’ change in development in 
reasoning about bivariate data, an unconditional LMM was fitted to the data to describe 
the pattern of change exhibited in the data. An important piece of the mixed-effects 
model methodology is the correct specification of the model including both the fixed and 
random effects, as well as the within-group covariance structure. In the tradition of 
mixed-effects models analysis, diagnostic strategies such as graphs and sample statistics 
were employed to help provide guidance for this specification. More formal 
specifications to further substantiate the appropriate structure of the level-1 model were 
made by computing and comparing model estimates and fit statistics. 
 

Conditional model analyses A conditional LMM was used to help provide answers 
for the second and third research question. A conditional model allows for predictors 
other than just time. To answer the second research question, the two instructional 
sequences were effect coded and introduced into the model for change that is adopted. To 
answer the third research question, the change in students’ reasoning about univariate 
distribution was quantified and entered as a predictor in the model for change.  
 

4. RESULTS 
 

The data analyses and results are presented in three sections, one for each the three 
research questions. All analyses were carried out using R version 2.2.1 (R Development 
Core Team, 2008). The mixed-effects modeling utilized the lme4 (Bates & Sarkar, 
2005) and nlme (Pinheiro, Bates, DebRoy, & Sarkar, 2005) libraries. For more detailed 
descriptions of all the analyses presented in this section see Zieffler (2006). 

Initial analyses of several measured covariates using the Student Background Survey 
(not presented) suggested that the randomization process seemed to have been effective 
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in producing groups with equivalent student characteristics (see Zieffler, 2006 for more 
detail). Examination of the sample scores and responses for all instruments showed 
sufficient reliability, using Cronbach’s coefficient alpha (Cronbach, 1951), for research 
purposes (all were above .71).  

Table 2 shows the average student score on the four administrations of both the 
distributional and the bivariate reasoning assessments. It is not surprising that the 
students began the class with a very low mean score on the BR, but it was surprising that 
the largest increase came between the beginning of course and the 14th instructional 
session (before any formal instruction on bivariate data). It was also surprising that the 
mean score at the end of the class was barely over 50% correct, revealing the difficulty 
students have reasoning about bivariate data. The same pattern is also seen in students’ 
DR scores. In both instructional sequences, the average distributional reasoning score 
increased. The greatest increase occurred between the first and second measurement 
occasions. 
 

Table 2. Means (standard deviations), on the bivariate and distributional reasoning 
assessment for all measurement occasions for both instructional sequences 

 
 Distributional Reasoning (DR)  Bivariate Reasoning (BR) 
Class Session Sequence 1a Sequence 2  Sequence 1 Sequence 2 

Session 1 0.56 (1.04) 1.18 (1.43)  1.00 (1.03) 0.79 (1.23) 
Session 14 7.31 (1.69) 7.50 (1.74)  3.84 (1.53) 4.09 (1.61) 
Session 25 7.51 (1.70) 7.55 (1.41)  5.12 (1.48) 4.61 (1.63) 
Session 29 7.56 (1.77) 7.50 (1.57)  4.57 (1.58) 5.02 (1.53) 
Note. The DR had a possible range of 0 to 10, with higher numbers indicating a higher 
perceived degree of reasoning. The BR had a possible range of 0 to 8, with higher numbers 
indicating a higher perceived degree of reasoning. 
aSequence 1 taught bivariate data early and inference later. Sequence 2 taught inference 
early and bivariate data later (see Table 1).

 
4.1. RESULTS OF FITTING THE UNCONDITIONAL MODEL 
 

To explore students’ change in development in reasoning about bivariate data, a 
LMM was fitted to the data to describe the pattern of change exhibited in the data. Based 
on the results of several analyses (not presented), a quadratic level-1 model was 
employed to model the mean within-student change in reasoning about quantitative 
bivariate data. A random-effects structure with unstructured residuals was also adopted 
and used in all subsequent analyses. Lastly, several model comparisons seemed to 
suggest that the best fitting model to the data would have random-effects associated with 
both the linear and quadratic terms but not with the intercept term. Exploratory analysis 
on the residuals of the fitted models [distribution of standardized residuals against the 
grouping factor (i.e., the random effect) and against fitted values, separately for each 
level of the classification factor (i.e., the fixed effect)] revealed that the model 
assumptions were adequately met, according to the inspection criteria described by 
Pinheiro and Bates (2000). The parameter estimates for the unconditional model appear 
in Table 3. 
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Table 3. Unconditional model used to describe students’ change in reasoning about 
quantitative bivariate data (n = 113) 

 

  Unconditional 
Model 

Fixed Effects    
 Intercept 0.90*** 
 Linear term 0.32*** 
 Quadratic term -0.01*** 
Variance Components   
  Level-1 Within-student 1.23*** 
  Level-2 Linear Term  
 Variance 0.0148** 
 Quadratic Term  
 Variance 0.0000124* 
 Covariance with linear term -0.000407* 
Goodness-of-fit   
 -2LogLikelihood 1432.9 
 AIC 1446.9 
 BIC 1475.0 
*p < 0.05. **p < 0.01. ***p < 0.001.  
Note. This model was fitted using Restricted Maximum Likelihood in R. 
 

Interpretation of the parameter estimates for the second unconditional model The 
sample fixed-effects estimate the average initial score, linear rate of change, and 
quadratic rate of change on the BR. Each of the three fixed-effects is statistically 
significant (p < 0.001). This average within-student trajectory is plotted in Figure 2. The 
within-student variance component summarizes the average scatter of an individual 
student’s observed BR score around his/her change trajectory. This estimate is 
statistically significant (p < 0.001) which suggests that there is still within-student 
variation to account for.  

 

 
Figure 2. Predicted change in quantitative bivariate reasoning for an average student 

 
The level-2 variance components quantify the amount of unpredicted variation in the 

individual growth parameters. Though the estimated variance components for the linear 
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rate of change and the quadratic rate of change both seem to be non-zero in the 
population (p < 0.01 and p < 0.05 respectively), their practical significance is 
questionable. The covariance, which is also significant (p < 0.05), informs us of the 
relationship between linear rate of change and quadratic rate of change. Interpretation can 
be easier if the covariance is re-expressed as a correlation coefficient of -0.94.  

We conclude that the relationship between the average linear rate of change and 
quadratic rate of change in students’ ability to reason about quantitative bivariate data is 
both negative and strong and, because the hypothesis test is significant, is believably non-
zero. This indicates that students who have higher linear rates of change also tend to have 
lower quadratic rates of change. 

This model suggests that students, on average, have some ability to reason about 
quantitative bivariate data before any instruction on bivariate data (e.g., before Session 
14) in an introductory statistics course as indicated by the significance of the intercept 
fixed-effect term. There also seems to be very little variability in students’ baseline 
reasoning about quantitative bivariate data. In other words, they all seem to be starting at 
the same place. The significance of the positive linear fixed-effect term suggests that 
students, on average, are increasing their level of reasoning about quantitative bivariate 
data throughout an introductory statistics course, but this growth does not persist due to 
the negative quadratic fixed-effect term. Eventually, due to mathematical reasons alone, 
the quadratic term will remove more than the linear term will add, causing the trajectory 
to peak and then decline, assuming the relationship continues in this manner. Both of 
these rates of change vary from student-to-student. 
 
4.2.  RESULTS OF FITTING THE FIRST CONDITIONAL MODEL  
 

A conditional LMM was used to help provide an answer for the second research 
question. To answer this research question, the two instructional sequences were effect 
coded and introduced into the quadratic model for change that was adopted in the 
previous section. A model including cross-level interaction terms between the covariate 
and each level-1 predictor was initially fitted to the data and refined.  
 

Interpretation of the parameter estimates for the first conditional model This model 
included instructional sequence as a predictor of initial status, as well as both linear and 
quadratic change. Interpretation of its six fixed-effects (which are not presented) are 
straightforward: (1) the estimated score on the BR for all students at the beginning of an 
introductory statistics course is on average 0.90 (p < 0.0001); (2) the estimated mean 
difference in initial BR score between students on average and those taking a class that 
uses the second instructional sequence (coded 1) is -0.07 points (p = 0.49); (3) the 
estimated average linear rate of change in BR score for all students is 0.32 (p < 0.0001); 
(4) the estimated average difference between the overall average linear rate of change and 
students in classes that taught the second instructional sequence is -0.00004 (p = 0.999); 
(5) the estimated average quadratic rate of change for all students is -0.01 (p < 0.0001); 
(6) and lastly the estimated average difference in quadratic rate of change for students 
enrolled in courses that taught the second instructional sequences is 0.0002 (p = 0.78). 

These results suggest that on average, students in both sequences have similar 
development in their reasoning about bivariate data throughout an introductory statistics 
course. In other words, the initial differences in average BR scores between students 
taking a course that utilized the first instructional sequence and students taking a course 
that utilized the second instructional sequence are indistinguishable from zero. Likewise, 
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the differences in average linear rate of change and average quadratic rate of change are 
also not indistinguishable from zero. 

The significant within-student variance component in the conditional model is 
virtually identical to that from the unconditional model. This is expected because there 
were no level-1 predictors that were added to this model. Both of the level-2 variance 
components are also essentially unchanged. These conditional variances quantify the 
inter-individual differences in linear and quadratic change, respectively, that remain 
unexplained by the predictor. 
 
4.3. RESULTS OF FITTING THE SECOND CONDITIONAL MODEL 
 

To answer this research question, MANOVA was initially employed to examine and 
summarize the change in students’ reasoning about distribution. Because not all students 
had a measurement at the fouth timepoint, only 98 of the 113 students were used in these 
analyses. The results of these analyses (not presented) suggested that the difference 
scores between the first and last measurement occasions could be used as a proxy for 
describing the change in students’ development in reasoning about distribution. These 
scores were then mean centered (DIST), to facilitate interpretations, and entered as 
predictors in a conditional LMM. A model including cross-level interaction terms 
between the covariate and each level-1 predictor was initially fitted to the data and 
refined. The parameter estimates for the conditional model appear in Table 4. 
 

Table 4. Conditional model to examine students’ change in reasoning about univariate 
data as a predictor of change in students’ reasoning about quantitative bivariate data  

(n = 98) 
 

  Conditional Model 
Fixed Effects    
Initial Status Intercept 0.86*** 
 DIST 0.13** 
Linear rate of change Linear term 0.32*** 
Quadratic rate of change Quadratic term -0.00658*** 
Variance Components   
Level-1 Within-person 1.10*** 
Level-2 Linear Term  
 Variance .01** 
 Quadratic Term  
 Variance 0.0000140 

 Covariance with 
linear term -0.000421 

Goodness-of-fit   
 -2LogLikelihood 1237.2 
 AIC 1253.2 
 BIC 1284.3 
*p < 0.05. **p < 0.01. ***p < 0.001.  
Note. This model was fitted using Restricted Maximum Likelihood in R. 
 

Interpretation of the parameter estimates for the conditional model The fixed-
effects for this conditional model suggest that the only parameter that seems to be 
influenced by students’ change in reasoning about univariate distribution is their initial 
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status in reasoning about bivariate data. The estimated average initial score for students 
who show average change in their reasoning about univariate data is 0.86 (p < 0.0001). 
The estimated strength of association between initial BR scores and centered DR scores is 
0.13 (p < 0.01). This result suggests that on average, there is a positive relationship 
between initial BR scores and centered DR scores indicating that students who exhibit 
larger than average changes in their reasoning about univariate distribution also tend to 
have higher initial levels of reasoning about bivariate data. Differences between students’ 
change in reasoning about univariate distribution on average tends not to be associated 
with either linear or quadratic rates of change in reasoning about bivariate data 
throughout an introductory statistics course. A visual depiction of this model is shown in 
Figure 3. 

 

 
Figure 3. Predicted average change in quantitative bivariate reasoning for students 
with small, moderate, and large changes in their reasoning about distribution 

 
5. DISCUSSION 

 
This study examined the development of students’ reasoning about bivariate data 

over a 15-week introductory college statistics course. Three research questions were 
examined and used to structure the collection and analysis of data. The answers to each 
question are summarized below. 
 
5.1. WHAT IS THE NATURE, OR PATTERN OF CHANGE IN STUDENTS’ 

DEVELOPMENT IN REASONING ABOUT QUANTITATIVE BIVARIATE 
DATA THROUGHOUT AN INTRODUCTORY STATISTICS COURSE? 

 
Student data collected over the semester revealed marked growth in reasoning about 

bivariate data but this happened primarily in the first time period. The LMM that was 
adopted to examine this growth suggested that students exhibit both linear and quadratic 
growth in their development about reasoning about bivariate data and that this growth 
varies among individual students. A quadratic model indicates that students’ reasoning 
about bivariate data does not increase in a constant linear fashion, but instead increases 
differentially over time. The significant negative quadratic term suggests that although 
students initially show great strides in their reasoning about bivariate data, they likely 
eventually plane off in this development and over time might actually even regress – 
although given the paucity of measurement occasions used in the study, this regression 
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likely occurs after the course is over. This pattern of development, however, is consistent 
with several different learning theories (e.g., overlapping waves theory; Siegler, 2000), 
and might suggest that a saturation point in bivariate reasoning is reached by students and 
then decay or interference impedes any more growth in reasoning which could actually 
occur during the course (e.g., Wixted, 2004). 

The model also suggested that on average students without any instruction start with 
very little reasoning about bivariate data and that this is true for nearly all students (at this 
institution). This could be because almost all of the students used in this study had never 
had a previous high school or college-level statistics course. However, the low initial 
status leaves much to be desired, especially as covariation is recognized and promoted by 
the National Council of Teachers of Mathematics in the mathematics curriculum at nearly 
every age level. This might be explained by the fact that many of these students hadn’t 
had a mathematics course in several years prior to taking statistics, but it might also be 
because reasoning is not a major focus of most mathematics courses. 

Although the fixed-effects and random-effects terms for intercept, linear rate of 
change, and quadratic rate of change were all statistically significant, the practical 
significance might not be as important. For instance, the variance term associated with 
the quadratic rate of change was statistically significant (p < 0.05) indicating that students 
vary in their quadratic rates of change. However, the actual variance term was 0.0000124. 
This small variance component indicates that students’ quadratic rates of change are very 
similar. Also, comparatively, the within-student variance component still accounts for the 
majority of the variation in BR scores (98%). 

One interesting finding is that most of the change in development in reasoning about 
bivariate data seemed to occur between the first two measurement occasions. This was 
before bivariate data was formally taught in either instructional sequence. This might 
indicate that students’ development in reasoning about bivariate data is more an artifact 
of their development of statistical reasoning in general than it is a result of any formal 
instruction on the topic of bivariate data. However, the brevity of the unit within this 
particular introductory statistics class (four instructional sessions) might also inhibit an 
increase in development of reasoning due to instruction about this topic. It also might 
mean that students’ reasoning about bivariate data is closely tied to their reasoning about 
univariate distribution as suggested by the statistics education literature (e.g., Cobb et al., 
2003; Gravemeijer, 2000). 
 
5.2. IS THE SEQUENCING OF QUANTITATIVE BIVARIATE DATA WITHIN 

A COURSE ASSOCIATED WITH DIFFERENCES IN THE PATTERN OF 
CHANGE IN STUDENTS’ REASONING ABOUT QUANTITATIVE 
BIVARIATE DATA? 

 
The sequencing of bivariate data within a course seemed not to be associated with 

changes in students’ development of reasoning about bivariate data. There seemed to be 
no differences in either the linear or quadratic rates of change in covariational reasoning 
between the two instructional sequences. The fact that sequencing was not important in 
explaining patterns of development might not be surprising if, as stated in the last section, 
reasoning about bivariate data is just an artifact of reasoning about statistics in general.  

Finding no differences in students’ reasoning between the two sequences might 
suggest that the topic could be placed wherever the instructor or textbook authors 
decided. As a word of caution, however, even though the development in reasoning about 
bivariate data might not change as a result of the placement of this topic, student 
development of reasoning about other topics might be impacted. One of these topics 
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could be inference. Although this wasn’t tested formally in this study, some anecdotal 
evidence, such as students’ complaints and discussion, suggests that students in the class 
where bivariate data was taught earlier seemed to be struggling with inference more than 
students in the other classes. It might also be that bivariate data is a topic that is more 
“digestible” than inference at the end of a semester. 

Course sequencing has also received little attention in the statistics education 
literature. Although Chance and Rossman (2001) have speculated about the placement of 
a unit on bivariate data, there has been no research on optimal placement of this, or for 
that matter any other topic within an introductory statistics course. The literature on 
textbook usage has, however, suggested that the content and sequencing of textbooks 
could influence how effectively students will learn that content (e.g., Valverde, Bianchi, 
Wolfe, Schmidt, & Houang, 2002).  
 
5.3. ARE CHANGES IN STUDENTS’ REASONING ABOUT THE 

FOUNDATIONAL CONCEPTS OF DISTRIBUTION ASSOCIATED WITH 
DIFFERENCES IN THE PATTERN OF CHANGE IN STUDENTS’ 
REASONING ABOUT QUANTITATIVE BIVARIATE DATA? 

 
This study found that students who exhibit larger than average changes in their 

reasoning about univariate distribution also tend to have higher initial levels of reasoning 
about bivariate data. Furthermore, beyond initial status, this study has suggested that 
change in reasoning about univariate distribution is not associated with students’ 
development of reasoning about quantitative bivariate data. The findings from this 
research question are also somewhat novel. The research literature on students’ reasoning 
about bivariate data has been generally speculative. Although Cobb et al. (2003) and 
Gravemeijer (2000) have all suggested that students need to be able to reason about 
univariate distribution before they can reason about bivariate data, there have been no 
studies that have examined this hypothesis. Perhaps the pattern of change in reasoning 
exhibited by students in this study casts some doubt on these speculations. However, 
because most of the growth in reasoning about bivariate data seemed to occur during the 
instruction of univariate distribution, perhaps these two types of reasoning are 
inextricably connected. 
 
5.4. LIMITATIONS TO THE STUDY 
 

 It is important to note the relatively small sample size (n = 113) in light of the use of 
multi-level modeling. This sample size may have resulted in less efficiency and power for 
the multilevel tests. This may have especially impacted the findings for the third research 
question (n = 98). As only 98 students had measurements on the fourth occasion, the 
sample was reduced due to the fact that not every student had a difference score (level-2 
predictor) for this model. 

A second limitation is the use of difference scores as a proxy for change in students’ 
reasoning about univariate distribution. The use of difference scores has long been a 
controversial issue, especially in regard to reliability (e.g., Cronbach & Furby, 1970; 
Willett, 1989b). The limited variability in scores may also have impacted the LMM 
coefficients. 

Thirdly, teacher differences may also have affected the results. Inconsistencies due to 
these differences might have affected growth in such a way as to “cover up” differences 
due to one of the tested level-2 predictors. In larger studies this can be accounted for by 
using a three-level model where measurements are nested within students, which are 
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nested within teachers. Thus, the variation can be further partitioned and accounted for. 
However, the small number of teachers (k = 2) did not allow this type of model to 
converge in this study. 

Lastly, generalization may also be limited due to the type of introductory statistics 
students that were used in the study, namely social science students. However, they might 
be typical in terms of initial levels of reasoning and background for students enrolled in a 
non-calculus based first semester statistics course. Also, the study participants seemed 
typical in terms of exhibiting many of the same misconceptions that were identified in the 
literature (e.g., they have a tendency to form causal relationships based on a covariational 
analysis). 

 
5.5. IMPLICATIONS FOR TEACHING 
 

 Despite the limitations described above concerning this study, the results suggest 
some practical implications for teachers of introductory statistics courses. For example, 
the results suggest that it is important to spend ample time developing students’ reasoning 
about univariate distribution to provide a solid foundation for reasoning about 
quantitative bivariate data. This recommendation is consistent with recommendations in 
the statistics education literature that advocate that by covering fewer topics, a deeper 
conceptual understanding of the topics covered can be achieved, which translates into a 
greater understanding of topics that are covered at a later time (e.g., American Statistical 
Association, 2005b; Cobb, 1992; International Association for Statistical Education, 
2005). 

Although this study did not show a change in students’ reasoning about quantitative 
bivariate data based on where the unit was placed in a course, anecdotal evidence did 
suggest that the sequence had an effect on students’ reasoning about statistical inference. 
The smooth transition from normal distribution to sampling distribution to statistical 
inference may lead to a better understanding of statistical inference rather than inserting a 
unit on quantitative bivariate data between these topics. 

It is also important to note that despite the use of a good research-based unit of 
instruction on bivariate data, students still had difficulty with many items on the bivariate 
reasoning assessment at the end of a 15-week course. These results confirm the finding in 
the research literature that ideas of covariation are often difficult for students to learn and 
may be counter-intuitive. Therefore, more attention should be paid to activities and 
instructional materials used to develop the important concepts that support covariational 
reasoning. Finally, the results suggest that if teachers emphasize the development of 
students’ statistical reasoning throughout a course or curriculum, it may help students 
better prepare themselves to reason about quantitative bivariate data. 
 
5.6. FUTURE RESEARCH 
 

Additional research is suggested that examines growth of student reasoning within an 
introductory statistics course. One factor that continues to need investigation is the 
optimal placement of a unit on quantitative bivariate data and how this placement 
influences students’ development in covariational reasoning, as well as the development 
of reasoning about other topics within an introductory statistics course such as inference. 
Questions about the best sequencing of curriculum within an introductory statistics 
course are important not only in how they impact students’ learning and reasoning about 
statistics in general, but in how those sequences impact students’ reasoning of sub-topics 
within a course. 
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Another suggested line of research is how foundational topics in an introductory 
statistics course influence students’ development of reasoning about other topics. 
Although this study examined how changes in students’ reasoning about univariate 
distribution influenced their reasoning about quantitative bivariate data, a different study 
might consider how students’ reasoning about variation might influence reasoning about 
quantitative bivariate data or other statistical reasoning. 

This study has employed a methodology that allows researchers to examine students’ 
development of reasoning in an introductory statistics course in the context of a college 
classroom setting. It has also made an attempt at using randomization in classroom 
research. Future researchers may want to study predictors that may account for the level-
2 variation. 

Future research might also use a non-linear model and time-varying predictors to 
depict and explain student development. Non-linear models have been used to model 
change in student development (e.g., McArdle & Epstein, 1987). This might be more 
aligned with learning theories that model growth, retention and forgetting (e.g., Min, Vos, 
Kommers, & van Dijkum, 2000; Murre & Chessa, 2006; Wozniak, 1990). For instance, 
the use of the logistic curve to model population growth (introduced by Verhulst in 1845) 
was adapted by Pearl (1925) to model cognitive growth. Another example of non-linear 
growth to describe learning is the hyperbolic curve outlined by Thurston (1919). Time-
varying predictors can be included in level-1 models to allow for direct effects between 
the predictor and outcome of interest over time. 

In summary, the study of change in students’ reasoning requires multiple 
measurements over time. The current methodologies used to study change (structural 
equation modeling [SEM] and multi-level modeling) require the same assessment to be 
used at each time point. This is generally not pedagogically acceptable to most college 
teachers given the time constraints that accompany collegiate courses. Even more 
complicated is the fact that to model a complex growth pattern requires more 
measurement occasions, especially during times that students are exhibiting the most 
change, such as near the beginning of the semester (Willett, 1989a; Willett, Singer, & 
Martin, 1998). This frequent testing could have a negative impact on student attitudes and 
cause early fatigue in study subjects. As the call for growth studies by policy makers and 
other interested parties increases, careful attention should be given to the methodologies 
and the practical problems faced by educators in their implementation.  
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APPENDIX 
 

Bivariate Reasoning Assessment (BR) [ARTIST Quantitative Bivariate Data Scale] 
 

1. Sam is interested in bird nest construction, and finds a correlation of 0.82 between the depth 
of a bird nest (in inches) and the width of the bird nest (in inches) at its widest point. Sue, a 
classmate of Sam, is also interested in looking at bird nest construction, and measures the 
same variables on the same bird nests that Sam does, except she does her measurements in 
centimeters, instead of inches. What should her correlation be? 
a.  Sue’s correlation should be 1, because it will match Sam's exactly.  
b.  Sue’s correlation would be 1.64(.82) = 1.3448, because you need to change the units 

from inches to centimeters and 1 inch = 1.64 centimeters.  
c.  Sue’s correlation would be about 0.82, the same as Sam’s.  
 

2. A student was studying the relationship between how much money students spend on food 
and on entertainment per week. Based on a sample size of 270, he calculated a correlation 
coefficient (r) of 0.013 for these two variables. Which of the following is an appropriate 
interpretation? 
a.  This low correlation of 0.013 indicates there is no relationship.  
b.  There is no linear relationship but there may be a nonlinear relationship.  
c.  This correlation indicates there is some type of linear relationship.  

 
3. A random sample of 25 Real Estate listings for houses in the Northeast section of a large 

city was selected from the city newspaper. A correlation coefficient of -0.80 was found 
between the age of a house and its list price. Which of the following statements is the best 
interpretation of this correlation? 
a.  Older houses tend to cost more money than newer houses.  
b.  Newer houses tend to cost more money than older houses.  
c.  Older houses are worth more because they were built with higher quality materials 

and labor.  
d.  New houses cost more because supplies and labor are more expensive today.  

 
For items 4 and 5, select the scatterplot that shows:  

 
4. A correlation of about 0.60. 

a.  a  
b.  b  
c.  c  
d.  d  
e.  e  
 

5. The strongest relationship between the X and Y variables. 
a.  a  
b.  b  
c.  a and b  
d.  a and d  
e.  a, b, and d  
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Dr. Jones gave students in her class a pretest about statistical concepts. After teaching about 
hypotheses tests, she then gave them a posttest about statistical concepts. Dr. Jones is interested in 
determining if there is a relationship between pretest and posttest scores, so she constructed the 
following scatterplot and calculated the correlation coefficient.  
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6. Locate the point that shows a pretest score of 107. This point, which represents John's 
scores, is actually incorrect. If John’s scores are removed from the data set, how would the 
correlation coefficient be affected? 
a.  The value of the correlation would decrease.  
b.  The value of the correlation would increase.  
c.  The value of the correlation would stay the same.  

 
7. It turns out that John’s pretest score was actually 5, and his posttest score was 100. If this 

correction is made to the data file and a new correlation coefficient is calculated, how 
would you expect this correlation to compare to the original correlation? 
a.  The absolute value of the new correlation would be smaller than the absolute value of 

the original correlation.  
b.  The absolute value of the new correlation would be larger than the absolute value of 

the original correlation.  
c.  The absolute value of the new correlation would be the same as the absolute value of 

the original correlation.  
d.  It is impossible to predict how the correlation would change.  
 
 

8. A statistics instructor wants to use the number of hours studied to predict exam scores in his 
class. He wants to use a linear regression model. Data from previous years shows that the 
average number of hours studying for a final exam in statistics is 8.5 hours, with a standard 
deviation of 1.5 hours, and the average exam score is 75, with a standard deviation of 15. 
The correlation is 0.76. Should the instructor use linear regression to predict exam scores 
from hours studied? 
a.  Yes, there is a high correlation, so it is alright to use linear regression.  
b.  Yes, because linear regression is the statistical method used to make predictions when 

you have bivariate quantitative data.  
c.  Linear regression could be appropriate if the scatterplot shows a clear linear 

relationship.  
d.  No, because there is no way to prove that more hours of study causes higher exam 

scores.  
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ABSTRACT 

 
This study considers the evolving influence of variation and expectation on the 
development of school students’ appreciation of distribution as displayed in their 
construction of graphical representations of data sets. Three interview protocols are 
employed, presenting different contexts within which 109 students, ranging in age 
from 6 to 15 years, could display and interpret their understanding. Responses are 
analyzed within a hierarchical cognitive framework. It is hypothesized from the 
analysis that, contrary to the order in which expectation and variation are introduced 
in the school curriculum, the natural tendency for students is to acknowledge 
variation first and then expectation. 
 
Keywords: Statistics education research; Interviews; School students; Graphs 
 

1. TERMINOLOGY 
 
Like many words used in statistics, “distribution” has a more or less sophisticated 

meaning depending on the adjective placed in front of it. Among the synonyms used for 
distribution in the Chambers dictionary (Kirkpatrick, 1983) are dispersal, range, 
allotment, and classification. These are in turn based on the word “distribute” meaning 
variously “to divide among several … to disperse about a space … to spread out” 
(p. 364). These descriptions are useful starting points in exploring children’s experiences 
with graphing distributions. Moore and McCabe (1993) progress to describe distribution 
in terms of variation, which they treat as an undefined term, and variable, which is “any 
characteristic of a person or thing that can be expressed as a number” (p. 2): “The pattern 
of variation of a variable is called its distribution. The distribution records the numerical 
values of the variable and how often each value occurs” (p. 6). They go on to say that 
distributions are best displayed graphically. These basic representations are often called 
frequency distributions to distinguish them from theoretical distributions based on 
continuous curves. 

For the school-age students interviewed in this study, distributions are likely to 
represent collections of data from relatively small data sets that are shown graphically in 
stacked dot plots, bar graphs, or histograms. The idea of a theoretical distribution such as 
the normal distribution is not part of their vocabulary or experience. For some younger 
students idiosyncratic representations may satisfy the less restrictive constraints of the 
Chambers definition but still show range, spread, and classification. Bakker and 
Gravemeijer (2004) for example described Grade 7 students’ early work with case-value 
plots as the beginning of exploration of characteristics of distributions. 

Although Moore and McCabe (1993) treated “variation” as an undefined term, 
Reading and Shaughnessy (2004) distinguished between “variability,” as the 
                                                      
Statistics Education Research Journal, 8(1), 32-61, http://www.stat.auckland.ac.nz/serj 
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characteristic of an entity that is observable, and “variation,” as the describing or 
measuring of that characteristic. This is the distinction used in this study because for 
school students it is the act of describing or representing variability that appears in the 
graphs created by them. The term “expectation” is chosen in contrast to “variation,” 
usually reflecting the meaning of the expected value (e.g., mean) of a probability 
distribution. This translates to the familiar terms middle or average for frequency 
distributions. It may also however in some contexts refer more colloquially to the 
expected shape of a distribution, for example showing a particular trend. 

 
2. OVERVIEW OF THE PROBLEM AND ITS IMPORTANCE 

 
Although not told that they are beginning to learn about distributions, children in 

early childhood classrooms create pictographs by recording the favorite fruit of members 
of the class or the modes of transport used to get to school. Throughout the school years 
more complex forms of representation are introduced until perhaps at first year university 
level students, in some countries, are expected to understand the theoretical 
underpinnings of the normal, binomial, Poisson, exponential, and other distributions. 
Although students may be able to create various types of graphs for different sets of data, 
as required to meet curriculum objectives, a larger objective in terms of the goal of 
statistical literacy when students leave school is to be able to tell a story from a context 
with a distribution that displays variation, clustering, middles, and surprises. This may or 
may not involve a conventional text-book type of graph. Of interest from an educational 
perspective is the development that takes place in students’ abilities to create 
representations that are effective in displaying the variation in data sets that will best tell 
the stories in the appropriate contexts.  

In parallel with the introduction of various increasingly complex graphical forms, the 
data handling curriculum introduces measures of center, measures of chance, and later 
measures of spread. These are typically the arithmetic mean, the counting-of-favorable-
outcomes approach to probability, and the standard deviation. The first two are associated 
with the statistical concept of expectation, whereas the third is associated with the 
concept of variation. The complexity of the calculations required for the standard 
deviation means that it is not introduced until the final school years and it has been 
suggested by Shaughnessy (1997) that the associated concept of variation traditionally 
has not received very much explicit attention until then. Whether this apparent 
differentiation in emphasis on the two ideas of expectation and variation has an influence 
on students’ developing ideas of distribution is unknown. The purpose of this study is to 
explore students’ efforts in graphing distributions for evidence of these two concepts. 

 
3. BACKGROUND 

 
The relationship of school students’ understanding of variation and expectation and 

their understanding of distribution has been slow to emerge in the literature, following an 
initial focus on graphing skills. Asking students to create representations for contexts 
without specific data has provided a window on developing understanding of the 
relationship. 

Historically the study of students’ creation and interpretation of graphical 
representations has mainly been related to the conventional production of school-taught 
graphical forms, usually based in algebra (e.g., Kerslake, 1981; Leinhardt, Zaslavsky, & 
Stein, 1990) but sometimes in relation to data (e.g., Curcio, 1987; Curcio & Artzt, 1996; 
Friel, Curcio, & Bright, 2001). In viewing the school-level conception of distribution as 



34 
 

“graphing,” there has been considerable attention to students’ abilities to create various 
graphical types, with emphases for example both on what types should be taught when 
(e.g., Friel et al., 2001) and on appropriate scaling, labeling, and directionality of plots 
(e.g., Leinhardt et al., 1990; Mevarech & Kramarsky, 1997). Until recently, however, 
explicit consideration of variation in relation to graphical representations has not been a 
feature of research. The pleas of Green (1993) and Shaughnessy (1997) brought variation 
generally to the attention of statistics educators interested in student understanding of the 
chance and data curriculum at the school level.  

Explicit attention to variation included a focus on how specific features of graphs 
influence decision making, for example in comparing two data sets presented in graphical 
form (e.g., Watson, 2001, 2002). The relationship of variation to the statistical concept of 
distribution is close but intuitively variation is a term covering all sorts of observed 
change in phenomena whereas distribution is a more formal notion based on graphs that 
is built into the later years of the school curriculum (National Council of Teachers of 
Mathematics [NCTM], 2000). The work of delMas and Liu (2003) illustrated this in 
relation to the understanding of standard deviation and spread at the early tertiary level, 
whereas Petrosino, Lehrer, and Schauble (2003) showed that relatively formal ideas about 
spread and difference could be introduced as early as Grade 4. Ben-Zvi and Amir (2005) 
explored emerging ideas of distribution with three Grade 2 students in considering data 
on the loss of “baby” teeth. They found, for example, that when speculating about data 
(and implicitly distributions) the students were reluctant to suggest repeated values. 
Considering questions about data explored by elementary students, Russell (2006) found 
students who focused on individual values, particularly the mode, as well as those who 
saw “clumps” of data values, or thought about “middles” in an intuitive sense. She made 
specific suggestions for moving students to an “aggregate” view of data distributions as 
described by Konold, Higgins, Russell, and Khalil (2003). Further evidence of such a 
developmental pattern was presented by Friel, O’Connor, and Mamer (2006) who 
observed student explorations of sugar content in cereals and of heart rates. In both cases 
comparing distributions of data sets was an integral part of the investigation. Looking 
more explicitly at the expected shape of distributions, Shaughnessy (2006) described 
middle and high school students’ decisions about “real” or “fake” data, finding various 
strategies for decision making. These included a focus on outliers, on the whole range of 
possible outcomes, on the likely range of outcomes, and on the distance from a fixed 
point, usually the expected center. The work of Watson and Kelly (e.g., 2002a) indicated 
that general understanding related to variation, and at times specifically related to 
distributions of outcomes (e.g., Watson & Kelly, 2004a), could be improved with 
instruction at the school level.   

Although variation in data creates distributions, there are two other aspects of 
statistical settings that are likely to have an impact on what a graph looks like. One aspect 
is the presence of some underlying expectation that can be observed in the distribution, 
for example a peak in the center of a symmetric distribution or the uniform nature of 
single die outcomes. In a theoretical distribution such expectation determines the shape of 
the distribution, for example the proportion of “successes” in a binomial distribution or 
the constancy of a uniform distribution. A second aspect in an actual empirical situation 
is that there is likely to be variation from the theoretical distribution itself. Hence the 
person creating a graph may have to consider the variation from expectation that creates a 
distribution (or trend), as well as the variation from the expected distribution. The 
question of how much variation from an expected distribution is considered realistic in a 
given situation depends to a large extent on the graph-drawer’s experience with similar 
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contexts in the past. This can make the creation of representations from verbal 
descriptions quite complex. 

Depending on previous learning experiences, representations may be based on 
traditional graphical forms or may be quite unique. The latter may be difficult for others 
to interpret, even for experts (e.g., Roth & Bowen, 2003). Calls to allow students to create 
their own graphs (e.g., Curcio & Artzt, 1996) then place pressure on researchers to 
interpret the meaning of graphs if the students are no longer available to explain what 
they have done. Initial choice of what data values, or type of data values, to represent, 
may not in the end suit the story expected to be told.  

Asking students to create graphs of variables based only on verbal descriptions has 
been the basis of occasional studies in mathematics education. Swan (1988) for example 
was interested in tasks such as showing in a graph how the price per ticket varies with 
group size for a fixed total cost. Mevarech and Kramarsky (1997) and Moritz (2002) 
considered tasks representing the situation of the amount of time a student studies and the 
level of grade that is obtained. Moritz (2000) also considered student representations of 
growing taller with age but stopping at age 20. The impression of researchers is that such 
tasks are more difficult than straightforward representation of data values, perhaps due to 
the need to appreciate context and visualize a trend or association rather than remember 
rules for creating axes and plotting points. 

The relationship of the order in which expectation and variation are emphasized in 
the school curriculum and the order in which students develop an appreciation of the two 
concepts was explored by Watson (2005). She used quotes from students from 
preparatory grade (6-year-olds) to high school to hypothesize that students’ intuitions 
develop in the reverse order to that suggested in the data handling curriculum. The 
youngest students for example were able to suggest variation, with different numbers of 
red lollies in different groups of 10 drawn from a container with 50% red lollies in it 
(e.g., 4, 5, 1, 3, 6, 8) but unable to predict expected numbers clustered as suggested by the 
proportion of reds in the container. Predictions were likely to be based on favorite 
numbers or the size of the student’s hand. By Grade 7 most students were able to provide 
predictions based on half of the lollies being red and reasonable variation of values 
around this (e.g., 5, 3, 6, 4, 5, 4). The current study presents a detailed analysis of the 
same data set with respect to graphical representations to support further the hypothesis. 
At the same time the beginnings of a more sophisticated idea of distribution are 
documented. 

 
4. RESEARCH QUESTIONS 

 
The research questions for this study are based on three tasks in different contexts 

that required students to create representations of data sets. 
1. What levels of sophistication are shown in terms of the acknowledgement of 

variation and expectation in the creation of graphical representations of distributions 
of data sets? 

2. Does there appear to be a trend for higher levels of performance with later grades? 
 

5. METHOD 
 

5.1. TASKS 
 
Three interview protocols are the basis of the exploration in this study. As part of the 

larger projects in which these interviews were embedded, several hundred students 
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completed surveys based on concepts in the chance and data curriculum (Watson, 2006). 
The interviews took place in order to focus on understanding that could be displayed with 
extra time and in-depth questioning (Burns, 2000, pp. 582-3). In particular, aspects of 
expectation and variation were explored in relation to the distributions created by 
students in completing the tasks. 

In each case students were asked to create a representation of a data set or situation. 
Each context was different, giving the opportunity to compare and contrast the attempts 
at creating distributions to tell the story in data. The first, BOOKS, was based on the 
creation of pictographs given concrete materials in an interview setting (Watson & 
Moritz, 2001; see Appendix A). Students were given cards depicting books and people 
and asked to represent the specified numbers of books people had read (e.g., “Lisa read 
6,” “Danny read 3”) on a table top. The names of children and numbers of books read 
were supplied by the interviewer and questions of interpretation and prediction were 
asked after the representation had been created. The data presented showed a tendency 
for girls to read more books than boys. The second task, WEATHER, was based on the 
description of average temperature: “Some students watched the news every night for a 
year, and recorded the daily maximum temperature in Hobart. They found that the 
average maximum temperature in Hobart was 17° C” (Watson & Kelly, 2005; see 
Appendix B). After initial questions, including predictions for maximum temperatures for 
six days of the year, students were asked to describe the daily maximum temperature for 
Hobart over a year in a graph. The third task, LOLLIES, was based on an experimental 
situation where students were asked to imagine a container with 100 lollies mixed up in 
it: 50 red, 20 yellow, and 30 green (Kelly & Watson, 2002; Reading & Shaughnessy, 
2000; see Appendix C). They were asked to imagine the outcomes from pulling out 10 
lollies and to suggest the number of red lollies in the 10 from six such trials. After other 
questions and six experiments from an actual container as described, they were asked to 
draw a picture of the imagined outcomes of 40 such experiments.  

 
5.2. SAMPLE 

 
The student work chosen for analysis in this study was combined from responses in 

two different studies. Students in Grades 3 to 9 were chosen to be interviewed based on 
interesting or unusual responses to the in-class survey. Teachers advised on the suitability 
of the students to articulate their views to the interviewers. Parental and student 
permission was granted for the interviews. Some students completed more than one task. 
The preparatory students (P) were 6-year-old students described in Watson and Kelly 
(2002b) chosen by their teacher as high achieving in number skills and happy to talk to 
visitors. Again parental permission was obtained. They were asked all three protocols. 
For the WEATHER and LOLLIES protocols, the same students in Grades 3, 5, 7, and 9 
answered both. A summary of the number of students in each grade completing each task 
is given in Table 1. 

 
Table 1. Number of students interviewed for each task by grade 

 
                                 Grade 
Task P 3 5 7 9 Total 
BOOKS 7 6 8 14 8 43 
WEATHER 4 18 18 15 15 70 
LOLLIES 7 18 18 15 15 73 
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5.3. ANALYSIS 
 
Two criteria are the basis of the analysis reported in this paper. One criterion is the 

framework from the work of Biggs and Collis (1982; Biggs, 1992; Pegg, 2002a, 2002b) 
in cognitive psychology. Their Structure of Observed Learning Outcomes (SOLO) model 
suggests five levels of performance that may be assessed in relation to a task that is set 
with the expectation of success in the mode of cognition of students during their years of 
schooling. These levels and references to characteristics of responses shown are given in 
Table 2 (see also Watson & Moritz, 2000). 

 
Table 2. Summary of SOLO level expectations for tasksa 

 
Name Elements Conflict (should it arise) 
Level 0: 
Prestructural 

No elements related to task employed 
in response 

No recognition of 
conflict/contradictions 

Level 1: 
Unistructural 

Single element of task employed in 
response 

No recognition of 
conflict/contradictions 

Level 2: 
Multistructural 

Multiple elements employed in 
response, usually in sequence 

Recognition of 
conflict/contradictions but 
inability to resolve adequately 

Level 3: 
Relational 

Multiple elements employed in a 
coordinated, integrated fashion in 
response 

Resolution of conflict that 
arises in task 

Level 4: 
Extended abstract 

Response goes beyond Relational 
level to introduce other elements not 
in the initial task but relevant to its 
extension 

May suggest potential for 
further conflict and resolve or 
give alternatives 

aSummary adapted from Biggs & Collis (1982), Pegg (2002a), and Watson & Moritz (2000). 
 

The other criterion for analysis is related to the statistical appropriateness of the 
responses given. For these tasks this has to do with creating a representation that displays 
aspects of expectation as expressed in the task as well as appropriate variation. This 
should result in some kind of distribution that tells the story of the task set. For BOOKS, 
the pictograph should tell a frequency story of the number of books each child has read. 
The children’s names provide cases against which case values are recorded. This is a case 
value graph (Konold & Higgins, 2003) of the type discussed by Moritz (2000, 2002), 
Pfannkuch, Rubick, and Yoon (2002), and Chick (2004) as an introduction to considering 
frequency. The names may be placed in no special order, in alphabetical order, or ordered 
by the frequency associated with each. For the WEATHER task it is likely that a time 
series graph is drawn representing either daily maxima or monthly averages of daily 
maxima. In the case of daily values this is a transition from a case value graph. Using the 
frequency of days whose maximum temperature is each value in the range, say 9 to 34 
(totaling 365), would produce a frequency distribution. The LOLLIES task also suggests 
representation of case values, this time with respect to 40 draws of 10 lollies from a 
container. Each draw results in a number of red lollies varying from 0 to 10. If these are 
recorded as case values from 1 to 40 serially, a representation similar to a time series 
graph is created. Counting and recording frequencies for each of these 40 outcomes in 
categories 0 to 10 produces an approximation to a random probability distribution. Data 
are ordered in 11 groups and related to a theoretical premise (the binomial distribution). 
The task for LOLLIES hence appears the most difficult statistically of the three tasks. 
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Case value plots may not look alike but they are characterized by the display of count or 
measurement values (e.g., number of books read, maximum temperature, number of red 
lollies) for individual identifiable cases (named child, day of the year, numbered student). 
When the cases are strictly ordered (e.g., successive days of the year, successive years, or 
successive trials) the graph appears as a time series graph (e.g., of maximum temperature, 
of number of red lollies). A different format emerges when the graph changes to 
recording the frequency distribution of the variable of interest rather than successive case 
values. Here the range of possible values of the variable is plotted (usually on the 
horizontal axis) (e.g., 0 to 7 books read, minimum to maximum daily maximum 
temperature, 0 to 10 red lollies) and frequencies are recorded vertically (e.g., number of 
children who read X books, number of days when the maximum temperature was X 
degrees, or number of times X red lollies were drawn).  

The clustering of responses to the three tasks (Miles & Huberman, 1994, p. 248) with 
the SOLO framework as an implicit structure led to descriptions of the levels that, while 
reflecting the inclusion of the more relevant elements, also identified variation as the key 
initial element. Variation was then linked in more appropriate and structurally complex 
fashions to the data before the element of expectation was introduced. These more 
explicit labels for the levels are introduced in Table 3 and indications of typical responses 
for each graph creation task are given. Coding of representations was based on these 
levels. It was completed independently and confirmed by two researchers, one of which 
was the author. 

 
Table 3. Redefined levels for tasks in this study with examples 

 
 BOOKS WEATHER LOLLIES 
Level 0: 
Idiosyncratic – No 
indication of variation 
or expectation 

Indistinguishable 
piles of books on 
top of people 

Drawings of wind 
or a weather map 

Drawings of lollies 
and children 

Level 1: 
Unstructured variation 

Books and 
children spread 
about 

Summer/Winter 
Tables of 
temperatures 

Lists of numbers 
of lollies 

Level 2: 
Variation shown by 
value 

Children in a line 
with books in 
perpendicular lines 

Successive dates 
with temperatures 

Successive draws 
in a series, or 
frequency with 
variation only 

Level 3: 
Initial 
acknowledgement of 
expectation 

Children ordered 
by books read 
(least to most) or 
reference to 
middle 

Seasonal change Acknowledgement 
of middle 

Level 4: 
Integration of variation 
and expectation 

Prediction based 
on middle/mean, 
and distinguished 
variation 

Seasonal and daily 
change 

Distribution 
centered on five 

 
The representations presented in this paper are not randomly selected but purpose-

chosen as typical of the levels of response identified from the two data sets, as well as 
illustrating aspects of variation and expectation displayed. They demonstrate proposed 
hierarchies in terms of structure and appropriateness. Following the presentation of 
clusters of responses for the three tasks, a summary is presented across tasks. 
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6. RESULTS 
 

6.1. BOOKS 
 
Although the BOOKS task asked students to create a case value pictograph, several 

questions gave students the opportunity to highlight aspects of the data set and the 
variation and expectation present in it (see Appendix A). In the final data set presented to 
students for example, there were two children who had each read four books. Students 
were also asked to show how the pictograph would look after all children had been to the 
library and selected another book. Of interest in the pictographs presented is the degree to 
which variation is catered for in the distributions created by the students. 

At Level 0, the piling of books on top of or beside the pictures of the children appears 
to preclude any description of variation in the number of books children had read. 
Examples of this approach are shown in Figure 1 and although all students displayed one-
to-one accuracy in counting, this is not visible in the display, and the responses are 
considered prestructural or idiosyncratic with respect to representing variation.  

 

  

 
Figure 1. No visible (or very little) variation shown in representation (Level 0) 

 
The pictographs shown in Figure 2 display variation in the number of books read, 

either through a scattered representation of both children and books or through a more 
ordered representation of books for still scattered children. Showing a single aspect of 
variation these responses are considered to be Level 1. 

 

  

 
Figure 2. Variation clear but unstructured (Level 1) 

 
In Figure 3 the children are placed either vertically or horizontally along the edge of 

the pictograph in order to line up the books in a grid format. In the lower left pictograph 
the additional books from the library are displayed on the far side of the representation, 
whereas in the pictograph on the lower right, two children have been placed by the four 
books that they each had read. Difficulty occurred for this student, however, because the 
additional library book was represented twice rather than once (shown by placing two  
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Figure 3. Variation shown in rectangular format (Level 2) 
 

books at right angles at the end of the row). These responses are judged to be Level 2 in 
taking into account at least two aspects of representing difference among the children in 
the number of books they had read. 

Up to Level 2, students did not look at the shape of the data in making predictions 
about how many books a new student to the class might have read (see Appendix A). 
Many younger students refused to answer the question, some saying they could not do so 
because they did not know the student and some because they did not want to make a 
guess. Other students provided values based on the gaps in the displays they had created. 

At Level 3, responses indicated an intuition about expectation within the displayed 
variation, either through rearranging the pictograph or making informal reference to the 
middle. The representations in Figure 4 order the case values so that variation is more 
easily gauged and the range of values from minimum to maximum is clear. In the 
pictograph on the far right the children who had each read four books are again placed 
side by side but this time the extra library book is placed on the other side of the children 
and only one book is used for the two children with four books. When asked how many 
books the new students Paul or Mary might have read, some students suggested informal 
references to middle.  

 
Instructor:  Suppose Paul comes along … how many might he have read?  
Student:  About 3 because it is in the middle of all the other numbers.  
Instructor:  … Mary? … similar or different? 
Student: Probably the same.  
Instructor:  You would be pretty sure Paul had read 3? 
Student:  No, you wouldn’t know, you would just guess. 

 
This type of response was also classified as Level 3 in moving toward an expected value. 

 

  

 
Figure 4. Ordered variation in the display (Level 3) 
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To be classed as Level 4 a response had to address expectation and variation 
explicitly in the prediction question about how many books a new student to the class, 
Paul or Mary, might have read. Sophisticated responses employing both variation and 
expectation are illustrated by the following response.  

 
Instructor:  Suppose Paul comes along … how many might he have read? 
Student: … About 4 probably.  
Instructor:  Why?  
Student: Because if you add them all up and then divide them, roughly that’s what you 

get. It is about that anyway.  
Instructor:  … Mary? … same or different? 
Student: I suppose you could add up the girls and the boys and keep them separate.  
Instructor:  Why?  
Student:  Because the girls are obviously more interested in reading. 

 
Noticing the variation between boys and girls and separating the estimates was typical of 
Level 4 responses. Table 4 summarizes the responses by grade and level for the 43 
students who responded to the BOOKS interview protocol. Only students from Grade 7 
began to consider expectation in their distributions and/or predictions. 

 
Table 4. Summary for BOOKS protocol (n = 43) 

 
 Grade 
 P 3 5 7 9 

Level 0 1 3 2  1 1 
Level 1 3 1 3  1 1 
Level 2 3 2 3  5 2 
Level 3 0 0 0  4 2 
Level 4 0 0 0  3 2 
Total 7 6 8 14 8 

 
6.2. WEATHER 

 
For the WEATHER protocol (Appendix B) students were asked within the context of 

a statement about the average daily maximum temperature to draw a graph of the 
temperature in Hobart for a year; no grid or framework was provided. Later students were 
asked to judge three other representations, as shown in Appendix B. The appendix also 
shows the questions asked before students were asked to draw a graph of the maximum 
daily temperature throughout the year. It was expected that students would be familiar 
with variation in the weather context, especially trends associated with the seasons, but 
this was not introduced by the interviewer.  

Some students drew pictures rather than graphs, some of these depicting variation and 
others not. Those shown in Figure 5 are static in nature, although telling something about 
daily maxima. These representations are Level 0. A Grade 3 student explained the center 
drawing in Figure 5 as, “A stick person. Probably be trees. Blowing a little bit. Probably 
be like a hot day with a little bit of a breeze,” whereas a Grade 5 student drew the weather 
map on the right of Figure 5, describing it in the following terms:  

 
Student: [draws a square] So you may have a map of Tasmania … Hobart is here; 

Swansea is here; Strahan is here and Launceston is there. [puts dots on page] 
You may say that Hobart is 11 and Strahan may be 15 and Launceston may be 
20 and Swansea may be 13.  
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Figure 5. Static weather pictures (Level 0) 

 
The two representations in Figure 6 indicate variation from season to season or for 
weather. These responses are considered to be at Level 1. 

 

 
 

 
Figure 6. Variation shown in weather pictures (Level 1) 

 
Also at Level 1, quite a few students could draw a framework for dealing with the task, 
indicating that they were attempting to show variation, but then had little idea of how to 
organize the story they wanted to tell. A start is shown in Figure 7. Explanations of some 
of the attempts to record values were difficult to follow and, although suggesting 
variation, there was no link to any expectation or trend. An example is given on the right 
of Figure 7.   

 

 

 

S: That’s start, oh well beginning 
and the end [writes on sheet] 

I: So you have got the beginning of 
the month and the end of the 
month. Is that what you are 
doing? 

S: Yes. Start off with … so I would 
do like start with the highest … 
[writes] 

I: So what are you putting in 
there? You are doing a table? 

S: Yes. Like 29oC is the highest the 
start of January and the end 
would be about 30. 

 
Figure 7. Frameworks to indicate variation but no data or a few data values (Level 1) 
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Two types of graphs were employed to begin to structure the display of variation in 
the temperatures at Level 2. Some suggested a frequency approach for various 
temperatures, as shown in Figure 8, choosing various temperatures, apparently randomly, 
for reporting. The student who drew the representation on the left for example said, “That 
[first column] shows that there’s 4 days which bring 17.” Others were based on time 
throughout the year. These were more likely to display a trend in variation, as shown in 
Figure 9, although some did not progress far enough to do so.  

 

 
 

 
Figure 8. Frequency graphs (Level 2) 

 

 
Figure 9. Beginnings of temperature graphs (Level 2) 

 
At Level 3 the graphs showing seasonal change were represented variously as 

continuous lines, vertical lines for short periods, line graphs, and bar graphs for months or 
seasons. Examples showing two methods of display, along with the students’ 
explanations, are given in Figure 10. These responses reflected the intuitive expectation 
of the weather context. 

Although there was mention of seasonal difference and change in the extracts 
accompanying the graphs in Figure 10, there was no discussion of daily variation when 
the graphs were drawn. Two examples that include short term variation as well as 
seasonal expectation are shown in Figure 11. These are judged to be Level 4 responses in 
the ability to focus on both variation and expectation. 
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I: So if those are the averages for the months – 
now can you tell me why they are going up 
and down a bit? 

S: Colder and hotter. 
I: OK – so where’s the coldest part of the year? 
S: In the middle [points to graph]. 
I: Sort of in the middle there, somewhere. 
I: And it gets warmer toward the end. 
S: Yes, Yes.  

 S: I think I will have a little line graph.  
I: Can you explain it to me.  
S: Well January is usually the hottest month and 

so the average what the temperature is.  
I: The average of the temperature and that 

[graph] represents that for the month. 
S: Yes each cross. 
I: And why does it go down? 
S: Because in the middle of winter it is generally 

colder than it is in the middle of summer.  
 

Figure 10. Graphs with seasonal variation (Level 3) 
 

 

I: What are each of these lines here? 
S: They are just a–throughout the–this is so you 

get a view of all the different temperatures that 
it can range from and just like it might be up, it 
might be a hot day one day and it might start 
going colder and it might get hot again and 
then as it goes down. It is going to start getting 
colder around June and July and then it is 
going to start coming back up [points to 
graph]. 

I: What does each line represent? 
S: A week. 

 

I: So what have you done there? 
S: It’s the highest in January, February, and 

December cause that’s the middle of summer... 
The coldest would be around here in winter. In 
around these sections, it’s around middling. 

I: It’s interesting you’ve got May a little bit 
higher here… 

S: Yea, it could change. There’d be a lucky day 
sometimes. It could just go up over. 

I: So are these temperatures, are they what, 
maximums, or averages or…? 

S: Yeah, maximum averages.  
 

Figure 11. Temperature graphs with seasonal expectation and daily variation (Level 4) 
 
Table 5 summarizes the levels of response for each grade for the WEATHER task for 

the 70 students who responded in the interviews. For this sample of students only two 
Grade 7 students, whose responses are shown in Figure 11, reached Level 4 in 
appreciating both expectation and variation in their responses. 
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Table 5. Summary of levels by grade for the WEATHER protocol (n = 70) 
 
 Grade 
 P 3 5 7 9 
Level 0 4 6 2 0 0 
Level 1 0 8 7 3 0 
Level 2 0 4 7 9 8 
Level 3 0 0 2 1 7 
Level 4 0 0 0 2 0 
Total 4 18 18 15 15 

 
6.3. LOLLIES 

 
The complete interview for the LOLLIES task, as seen in Appendix C, provides the 

background for the question relating to imagining the outcomes of 40 trials where 10 
lollies are drawn each time (with replacement) and the number of reds counted. After an 
initial request to draw a graph with no support provided, a blank set of axes was provided 
to students who did not initially produce a distribution of outcomes centered about five to 
help them think about distributions. The axes did not assist some students. The levels of 
response for the initial representations are presented first, followed by those for students 
shown axes. 

Similar to the WEATHER task, Figure 12 shows how some younger students 
interpreted the task by sketching the context for the drawing of lollies from a container. 
These are examples of Level 0 responses. A Grade 3 student explained the representation 
in the center of Figure 12 as follows, pointing to each part of the drawing: 

 
Student: Well they are 4 tables and they are the boxes with the lollies in them and they 

are two sheets of paper on each row so they can write down their answers and 
that’s just a person who watches, sits there and collects the pieces of paper 
from each one. And then there’s a row of 10 people [vertical lines]. 

 

  
 

Figure 12. Sketches of contexts for drawing lollies (Level 0) 
 
Other students across the grades initially provided numerical values for the outcomes. 
Responses suggesting individual values, rather than enough to indicate some variation, 
are shown in Figure 13 and are also assigned Level 0. 

 

 
 

Figure 13. Individual outcomes from draws (Level 0) 
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Responses explicitly suggesting variation are shown in Figure 14. A Grade 5 student 
explained the table on the right of Figure 14, as “Well it isn’t exactly forty people, there 
was like a group and they each wrote down their answers in a line across the top.” These 
responses are placed at Level 1. 

 

 
 

 
Figure 14. Multiple outcomes from draws (Level 1) 

 
The representing of outcomes for the 40 draws in a time series format was used by 

some students and often they were stopped from completing all 40 due to time constraints 
in the interview. The spread of the suggested number of reds was often quite large and 
occasionally very small. Two examples are shown in Figure 15 (both from Grade 7); 
these representations are placed at Level 2. 

 

 

 

 

 
Figure 15. Time-series-like graphs (Level 2) 

 
Some graphs of the time-series type showed a realistic degree of variation about a 

middle value, as do the two in Figure 16 by Grade 3 and Grade 9 students, with the 
accompanying explanations. These were judged Level 3 in appreciation of both variation 
and an intuitive notion of center.  

Without axes being provided, only four students produced a prototype of a typical 
frequency distribution. These responses were judged to be at Level 4 and are all shown in 
Figure 17. 
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S: How many reds they have got. 
I: So that is a person? Each one of these 

columns is a person is it? 
S: Yes. And the coloring in is how many 

reds they got. 
I: Out of 10. 
S: This is like the end [sheet]. 
I: So that person got 1 red so far. The 

first person gets about? 
S: Five 
I: Next person? 
S: Four.  
I: Do one more yeah … Yes you have 

got the right idea. I can see what you 
mean by showing it. So you would do 
that like that for 40 people though 
wouldn’t you. So you think they all 
would get around what? 

S: Around 6 and 5, around that, 6, 5, 4 
and 7.  

S: I drew a graph and they had the 
number of reds up the sides. The 
students along the bottom. And I 
drew a line going around 5, it goes 
up to 6 and down to 4 sometimes. 

 
Figure 16. Time-series-like graphs with appreciation of center (Level 3) 

 

 

  
 

Figure 17. Frequency distribution graphs (Level 4) 
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Table 6 shows the levels of response for each grade for the initial representations 
drawn for the LOLLIES protocol. Young students had some difficulty with appreciating 
the task in its original form. Only two graphs produced by Grade 7 students appeared to 
represent expectation to the exclusion of variation in the initial graph. The representations 
and the students’ explanations are shown in Figure 18. These used an area model for 
probability and were judged Level 0 with respect to this model. They were the only two 
responses initially to represent expectation rather than variation, the reverse to the 
hypothesis of this study. It may be that classroom instruction influenced these 
representations as the two students were from the same class. 

 
Table 6. Summary of initial levels by grade for the LOLLIES protocol (n = 73) 

 
 Grade 
 P 3 5 7 9 
Level 0 4 14   7   4   2 
Level 1 3   3   6   3   4 
Level 2 0   0   3   7   5 
Level 3 0   1   0   0   3 
Level 4 0   0   2   1   1 
Total 7 18 18 15 15 

 

 

 

S: Drawing about [outline of a rectangle] … drawing like a 
space just like drawing a square [draws a rectangle] – it is 
not really square. 

I: That’s all right, just a sketch. 
S: And probably about this much of it red and this much 

[yellow] and green. 
I: Now what does this [left section] represent? 
S: The red lollies. Probably about two thirds. 
I: About two thirds of what would come out would be red. 

[nods] And about how much yellow and green? 
S: Actually I was trying to make that – they would probably be 

a little bit less than a quarter. 
I: A little bit less than a quarter. 
S: Yes. 
I: For each of them or together? 
S: For each of them I think.

 

 

S: Oh, well they could do it in a pie graph or something and 
have the reds and then the other section is whatever else. 

I: So the reds would be … right, OK. Would it be one pie graph 
for the whole class do you think? 

S: [pause] Yes could be. 
I: Do you want to do me a sketch of what you think it might 

look like. 
S: [draws pie graph]. There’s a bit more than half. 
I: Do you think that would be the reds? 
S: Yes.  

 
Figure 18. Graphs representing expectation only (Level 0) 

 
The four students who drew the graphs in Figure 17 were not presented with the axes 

format as they had produced an equivalent form on their own. Some other students were 
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not presented with the graph format with axes because of confusion with the task, time 
constraints, or perceived lagging interest in the protocol.  

Fifty-four students (all Prep, 13 Grade 3 and 9, 11 Grade 5, and 10 Grade 7) who 
produced lower level initial graphs were shown the graph format with axes. The Prep 
students were given a complete “boxed” grid where they could color in boxes if they 
desired. Of the 54 students, 3 Prep, 10 Grade 3, 8 Grade 5, 9 Grade 7 and 8 Grade 9 
improved their levels of response. Only one student in each of Grades 3, 7, and 9 
produced a response using the axes that could not be deciphered and was assigned a 
Level 0 category, when a higher level response had been produced earlier. The levels of 
response by grade using the axes are shown in Table 7. 

 
Table 7. Summary of levels by grade for the LOLLIES protocol with axes 

provided (n = 54) 
 

 Grade 
 P 3 5 7 9 
Level 0 1 2 0 1 1 
Level 1 5 2 1 0 0 
Level 2 1 6 10 1 3 
Level 3 0 3 0 6 7 
Level 4 0 0 0 2 2 
Total 7 13 11 10 13 

 
Using the axes provided, six students in Grade 3 and eight students in Grade 5 

improved from Level 0 or 1 to Level 2. Some graphs took into account the total of 40 
people but others ignored this aspect of frequency. The graphs shown in Figure 19 show 
variation but not expectation in the center. Similarly 2 Grade 3, 6 Grade 7, and 5 Grade 9 
students improved their responses to Level 3 with the axes, by indicating an expectation 
for values around 5. Two of these are shown in Figure 20. 

Two students in each of Grade 7 and Grade 9 improved their responses to Level 4 
when presented with axes. These graphs show an appropriate shape for the distribution of 
outcomes except that the variation is too great and the responses ignore the values on the 
vertical axis. Two are shown in Figure 21, the first apparently attempting to record the 40 
outcomes. A few other students produced distributions that were centered on values 
greater than 5. These, because they acknowledged a center, although not the appropriate 
one, were allocated to Level 3. 

 
  

 
Figure 19. Frequency graphs with axes (Level 2) 
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Figure 20. Frequency graphs with axes and a central expectation (Level 3) 

 

  
 

Figure 21. Frequency distributions with axes (Level 4) 
 

6.4. SUMMARY 
 
A summary of levels of response across the three tasks is given in Table 8. The 

difference in complexity of the tasks means that it is inappropriate to equate performance 
across tasks. What is of interest is the similarity in structure in the observed 
representations created by students. On all three tasks five hierarchical levels of 
sophistication in representing variation are seen, with expectation being acknowledged 
and represented at higher levels. There were only two instances, for the LOLLIES task, 
where students appeared to represent expectation in terms of probability, rather than 
variation. This may be associated with classroom instruction. 

The trend for higher level performance with increasing grade likely reflects 
experiences in the classroom with ideas of average, probability, and graphing. An 
appreciation of variation in these contexts, however, appears to be established for most 
students by the middle years. 

 
7. DISCUSSION 

 
7.1. VARIATION, EXPECTATION, AND DISTRIBUTION 

 
What issues are involved when distributions are being judged in relation to the 

appropriateness of the variation and expectation displayed? In the light of the growing 
interest in variation in recent years, Shaughnessy (2007) suggests eight different aspects 
of variation that arise in various statistical contexts. Most of these can be observed in 
graphical representations: (i) variation in particular values such as outliers, (ii) variation 
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over time, (iii) variation over an entire range, (iv) variation within a likely range, (v) 
variation from a fixed value such as a mean, (vi) variation in sums of residuals, (vii) 
variation in co-variation or association, and (viii) variation as distribution. Aspects (vi) 
and (vii) are beyond the scope of this study but (viii) is of interest in the sense of the 
creation of a distribution that displays the variation inherent in the creator’s mind. 
Shaughnessy’s description of (viii) focuses on variation “between or among a set of 
distributions” (p. 985), which goes one step further than the notion of variation inherent 
in a single distribution as observed in this study. Expectation fits into Shaughnessy’s list 
at several places as a counter point to the concept of variation. Certainly expectation is a 
determinant of the “likely range” in aspect (iv) and the mean, or other fixed values such 
as proportion of red lollies, in aspect (v). It also underlies the last three aspects. It seems 
clear that different kinds of tasks, as presented here, require acknowledgement of 
different aspects of variation. 

For the BOOKS task, the variation is present in the given data values and the interest 
is in how students choose to represent this. In some sense the lower levels of response 
observed for this task fall outside of Shaughnessy’s (2007) categories. The appreciation 
of individual values, however, points to an initial requirement of representing variation. 
The appreciation of the entire range of values was shown by a few students who 
mentioned it in the context of predicting how many books the new student might have 
read. Aspect (v), involving an appreciation of center, comes into play in some of the 
predictions and responses that acknowledge uncertainty in the prediction and appear to 
link the expectation with variation. Although the more sophisticated presentations in 
Figure 4 appear to satisfy statistical norms, the earlier representations are important in 
demonstrating the progression made by students in understanding the nature of the task. 
If progressions are recognized it should be easier for teachers to assist students in moving 
from less appropriate to more appropriate representations. 

With the WEATHER and LOLLIES representations, students have a more complex 
task in representing variation because it is not presented to them in explicit data values. 
Only an expected value is presented at the start. An appreciation of variation in the 
context hence becomes important when students draw their graphs. For these two tasks 
students all seem to appreciate that the maximum temperature will not be the same every 
day and that the number of red lollies drawn from the container will not be the same 
every time. The prediction of six values or of a distribution for maximum temperature or 
number of reds, always shows variation, although sometimes it is wider than appropriate. 
The most appropriate graphs in a statistical sense show both a distribution, representing 
seasonal trend in maximum temperatures or likelihood of obtaining red lollies, and 
“random” variation about the distribution (see Figures 11 and 17). These two tasks 
certainly illustrate the first four of Shaughnessy’s (2007) aspects of variation. Some 
responses include unusual values; some show variation in time for the weather or in 
sequential student draws for the lollies; some indicate variation over an entire range, 
particularly for the lollies task but also sometimes for temperatures; and some show 
appreciation of a limited likely range for both temperatures and numbers of lollies drawn. 
Although it may be considered implicit, the graphical representations that vary about a 
value of 17oC on the vertical axis or peak at 5 red lollies, are showing an appreciation for 
Shaughnessy’s aspect (v). There is also the additional aspect (ix) which reflects the 
contextual model that produces the distribution represented: the seasonal trends in 
temperature and the theoretical sampling distribution for the lollie draws. Again there 
appear to be several steps or stages in students’ increasing appreciation of the variation 
and its link to expectation in the context of the overall tasks. An understanding of these  
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Table 8. Percent of responses for each task at each hierarchical level 
     
 BOOKS WEATHER LOLLIES (initial) LOLLIES (given axes) 
Grade P 3 5 7 9 P 3 5 7 9 P 3 5 7 9 P 3 5 7 9 
Idiosyncratic 14 50 25 7 12 100 33 11 0 0 57 78 39 27 13 14 15 0 10 8 
Unistructured 
Variation 

43 17 37 7 12 0 39 39 20 0 43 17 33 20 27 71 15 9 0 0 

Variation shown 
by value 

43 33 37 36 25 0 22 39 60 53 0 0 17 47 33 14 46 91 10 23 

Initial 
acknowledgement 
of expectation 

0 0 0 29 25 0 0 11 7 47 0 6 0 0 20 0 23 0 60 54 

Integration of 
expectation and 
variation 

0 0 0 21 25 0 0 0 13 0 0 0 11 7 7 0 0 0 20 15 

n 7 6 8 14 8 4 18 18 15 15 7 18 18 15 15 7 13 11 10 13 
 



53 

 

 

will help teachers plan interventions to assist students in progressing to higher levels of 
representation and explanation. 

Although the production of graphical representations should take place within the 
larger setting of a complete statistical investigation, for example as described by Chick 
and Watson (2001), Lehrer and Romberg (1996), Petrosino et al. (2003) and Friel et al. 
(2006), studying the products of such investigations is likely to provide insight into 
students’ thinking during the process. These are particularly relevant to the inferences 
drawn. As well, issues related to the context within which a task is set are important. Are 
students more familiar with the weather than with pulling lollies unseen from a container? 
Is the pictograph task too elementary to interest older students? The three tasks were 
chosen specifically to provide both a range of complexity and data based on two 
processes: scientific measurement and artificial probability sampling. The use of 
contextual knowledge was seen most often in the WEATHER protocol, where students 
told of their experiences of Hobart’s weather (Watson & Kelly, 2005); but also younger 
students used their contextual knowledge of reading to suggest imaginary reasons why 
Paul or Mary might have read a suggested number of books. In the BOOKS protocol, 
some students stated assumptions of context that could underlie their prediction for Paul 
and Mary. It is likely that it was limited contextual experience with pulling lollies from 
containers that contributed to the wider than realistic distributions drawn by students (e.g., 
Figure 21). The issue of the influence of contextual knowledge on students’ inferences in 
data handling situations is beginning to attract research attention (e.g., Langrall, Nisbett, 
& Mooney, 2006; Mooney, Langrall, & Nisbet, 2006) and should be expanded to include 
the attention paid to its influence on variation and expectation in the creation of graphical 
representations. 

The use of the term “distribution” in the title reflects the statistical perspective in 
relation to what is expected by the time students move into senior secondary study. It is 
unlikely that students will use the word before then. They will however hopefully draw 
many graphs that show appropriate variation associated with the contexts of tasks set. If 
they learn the importance of the words “variation” and “expectation,” this will be an 
important part of the vocabulary for their later statistical lives. 

 
7.2. LIMITATIONS 

 
Some of the limitations of the study result from combining data sets for tasks that 

were not all completed by the same students. Although it is possible to compare and 
contrast representations by the students who completed the LOLLIES and WEATHER 
tasks, it has not been done for this paper (see Watson, Callingham, & Kelly, 2007). 
Although some students explained well their thinking while creating representations 
during the interviews, others said very little. It is possible that further probing might have 
produced more complete explanations.  

It may be considered that the questions in the protocols, particularly the WEATHER 
and LOLLIES tasks, encouraged a consideration of variation. Each set up the potential for 
comparing varied data values against an initial expectation. In the WEATHER protocol, 
this was provided by the statement about the average daily maximum temperature in 
Hobart being 17oC. In the LOLLIES protocol, expectation was provided in the statement 
that the bowl of lollies contained 50 red, 20 yellow, and 30 green lollies. The first was a 
more straightforward and familiar statement of expectation in context for most students. 
In both cases, however, students were presented with both concepts, expectation and 
variation, at the start of the protocol and hence had the opportunity to build both into their 
responses. In the BOOKS task, the opportunity for display of understanding of the two 
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concepts appeared as pictographs were discussed or predictions requested. Although 
creating pictographs that displayed variation, some students did not recognize this as a 
characteristic that could be discussed. In other protocols presented to these students, not 
associated with graphical representations, expectation was the feature of the prompting 
questions (Watson & Kelly, 2004b, 2006) not a contextual referent as in the WEATHER 
and LOLLIES protocols. 

 
7.3. IMPLICATIONS FOR RESEARCH AND THE CLASSROOM 

 
This study adds to the growing body of evidence about the increased complexity of 

appreciation of variation and expectation in statistical contexts throughout the school 
years. In two of the contexts presented here, specific data values were not presented to 
students; in the other context a very small data set was presented. It may hence be claimed 
that the contexts were not realistic and students were not encouraged to use knowledge 
they may have learned in the classroom to deal with quantitative data sets. Whether this 
may have influenced the apparent delay in demonstration of ideas associated with 
expectation is unknown. The two contexts that did not contain specific data sets, however, 
may represent scenarios more likely to be encountered in out-of-school situations. They 
may perhaps present evidence of how likely or otherwise it is for students to transfer their 
knowledge to less specifically data-based environments.  

In a related study involving six protocols, including the WEATHER and LOLLIES 
tasks but also others more specifically aimed at probability as expectation, Watson et al. 
(2007) observed a parallel development of concepts related to variation and expectation. 
Based on a Rasch analysis of hierarchically coded responses, six levels were identified, 
ranging from no acknowledging of either variation or expectation to an establishing of 
links between the two in comparative settings employing proportional reasoning. It 
appears that the use of more tasks, some specifically addressing expectation, prompts 
students to display their developing appreciation earlier. In the current study the tasks, 
especially the BOOKS protocol, were quite open-ended, allowing students to display 
understanding they felt to be relevant rather than to be prompted to recall averages or 
probabilities. 

This study holds open the question of the natural development of ideas of variation 
and expectation, free of teaching intervention or specific prompting during interviews. It 
appears to support the view that ideas of variation develop naturally before those of 
expectation. Watson (2005) produced a similar argument based on descriptive anecdotal 
examples and further suggested that the school curriculum does not reflect this 
development. It may be that currently the curriculum does not support students’ natural 
inclination to focus on variation and instead forces attention on expectation in the form of 
averages and probabilities first. It would appear that if it is desired for students to develop 
both concepts together then the curriculum needs to reflect the two ideas and their 
interaction from the start. It is likely that David Moore (1990, 1997) would support this 
revision in thinking about the curriculum given his view of variation as the foundation 
concept underpinning the field of statistics. 

The tasks used in this study illustrate a wide range of contexts within which students 
can be asked to create representations of distributions. The importance of considering 
both data sets and data-free scenarios is seen, as well as the importance of choosing 
contexts where students have some intuition about the variation present. In school settings 
it may be possible to combine such graphing tasks with other tasks in science, social 
science, or health where variation appears in the topic being studied. The consideration of 
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both subject matter understanding and the ability to create distributions, leads to the 
implications for assessment. 

If a hierarchical progression of observed levels of graph production can be agreed 
upon, for example as suggested in Table 3, it will then be possible to create rubrics for 
assessment based upon them. These can then be combined with other rubrics of subject 
matter performance for authentic cross-disciplinary assessment, as desired in many of 
today’s schools. The results of this study may not show that students get close to the 
formal idea of distribution by Grade 9 but they indicate what a complex process is 
involved. The outcomes suggest that in making progress much explicit classroom 
discussion is required along the way. 
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APPENDIX A: INTERVIEW PROTOCOL FOR THE BOOKS TASK 
 

  

Sample of cards used as materials for representation. 
 

We have some cards here, to represent some children, and some cards for the books they have 
read. 

(Show information sheet: Anne read 4 books, and Danny read 1, and Lisa read 6, Terry read 3.) 
Now suppose that Anne read 4 books, and Danny read 1, and Lisa read 6, Terry read 3. 
Representing (Part 1) 
Can you use the cards to show the information? 
Why did you do it that way? 
Interpreting (Part 1) 
If someone came into the room, what could they tell by looking at your picture? 
Representing (Part 2) 
Suppose Andrew read 5 books. Can you show that Andrew read 5 books? 
Suppose Jane read 4 books. Can you show that Jane read 4 books? 
Now, suppose Ian hasn't read any books. Can you show that Ian hasn't read any books? 
Now, suppose everyone went to the library and read one more book each. Can you change your 
picture to show that they all read one more book each? 
Interpreting (Part 2) 
If someone came into the room, what could they tell by looking at your picture now? 
Can you tell who likes reading the most? How? 
Can you tell how many books they've read all together? 
Who do you think is most likely to want a book for Christmas? Why do you think that? 
Predicting 
Suppose Paul came along, and we didn't know how many books he had read. What would be you
best estimate/prediction/guess of how many books he might have read? 
Now suppose Mary came along. What would be your best estimate/prediction/guess of how 
many books she might have read? 
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APPENDIX B: INTERVIEW PROTOCOL FOR THE WEATHER TASK 
 

1. Some students watched the news every night for a year, and recorded the daily maximum 
temperature in Hobart. They found that the average maximum temperature in Hobart was 17°C. 

a) What does this tell us about the temperature in Hobart? 
b) Do you think all the days had a maximum of 17°C? - Why or why not? 
c) (What do you think the maximum temperature in Hobart might be for 6 different days in 

the year?)* ______,  ______,  ______,  ______,  ______,  ______ 
d) Why did you make these choices? 

 
e) For the whole year, what do you think the highest and lowest daily maximum 

temperature in Hobart would be? highest maximum _____ lowest maximum ____ 
f) For the month of January, what do you think the highest and lowest daily maximum 

temperature in Hobart would be? highest maximum _____ lowest maximum ____ 
g) For the month of July, what do you think the highest and lowest daily maximum 

temperature in Hobart would be? highest maximum _____  lowest maximum ____ 
2. How would you describe the temperature for Hobart over a year in a graph? 
 
3. Here are some ideas from other students. What do you think of them? 
a) 

   
 
b) 
 

   
 
c) 
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APPENDIX C: INTERVIEW PROTOCOL FOR THE LOLLIES TASK 
      

1. Suppose you have a container with 100 lollies in it. 50 are red, 20 are yellow, and 30 are 
green. The lollies are all mixed up in the container. You pull out 10 lollies. 

a) How many reds do you expect to get? 
b) Suppose you did this several times. Do you think this many would come out every time? 

Why do you think this? 
c) How many reds would surprise you? Why do you think this? 
 

2. Suppose six of you do this experiment. 

a) What do you think is likely to occur for the numbers of red lollies that are written down? 
______,  ______,  ______,  ______,  ______,  ______  Why do you think this? 
 
3. Look at these possibilities that some students have written down for the numbers they thought 

likely. 
(a) 5,9,7,6,8,7     (b) 3,7,5,8,5,4     (c) 5,5,5,5,5,5     (d) 2,3,4,3,4,4 
(e) 7,7,7,7,7,7     (f) 3,0,9,2,8,5     (g) 10,10,10,10,10,10 

Which one of these lists do you think best describes what might happen? Why do you think this? 
 
4. Suppose that 6 students did the experiment. What do you think the numbers will most likely 

go from and to? 
From __________ (lowest) to __________ (highest) number of reds. Why do you think this? 
Now try it for yourself: ______,  ______,  ______,  ______,  ______,  ______ 
Given the results, do you want to change any of your previous answers?
 

5. Suppose that 40 students pulled out 10 lollies from the container, wrote down the number of 
reds, put them back, mixed them up. 

a) Can you show what the number of reds look like in this case? (Use the blank space 
below) 

b) Now use the graph below to show what the number of reds might look like for the 40 
students. 
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ABSTRACT 

 
This paper reviews factors that contribute to the development of middle school 
students’ interest in statistical literacy and its motivational influence on learning. To 
date very little research has specifically examined the influence of positive affect such 
as interest on learning in the middle-school statistics context. Two bodies of 
associated research are available: interest research in a mathematics education 
context and attitudinal research in a tertiary statistics context. A content analysis of 
this literature suggests that interest development in middle school statistics will be the 
result of a complex interplay of classroom influences and individual factors such as: 
students’ knowledge of statistics, their enjoyment of statistics and their perceptions of 
competency in relation to the learning of statistics.  
 
Keywords: Literature review; Attitudes; Statistics education 
 

1. INTRODUCTION 
 
There is currently a shortage of mathematics and statistics graduates in Australia. In 

their review of mathematical sciences research, the Australian Academy of Science 
(2006), reported that in 2003 only 0.4% of Australian graduates majored in either 
mathematics or statistics, which compared unfavorably with an OECD average of 1%. 
Further, the Australian Bureau of Statistics has reported difficulty in obtaining suitably 
qualified statistics graduates (Trewin, 2005). Such shortages have their origins in the 
secondary school context, where the number of students enrolled in higher level 
mathematics courses is showing a declining trend (McPhan, Morony, Pegg, Cooksey, & 
Lynch, 2008). In addition to this, McPhan et al. reported that students’ lack of interest and 
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liking for mathematics during their middle school education was one of five factors that 
contributed to this decline, the other factors being their previous achievement in 
mathematics, their mathematics self-concept, and their perceptions regarding the 
usefulness and difficulty of mathematics. This paper seeks to address the issues associated 
with national skill shortages in statistics through a review of factors that could contribute 
to middle school students’ interest in statistical literacy.  

Statistically literate adults should be able to interpret and critically evaluate messages 
that contain statistical elements (Gal, 2003). For example, they should be able to 
recognize bias as a possible source of error in media reports of survey data. Models have 
been conceptualized that describe the development of statistical literacy in learners (Gal, 
2002; Watson, 2006). In his model of statistical literacy, Gal (2002) identified several key 
knowledge bases that were essential for the development of statistical literacy. He 
concluded, however, that such knowledge was of minor consequence if a person was 
unwilling to apply this knowledge. Gal’s model of statistical literacy, therefore, included a 
dispositional component: A statistically literate adult should possess a readiness to 
criticize messages that contain statistical elements. Such a disposition, he argued, emerges 
when a person has a belief in their capabilities and an interest and willingness to engage 
in statistical thinking. In her model of statistical literacy development, Watson (2006) also 
included dispositional elements, under the broader category of task motivation. These 
dispositions included skepticism, imagination, and curiosity. It is argued that the 
dispositions identified by Gal and Watson are themselves developed as a result of positive 
emotional learning experiences with data. Such experiences formally commence in school 
and reach necessary levels of sophistication towards the end of middle school (grade 9), 
where it is argued dispositions are less likely to change. The development of positive 
affect in the middle school years is therefore a prerequisite to the acquisition of 
dispositions necessary for statistical literacy. It is also argued that the development of 
positive affect in the middle school has a considerable bearing on the subject choices that 
students make in senior secondary and tertiary contexts, thus influencing later skill 
shortages.  

Students in a middle school context (grades 6 to 9) are typically in early adolescence, 
which appears to be a critical stage in their affective development. In the mathematics 
education context, for example, evidence points to a decline in levels of positive affect as 
a student progresses through school (Fredricks & Eccles, 2002) with such levels reaching 
a minimum in year 10 (Watt, 2004). The correlation between student attitudes towards 
mathematics and their achievement in mathematics, however, appears to be strongest for 
students in grades 8 to 10 (Ma & Kishor, 1997; Ma & Xu, 2004). The influence of affect 
on learning appears to be more pronounced for this group of students. Such findings are 
supported by reported physiological changes to the brain that occur during adolescence 
(Wigfield, Byrnes, & Eccles, 2006), changes that result in the greater likelihood of 
affective activity.  

The preceding discussion highlights the need for research into the influence of affect 
on learning in a middle school statistics context. The next section argues that interest, a 
commonly used term, is a positive affect that is essential for human psychological 
development. Interest is therefore of particular relevance to the current context. 

 
1.1. INTEREST AS A POSITIVE AFFECT 

 
The Macquarie Dictionary (Delbridge et al., 1987, p. 910) defines interest as “the 

feeling of one whose attention or curiosity is particularly engaged by something.” 
Therefore interest can be regarded as a positive affect that is specifically directed towards 
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some object, termed the “object of interest.” Deci (1992) argued that interest is 
fundamental in the development of a person’s concept of self. Moreover recent research 
suggests that interest is necessary for psychological growth, with absence of interest in 
adolescents being linked with psychological disorders such as depression (Hunter & 
Csikszentmihalyi, 2003).  

In the psychological literature the term “affect” is assumed to be “a broad rubric that 
refers to all things emotional” (Rosenberg, 1998, p. 247). Affective elements vary on a 
hierarchical continuum from emotional states, which are typically short in duration but 
characterized by high levels of arousal, to traits which are stable predispositions to 
respond in certain ways. As an affect, interest is regarded as having both trait and state 
characteristics (Schiefele, 1991). At the trait level “individual interest” is described as a 
“person’s relatively enduring predisposition to reengage particular content over time” 
(Hidi & Renninger, 2006, p. 113). Interest at the state level is more transitory and is 
typified by a positive emotion akin to excitement. In a state of interest a learner may 
become so absorbed in the object of interest that they lose sense of time: They experience 
“flow” (Csikszentmihalyi, 1991). The state of interest can be induced by aspects of the 
environment and in such instances is termed “situational interest.” Alternatively the state 
of interest can be induced from the individual’s predisposition to engage and in such 
instances is termed “actualized interest.” It is believed that individual interest can emerge 
from situational interest. Thus the requisite dispositions for statistical literacy may emerge 
from students experiencing the state of interest during their learning.  

In a learning context, students’ interest can explain some of their motivation to engage 
in learning activities. Such interest-driven motivation is termed “intrinsic motivation” and 
is the doing of an activity for its inherent value. The concept of intrinsic motivation 
features prominently in Self Determination Theory (Deci & Ryan, 1985) which posits that 
individuals are motivated to behave in seemingly unrewarded ways in order to meet basic 
psychological needs, including the need to be self-determined. Students who are 
motivated intrinsically, that is out of an interest in the subject, are known to produce 
qualitatively superior learning outcomes to their extrinsically motivated peers. For 
example, Schiefele (1991) reported that student interest was positively associated with 
deeper levels of cognitive processing, the use of self-regulatory learning strategies and 
students’ ratings on the quality of their learning experience. Further, there is significant 
correlation between student interest and both academic achievement (Schiefele, Krapp, & 
Winteler, 1992), and choice of subjects (Köller, Baumert, & Schnabel, 2001). Given the 
importance of interest development in adolescence and its association with learning, a 
study of the development of affect in students should include the development of their 
interest.  

 
1.2. THE DEVELOPMENT OF INTEREST 

 
Current theories of interest development suggest that students’ interest in statistical 

literacy will emerge as they gain expertise in the area. As an example, the Model of 
Domain Learning (Alexander, 2003) posits that students’ interest in a given domain will 
increase as they gain knowledge in that domain. Further, the model suggests that in the 
early stages of knowledge acquisition, levels of individual interest will be quite low and 
learners will rely on situational interest for motivation. As learners move through the 
domain towards expertise, they will increasingly rely on their individual interest for 
motivation, with situational interest becoming of less importance. This relationship 
between levels of situational and individual interest during the development of domain 
expertise implies that the latter will emerge from the former. Indeed, Hidi and Renninger 
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(2006) argued that individual interest will emerge from situational interest. In particular 
they argued that if situational interest can be maintained then it will develop into an 
emerging individual interest and then finally into an enduring individual interest. The 
mechanism by which this transformation occurs is explained by Silvia (2001). He 
proposed that interest occurs when an individual resolves the cognitive conflict that is 
created when he or she interacts with the object of interest. More specifically, Silvia 
(2001) argued that during the person-object interaction, incoming stimuli are assembled 
with current personal information on the basis of a number of “collative” variables that 
are associated with the learner’s response to the stimuli. These collative variables include 
novelty, uncertainty, and complexity. During this interaction, the learner will fail to 
engage in any significant way with stimuli that are considered routine (low levels of 
novelty). Similarly the learner will fail to engage when the stimuli are too unknown or 
frightening (high levels of novelty). For optimal levels of these variables a state of 
curiosity will be evoked that is characterised by high levels of arousal and positive 
emotions, including interest. In this state the learner will be motivated to resolve the 
conflict created by the particular collating variable. If this conflict cannot be resolved 
quickly, the learner will be motivated to persist with the object, even returning to it at 
later times. Such persistence with the object may uncover further stimuli that in turn 
create a conflict in need of resolution. In such a way it is hypothesized that both 
knowledge and interest in the object will develop, with people losing interest in simple 
objects and pursuing those with more complex associated knowledge.  

The emergence of interest in statistical literacy may also occur as the result of the 
individual’s unique set of “interests,” those interest objects with which he or she is 
particularly interested. Krapp (2002) identified a number of ways that interests could 
develop. For example, he argued that a new interest could emerge as a result of the 
increased differentiation of one aspect of an existing interest. In the statistical literacy 
context, students with a particular interest in sports may gain an interest in statistical 
literacy through the analysis of sports related statistical reports. The highly idiosyncratic 
patterns of interests that students bring to the classroom, however, pose a number of 
challenges to the educator. Foremost among these is being able to identify and cater for 
such interests. It is argued that educators have the most influence in the creation of 
situational interest and the development of knowledge and skills that relate to statistical 
literacy.  

 
1.3.  RESEARCH QUESTION  

 
In the preceding section, interest is identified as a positive affect that is necessary for 

psychological development and intrinsically motivated behaviors. In the statistics 
education area, research into interest per se is limited; related attitudinal research, 
however, may provide information on factors that lead to the development of interest in 
statistics. A review of the theoretical interest-based literature reveals that both knowledge 
and prior interests should contribute to the development of students’ interest in statistical 
literacy. The preceding discussion, however, has not specifically examined interest 
development in the statistical literacy context. Accordingly, this paper seeks to answer the 
following question: what are the factors documented in the literature that influence the 
positive development of middle school students’ interest in statistical literacy? 
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2. METHODOLOGY 
 
The literature review was conducted in three phases, commencing with a search on 

the specific question and then generalising the search to encompass interest development 
in secondary mathematics contexts, and then to the development of positive affect in the 
tertiary statistics education context. Searches in all phases commenced with databases of 
academic journals and abstracts including: A+Education, Emerald, ERIC, Expanded 
Academic, JSTOR Education, Proquest, PsycINFO, SAGE, SpringerLink and Wiley 
Interscience. In addition Google Scholar was found to be a particularly useful search 
engine. Secondary searches of others’ bibliographies and searches using citation indexes 
were also conducted in each phase.  

The initial search specifically addressed the research question using the keywords 
interest and statistics (or statistical) in the article title. In addition to the databases 
discussed above, a search was conducted on specific statistics education journal archives 
including: Statistics Education Research Journal, Journal of Statistics Education, and 
Teaching Statistics. Further, an archive of statistics education dissertations retained by the 
International Association for Statistical Education was also searched. Only one study 
located in the search specifically examined the concept of interest as it relates to the 
learning of statistics in a school context. In the second phase the search was expanded to 
include interest development in both secondary school mathematics and tertiary statistics 
contexts. In the third phase the search was expanded to include attitudinal-related research 
in both school and tertiary contexts. The search keywords in this phase included attitude 
and statistics (or statistical) in the article title.  

After retrieving relevant research articles, a content analysis (Krippendorff, 1980) 
identified common and conflicting outcomes that were related to the research question. 
The results of this review and analysis are discussed in the next section. 

 
3. RESULTS 

 
The results from the first two phases of the search are presented in Section 3.1. This 

section presents research, which is in the main part situated in a secondary mathematics 
context. The results from the last phase of the search, which is tertiary statistics related, 
are presented in Section 3.2. The relevance of both mathematics education and tertiary 
attitudinal research to the current context is then addressed in the discussion section of 
this paper. 

 
3.1.  MATHEMATICS EDUCATION RELATED RESEARCH FINDINGS  

 
The final search from the first two phases resulted in 38 hits with publication dates 

that ranged from 1976 to 2008 Thirteen of these could not be readily accessed and in most 
cases were published prior to 1995. Of the remaining 25 articles, six were discarded as the 
term interest was used generically to describe a feeling of well-being that was neither 
defined nor measured. Three articles were also discarded as they had included interest 
items in larger mathematics attitudinal scales, but had not reported specific interest 
outcomes. A further two validation studies were not used in this review as they reported 
technical aspects of interest scales rather than empirical evidence that could contribute to 
the research question. The majority of the remaining studies (9 of 14) were in a 
secondary-school mathematics context and specific details of these studies are shown in 
Appendix A.  
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The content analysis of this literature revealed a number of common outcomes but 
also differences in the way the interest construct was operationalised. These 
commonalities and differences are reported below. 

 
Common outcomes from the mathematics education literature A number of 

common factors were identified from the mathematics education literature as having a 
positive influence on interest development. These can be broadly classified into those that 
are situational and those that are individual (see Table 1). Situational factors include 
pedagogical strategies and aspects of the learning environment. Individual factors include 
the prior experiences and beliefs of the learners.  

Pedagogical practices, including the types of learning experiences that students 
encounter and the classroom management strategies used by teachers, have been shown to 
promote interest. Several studies provide supporting evidence: Heinze, Reiss, and 
Rudolph (2005), Kunter, Baumert, and Köller (2007), Mitchell (1997), Mitchell and 
Gilson (1997), and Sciutto (1995). As an example, Mitchell (1997) noted that learning 
activities that involve puzzles, computers, and group work will catch students’ interest. 
Similarly, teaching strategies that promote student involvement and which students find 
meaningful will hold students’ interest. Mitchell was able to provide some evidence to 
suggest that the individual interest of students in environments high in situational interest 
will increase in both a mathematics (Mitchell & Gilson, 1997) and statistics (Mitchell, 
1997) secondary-school context. It is arguable whether changes in interest reported after a 
period of only 14 weeks, the period used in these studies, reflect changes in individual 
interest. Nevertheless, pedagogical practices undoubtedly influence the situational interest 
in the classroom, which it is argued will ultimately develop into individual interest.  

 
Table 1. Common study outcomes from the mathematics education literature 

 
Situational 
factors 

• Pedagogical practices can promote interest in mathematics (Bikner-
Ahsbahs, 2004; Heinze et al., 2005; Mitchell, 1997, Mitchell & Gilson, 
1997; Sciutto, 1995; Trautwein, Ludtke, Köller, Marsh, & Baumert, 2006). 

• The social climate of the classroom can promote interest development 
(Bikner-Ahsbahs, 2004). 

• The classroom management strategies used by teachers (Kunter et al., 2007) 
and the views of significant others (Fox, 1982) can promote interest in 
mathematics. 

Individual 
factors 

• Interest in mathematics is associated with students’ prior knowledge and 
their competency-based beliefs (Fox, 1982; Köller et al., 2001; Lawless & 
Kulikowich, 2006; Lopez, Brown, Lent, & Gore, 1997; Marsh, Trautwein, 
Ludtke, Köller, & Baumert, 2005; Preckel, Goetz, Pekrun, & Kleine, 2008; 
Trautwein et al., 2006); and also their age (Köller et al., 2001). 

 
The social climate of the learning environment also plays an important role in 

developing interest. Bikner-Ahsbahs (2004) argued that a type of interest, termed 
“situated collective interest,” will emerge in a group situation where one-by-one students 
become involved in an activity and come to value the activity. Through observations of 
children she was able to provide some evidence to support this theory. In relation to the 
social environment, Fox (1982) found the views of significant others, including parents 
and teachers, influence student ratings of “career interest” (the type of career they would 
be interested in pursuing), but indirectly through their ratings of confidence and the utility 
of mathematics. Also in a secondary mathematics context, Kunter et al. (2007) were able 
to demonstrate that students’ interest was influenced by their evaluation of their teacher’s 
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classroom management strategies. In particular, interest was predicted by student 
perceptions on the extent to which teachers clearly outlined class rules and the extent to 
which teachers monitored student progress.  

At an individual level, several studies demonstrated an association between prior 
knowledge and interest (see Table 1). The direction of this relationship has also been 
explored. Köller et al. (2001) reported that achievement in early adolescence (grade 7) 
predicts interest in mid adolescence (grade 10). However, achievement in mid 
adolescence does not predict subsequent levels of interest. They concluded that age is a 
factor in interest development and argued that younger adolescents are more sensitive to 
achievement feedback than older adolescents who presumably have more stable interests. 
In addition, Köller et al. reported that interest in grade 7 does not predict achievement in 
grade 10 but interest in grade 10 does predict achievement in grade 12. The strength of the 
association between interest and prior knowledge is known to be influenced by the 
structure of the knowledge domain in question. Lawless and Kulikowich (2006), for 
example, reported a stronger association for statistics than for psychology, and argued that 
the former is a more structured knowledge domain. 

Several studies also demonstrated a link between students’ conceptions of their 
competency and their level of interest. Lopez et al. (1997) provided evidence to suggest 
that students’ self-efficacy beliefs predict their interest in mathematics. Marsh et al. 
(2005) and Trautwein et al. (2006) both demonstrated the link between students’ 
academic self-concept and interest in mathematics, with Trautwein et al. asserting that 
self-concept is a strong predictor of interest, which almost entirely mediates the influence 
of achievement and tracking (the assigned level of class). Moreover, Trautwein et al.  
argued that this relationship is influenced by the frame of reference used by students to 
judge their competency: High achievement students who are in a group of even higher 
achieving students report low levels of interest in mathematics while low achieving 
students in a group of even lower achieving students report high levels of interest.  

 
Differences in the operationalisation of the interest construct In the mathematics 

education context, differences were evident regarding the operationalisation of the interest 
construct. The German studies (Köller et al., 2001; Kunter et al., 2007; Marsh et al., 2005; 
Trautwein et al., 2006) regarded interest as having both a value and an emotion 
component, with the former including the importance of the task and the latter the 
enjoyment of the task. The concept of importance may assess the usefulness or utility of 
the task, an extrinsic motivator. Students, who report mathematics as important, may do 
so because they perceive it to be necessary for future job prospects. Such importance may 
not reflect interest, although some evidence suggests that it may predict interest (Fox, 
1982). Other studies operationalised interest through asking students to indicate their level 
of interest in a given task (Lawless & Kulikowich, 2006; Lopez et al., 1997; Sciutto, 
1995). Of concern, is whether students’ assessment of interest is similar to their 
assessment of enjoyment? Some authors suggest the two are quite distinct emotions 
(Izard, 1984; Reeve, 1989; Silvia, 2001). 

 
3.2.  TERTIARY STATISTICS RELATED RESEARCH FINDINGS 

 
Expanding the search to include attitudinal research in a statistics education context 

resulted in more hits. In this phase there were 51 hits with publication dates ranging from 
1980 to 2008. Of these hits, nine could not be readily accessed. Two theoretical 
discussion studies that highlighted the shortfalls of using attitudinal instruments were not 
used in the analysis. In addition, a further five validation studies were also discarded from 
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the current review. These studies reported technical aspects of proposed statistics attitude 
scales rather than empirical evidence that could support the research question. The 
resulting 35 papers are described in Appendix B, which reports that the majority of these 
papers (31 of 35) were empirical studies and a majority (32 of 35) were based in a tertiary 
education context. This prevalence of tertiary based studies is of concern to the current 
review. As discussed earlier, the influence of affect on learning during adolescence, which 
is the context for this paper, appears to be more pronounced than for other stages of life. 
Nevertheless, the findings from tertiary based research may inform the current study. 

The content analysis of this literature revealed a number of common outcomes (see 
Table 2), some conflicting outcomes (see Table 3) and differences in the way studies 
operationalised attitudes toward statistics. These are reported below.  

 
Common outcomes from the tertiary statistics education literature At a situational 

level, the social climate of the classroom was shown to influence the value that students 
place on statistics (Cobb & Hodge, 2002). Moreover, Mvududu (2003) found that aspects 
of a constructivist classroom, in particular personal relevance and student negotiation, are 
associated with positive attitudes towards the field of statistics.  

At an individual level, competency-based beliefs are known to be associated with 
attitudes towards statistics (Finney & Schraw, 2003; Sorge & Schau, 2002). The nature of 
this relationship was explored by Tempelaar, Schim Van Der Loeff, and Gijselaers (2007) 
who reported a strong correlation (r = 0.8) between the cognitive competence and affect 
subscales of the “Survey of Attitudes toward Statistics (SATS)” instrument (Schau, 
Stevens, Dauphinee, & Ann, 1995). This result suggests that a strong relationship exists 
between competency based beliefs and positive affect in the statistics education context: 
Students enjoy doing those tasks that they believe can be undertaken successfully. 

 
Table 2. Common study outcomes from the tertiary statistics education literature 

 
Situational 
factors 

The social climate of the classroom can promote positive attitudes towards 
statistics (Cobb & Hodge, 2002; Mvududu, 2003).  
 

Individual 
factors 

Attitudes towards statistics are associated with students’ prior knowledge of both 
mathematics and statistics (Carmona, 2004; Estrada, Batanero, Fortuny, & Diaz, 
2005; Perney & Ravid, 1990) and their attributional (Budé et al., 2007) and 
competency based beliefs (Finney & Schraw, 2003; Sorge & Schau, 2002). 

 
Conflicting outcomes from the tertiary statistics education literature Many studies 

sought to establish that innovative pedagogical strategies and the use of technology 
enhanced learning environments would be associated with positive student attitudes. As is 
summarised in Table 3, not all were successful. 

Innovative pedagogical strategies were shown to promote positive attitudes towards 
statistics and presumably interest in statistics. These included the use of video clips that 
demonstrate real-life applications of statistics (Allredge, Johnson, & Sanchez, 2006), the 
embedding of statistical activities in stories (D’Andrea & Waters, 2002), and the use of 
real-life and person based scenarios (Leong, 2006). There is some evidence, however, to 
suggest that pedagogical practices that aim to improve attitudes towards statistics in fact 
promote attitudes to the particular class (or teacher) where the learning occurs. D’Andrea 
& Waters (2002), for example, found that attitude improvements in their study were 
directed towards the statistics course and not towards the field of statistics.  
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Table 3. Conflicting study outcomes from the tertiary statistics education literature 
 

• Innovative pedagogical strategies were associated with positive student attitudes in some 
studies (Allredge et al., 2006; D’Andrea & Waters, 2002; Leong, 2006) but not in others 
(Carnell, 2008; Faghihi & Rakow, 1995). 

• Technology enhanced learning environments were associated with positive student attitudes 
in some studies (Meletiou-Mavrotheris, Lee, & Fouladi, 2007; Schou, 2007; Suanpang, 
Petocz, & Kalceff, 2004) but not in others (Alajaaski, 2006; Cybinski & Selvanathan, 2005; 
Elmore, Lewis, & Bay, 1993; Gratz, Volpe, & Kind, 1993). 

 
Not all studies were successful in establishing a positive link between innovative 

pedagogical strategies and changes in student attitudes. For example, in a recent quasi-
experiment, Carnell (2008) prescribed one class of undergraduate statistics students with a 
data-collection project that they themselves designed and implemented. A second class, 
used as a control, did not have this option. Surprisingly, in a pre-test/post-test situation, 
there were no positive changes in attitudes for either group. In fact both groups showed a 
significant loss in interest during the course. It is likely that other, unreported, course 
conditions had a far greater impact on student attitudes than the teaching innovation in 
question.  

Several studies demonstrated that the use of technology enhanced learning 
environments such as those employing integrated technology (Meletiou-Mavrotheris et 
al., 2007) and those using an online environment (Schou, 2007; Suanpang et al., 2004), 
could enhance attitudes towards statistics. Not all studies, however, were able to 
demonstrate this association (Alajaaski, 2006; Cybinski & Selvanathan, 2005; Elmore et 
al., 1993; Gratz et al., 1993). Unfortunately these latter studies provided scant details on 
how the technology was used to promote learning, concentrating instead on the statistical 
analysis of results. For example, Cybinski and Selvanathan (2005) described a quasi-
experiment involving two groups. The first group attended a lecture, a tutorial, and a 
computer laboratory session. The second opted to receive their materials from an online 
environment but also attended the computer laboratory session. Students in the second 
group reported significantly lower levels of affect towards statistics (p-value = 0.09). 
Most students in this group (77%), however, had not completed high school mathematics. 
Further, the authors failed to report whether students using the online environment were 
able to interact with each other and with their teachers, that is, whether they received 
social support. It is likely, therefore, that these different outcomes are the result of how 
the technology was used rather than whether it was used.  

 
Differences in the operationalisation of attitudes toward statistics In the statistics 

education context the focus of attitudinal instruments varied considerably. In his study 
relating attitudes towards assessment in statistics, Onwuegbuzie (2000) used an 
instrument that focussed entirely on statistical anxiety. On the other hand, many of the 
studies (10 of the 30 empirical studies) used SATS, which assesses affect and a broad 
range of beliefs. The choice of scales also varied considerably. Some evaluative studies 
developed their own small attitudinal instruments (Alajaaski, 2006; Garfield & Ahlgren, 
1994) whereas many others used previously validated scales. Several studies also used a 
mix of mathematics education and statistics education attitudinal instruments (Lalonde & 
Gardner, 1993; Perney & Ravid, 1990; Tremblay, Gardner, & Heipel, 2000), not with the 
intention of exploring differences between the two disciplines but rather under the 
assumption that student attitudes to the two are equivalent. 
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4. DISCUSSION 
 
The results of this research review raise two broad issues for statistics educators. The 

first concerns the possible divergence of mathematics education research and statistics 
research. The second concerns the relevance of tertiary statistics attitudinal research to the 
current context in high schools. In addition to these broad issues, the noted differences in 
the operationalisation of the interest construct suggest the need for further exploration of 
the relationship between the learning emotions of interest and enjoyment, and student 
beliefs regarding the value of statistics. In this section an overview of those factors that 
influence students’ interest, as detailed in the research reviewed, is provided. The 
discussion then examines the relevance of the secondary mathematics and tertiary 
statistics contexts to the research question. It then explores the relationship between 
interest, enjoyment, and student beliefs; and, concludes with a brief account of how 
interest development may occur in the current context.  

 
4.1. FACTORS THAT INFLUENCE MIDDLE SCHOOL STUDENTS’ INTEREST 

IN STATISTICAL LITERACY 
 
Self-determination Theory (Deci & Ryan, 1985) provides a unifying framework for 

interest (or attitudinal) studies such as those described in this paper. Deci (1992) argued 
that a person will experience interest when he or she encounters novel activities in a 
context that allows for the satisfaction of his or her basic psychological needs; namely,, 
competence, autonomy, and social-relatedness. In a middle school context, a student’s 
need for autonomy (being able to choose what he or she does) and social-relatedness can 
be met if aspects of the classroom environment are conducive. The content analysis 
identified the social climate as a factor that positively influenced students’ attitudes. 
Mvududu (2003), for example, reported a statistically significant association between 
student negotiation and positive attitudes towards statistics (r = 0.25). A student’s need 
for competence in statistical literacy, however, will be met if he or she possesses the 
necessary individual factors; namely, a sufficient knowledge of statistical literacy and 
positive competency-based beliefs regarding his or her ability to acquire statistical 
literacy. The content analysis identified prior knowledge, competency-based beliefs, and 
prior interests as individual factors that contributed to interest and/or positive attitudes.  

Overarching the meeting of basic psychological needs is the requirement that students 
encounter novel activities. The content analysis identified pedagogical factors that 
contributed to both interest and attitudes. The extent to which these strategies utilized 
novel activities, however, is unclear. In his study of interest development, Mitchell (1997) 
utilized learning activities that were meaningful to students and which encouraged student 
involvement. Arguably true involvement comes from collative sources that include 
novelty. In the statistics-education context, Allredge et al. (2006), D’Andrea & Waters 
(2002), and Leong (2006) provided students with familiar contexts and reported positive 
changes in attitudes. The use or otherwise of novel activities is perhaps the point at which 
interest development as opposed to attitude development, differ.  

This review has established a significant gap in the literature. Of the studies cited in 
this review, several examined interest but in a mathematics education context, and a large 
proportion examined positive affect, but in tertiary statistics education context. Only one 
study (Mitchell, 1997) examined the concept of interest in a secondary school context, 
although an evaluative attitudinal study in that context by Garfield and Ahlgren (1994) 
used items that could be regarded as interest-based. As is discussed in the next sections, it 
is unclear whether mathematics education findings are relevant to the statistics education 
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context. Similarly, it is also unclear whether findings associated with the affective 
development of adults are relevant to a middle school context. The evidence, as is 
discussed, suggests that adults have more stable attitudes than adolescents.  

 
4.2. THE POSSIBLE DIVERGENCE OF MATHEMATICS AND STATISTICS 

RELATED RESEARCH 
 
Statistics educators, such as Moore (1988) strenuously argue that statistics is a distinct 

methodological discipline from mathematics. Yet in most cases statistics is taught in 
mathematics classrooms by mathematics teachers, so that students themselves may see 
few differences between statistics and mathematics. Indeed many studies in this review 
reported prior mathematics experiences as having a significant influence on students’ 
attitudes towards statistics. Despite the distinctive nature of statistics as a field of study it 
is likely that mathematics-related research into affect and/or interest will apply equally to 
statistics education contexts. There is a trend, however, to move the teaching of statistics 
away from a computational formula-driven approach to a practical data-oriented 
approach. Most current Australian secondary-school syllabi encourage a hands-on 
approach to the teaching of statistical concepts. Further, professional development of 
mathematics teachers in the teaching of statistics is occurring. The StatSmart project, 
described in Callingham and Watson (2007), is an innovative Australian-based 
professional development program that aims to develop teaching skills in statistical 
concepts. It is in this atmosphere, where the learning of statistical concepts is becoming 
less computationally driven, and where students are able to play with data, that 
possibilities exist for a divergence of mathematics and statistics related affective research. 

 
4.3. THE RELEVANCE OF TERTIARY BASED ATTITUDINAL RESEARCH 

TO THE CURRENT CONTEXT 
 
A substantial proportion of the statistics education studies in this review is based in a 

tertiary context. Of concern is the extent to which these studies are applicable to students 
in a middle school context. In their study of secondary school students, Köller et al. 
(2001) concluded that junior secondary students may be more sensitive to achievement 
feedback than their older peers. Such a conclusion is supported by related research into 
the emotional development of children. In a longitudinal study of 220 students across 
grades 5 to 12, Larson, Moneta, Richards, and Wilson (2002) reported that junior students 
show a greater variability in their emotions than older students: Emotional stability 
increases during adolescence. It is argued that the adults studying statistics in a tertiary 
context will have more stable emotions than adolescents in a middle school context; 
indeed they should have developed mechanisms for controlling changes in emotions. The 
situational and individual factors that the literature identified as contributing to positive 
attitudes in adults should apply to young adolescents. Young adolescents, however, will 
be prone to greater variation in emotions than adults: They will become more excited with 
interesting activities, but increasingly bored with mundane activities. It is therefore 
beholden on educators to harness the extreme positive emotions that younger adolescents 
may experience in their learning. That is, to utilise and develop their interest.  

 
4.4. INTEREST, ENJOYMENT, AND STUDENT BELIEFS 

 
The reported differences in the operationalisation of the interest construct suggest the 

need to distinguish between the emotions of enjoyment and interest. Reeve (1989) 
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provided evidence to demonstrate that interest is derived from collative sources and 
enjoyment from the feelings of satisfaction that accompany task competency. He argued 
that both emotions were necessary for intrinsically motivated learning. Students enjoy 
success and are likely to reengage with tasks with which they perceive likely success. 
With no interest, however, they are likely to tire of the task. In a learning context, an item 
such as ‘I enjoy statistics’ is a poor operationalisation of the interest construct with 
students reflecting upon either their success in statistics, their interest in statistics, or both.  

Given that interest has a value dimension it is necessary to differentiate between a 
student’s belief regarding the personal value of an interest object and his or her belief 
regarding its utility. As noted by Tempelaar et al. (2007), the value sub-scale of SATS is 
broad in that it seeks to assess both the utility of statistics and its personal value. In a 
middle-school context students may be extrinsically motivated to learn statistics because 
it is perceived as being useful rather than because of a personal valuing of the subject. The 
learning of statistics for its intrinsic value and hence the development of interest, may 
come later. Such an argument is supported by Ryan and Deci (2000) who proposed that 
extrinsically motivated behaviour may develop, over time and through stages, to 
intrinsically motivated behaviour and therefore to the emergence of interest.  
 
4.5. THE DEVELOPMENT OF INTEREST IN STATISTICAL LITERACY 

 
Watson and Callingham (2003) argued that the development of statistical literacy will 

occur in stages that reflect an increasing interaction with an increasingly unfamiliar 
context. The Model of Domain Learning (Alexander, 2003) predicts that during this 
development, students’ individual interest in statistical literacy will also increase, 
although Alexander cautions that students leaving school will likely reach competence 
rather than expertise in any domain of knowledge. It is argued that the development of 
statistical literacy and interest in statistical literacy will be interwoven and will occur in a 
time-frame that extends beyond the secondary school years. During this development, 
individual interest in statistical literacy will provide the motivation for re-engagement, 
while features of the context and/or task will provide the collative motivation for interest 
development.  

The content analysis in this review highlighted a number of factors that may 
contribute to interest growth in the short term. But it is the short-term with which this 
review is concerned. Creating and nurturing interest in statistical literacy during the 
important developmental years of adolescence will rely on pedagogical practices that 
trigger situational interest and support adolescents’ needs for competence, autonomy, and 
social-relatedness. Long term development of such interest, however, will be a complex 
interplay of students’ knowledge of statistical literacy, their beliefs regarding their 
competency in this field, and their enjoyment of learning.  

 
5. IMPLICATIONS 

 
The literature review reported in this paper identifies a significant gap in the literature 

as it relates to interest in statistics and indeed statistical literacy. Related research in the 
mathematics education context indicates that interest in mathematics is predictive of later 
achievement for mid adolescent (grade 10) students but not for younger middle school 
students (Köller et al., 2001). This result suggests that interests stabilise towards the end 
of middle school and reinforces the need for further research into interest development 
during adolescence. Further, there appears to be a difference in the strength of this 
relationship according to the knowledge domain in question (Lawless & Kulikowich, 
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2006). Given that a difference exists between students’ perceptions of mathematics and 
statistics, this result reinforces the need for study into students’ interest in statistics as 
opposed to mathematics. 

Given the need for research in the middle school statistics context and the differences 
in the way that interest has been operationalised, there arises a need for the development 
of a suitable instrument for undertaking large scale quantitative analyses. In the tertiary 
statistics context, the multi-faceted instrument SATS is extensively used, however it was 
developed specifically for undergraduate and graduate students who complete specific 
statistics courses. Consequently many items within SATS are not appropriate in a middle 
school context.  

The research review also identifies factors that have been shown to promote positive 
affect and interest in students. Some studies identified situational factors, such as teaching 
strategies, others identified individual factors such as prior knowledge, but only one 
explored the relative influence of both of these types of factors. Kunter et al. (2007) 
reported that only 10% of the variation in students’ interest in mathematics is explained 
by class membership, which suggests that individual factors may account for a much 
larger proportion of the variance. Future research into the development of students’ 
interest should consider both situational and individual factors and the relationship 
between them.  
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APPENDIX A: INTEREST BASED STUDIES IN A MATHEMATICS OR 
STATISTICS EDUCATION, SCHOOL BASED CONTEXT 

 
Article  Description Context 
Bikner-Ahsbahs (2004) Observational  Sixth grade mathematics class 

(Germany) 
Fox (1982) Empirical (n = 125) Junior-secondary (year 7) 

mathematics (US) 
Heinze et al. (2005) Empirical (n = 500)  Junior-secondary (years 7 and 8) 

mathematics (Germany) 
Köller et al. (2001) Empirical (n = 602) Secondary (years 7 to 12) 

mathematics (Germany) 
Kunter et al. (2007) Empirical (n = 1900) Secondary (years 7 & 8) 

mathematics (Germany) 
Lawless and Kulikowich (2006) Empirical (n = 267) Tertiary statistics (US) 
Lopez et al. (1997) Empirical (n = 296)  Secondary (age 15 -16) 

mathematics (US) 
Marsh et al. (2005) Empirical (n = 7913)  Secondary (years 7 to 12) 

mathematics (Germany) 
Mitchell (1997) Empirical (n = 51)  High-school statistics (US) 
Mitchell and Gilson (1997) Empirical (n = 598) School and tertiary mathematics 

(US) 
Preckel, Goetz, Pekrun, and 
Kleine (2008) 

Empirical (n = 362) Secondary (years 7 to 12) 
mathematics (Germany) 

Renninger, Ewen, and Lasher 
(2002) 

Observational Primary school mathematics (age 
11) 

Sciutto (1995) Evaluative (n = 17) Tertiary statistics (US) 
Trautwein et al. (2006) Empirical (n = 14341) Secondary (grade 9) mathematics 

students (Germany) 
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APPENDIX B: ATTITUDINAL BASED STUDIES IN A STATISTICS 
EDUCATION CONTEXT 

 
Article Description Context 
Alajaaski (2006) Empirical (n = 53) Undergraduate 
Allredge et al. (2006) Empirical (n = 203) Undergraduate 
Biajone (2006) Observational Undergraduate 
Budé et al. (2007) Empirical (n = 200) Undergraduate 
Carmona (2004) Empirical (n = 827) Undergraduate 
Carnell (2008) Empirical (n = 42) Undergraduate 
Cobb and Hodge (2002) Observational High-school 
D’Andrea and Waters (2002) Empirical (n = 17) Graduate 
Cybinski and Selvanathan (2005) Empirical (n = 99) Undergraduate 
Elmore et al. (1993) Empirical (n = 289) Undergraduate 
Estrada et al. (2005) Empirical (n = 367) Undergraduate 
Faghihi and Rakow (1995) Empirical (n = 75) Undergraduate 
Finney and Schraw (2003) Empirical (n = 140) Undergraduate 
Fullerton and Umphrey (2001) Empirical (n = 275) Undergraduate 
Garfield and Ahlgren (1994)  Empirical (n = 917) High-school 
Gordon (2004) Empirical (n = 259) Undergraduate 
Gratz et al. (1993) Empirical (n = 55) Undergraduate 
Gunnarsson (2001) Empirical (n = 42) Graduate 
Kaplan (2006)  Empirical (n = 434) Undergraduate 
Lalonde and Gardner (1993)  Empirical (n = 91) Undergraduate 
Leong (2006) Observational High-school 
Meletiou-Mavrotheris et al. (2007) Observational Undergraduate 
Mills (2004) Empirical (n = 203) Undergraduate 
Mvududu (2003)  Empirical (n = 229) Undergraduate 
Onwuegbuzie (2000)  Empirical (n = 225) Graduate 
Perney and Ravid (1990) Empirical (n = 68) Graduate 
Schou (2007) Empirical (n = 31) Undergraduate 
Schultz, Drogosz, White, and Distefano (1998) Empirical (n = 94) Graduate 
Sorge and Schau (2002) Empirical (n = 264) Undergraduate 
Suanpang et al. (2004) Empirical (n = 230) Undergraduate 
Tempelaar et al. (2007) Empirical (n = 1618) Undergraduate 
Tremblay et al. (2000) Empirical (n = 166) Undergraduate 
Vaisanen, Rautopuro, and Sakari (2004) Empirical (n = 123) Undergraduate 
Vanhoof (2006) Empirical (n = 264) Undergraduate 
Zanakis and Valenzi (1997) Empirical (n = 102) Undergraduate 
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ABSTRACT 

 
Informal inferential reasoning has shown some promise in developing students’ 
deeper understanding of statistical processes. This paper presents a framework to 
think about three key principles of informal inference – generalizations ‘beyond the 
data,’ probabilistic language, and data as evidence. The authors use primary school 
classroom episodes and excerpts of interviews with the teachers to illustrate the 
framework and reiterate the importance of embedding statistical learning within the 
context of statistical inquiry. Implications for the teaching of more powerful statistical 
concepts at the primary school level are discussed.  
 
Keywords: Statistics education research; Informal inferential reasoning; Statistical 

inquiry; Ill-structured problems; Teacher professional development 
 

To be uncertain is to be uncomfortable, but to be certain is to be ridiculous. 
- Chinese proverb 

 
1. INTRODUCTION 

 
Today, schools are increasingly being asked to prepare students to be flexible 

thinkers, lifelong learners, and to manage complexities of an uncertain world. Together 
with a dramatic rise in access to information and availability of technological tools, the 
increased focus on incorporating data into curriculum and on learning statistics in school 
has been an obvious welcome outcome. Recommendations in the U.S. (National Council 
of Teachers of Mathematics, 1989, 2000) and Australia (Curriculum Corporation, 2006; 
Queensland Studies Authority, 2006) have included a much greater emphasis on the 
teaching of statistics in school. Unfortunately, these recommendations are translated into 
lessons and assessments that often consist of little more than computation of averages and 
basic interpretation of graphs (Sorto, 2006). Specifically in primary school, “statistics is 
frequently portrayed in a very narrow and limited way, which can be encapsulated: every 
phenomenon can be captured by a bar chart” (Ben-Zvi & Sharett-Amir, 2005, p. 1). 

New data visualization tools aimed at middle and high school students (e.g., Finzer, 
2001; Konold & Miller, 2005) have provided opportunities and the impetus to include 
foundational statistical concepts not previously taught to this age, such as inferential 
reasoning (Ben-Zvi, 2006) and the broader process of statistical investigations (Wild & 
Pfannkuch, 1999). Konold & Pollatsek (2002) articulated this as “a new level of 
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commitment to involve students in the analysis of real data to answer practical questions” 
(p. 259). This commitment goes beyond simple interpretations of graphs and calculations 
of averages as is commonly taught in schools. The foundational difference in newer 
approaches to working with data is the shift from learning statistical tools and artefacts 
(measures, graphs, and procedures) as the focus of instruction, towards more holistic, 
process-oriented approaches to learning statistics. This move was initiated by the 
foundational work of Tukey’s (1977) Exploratory Data Analysis (EDA) movement, but is 
now expanding to concepts that go beyond data analysis techniques. Exploratory Data 
Analysis is “about looking at data to see what it seems to say” (Tukey, 1977, p. v). It 
focuses on visual impressions of data as partial descriptions and supports attempts to 
“look beneath them for new insights” (ibid). More recently, research has focused on 
understanding attempts not just beneath the data, but also beyond the data, towards 
thinking and reasoning inferentially with data. 

Although early research is showing promising results, little has been written 
specifically about what an inference-driven approach to learning statistics entails or what 
is meant by “informal inferential reasoning” in learning statistics. In broad terms, we 
consider informal inferential reasoning in statistics to be the process of making 
probabilistic generalizations from (evidenced with) data that extend beyond the data 
collected. Inferential reasoning will take on different levels of depth and technical detail 
at different levels of schooling and experience. In this paper, we build on previous 
research on inferential statistical reasoning to propose a theoretical framework for 
learning statistics using informal inference as a process of meaning-making and evidence-
building. We then use classroom episodes to illustrate this approach in practical terms. 
Finally, we suggest avenues for teaching informal inferential reasoning that focus on 
statistics as a process in preference to teaching statistics as artefacts and objects. This 
discussion is situated within the issues and opportunities that arose in embedding teaching 
inferential reasoning with data (not always intentionally) into purposeful contexts with 
primary school students in Years 3 through 5 (ages 7 – 10) in Australia.  

 
2. INFERENTIAL STATISTICAL REASONING  

 
Research in statistics education has long suggested that students have difficulty using 

statistical processes appropriately in applied problems. “Inference is so hard that even 
professional researchers use it inappropriately” (Erickson, 2006, p. 1). For example, 
research on initial university statistics courses suggests that even students who could 
successfully implement procedures for hypothesis testing and parameter estimation were 
unable to use these procedures appropriately in applications (Gardner & Hudson, 1999; 
Reichardt & Gollob, 1997). Parallel findings in school statistics report difficulties students 
have appropriately using descriptive statistics and graphs to draw conclusions that make 
sense in problem contexts in which they are used (Pfannkuch, Budgett, & Parsonage, 
2004); this is largely due to an overwhelming focus in schools on constructing graphs 
without knowing the reasons for doing so (Friel, Curcio, & Bright, 2001). 

There has been a dramatic shift in statistics education research over the past few years 
from a focus on procedures—calculating a mean, interpreting box plots, comparing 
groups—towards a greater focus on statistical reasoning and thinking. One area of focus 
has been on reasoning about variation and distributions within the context of making 
meaning of the data (e.g., Cobb, 1999). Bakker and his colleagues (Bakker & 
Gravemeijer, 2004) have argued that by focusing on shape, students are able to shift their 
attention on holistic aspects of distributions. Konold and his colleagues (Konold et al., 
2002) and others have argued for the need to focus learners on the modal clump (e.g., 
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Bakker, 2004; Cobb, 1999; Makar & Confrey, 2005) and aggregates (Konold, Higgins, 
Russell, & Khalil, 2003). Despite this research, there is still an overwhelming emphasis in 
curriculum documents, national standards, and international assessments on statistics as 
interpreting graphs and finding averages (e.g., Sorto, 2006).  

Although these research studies have often focused on statistical tools, it is important 
to note that they have situated these tools within statistical processes. It would be of 
concern if the intensive focus on graphs and calculations in school were simply replaced 
by a focus on clumps and distribution shapes as tools and artefacts of statistics rather than 
as embedded in the processes and contexts under investigation. Averages, distributions, 
variation, samples, modal clumps—these can be studied as objects in themselves, or as 
tools for understanding processes or group characteristics. It is vital that the focus in using 
statistical tools is embedded in the reason that we do statistics—to understand underlying 
phenomena. Certainly these authors are arguing for the latter.  

This shift in research from statistical tools to statistical processes has been an 
important one and has raised new issues. Wild and Pfannkuch (1999) wrote extensively 
about the statistical investigation cycle and the dispositions and thinking that align with 
these processes. Research by Hancock, Kaput, and Goldsmith (1992) highlighted the 
challenges students encountered in connecting their statistical questions to the data needed 
as evidence, and then again linking their conclusions back to the questions under 
investigation. They argued that this part of the statistical process is largely ignored in 
school and needs greater attention. Focusing on investigating phenomena entails 
understanding the statistical investigation cycle as a process of making inferences. That 
is, it is not the data in front of us that is of greatest interest, but the more general 
characteristics and processes that created the data. This process is indeed inferential.  

This recognition has sparked a great deal of interest in students’ inferential reasoning 
in statistics and researchers over the last several years have “grappled with the conceptual 
building blocks for informal inferential reasoning” (Pfannkuch, 2006, p. 1). Like many of 
our colleagues in this area of research (see Pratt & Ainley, 2008), we would argue that 
inferential reasoning and statistical investigations cannot be separated. With this in mind, 
this paper discusses a framework for working to understand building blocks of informal 
statistical inference and inferential reasoning within a context of statistical investigations. 
By choosing to illustrate the framework within classrooms that are learning statistics 
through inquiry and investigation, our goal is not to focus on the distinction between 
product and process as it relates to inference, but to demonstrate that inferences are meant 
to be embedded within processes that create them. As such, we discuss both inference and 
inferential reasoning in this paper without trying to artificially separate these notions. In 
designing the framework, our aim was to investigate the concepts and processes of 
statistical inference and inferential reasoning more generally. We wanted to examine the 
potential of rebalancing the over-emphasis on procedures and calculations in school 
statistics, and capture the kind of informal inferential reasoning reported by Ben-Zvi and 
Sharett-Amir (2005) in their research with very young children exploring predictions of 
the number of baby (milk) teeth lost by their classmates.  

 
3. A FRAMEWORK FOR INFORMAL STATISTICAL INFERENCE 

 
A recent goal in statistics education has been to broaden the concept of inference from 

its immediate association with hypothesis testing at the tertiary level, to allow its 
application to work with children through their making of inferential statements. To 
separate these inferences which clearly do not involve formal procedures of hypothesis 
testing, we will adopt the term widely becoming utilized by statistics education 
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researchers: informal statistical inference. We consider in broad terms statistical inference 
as both an outcome and a reasoned process of creating or testing probabilistic 
generalizations from data. By formal statistical inference, we refer to inference statements 
used to make point or interval estimates of population parameters, or formally test 
hypotheses (generalizations), using a method that is accepted by the statistics and research 
community. Informal statistical inference is a reasoned but informal process of creating or 
testing generalizations from data, that is, not necessarily through standard statistical 
procedures (see Zieffler, Garfield, delMas, & Reading, 2008 for an in-depth discussion of 
informal reasoning). The use of the word informal here is only meant to emphasize the 
broad application of inferential reasoning and open the possibility to consider statistical 
inference outside of formal procedures. Although the teaching of informal inference 
supports conceptual understanding of later formal statistical inferential processes, the goal 
is not necessarily to prepare students to do formal statistical inference. We see the 
potential for informal inference in deepening students’ understanding of the purpose and 
utility of data more generally with direct applicability to making meaning of their world. 
Our goal here is not so much to define informal statistical inference as it is to broaden 
accessibility to inferential reasoning with data. 

Initial concepts that we saw as critical included the following: 
• Notion of uncertainty and variability articulated through language that broke from 

the mathematical convention of claims of certainty; 
• Reliance on the concept of aggregate (as opposed to individual points) through 

the use of generalizations about the group; 
• Acknowledgement of a mechanism or tendency that extended beyond the data at 

hand; and 
• Evidence for reasoning based on purposeful use of data. 
From these elements, three key principles (Figure 1) appeared to be essential to 

informal statistical inference: (1) generalization, including predictions, parameter 
estimates, and conclusions, that extend beyond describing the given data; (2) the use of 
data as evidence for those generalizations; and (3) employment of probabilistic language 
in describing the generalization, including informal reference to levels of certainty about 
the conclusions drawn. The first of these principles is particular to the process of 
inference, whereas the latter two are specific to statistics. 

 

 
Figure 1: A framework for thinking about statistical inference 

Probabilistic       generalization       from data

Statistical Inference 

Articulating the 
uncertainty embedded 

in an inference Making a claim about 
the aggregate that 

goes beyond  
the data

Being explicit 
about the 

evidence used 
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3.1. GENERALIZATIONS ‘BEYOND THE DATA’ 
 
As in mathematics, statistical generalizations are abstractions from particular cases 

(data) to holistic statements that apply to a broader set of cases (population). In a 
traditional sense, generalizations (inferences) move from a sample to a specified 
population—for example, inferring from a sample of one class of 12-year-old children to 
a population of all 12-year-olds in a school. A fundamental difference between descriptive 
and inferential statistics is the act of looking beyond the data to cases outside of the 
sample at hand. For example, in some ways a mean is a generalization because it is an 
abstraction from individual cases to a general property of the aggregate. However, 
because the mean does not extend beyond the data at hand, we do not consider it to be 
inferential.  

Consequently, EDA, which focuses on “looking at data to see what it seems to say” 
(Tukey, 1977, p. v) is not necessarily inferential if the focus remains on the data at hand. 
Dewey (1910) uses the term inference to talk about this move beyond the data: “The 
exercise of thought is, in the literal sense of that word, inference … it involves a jump, a 
leap, a going beyond what is surely known to something else accepted on its warrant” (p. 
26). Being able to separate description of the data at hand from an inference to the 
population is not a trivial matter. Researchers like D. Pratt (personal communication, 7 
July, 2005) and Pfannkuch (2006) have documented difficulties encountered by teachers 
and learners in slipping between talking about the sample (data at hand) and population 
(inference beyond the data). Our hope is that by making explicit the importance of 
moving beyond the data when making generalizations in statistics, these slippages can be 
reduced. 

Alternatively, a population may be more conceptually defined by describing a 
mechanism to a process (as in the making of widgets in a factory, see Rubin, 
Hammerman, & Konold, 2006) or future population not yet existing (as in students who 
will be in the school in coming years, see Makar & Confrey, 2004). Generalizations may 
be used to either generate hypotheses or evaluate them. By “evaluate” here, we are not 
limited to the use of standard statistical tests, but refer to attempts at processes to formally 
or informally assess the viability of a claim against the given data. Generative hypotheses, 
on the other hand, are speculative statements which are created by a reasoned process but 
for which their likelihood has not necessarily been systematically assessed.  

 
3.2. DATA AS EVIDENCE 

 
By data, we refer to evidence that is accepted by the community in which the 

evidence is being presented. Data may be numerical, observational, descriptive, or even 
unrecorded. What is important is that their use as evidence is accepted within the context 
it is being used. It might be expected that the person making the inference would provide 
an explanation or argument (implicitly or explicitly) that draws on the data as evidence 
for the inference. At a very young age, for example, we may be more likely to accept 
observation as data to encourage initial development of inferential thinking (Ben-Zvi & 
Sharett-Amir, 2005) and develop a language for explaining and reasoning with data. Later 
on, we encourage students to critique this type of evidence in preference for more robust 
and reliable approaches. Hancock et al. (1992) have noted the difficulty that learners have 
in connecting data collected to the question under investigation and conclusions drawn. 
Attention to the need to make this connection more explicit may help teachers to better 
support these links. 
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One type of informal inference is a creative, inductive process in which a learner 
generates a tentative hypothesis by observing patterns in the data. A potential support for 
creating tentative hypotheses is through a process of abduction, an inference or theorizing 
to explain or account for the data in relation to the context. This process, as explained by 
Galileo (1638), “prepares the mind to understand and ascertain other facts without the 
need to recourse to experiment” (as cited in Magnani, 2001, p. 37). This focus on context 
and explanation is important, as noted by Dewey (1910) in saying that “the data at hand 
cannot supply the solution; they can only suggest it” (p. 12). It is up to the one making the 
inference to connect the evidence meaningfully to the claim and to explain it in terms of 
the context. 

A powerful approach to improving students’ use of statistical reasoning and thinking 
is by embedding statistical concepts within a purposeful statistical investigation that 
brings the context to the forefront (Makar & Confrey, 2007). By focusing on trying to find 
out something of interest to students, they gain important insight into how statistical tools 
can be used to argue, investigate, and communicate foundational statistical ideas. Wild 
and Pfannkuch (1999) argue that a number of elements are central to statistical thinking, 
including the following: recognizing the need for data; transforming situations and 
representations into meaningful statistical tools that can provide insight into the problem; 
having opportunities to recognize, work with, and deepen understanding of variation; 
envisioning statistics within a framework of its utility to gain insight; and being able to 
shuttle between the context sphere and statistical sphere. Their inclusion of recognition of 
the need for data as a type of thinking foundational to statistical thinking is often 
overlooked, particularly in schools. Perhaps it’s considered trivial, too obvious. After all, 
without data, no statistics can be done.  

 
3.3. PROBABILISTIC LANGUAGE 

 
Because inferring to a population contains elements of uncertainty, statistical 

inferences must contain probabilistic language, implying statistical tendency, and/or level 
of confidence or uncertainty in a prediction. We are not implying here that an explicit or 
quantified level of confidence needs be indicated (as is done with confidence intervals), 
although the idea is related to concepts of chance and our confidence in inferential 
predictions based on the strength of evidence presented (Rossman, 2008). Because 
generalizations go beyond the given data, they cannot be stated in absolute terms. The 
problem of deterministic thinking in statistics has been well documented (e.g., Abelson, 
1995). Probabilistic language can be any language appropriate to the situation and level of 
students to suggest uncertainty in a speculated hypothesis, that a prediction is only an 
estimate, or that a conclusion does not apply to all cases. For example, in using data to 
estimate the average height of an eight-year-old, students may suggest the typical height 
to be ‘around 130-138 cm’ rather than reporting more precisely that the typical height is 
132 cm, which may be the mean of the data or value with the highest frequency (mode) 
from their class (Makar & McPhee, in press). Or a six-year-old child may suggest that the 
most common way for children at school to travel to school ‘may be’ by bus rather than 
stating it ‘is’ by bus. Probabilistic language can go beyond simply avoiding deterministic 
claims, however, as relationships involving overlapping distributions or multiple 
interpretations of a given distribution also necessitate avoidance of overly conclusive or 
excessively precise statements (Makar & Confrey, 2004).  

Our focus on language in inferential reasoning emphasizes the importance of 
expressing uncertainty in making inferences. School statistics must work harder from an 
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early age to break the black-and-white approach to making inferences from data. Within 
statistics education, this is an area that needs a great deal more attention and research. 

 
4. CONTEXT OF EPISODES 

 
Section 5 reports on episodes from the initial phase (18 months) of an ongoing four-

year study investigating processes of teachers’ learning to teach mathematics and statistics 
through inquiry in a problem-based environment. Although the focus of the larger study is 
on inquiry, not inference, the data collected provide a number of opportunities to gain 
insight into teachers’ use of inference in teaching statistical inquiry. The larger study 
follows a model for design experiments (Cobb, Confrey, diSessa, Lehrer, & Schauble, 
2003), where the context is simultaneously studied and improved through iterative cycles. 
The cycles in the study served several purposes. For the researcher, it provided multiple 
opportunities to observe and influence the study context. For the teachers, it gave them 
ongoing experiences to reflect on and improve their ability to teach statistical inquiry. For 
the students, it allowed opportunities to build on previous learning and engage with 
statistical inquiry in increasingly sophisticated ways.  

Four primary school teachers at a suburban state school in Australia participated in 
the first year of the study. The teachers volunteered for the study after being identified by 
their school’s deputy principal (in some cases, with a bit of friendly coercion) and 
attending a briefing session by the first author. They were all considered to be effective 
and innovative teachers, in agreement with the idea of including inquiry in mathematics, 
and interested in learning how to implement statistical inquiry with their students. 
Although they were all reform-oriented teachers, they represented a broad range of 
experience – from a teacher in his first year in the classroom to a veteran teacher with 
over 30 years of experience. After the first year (2006), one teacher (Josh) in the study 
was transferred and replaced (Elise); another teacher went on leave after the first term in 
2007 (Carla). 

At the time the reported episodes were analyzed, the study had undergone six cycles 
over 18 months with a cycle being one school term (lasting about 10 weeks). In each 
cycle, teachers taught an inquiry-based unit on statistics that they designed themselves or 
adapted from published units (e.g., Gideon, 1996). These units were not explicitly 
designed to focus on inference and indeed many did not include any significant use of 
inferential reasoning as inference was not directly a part of the mathematics syllabus for 
this age group (Queensland Studies Authority, 2006). For units that did lend themselves to 
informal statistical inference, we draw attention to ways in which inference played a role 
in the teachers’ learning to teach statistical inquiry.  

In four of the six terms, teachers met with the first author for a full day workshop after 
which teachers designed and implemented an inquiry unit with their students lasting from 
one to three weeks (Table 1). Full-day learning seminars were audio or video recorded. 
Each seminar involved four distinct sessions, each lasting 30-90 minutes. The initial 
session consisted of a discussion of overarching issues that arose in teaching the units. 
Next, the teachers would engage in an activity, as learners, aimed at a particular aspect of 
statistical inquiry. The teachers were given some planning time with resources following 
this. The day would end with a sharing sessions of plans and expectations for the next 
unit. 

Each term (except in the third cycle), the researcher videotaped several lessons in the 
units that teachers implemented (60%-75% of lessons), photographed or collected unit 
artefacts (e.g., lesson plans, student work), recorded researcher observations and 
reflections, and audio or videotaped follow-up interviews to debrief after the unit. The 
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episodes below draw on relevant aspects of the data that provided insight into the 
framework described in Section 3. 

 
Table 1. Inquiry units taught by the teachers in the study 

 
TERM Units 

20
06

 

1 
Can you roll your tongue? - Exploring hereditary traits (Kaye & Carla, Year 4) 
Are athletes getting faster? - Investigating winning times at the Commonwealth 
Games (Natasha & Josh, Year 5) 

2 
What’s in your lunchbox? - Investigating healthy lunches 
Kangaroos! - Modelling and interpreting data from a predator-prey game (Natasha) 
How fast is a blue-tongued lizard? - Class negotiated investigation (Josh) 

3 

Tibia mystery - Estimating height from a tibia bone found at an archaeological dig 
(Kaye & Carla) 
Is anyone a “typical” Year 5 student? - Developing a survey and exploring “typical” 
(Natasha) 

4 

How many commercials does a typical Year 4 student watch in a year? (Kaye) 
Comparing students’ ages – Contrasting student ages with family members (Carla) 
Investigating paper airplane designs (Natasha) 
Designing a parachute for an egg (Josh) 

20
07

 

1 

How many spritzigs do we have in our class? - Collecting, organizing, displaying, 
and interpreting survey data (Kaye, Year 4) 
How tall are Year 6 students compared to Year 1? (Carla, Year 6) 
Citizenship in Australia (Natasha, Year 5) - Collecting, organizing, displaying, and 
interpreting opinion poll data 
Comparing handspans – Collecting and organizing data on students’ handspans 
(Elise, Year 3) 

2 
Investigating healthy cereals – Analysing nutritional information on cereals (Kaye) 
The effect of pollution on plant growth – Experimental design (Natasha) 
Do we have healthy lunches? – Organizing categorical data (Elise) 

 
5. EPISODES 

 
In studying teachers’ teaching of inferential reasoning, we chose a context in which 

the focus is on understanding a particular question or situation, rather than examining 
decontextualized data. This gave us an opportunity to envision its use in a more 
purposeful way. In this section we will use three episodes ‘to think with’ to consider how 
the framework might suggest the potential for introducing informal inferential reasoning 
at the primary school level: 
•  Section 5.1 examines Natasha’s survey with Year 5 (age 9) students, focusing on 

their challenges in (not) looking beyond the data; 
•  Section 5.2 focuses on the investigation by Carla and Kaye’s Year 4 (age 8) students 

on healthy lunches and how they used generalizations to connect findings to 
evidence; 

•  Section 5.3 discusses Elise’s Year 3 (age 7) students making predictions about 
handspans of children, focusing on the concept and language of uncertainty. 



90 

 

 

5.1. NATASHA: CHALLENGES IN (NOT) LOOKING BEYOND THE DATA 
 
An important tenet of statistical inference is its power to utilize given data to make 

predictions, estimate parameters, or draw conclusions about a population or process 
beyond the data. In order for an inference to be valid, it must incorporate its target – that 
is, be an inference about a particular population or process for which the data are being 
used. Pfannkuch (2006) and Pratt (2005) showed that this is not a trivial concept. In this 
episode, we examine how this slippage between the data and population potentially 
created challenges in the unit. 

Natasha is a teacher of students in Year 5 (age 9). Part of the Year 5 syllabus for 
social studies is an introduction to government and citizenship. Drawing on the success of 
the units she designed the previous year which integrated statistics with other content 
areas, Natasha decided to teach a statistical inquiry unit (her fifth in the study) in which 
students investigated the opinions of children and adults about their views of Australian 
rights of citizenship. A pre-constructed survey instrument from a local school resource on 
citizenship was used to collect data. After preliminary discussion on citizenship in 
Australia, she introduced the issue they would investigate. 

 
Natasha: Over the last few months, there have been a lot of things in the media about who 

has the right to be an Australian citizen and what’s required to become an 
Australian citizen. So, I thought it might be interesting if we found out what 
people think. OK? The people being, who? 

Student: Us? 
Natasha: Yes, you people, your parents, people in our community. It might be interesting to 

find out what they think. (Class 5N, 8 March 2007) 
 
Natasha introduces the purpose of the unit to students to find out “what people think” 

about citizenship issues in Australia. She alluded to the ‘people,’ or target of their 
investigation, as “you people, your parents, people in our community.” By not posing a 
specific question, it was unclear when she set a goal of finding out “what people think,” 
whether the intention was to develop hunches, draw conclusions, gather insights, make 
predictions, or just describe the opinions of those that they would be gathering data about.  

Clearly there was no intention to survey an entire community to get this information, 
so if her intention was to draw conclusions beyond their survey data, Natasha thought it 
would be important to discuss particular issues that would allow them to use a sample of 
the data (their survey data) to draw conclusions about the views of the community 
(beyond the data they collected). Several issues were considered, such as sample size, 
representativeness, and comparisons.  

 
Natasha: Ok, how many people do you think we would need to survey to get a fairly 

good idea of what people in this local community, in this school community, 
think? 

Student: 5? 
Natasha: Five people! Would that be a really good indication of what people in this 

school community think? 
Students:  55 … 100 or so? … 250? … Maybe 3 or 4 classes? 
Natasha: Ok, let me clarify I’m not just interested in what kids think. I’m interested in 

what parents, and perhaps grandparents of our school community think. Or 
perhaps aunts and uncles, older people not just those under 18. 

Students: 500? … 80%? 
Natasha: So, 80% of the whole [River] School community? 
Student: Maybe, one of the teachers from every grade? 
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Natasha: Do you think if you ask all of the teachers what they think, you’d get a good 
indication of what people in [River] School community think? … Do you think 
teachers might be completely representative of the community? … Teachers 
do have a [more liberal] political bias. OK? So maybe just giving it to the 
teachers it won’t work. … 

Student: I was thinking maybe about surveying the adults about the same amount as 
kids. 

Natasha: Ok, so you’d like to see if kids think differently than adults? Good! That 
would be very interesting, who would like to know that, if kids think 
differently than adults? [Students respond positively] … Ok, that sounds great. 
I have printed off two copies of the surveys for each person, one on each side 
of the form. Why don’t you get an adult to fill out one side? Now it would be 
good if you didn’t just ask a parent, if you have access to an aunt, an uncle, a 
grandparent, an elderly neighbour, but with mum and dad’s permission. (Class 
5N, 8 March 2007) 

 
Natasha was trying to stress to students that not only was it important to think about 

how many people they would need to ask, but also to ensure that their sample was 
representative of the community (however vaguely defined) that they were describing. It 
was not clear at this point how the sample would be used to find out the views of the local 
community – whether it be to explore or predict general views, estimate proportion of 
people having particular views, or another purpose. Although somewhat vague about the 
population they would be investigating, Natasha worked to have students consider the 
validity of the data they were collecting in order to later draw conclusions. 

After students collected their data, the unit struggled to make significant progress over 
the next couple of weeks and a formal ‘conclusion’ was never really made. In reflecting 
on the unit, Natasha made a number of observations that she felt may have explained this. 
What is interesting about her explanations is that in some ways they allow us to speculate 
about possible considerations for supporting children in thinking inferentially about data.  

The primary issue, she felt, was that the topic of citizenship was not one that engaged 
the kids, saying, “They weren’t really interested in it. So they didn’t have their heart in 
getting to the bottom of something.” This was an interesting comment and suggests that in 
working to look ‘beyond the data,’ it is not just making a conclusion about data that 
provides the conceptual muscle to draw inferences, but a conclusion about the situation 
which the data are meant to represent or signify. Perhaps a focus on an interesting 
problem and context may influence students’ engagement with being inclined to look 
beyond the data they have. This further suggests that students need a particular level of 
complexity to engage with in order to consider possible avenues to connect the data with 
the context. Natasha spoke at some length about the structure of the data as a factor that 
limited the students’ ability to connect the data to something beyond graphs. 

 
Natasha: On top of that, most of the data was dichotomous, so there was really not 

much that we could do with it. After they had done the ‘yes, so many people 
thought this and so many people thought that,’ there wasn’t an awful lot that I 
could find that I could do with the data. … It was hard for me to keep the 
enthusiasm going to keep them enthused. So, I got to the point where I just 
thought I ought to throw this out the window. [laughs] So all I actually really 
ended up discovering from that was the extent to which children could graph. 
And that was interesting in itself, their understanding of data and how to 
represent data, but it really didn’t allow them to do any of the higher-order 
thinking or explanation, uh, exploration for themselves. (Interview, Natasha, 
26 May 2007) 
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Natasha pondered the lack of complexity of the data as a factor that inhibited the unit 
from successfully transitioning from describing data to generalizing from the data in order 
to draw conclusions or make predictions about the beliefs in the community. Another 
issue she felt was critical was the driver behind the work, the purpose for which they were 
using the data: 

 
Natasha: I also think that part of that was posing the question. In the studies [teaching 

units] that have been successful, [they] started off with quite a clearly posed 
question and I lost the plot on the government unit because I didn’t pose a 
clear question, so when I got kind of bogged down with it all, I didn’t have 
direction. So I didn’t really have direction for the children. And I think that’s 
what really made that unit hard, too. 

Researcher (R): … I know that one of the goals that you had said before, was that you 
wanted to see how they do with the graphing. 

Natasha: … It gave me data to use for graphing, but it would have been no different if I 
had just done, the old, you know, ‘how many of you play soccer,’ ‘how many 
of you play netball.’ Whatever. And put that up on the board and had them 
graph it. … It was just a straightforward graphing unit, it wasn’t really an 
investigation. (Interview, Natasha, 26 May 2007) 

 
Natasha’s point is that she was not sufficiently focused on answering any particular 

question, rather than on getting the students to graph. The spotlight on the tool rather than 
the purpose makes drawing inferences particularly challenging if students do not know 
the purpose of the inference within a meaningful context. Although Natasha’s initial 
intent of the unit was likely to use the data inferentially, the focus on the data at hand 
provided little opportunity to do so. This may provide some evidence of the importance of 
being explicit in articulating the population and particular question under investigation. 
Table 2 provides a summary of the alignment issues between Natasha’s episode and our 
framework for thinking about informal statistical inference (Figure 1). 

 
Table 2: Natasha’s episode aligned with principles of informal statistical inference 
 

Framework Comments 

Generalization 
beyond the data 

Although the initial intent was likely to move students towards drawing 
conclusions about their survey data as inferences to the population, this 
did not materialize during the unit. The teacher named a number of 
issues that may have contributed to the difficulties – the lack of a 
driving question, a context that was likely not engaging to students, and 
overly simplistic (dichotomous) data that lacked complexity needed for 
interesting interpretations. Another possibility may be that too much 
energy was focused on graphing skills and there was not explicit 
attention to differentiating between describing the data and using the 
data to draw inferences about the larger population.  

Data as evidence 
Students struggled to connect conclusions to the data collected. Without 
the unit being completed to the point of drawing conclusions, this 
element of the framework was difficult to assess. 

Probabilistic 
language 

No significant attention to language of uncertainty or level of confidence 
appeared to be expressed. 

 
In Natasha’s unit, the focus on the data in a descriptive lens likely prevented opportunities 
to consider the other two aspects of the framework – data as evidence and probabilistic 
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language. This suggests that the focus on generalization beyond the data is foundational to 
the other aspects of inferential reasoning.  
 
5.2. CARLA AND KAYE: USING GENERALIZATIONS TO CONNECT 

CONCLUSIONS TO EVIDENCE 
 
Two Year 4 (ages 8-9) teachers, Carla and Kaye, developed an inquiry unit in Term 2 

(their second data inquiry unit in the study) to investigate whether students had healthy 
lunches. The unit was designed to tie in with a set of lessons on healthy eating as part of 
the Health curriculum. Because their previous (first) unit had been more structured (with 
students being given the investigation questions and guided through the inquiry cycle), 
Carla and Kaye decided to make this unit more student-directed, where students (in 
collaborative groups of 3-4 students) would develop questions to investigate, decide on 
appropriate data to collect, do their own analysis, and present their findings to the class. 
As students were preparing their findings to present to the class, the teachers found that 
groups were struggling to connect their conclusions to the data, as well as link the data 
back to the question under investigation. In a resource book they were using (Gideon, 
1996), Carla and Kaye found mention of generalizations as part of the process of 
communicating conclusions that provided them with an idea to help students make these 
connections. 

In an interview at the end of the lunchbox unit, Carla and Kaye spoke about the role 
that ‘making generalizations’ had in helping students draw connections and for using their 
investigation as a launching point for generating new hypotheses.  

 
Kaye: I found some still needed support [making generalizations]. They didn’t have 

any trouble collecting the data. They’re quite happy to go out and do that. But 
then when the data comes back, actually looking at what they need to 
specifically [answer the question] … they collected all this lovely data, and 
they might have collected boys and girls and things like that, but the original 
question was ‘Do students in Year 6 eat healthier than students in Year 2?’ … 
I said [to students], ‘This is extra. If you’ve collected that data, when you 
present the data, these are extra things, so you might be able to, once you’ve 
answered your question as such with a generalization, you can then go back 
and use that extra data [boys and girls] to give you extra information, but 
really, the first thing that, the first task that you’ve got to get around is that 
this is your question, and this is what you’re setting out to collect that data 
on.’ 

Carla: And my guys, we actually, they quite liked at the end when they were doing 
their presenting, when we asked them, when I asked them, or the kids asked 
the questions, um like ‘if you had collected this extra data, what other 
generalizations might you … have made?’ and I think that was a good link. … 
I was happy with that, ‘what if’ [questions]. That’s what I was hoping for. 
(Interview, Carla and Kaye, 17 July 2006) 

 
For these teachers as well as their students, generalizations played an important role in 

supporting understanding of two important processes. They supported students in making 
conclusions for the question at hand (connecting investigation questions to data collected 
and subsequent findings), and in seeing how conclusions and data (actual and potential) 
can also generate novel hypotheses and questions to investigate, particularly when 
students work to explain their findings (abduction). Although Carla’s use of 
generalizations often didn’t extend beyond the data, this term helped students move from 
a focus on individual points towards a more aggregate view of the data. Carla further 
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discussed how the class discussions of their generalizations helped students situate their 
data investigation within the larger context of peer pressure and body image. 

 
Carla: It led to a discussion, really, on stereotypes and body image. Because my kids 

came to the realization that … boys ate more junk food, because, in the upper 
grades, because girls were watching their figure, but boys could afford to 
because they did more sport or they used more energy. So, and that led onto 
our [health] unit discussions which was perfect. [Laughs] Yeah, that was 
really good. (Interview, Carla and Kaye, 17 July 2006) 

 
Overall, Kaye and Carla recognized that though students tended to struggle making 

clear connections between conclusions and the questions under investigation, their use of 
generalizations to make sense of these connections was a productive avenue for 
supporting student understanding. This connection not only helped students understand 
this connection, but helped the teachers in both learning and teaching this concept. 

 
R: Any surprises or unexpected outcomes [in the unit]? 
Carla: Just that we figured out what generalizations are! There was one day that, last-

, the first time we did it [make generalizations, in the unit in Term 1], it was 
very, I found it very difficult to, kind of, teach the genre, I suppose, or what is 
a generalization. I tried, I don’t know. But this time, it was just a matter of 
saying [to students], ‘Well, what does that graph mean? Or what does it tell 
me? Ok, I haven’t time to read all those dots, so what does it tell me?’ And the 
kids would say “Oh, there, there were more girls than boys [who had a healthy 
lunch].” And it just made it so much easier. Yeah, that was my ‘whew!’ 
moment. 

R: … There was just one day that it just seemed to really click for you. Talking 
about generalizations, and then how you link it to the data and try to find out, 
well, ‘How do you know that that’s true?’ What made you decide to-  

Carla: Well, I’ve just been battling the whole time, thinking, how can I make it 
clearer, really, what generalizations are? I don’t know what it was. The kids 
were not getting it. I think I was standing with a group [in one lesson], they 
were still all looking at me. I didn’t know how to ask and they didn’t know 
how to answer me. And then it was just, ‘Ok, well, imagine I didn’t have 
time,’ like I said, ‘what would that tell me?’ And then I realized, ‘oh, that’s 
what a generalization is!’ It’s just that more, that simple idea or notion of that 
made it easier. Yeah. … And then turning it around, ‘If this is your 
generalization, where did you get that information from?’ That made the big 
difference. Because then, the kids had to figure out what graph it was. So 
asking both ways, that was good, that worked well. (Interview, Carla and 
Kaye, 17 July 2006) 

 
Kaye and Carla further elaborated how using generalizations helped students go 

beyond thinking about individual data points towards considering the data as an entity. 
 

Kaye: I guess trying to get them, rather than just saying, ‘there were two people who 
liked ___,’ we had to come with something, but, um, to answer the question. 
[Students would say] ‘There were two who did this, and two who did that, and 
who did that, and four who did this and four who did that.’ 

Carla: And that’s not a generalization. 
Kaye: And it’s not really, it does interpret the results, but it’s not an overall 

interpretation. (Interview, Carla and Kaye, 17 July 2006) 
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It was unlikely that Carla and Kaye were thinking about generalizations as being 
‘beyond the data’ in the sense of making predictions or theorizing about populations or 
processes. However, their use of generalizations in this unit served as a step in better 
understanding the process of a statistical investigation themselves. Table 3 provides a 
summary of the alignment issues between Carla and Kaye’s episode and our framework 
for thinking about informal statistical inference. 

 
Table 3: Carla and Kaye’s episode aligned with informal statistical inference framework 

 
Framework Comments 

Generalization 
beyond the data 

The teachers used the concept of generalization to support students in 
moving beyond a focus on individual points towards a more aggregate 
view of the data. Although they did not distinguish between 
generalizations that interpreted the data at hand (descriptive) and those 
that stated a generalization beyond the data (inference), their utilization 
of generalizations may better prepare them to make this distinction later 
on. 

Data as evidence 

As with the previous example (Natasha’s Year 5 class), students 
struggled to connect conclusions to the data they had collected. 
However, the teachers found that by having students create 
generalizations, it was easier to then ask them to connect that 
generalization back to its evidence and to the question that drove the 
data collection. 

Probabilistic 
language 

No significant attention to language of uncertainty or level of confidence 
was expressed. 

 
5.3. ELISE: USING INFORMAL INFERENCE TO MAKE PREDICTIONS  

 
In a Year 3 (age 7) class early in the year, Elise developed a unit lasting about seven 

days that had students complete multiple cycles of collecting and organizing data on the 
handspans (distance from thumb to smallest finger on an outstretched hand) of students in 
their class. To find their handspan, students each traced their hand on paper, drew a line to 
connect the end of their thumb with the farthest tip of their smallest finger, and then 
measured this handspan with a centimeter ruler. They created their own methods to 
collect and record the data of their classmates. This process was not straightforward, but 
through sharing ideas and challenges encountered, students came up with a process of 
recording each student’s handspan next to their name (not in any order). In one lesson, 
after students had collected and recorded their data, Elise began probing students to 
consider how the data might help them find out more about their class’s handspans. 

 
Elise: What I’d like for us to think about this morning is finding out how many 

children have the smallest handspan, how many children have the biggest 
handspan, how many people have different measurements for their handspans. 
So I want you in some way, to go and find that information, so that you can 
share it with somebody. (Class 3E, 8 March 2007) 

 
Elise worked hard not to tell students how to organize their data, but rather used 

skillful questioning to encourage students to seek more efficient and purposeful ways to 
organize their data. In the first iteration of collecting and organizing their data, students 
chose to organize the names and handspans of the students in their class as a list (Figure 
2a). To encourage the students to organize the data further, Elise probed the class to find a 
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more efficient way to find out the shortest handspan, the longest handspan, as well as the 
most common handspan measurement than to search through the data each time.  

From the list, students began sorting the data into groups, sometimes with a partial 
ordering of the groups and with frequencies listed (Figures 2b and 2c). Clearly in asking 
students to consider the extreme handspans (shortest and longest) and most common 
group, the questions did not prompt students to think beyond their data. However, the 
cues Elise used to prompt the students to seek a purpose for organizing the data enabled 
greater cognitive access to consider an underlying structure of the data. It was this process 
of moving from thinking about individual handspans towards considering a collection of 
handspans that may have provided a foundation for later inferential reasoning. 
       

 
 
 
 
 
 

 
 
 
 
 
 

(a) listed                (b) grouped into columns     (c) ordered with frequencies 
 

Figure 2: Students’ organization of their class’s handspan data. Students collected their 
data (a) listed, (b) grouped into columns, or (c) ordered with frequencies 

 
At the end of the lesson, Elise asked the researcher to suggest what she might do next 

with the students to deepen the investigation. Following a suggestion from the researcher, 
Elise decided to present an opportunity in the next lesson for students to predict handspan 
data from the class next door. The next day, after students had shared their strategies for 
organizing their class’s data more efficiently, Elise asked them whether they thought the 
class next door would have similar handspans to their class. 

 
Elise: So which group [in our class] did you find had the most number of children in 

it? 
Student:  15 
Elise: 15 cm. So if we went next door and asked [Miss Miller’s class, 3M], do you 

think that 15 would be the biggest group as well? 
Student: I think yes. 
Elise: Because? 
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Student: Because … [our class is] about average height and taller people will probably 
have bigger hands and smaller will have smaller hands. 

Elise: So you think that children in 3E [our class] are average size children? And 
you’re going to suggest that children in 3M [the class next door] are probably 
average sized children. Do you think that anyone in 3M is likely to have a 
handspan shorter than 13 cm? … Do you think that some children in 3M 
would have handspans longer than ours? (Class 3E, 9 March 2007) 

 
The class ran out of time at that point, but the discussion gave Elise an idea to extend 

the investigation further by asking Miss Miller, the teacher next door, to have her students 
trace their hands onto paper, just as Elise’s class had done to collect their own data. The 
next week, Elise presented her class with an opportunity to organize 3M’s data and 
compare them to their own.  

 
Elise: If we went next door, would that be true of the class next door? Would we 

also find that 15cm was the largest handspan group? Would we also find that 
20 was the longest? … Some of you were saying yes, and some of you were 
saying no. So I did a bit of a tricky thing. I actually went next door and on 
Friday I got Miss Miller to draw, for the kids next door to actually [trace] their 
handspans. (Class 3E, 13 March 2007) 

 
After measuring the neighboring class’s handspans, Elise asked students to work in 

their groups to decide how they might plan to collect, record, and organize this new data, 
then to share their ideas with the class. One student described her group’s idea to set up 
rows for each measurement and list the names of students with that measurement in the 
row (as in Figure 2c). 

 
Student: So we’re sort of mixing all the ideas. We’re mixing the columns idea, the 

number idea, and the how many … 
Elise: Now, how did you know to start with thirteen there at the top?  
Student: Well because we already know, we’ve already answered one of your questions 

[about our class] which is which was shortest which was longest, which was 
Fletcher and Greg was the longest and Eddie is the shortest, so we knew that 
nothing was under Eddie’s, which is Eddie’s is 13. That must mean we must 
start with 13. (Class 3E, 30 March 2007) 

 
Elise noted that in listing their measurement categories, Beth had not included a 

column for 14. 
 

Elise: Why did you think there would be no one with 14?  
Beth: Because I didn’t really think anyone in 3M would have a big enough hand or 

small enough hand to make it 14. 
Elise: Nobody in [our class] had 14 did they? 
Beth: No. So I was guessing about kind of the same amount of numbers. (Class 3E, 

30 March 2007) 
 
The responses in the excerpts above and later in the lesson suggested to the researcher 

that for many of the students, their predictions about the distribution of handspans in 
another class would be the same as, and perhaps even identical to, the distribution of 
handspans in their own class. Later, as students were beginning to organize the data that 
they had collected from the class next door, one of the students noted with surprise that 
the data from 3M differed from what she expected, “I just got a bit surprised when I found 
that someone had [a handspan of] 12” (Class 3E, 30 March 2007).  



98 

 

 

Elise decided to work with the students further to make these predictions more 
explicit by asking the class to consider whether they thought that the data they had (and 
already discussed) about their own class would be similar to the handspans one would 
find in other classes (data they didn’t have). She had written on the board: “Are our 
handspans the same as another class?” 

 
Elise: This [points to the question] was one of the questions that we were working 

towards last time. And we were going to see, well, if our class would be the 
same as the other. There was a word that we were using, I don’t know if you 
remember this word, but it was ‘typical.’ [Writes the word ‘typical’ on the 
board.] Would we be saying that our work is typical? Like, our [class’s] 
handspans, are they typical? So would every Year 3 class at [River] State 
School have the same highest handspan measurement? [Class: No] Or the 
same lowest handspan measurement? [Class: No] Or would we have the same 
middle handspan measurement? [Class: No] Or, which was our most common 
group? Remember what – 15 cms? Well, would every Year 3 class have 15cm 
as their most common measurement?  

Class: No. 
Student: No, you never know. (Class 3E, 30 Mar 2007) 

 
The use of the word “typical” here is quite different than is generally encountered in 

primary schools, where “typical” often refers to an average (Makar & McPhee, in press; 
Mokros & Russell, 1995). In this case, the teacher was asking (perhaps without realizing 
it) whether the distribution of their handspan data was representative of the distribution of 
handspans for all Year 3 students at their school. Here, Elise was working with students 
on building their ability to think “beyond the data” to build their informal inferential 
reasoning (possibly due to encouragement by the researcher to consider more inferential 
thinking). It was interesting to note, however, that initially the students did not see the 
data they had as useful evidence for predicting what they might find in handspans more 
generally. However, the comparison activity did appear to be important for two reasons. 
For one, it supported students’ thinking about the data as an aggregate by having to 
compare characteristics of the two classes of handspans. Secondly, it appeared to expose 
students informally to the notion of variability between distributions; this between-group 
variability that arises from comparing distributions may have provided foundation for 
thinking inferentially. 

Although Elise had been able to get the students thinking about whether the data next 
door, in Class 3M, would be the same as their own class, it didn’t appear that students 
were seeing the data they had as useful evidence for predictions. In order to investigate 
this further, the first author asked to teach the class to see whether their experiences in 
comparing data from the two classes could be used as evidence to quantify predictions 
about data they didn’t have from a third class, 3K. 

 
R: I want to know something about 3K’s handspans. Who can tell me something 

about 3K’s handspans? 
Student: That we don’t know anything about their handspans. 
R: Oh, you don’t know anything about their handspans? 
Student: Because we haven’t done it yet. 
R: Because you haven’t got the data? 
Class: Yes. 
R: You don’t know anything at all? 
Class: No 
Student: Cause we haven’t even started on 3K’s [data]! (Class 3E, 2 April 2007) 
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It seemed clear from their responses that the children did not see the data they had 
already worked with from their own class and another class as potential information about 
data from a new class. The researcher pushed them further to try to see their data as 
evidence for making an inference about unknown data. 

 
R: Can any of you make a prediction then, about what you might find in 3K’s 

data? 
Student: They might have bigger handspans? 
R: They might have a bigger handspan? Now I noticed you used the words ‘they 

might have.’ You mean you’re not sure? … Is it totally guessing? 
Class: No. 
R: Does someone want to make a prediction about what we might find in the data 

for 3K?  
Student: I think the largest handspan might be 19 or 21, maybe? And the shortest one 

might be 13 or 11? (Class 3E, 2 April 2007) 
 
Other students offered similar predictions, including predictions for the most common 

group. This was the first time that students began to articulate their predictions 
probabilistically, using the data they had as evidence for their predictions. The researcher 
probed the students further about the source of their predictions more explicitly. 

 
R: So how could you make those predictions when we haven’t collected the data? 

How can you make those predictions? 
Student: … I think it’s because everyone’s actually using the data that we already 

collected. (Class 3E, 2 April 2007) 
 

The researcher continued, this time asking them to predict the handspan of a new student 
who might join the class. 

 
R: Now I want you to make another prediction. Let’s say that you get a new 

student in 3E [your class]. I want you to write down a prediction about what 
you think their handspan might be, if you get a new student in 3E. … 

Students: I think they might be 15, 16, or 17. … Maybe 16 or 15? 
R: I love how I’m hearing that word ‘maybe.’ Maybe 15 or 16? Where are you 

coming up with that, those numbers 15 or 16? 
Student: Because …. I don’t think it would be 13 or 20. (Class 3E, 2 April 2007) 

 
It appeared to take several iterations of predicting and probing students to enable them 

to begin to see the data they had already collected was useful as evidence for making 
predictions. In addition, students appeared to have some intuition already that their 
predictions contained an element of uncertainty. They expressed this through more 
uncertain (probabilistic rather than deterministic) language and estimating a range of 
values rather than a single value. Finally, the work they had done earlier in organizing 
their own class’s data and comparing it to another class appeared to support the move to 
more inferential reasoning by helping them to improve their thinking of the data as an 
aggregate and to move beyond a deterministic view of the distribution to incorporate 
potential variability between distributions. Table 4 below provides a summary of the 
alignment issues between Elise’s episode and our framework for thinking about informal 
statistical inference. 
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Table 4: Elise’s episode aligned with principles of informal statistical inference 
 

Framework Comments 

Generalization 
beyond the data 

In probing students to consider characteristics of their data, Elise was 
able to get students to think about the data as more than a list of 
individual students. The categories students formed to organize their 
data into columns may have supported them to think of the data as a 
distribution. However, initially, they seemed to assume that data 
collected from another class would have very similar, or even identical, 
properties (smallest, largest, most common) to the data from their own 
class. The comparison with a second class’s data helped students begin 
to perceive a possible distribution for each data set, but still not 
generalize beyond data they had in hand. However, it may have moved 
them to think about between-group variability that supported later 
inferential thinking in making predictions. 

Data as evidence 
It took several iterations of discussing and organizing data before 
students began to systematically use the data they had as evidence for 
making predictions. 

Probabilistic 
language 

Students only began to articulate uncertainty when they were asked to 
quantify predictions about data they didn’t have. 

 
6. DISCUSSION 

 
This paper investigated a framework for considering the way that students and 

teachers might employ inferential reasoning when working with data to solve problems. 
The three aspects of informal inferential reasoning—generalizations, data as evidence, 
and probabilistic language—provided insight into the teaching and learning of statistical 
reasoning in an inquiry-rich problem-based environment.  

 
6.1. GENERALIZATION BEYOND THE DATA 

 
The first aspect of the framework, generalization beyond the data, provides the 

foundational inferential lens to move from describing the data at hand and shift towards 
the target of the inference. It considers not just the data that are being reasoned about, but 
the context in which the larger data set is likely situated. By looking beyond describing 
the data (through graphs or descriptive statistics) to consider the larger population or 
mechanism that the data represent, a shift in thinking can occur. This shift potentially 
moves the target of learning from statistical tools towards the problems for which 
statistical processes can provide powerful insights. Without considering generalization 
beyond the data, there is really no possibility for inference.  

Natasha (Section 5.1) discussed three elements missing in her Year 5 unit that she 
considered important for providing opportunities for students to tap into inferential 
reasoning. 

• Pose a driving question. An important element that Natasha named as missing 
from the investigation was a driving question. A driving question would have 
provided a clear direction when the investigation encountered obstacles or 
students became sidetracked. Without the driving question, Natasha said, “it 
wasn’t really an investigation.” 

• Include an engaging context. In her unit on citizenship, Natasha felt that the topic 
of citizenship was too far situated from nine-year-olds’ experiences and interests 
to engage their thinking beyond the data at hand. This reminds us of the 
underlying purpose of statistics to provide insight into phenomena under 
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investigation. She noted the importance of focusing attention on investigating the 
context, not the data in isolation. 

• Ensure sufficient complexity in the data. The data that the students collected were 
primarily dichotomous and this lack of complexity did not trigger potentially 
innovative and insightful conclusions from the data collected. Without the 
opportunity to develop perceptive interpretations, the focus turned to the more 
mundane tasks of drawing graphs and reciting outcomes of data compilations. 
Natasha summarized it well by saying, “there was not really much that we could 
do with it … [and] it didn’t really allow them to do any higher-order thinking.” 

Generalizations also played a key role in supporting students’ thinking in Carla and 
Kaye’s Year 4 unit on healthy eating. Because students often wanted to consider only 
individual data points or report on discrete values, the focus on creating generalizations 
(although not always beyond the data) helped students develop a more aggregate 
perspective in interpreting their data. Carla was able to use the idea of generalizations to 
support her students in this move to aggregate thinking. Elise’s unit on handspans 
likewise provided interesting insight into her students’ thinking about making 
generalizations beyond their data. When the class focused on using their data to begin 
making predictions about other classes (moving beyond their own data), this gave the 
teacher insightful evidence of her students’ thinking about data. 

 
6.2. DATA AS EVIDENCE  

 
Like the principle of generalization beyond the data, this principle supports the idea 

of focusing on the context under investigation rather than on investigating the data itself. 
For example, in Elise’s Year 3 class, they initially seemed to assume that the distribution 
of students’ handspans in a neighboring class would be just like (or even identical to) their 
own class, including the same smallest handspan, largest handspan, most common 
handspan, and even gaps (concluding no one in the neighboring class would have a 
handspan of 14 cm because no one in their own class did). In collecting and organizing 
the data from the neighboring class, students began to appreciate ways in which the 
variability in the distribution both differed from, and showed similar patterns to, their own 
data. Finally, in attempting to draw conclusions about the handspan distribution from a 
third class, students initially concluded that they could not describe that distribution at all 
because they did not have the data. In pushing them to consider how they might make and 
quantify predictions about the third class, students began to see the data they had as 
evidence for making these predictions. 

In many ways, Carla’s focus with her class on making generalizations from the data 
supported them in seeing the data as evidence for their conclusions, a connection that 
students often find difficult (Hancock et al, 1992; Marshall, Makar, & Kazak, 2002). 
Natasha’s class, in turning their attention to graphing skills, never got back to the problem 
they were investigating that would have allowed them to make the connection between 
the data they collected and its potential as evidence for drawing inferences. The use of 
data as evidence is a key principle of informal inference that reminds learners of (1) the 
purpose of collecting and analyzing data; and (2) the importance of focusing on the 
problem and process of statistics in inquiry rather than just a data set as an isolated 
artifact. This concept of data may also help to curb students’ and teachers’ tendencies to 
focus on unproductive aspects of data (Pfannkuch et al, 2004).  
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6.3. PROBABILISTIC LANGUAGE 
 
Finally, the third principle of informal statistical inference is the use of probabilistic 

language to articulate uncertainty and level of confidence in making predictions. The use 
of probabilistic language as a critical aspect of informal inference was most apparent in 
Elise’s Year 3 class (age 7) when they were using the data they had collected on 
handspans to make predictions about the distribution of handspans in a neighboring 
classroom for which they had not collected data. Once they made the connection between 
using their own data as evidence to make predictions, their language changed to include 
notions of uncertainty and level of confidence. For example, students incorporated 
phrases like ‘might be 13 or 11 [cm]’ for the smallest handspan or ‘around 15 to 16 [cm]’ 
for the most common handspan. Additionally, students broadened their predictions from a 
single point to a range of values to articulate their uncertainty and also to improve the 
level of confidence in their prediction. The language of uncertainty may have also 
allowed students to take the risk in making their predictions without worrying about 
possibly being ‘wrong.’ When you consider the difficulty that even university students 
have in moving away from making absolutist-type conclusions that communicate a more 
deterministic perspective of inferences from data (Abelson, 1995), the ability of these 
young students to articulate some uncertainty in making their predictions is very 
encouraging. 

 
7. CONCLUSION 

 
Informal inferential reasoning (IIR) has been highlighted in a number of studies as a 

potential pathway for deepening learners’ understanding of statistical processes and 
outcomes (see Ben-Zvi, 2006; Pfannkuch, 2006; Rubin et al., 2006; and research reported 
in Ainley & Pratt, 2007 and Pratt & Ainley, 2008). In addition, IIR may provide new 
opportunities to infuse powerful statistical concepts very early in the school curriculum 
(Ben-Zvi & Sharett-Amir, 2005) and return the focus of statistics to a tool for insight into 
understanding problems rather than only a collection of graphs, calculations, and 
procedures (Sorto, 2006). This paper presents a potential framework for better 
understanding key principles of informal inferential reasoning. By focusing on inference 
as the process of making probabilistic generalizations from data, the framework can be 
used to support teachers in understanding the importance of working with students to 
think beyond the data at hand, towards using that data as evidence for making predictions 
about a larger process or population. Also important is to articulate predictions with 
probabilistic rather than deterministic language in order to communicate both the 
uncertainty and the level of confidence of a prediction. The principles that underlie the 
framework further have the potential to both help students make better connections 
between the data collected and the problem under investigation, and to help deter the 
overly rigid stance that often accompanies statistical conclusions. The framework is also 
potentially useful to support the research community in “grappling with the conceptual 
building blocks for informal inferential reasoning” (Pfannkuch, 2006, p. 1) and to provide 
directions for further research on specific elements of informal statistical inference.  
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ABSTRACT 

 
This study considers the effectiveness of a “balanced amalgamated” approach to 
teaching graduate level introductory statistics. Although some research stresses 
replacing traditional lectures with more active learning methods, the approach of this 
study is to combine effective lecturing with active learning and team projects. The 
results of this study indicate that such a balanced amalgamated approach to learning 
not only improves student cognition of course material, but student morale as well. An 
instructional approach that combines mini-lectures with in-class active-learning 
activities appears to be a better approach than traditional lecturing alone for 
teaching graduate-level students. 
 
Keywords: Statistics education research; Graduate-level education; Active learning; 

Collaborative learning; Lecture-based learning; Team projects; 
Classroom instruction 

 
1. PURPOSE 

 
Theresa is typical of most graduate students I meet in the first statistical course of 

their program. Sitting uneasy as we go around the class making introductions, Theresa 
starts out with basic information about herself, and then exclaims “To be honest, I have 
tried avoiding this class for as long I could! I’m scared to death of statistics!” She isn’t 
alone.  

Students often consider statistics as the “worst” course they take while in college 
(Hogg, 1991). For instructors, there is often a struggle with how best to reach students, to 
help them learn statistics, and to help them become practical consumers of the knowledge 
– especially when students enter statistics courses with negative self-images. As some of 
this negative imagery comes from the massive amounts of formulas students can face 
while in the course, one solution is to structure an introductory statistics course (possibly 
all statistical courses) around data analysis versus mathematical technique. Another 
solution is found in innovative instructional paradigms in which the traditional lecture, 
with students passively listening, is replaced with more hands-on activities.  

Yet in graduate statistical education, the actual implementation of these different 
approaches into a classroom setting can be quite challenging and confusing. Many of 
these approaches involve unique learning opportunities which have not customarily been 
incorporated in traditional graduate-level statistics classes. Moreover, because most 
research has been conducted on undergraduate statistics classes (see next section), one 
might ask “Would the same techniques of active or cooperative learning actually work in 
a graduate introductory statistics class? Or possibly in more advanced classes?” 
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The purpose of this research is to consider alternative instructional methods in the 
teaching of introductory statistics to graduate students. Based upon personal informal 
surveying of graduate instructors, some feel uneasy about totally doing away with 
lecturing, especially when teaching graduate level courses. Indeed, for many graduate 
instructors I have interviewed, incorporation of innovative strategies is still foreign and 
they feel uneasy about abandoning a lecture-format class. Thus, I decided to embrace 
these teaching strategies and see whether, indeed, innovative strategies work in higher 
level statistics education. This particular study considers the possible linkage of research 
in undergraduate introductory statistics to a graduate-level introductory statistics class. 
Future research will consider the use of such teaching strategies for more advanced 
statistical classes. 

The “balanced amalgamated” approach to teaching (with both traditional lecture and 
active learning) of interest in this study would allow many graduate instructors the 
opportunity to explore the advantages of active learning without the concern of losing the 
benefits of lecturing. Thus, the purpose of this research is to compare various 
amalgamated instructional models that involve lecturing and active/cooperative learning 
in graduate statistics classes. Comparisons were made with previous semesters in which 
these approaches were not undertaken. Specifically, this study attempted to answer the 
following research questions: 

 
1. Can active or cooperative learning be successfully implemented and accepted in 

graduate introductory statistics classes? Can these strategies be combined with 
lectures to create a balanced amalgamated instructional approach? 

2. Does more active student involvement help graduate students learn introductory 
statistics? 

3. What benefit in affective and cognitive measures is seen by introducing active or 
cooperative learning along with lectures in graduate introductory statistics 
education? As males and females may gravitate toward different teaching 
approaches, do these benefits differ by gender? 

4. Does a particular amalgamation work better than others with graduate students? 
 

2. THEORETICAL FRAMEWORK 
 
The question of how a student best learns statistics has been much considered in 

articles on statistics teaching (e.g., Chance, 2005; Gal & Garfield, 1997; Garfield, 1995; 
Lovett & Greenhouse, 2000), and has mainly focused on instructional content or methods. 
In terms of instructional content, many statisticians, including Bradstreet (1996) and Cobb 
(1991), are convinced that an introductory statistics course should emphasize data 
analysis over mathematical technique and concepts over formulas. Hogg (1991) stressed 
that statistics should not be presented as a mathematics course at all. Rather, the 
andragogy should emphasize statistical reasoning and thinking rather than algebraic 
precision.  

Hogg (1991) further describes the problem of traditional instruction of statistics in 
terms of instructional design: Students are passive learners and do not directly come into 
contact with the many issues that occur in data collection and analysis. He suggests 
students would be better off generating their own data rather than utilizing a data set from 
a textbook or instructor. By working with projects involving their own data, students have 
opportunities to define problems, formulate hypotheses, design experiments, and have 
genuine data to analyze and summarize. In support of Hogg, Snee (1993) emphasized that 
because collecting data is the nucleus of statistical analysis, learning that centers on the 
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analysis of real data that students collect connects them to the practicality of statistical 
thinking. Singer and Willett (1990) argued that real data should be the nucleus of all 
statistical education, although their emphasis was more on using available datasets and 
not on students collecting their own data. 

Emphasizing this statistical content also leads to a more active involvement of 
students in the course, and the traditional lecture approach in teaching statistics has had 
much criticism in the last two decades of research (e.g., Delucchi, 2006; Garfield, 1993; 
Giraud, 1997; Moore, 1997). Garfield (1995) suggests that students learn best by 
constructing knowledge and becoming active participants in the learning process. Smith 
(1998) indicated that  

One way to help students develop their statistical reasoning is to incorporate active-
learning strategies that allow students to supplement what they have heard and read 
about statistics by actually doing statistics -- designing studies, collecting data, 
analyzing their results, preparing written reports, and giving oral presentations.  
(¶ 3.7) 

Steinhorst and Keeler (1995) is another great resource in this matter. In support of an 
active-learning approach, Bradstreet (1996) writes that “Learning is situated in activity. 
Students who use the tools of their education actively rather than just acquire them build 
an increasingly rich implicit understanding of the world in which they use the tools and of 
the tools themselves” (pp. 73-74). Thus in this study, “active learning” refers to any 
activities in which the student participates and learns in a non-passive way (e.g., simply 
answering questions from the teacher would not be considered “active learning” in this 
study).  

There are a variety of ways in which to incorporate active learning and projects into 
instruction, in particular, personal collection of data. These might include some of the 
following: computer simulations (Garfield & delMas, 1991); laboratory-based courses 
(Bradstreet, 1996); in-class activities (Dietz, 1993; Gnanadesikan, Scheaffer, Watkins, & 
Witmer, 1997); a single three-week project (Hunter, 1977); or a course-long project 
(Chance, 1997; Fillebrown, 1994; Ledolter, 1995; Mackisack, 1994). 

In regard to cooperative learning, many researchers have reported significant 
accomplishments from introducing cooperative learning experiences in introductory 
statistics classes (Dietz, 1993; Jones, 1991; Keeler & Steinhorst, 1995; Shaughnessy, 
1977). Teams help encourage cooperative learning, develop team-working skills, and 
usually build substantial friendships (Smith, 1998). However, some of this research tends 
to limit such activities to external learning situations such as homework or studying.  
Although much research exists indicating the effectiveness of alternative teaching 
techniques, how a teacher should implement such teaching strategies is not always clear 
and should be a point of more research (Garfield, 1995). Johnson and Dasgupta (2006) 
found that undergraduate students predominately prefer non-traditional instructional 
styles. Yet, exactly how a class should be structured and which techniques work best with 
each other was not considered in this research and would seem to be of importance to 
instructors wishing to incorporate such styles. Jordan (2007) stressed that the 
implementation of such instructional styles is open to much interpretation. In fact, some 
research has indicated that the implementation of these techniques does not always 
happen. Cobb (1993) investigated the results of various NSF grants whose purpose was to 
significantly improve statistical instruction, and discovered that none of the grants 
involved team projects, nor cooperative learning situations. Bryce (2005) indicated that 
few textbooks have embraced these new ideas in statistical education. 

Furthermore it is not clear which methods work better for different students. Students 
have differing learning styles. Ford and Chen (2002) showed that males and females 
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performed differently under various teaching styles. Kolb (1984) provided a model of 
learning styles: concrete−abstract and reflective−active. The combinations of these styles 
indicate learners that are labeled as accommodators (concrete, active), divergers 
(concrete, reflective), assimilators (abstract, reflective), and convergers (abstract, active). 
Grasha (1996) suggested bipolar characteristics of learning styles: competitive vs. 
collaborative, dependent vs. independent, and participant vs. avoidant. Regardless of the 
label, research has shown that students vary in how they best learn. Thus a class structure 
that only emphasizes one learning style (e.g., lecture or active learning) might in fact 
disadvantage some students in the attempt to reach others. In terms of classroom 
dynamics and pedagogical styles, Grasha identified five teacher styles: expert, formal 
authority, personal model, delegator, and facilitator. One can see in these labels the full 
spectrum of classroom dynamics from pure lecture (expert) to pure active/collaborative 
learning (facilitator). Instruction that flows in and out of these different dynamics would 
in essence touch on the diversity of learning styles of students. 

Lovett (2001) said that “a successful route to improving students transfer of statistical 
reasoning skill may rely heavily on integrating instructional and cognitive theory, while 
maintaining a link to the realities of the classroom” (p. 348). Some research has 
considered the effect of combining different instructional techniques to create an 
amalgamated approach in teaching statistics. Ward (2004) created an amalgamated class 
consisting of online and face-to-face classes and found little difference in student 
performance. Keeler and Steinhorst (1995) created an amalgamated class consisting of 
collaborative groups and mini-lectures. They showed an improvement in students’ 
attitudes and grades when incorporating more active student involvement with lectures. 
Their research focused on undergraduate, introductory-level statistics classes. No research 
has been found that applies such techniques to graduate-level statistics classes. 

In fact lecture-based approaches appear to still dominate graduate-level statistics 
classes. A preliminary study by this researcher which interviewed 14 graduate instructors 
from colleges and departments of Education, Business, and Statistics at four major 
universities in the United States found this tendency, and when asked about the possibility 
of utilizing different learning strategies in their higher-level statistics classes, the response 
is typically expressed somewhat like “Yes, that may work for an undergraduate statistics 
class, but it would never work in this class. This class is too high level and demands a 
lecture format be predominant or even exclusive.” Although these instructors are familiar 
with the vast research on innovative learning strategies in statistical education, there 
appears to be a huge gap between knowledge and practice. For these instructors, whether 
the same results shown in undergraduate statistics education would apply to graduate 
students has been minimally investigated.  

Bligh (2000) suggests that lectures do have their place in education, yet the problem 
lies with instructional strategies that have unrealistic expectations. For example, Bligh 
indicates that whereas lectures are good at imparting ideas, they are not as good at 
motivating students: “Use lectures to teach information. Do not rely on them to promote 
thought, change attitudes, or develop behavioral skills if you can help it” (p. 20). For 
Bligh, many critics of lecture-based approaches in instruction almost de-emphasize the 
role of lectures completely. Yet, the complexity of graduate-level statistics classes 
suggests that some form of lecture might be beneficial. It has been this researcher’s own 
observation that a statistics class that revolves around total active learning does not 
provide students with enough security in statistical methodology, especially for more 
advanced statistics classes. Often students need to see things demonstrated before they 
can apply those techniques to real life. However, this does not exclude the possibility of 
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incorporating many of the proven techniques that have been shown to make a difference 
in undergraduate education. 

 
3. RESEARCH DESIGN 

 
Due to various limitations in the study (detailed below), a quasi-experimental design 

was implemented for this study. Specifically, an “untreated control group design with 
dependent pretest and posttest samples” (Shadish, Cook, & Campbell, 2002, p.137) was 
used for this study. More details on the sampling, treatment, instruments, and statistical 
analysis used in this design are detailed in this section. 

 
3.1. PARTICIPANTS 

 
The data were collected from three graduate educational statistics classes conducted at 

a major university over a period of three consecutive semesters. The classes consisted of 
both master’s and doctoral students (approximately equal ratio). Specially prepared notes 
by the author served as the textbook in all classes. All classes were exposed to the 
statistical package R. Although the class is offered by an Educational Psychology 
department, students from many different departments and colleges at the university take 
the course. These other colleges/departments included Social Work, Communications, 
Journalism, Psychology, Business, and so on. The first semester students received the 
traditional lecture, the second semester class added the active learning element, and the 
third semester added the team projects. The designs of these instructional approaches are 
discussed in the next section. The first semester class (lecture only) consisted of 59 
students, the second semester class (lecture + active learning) consisted of 44 students, 
and the third semester class (lecture + active learning + team projects) consisted of 47 
students. Some demographic characteristics of the classes over varying semesters were 
considered (specifically major, gender, race, and number of previous statistics courses), 
and similar frequency patterns were found between all classes. Age was obviously a bit 
higher on average for doctoral students than master’s. The average age for all classes was 
25, with each class having ages ranging from 21 to 35.  

 
3.2. INSTRUMENTS 

 
Various affective measures were taken from a series of items developed and validated 

by the university at which the research took place. A bundle of items dealing with course 
content and instructional assessment were used in this study. This instrument consisted of 
eight items measured on a 5-point scale ranging from “poor” to “excellent.” Only four of 
the eight items were used in this study as they dealt directly with the subject of this study. 
The items included such evaluations as “communication of ideas and information” and 
“stimulation of interest in the course.” These affective measures were given before the 
final cognitive measure which is described next. Because these items were not used in a 
scalar sense, the psychometric properties of the scale of items are not discussed. 

The cognitive measure was taken from a master list of questions which was developed 
by the researcher over a 10-year period. The master list contains 100 multiple-choice 
questions, each with three distracters and one correct answer, covering topics in 
regression and hypothesis testing. A second set of items, covering more elementary 
concepts such as graphs and descriptive statistics, was used in this study as a covariate. 
The common cognitive measure for all three classes (items dealing with regression and 
hypothesis tests) was used as a measure of instructional effectiveness in this study. 
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Psychometric issues, such as validity and reliability, have been considered for these items. 
Face validity was conducted with other statistics instructors deemed exemplary. Construct 
validity has been carried out in various analyses over the course of development, as well 
as reliability assessment and item analysis. As a result, items have been removed, 
adjusted, or improved upon. This final bundle of items has been shown to have sound 
psychometric properties of consistency (coefficient alphas at least 0.80) and factor 
loadings consistent with the construct that the item is measuring. Each assessment per 
class consisted of 33 randomly selected questions from this bank of questions. Students 
are not allowed to keep their exam thus providing some security of the questions from 
semester to semester. The grade from this assessment was part of other grades used to 
determine the overall course grade for the class. The grading scheme for the “lecture 
only” and “lecture + active learning” group was identical. The grading scheme for the 
“lecture + active learning + team projects” class included a component on student 
presentation and papers as part of their grade.  

A final instrument concerning team dynamics was created to measure students’ 
perceptions of team projects. Students in the team-project group were asked to evaluate 
their experience with team projects during that semester. Forty-eight items were 
developed, and forty of these items reflected an attitudinal measure on a 5-point Likert 
scale. The other questions dealt with opinions on such matters as preferred group size and 
on locus of control in terms of project assignment. This instrument was not developed as a 
means of assessment but rather as a beginning explanatory consideration of the statistical 
results found in this study. Thus, the psychometric properties of validity (beyond face 
validity) were not as stringently considered as the prior measures. The coefficient alpha 
for the forty Likert items was 0.98. 

 
3.3. STATISTICAL ANALYSIS 

 
The dependent variables in this study focused on both affective and cognitive 

measures. The researcher felt that student attitudes toward instruction would be just as 
vital as cognitive measures in evaluating instructional design effectiveness. Thus, student 
attitudes towards the different aspects of the class and instructional approach were 
considered. Due to limited student identification in the baseline (lecture only) group, a 
multivariate analysis with both measures was not possible. Chi-square analyses were 
conducted to detect significant patterns of response for the affective measures. A two-
factor ANCOVA design was implemented for the cognitive data. Independent variables 
consisted of type of instruction (lecture only, lecture + active learning, lecture + active 
learning + team projects) and gender (control variable). The covariate was the prior 
cognitive assessment of knowledge over basic statistical knowledge (graphs, descriptive 
statistics, and other such introductory statistics topics).  

 
4. INSTRUCTIONAL DESIGN METHODS 

 
Using the labels of Grasha (1996), instruction can be designed in many different ways 

as shown in Figure 1. This visualizes each approach as a river. The relationship of each 
approach can be seen by either independent, non-intersecting rivers (part a), or connected 
tributaries which feed into a common collection (part b). If we think of instructional 
approaches as such, we can consider instruction as consisting of independent approaches 
(e.g., lecture only (expert) or only constructivist (facilitator)), or as dependent approaches 
which draw upon each other for a combined approach. Whereas most might consider the 
first picture as unrealistically extreme of actual educational practices, the reality is that
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Figure 1. Independent (a) versus dependent (b) instructional approaches 

 
some tributaries in part b might be trivial or completely forsaken (Figure 2a). Or, some 
may even design a particular class as consisting of only one approach (e.g., Tuesday’s 
class is lecture, Thursday’s class is hands-on application) as shown in Figure 2b. This 
study designed instruction that sought to favor each tributary equally within the same 
class. The approach as shown in Figure 1b was adopted as the instructional design of this 
study to test the effectiveness of balanced amalgamated approaches in both the 
understanding and attitudes of students. The details for each approach are presented, 
followed by a discussion of the statistical analysis of the relative effectiveness of the 
instructional approaches. 
 
a) b) 

 
Figure 2. Examples of imbalance in instructional approaches 

 
For this study, three instructional methods are compared: traditional lecture, mini- 

lectures with in-class activities, and mini-lectures with both in-class activities and team 
projects. The classes were all taught by the same instructor in different semesters. The 
instructor had ten years of experience teaching graduate level statistics courses. 
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4.1. “LECTURE ONLY” CLASS 
  

 The class that comprised only lecture-based instruction contained no active 
component or teamwork. Each class consisted of 45 minutes of lecture, along with the 
time for students to ask questions. Sample problems were demonstrated in class, yet the 
students were never involved in either the process or data collection (i.e., they were 
passive learners). 
 
4.2. “LECTURE + ACTIVE LEARNING” CLASS 
 

For the classes with in-class activities, the instructor still provided instruction, but 
only in short segments. A general setup for each class meeting involved small lectures 
with short instructional elements (5 to 10 minutes) followed by active application of the 
knowledge (5 to 15 minutes). Each activity was discussed afterward in class, before the 
next small lecture began. Thus, for a 50 minute class, a typical meeting consisted of three 
mini-lectures, along with three direct applications of the knowledge learned (typically in 
teams). This is illustrated in Figure 3. 

 

 
 

Figure 3. Class structure with active learning emphasis 
 
This approach was modeled after one of the few textbooks that incorporates active 

learning within the text (Aliaga & Gunderson, 2003). From this perspective, a mixture of 
traditional lecture and active learning is incorporated. An example of this approach in a 
worksheet is presented in Appendix A. Immediately after learning new concepts or ideas, 
students are presented with problems (often real situations) to apply that knowledge in 
individual activities or as teams. For example, after learning about stratified sampling, 
students then split up into teams and take a stratified sample of their particular team. This 
allows for more immediate feedback as to how a student is assimilating the information. 
In addition, this approach allows a student to see real-life examples on their own. Because 
of the nature of this approach, however, students do not have the time to devote to more 
advanced statistical methodology such as sampling designs. Thus, this research also 
considers the addition of team projects to this paradigm. 

Worksheets were incorporated and made available to students via a course webpage. 
The worksheets contained material that the instructor first introduced in the “mini” 
lecture. Students completed the worksheets after each mini lecture either individually or 
in groups (depending on the activity of the worksheet) during class. The activities were 
designed so that the amount of individual versus group-related activities approximated a 
50/50 proportion over the entire semester. However, on a given day of instruction, this 
proportion was not always 50/50. For half of the group activities, students were allowed 
to work with their neighboring students (which was helpful in larger classes). 
Predominately, these groupings were fixed for the entire semester. The other half of group 
activities were done so that students congregated in new ways around the classroom. This 
was sometimes accomplished by instructor assignment or students randomly assigning 
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themselves to a group (using random number techniques and areas assigned number 
labels), or in just pseudo-randomly walking around the class to find a group (which can be 
too time consuming).  

 
4.3. “LECTURE + ACTIVE LEARNING + TEAM PROJECTS” CLASS 

 
The last mode of instruction involved a class that combined the active-learning 

element previously mentioned with team projects. Students were split up into groups of 
four to five students as chosen by the students, and assigned a project from a list of 
projects the instructor had assembled. Teams were allowed to modify projects, with 
instructor permission. However, only one team modified a project. The modification only 
changed the population of the study for the particular project. In order to encourage 
student involvement, many of the projects were devised from more “sensational” ideas 
that made the presentation of the results interesting to students. For example, one of the 
projects in the “regression” unit focused on surveying students to see whether there was 
any correlation between GPA and the number of alcoholic drinks consumed per week. 
Although such a question is highly dramatic, the results provide a memorable discussion 
into the ideas of correlation, and the problem of causation. From there, a short discussion 
of response bias is often appropriate. Students were required to stay in the same team the 
entire semester. The in-class group activities utilized teams whose compositions differed 
from those of the team projects. Inevitably, students from the same team might be 
members of the same in-class groups, yet no team group was contained within the groups 
for in-class activities. 

The initial focus of this research centered on projects that involved educational 
settings. This, however, proved more difficult than earlier imagined. In particular, studies 
on young children or teenagers often require special permission and take much time to 
setup. Projects needed to be devised that did not demand too much of a student’s time. 
Although educational data sets are available, the purpose of this research was to involve 
the students in all aspects of research – from data collection to analysis. The solution in 
this research was to create projects that tended to be behavioral or sociological in nature. 
Although some projects did involve student attributes (and thus were educational in 
nature), most projects were forced to be generally behavioral. Four projects were given 
during the semester which focused on application of various topics discussed in class: 

1. Data (sampling, bias, etc.) 
2. Descriptive statistics (central tendency, variability, boxplots, etc.) 
3. Hypothesis testing (t tests, ANOVA, etc.) 
4. Regression (correlation, simple linear regression, multiple regression, etc.). 

A listing of sample projects used is given in Appendix B. Some of these projects were 
modified from Smith (1998). 

On a set date, students were asked to turn in a written summary of results (in APA 
style) and to give a presentation. As mentioned previously, research has shown that 
summarizing and presenting statistical results is a more demanding learning taxonomy 
level than simply analyzing the numbers. Because of the size of the class, presentations 
were randomly selected and only those teams randomly selected had to present their 
findings in class. This allowed for half of the class period to still involve learning units, 
then the last half of class was used for project presentations. The teams were asked to 
limit their presentations to ten minutes. 
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5. RESULTS 
 

5.1. AFFECTIVE RESULTS 
 
Comparisons were made for the attitudes of students in the various instructional 

treatments. First, students were asked to rate the effectiveness of the instruction. A 
summary of the results is presented in Figure 4. Because many of the frequencies for the 
“poor” and “fair” responses were zero for the classes with active learning, the responses 
for “poor,” “fair,” and “good” were combined into an “at most good” category so that the 
assumptions of the chi-square test would be valid. Thus, the chi-square tested the 
independence of instructional approach to ratings of excellence.  
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Figure 4. Communication of ideas and information 

 
There is a sizeable difference that the active-learning component made for students’ 

assessment of instructional effectiveness (χ2(4) = 35.2, p-value < 0.01). Whereas only 
23% of students in the lecture-only class viewed the communication of ideas and 
information as being excellent, 81% of students in the amalgamated lecture/active 
learning class rated this communication as excellent. Interestingly, this high ranking did 
not hold when team projects were introduced into the course. For this class, the 
percentage of “Excellent” responses dropped to 56%. Although, the extreme satisfaction 
with the course ideas did not remain when team projects were introduced, it is important 
to note that there is a drastic positive shift in student attitude with either approach as 
compared to the traditional lecture approach. 

Next, students were asked to rate the stimulation of interest in the course they 
experienced. This is an important factor because motivation in statistics classes has often 
been noted as a major problem by instructors. These results are summarized in Figure 5. 

The results of a chi-square test were significant (χ2(4) = 18.9, p-value < 0.01). 
Although more students felt the communication of ideas was excellent for either the 
activity-based class or team-based, there was a slight drop in percentage of students who 
felt their interest in the course was stimulated. However, it is important to realize the great 
increase in student interest by incorporating active-learning components or active learning 
with team-based projects. For students in the activity-based class, 74% of them gave an 
“Excellent” rating for stimulation, as compared to just 23% in the traditional lecture class. 
A slightly lower, but still positive, rating (63%) was recorded for students in the team-
based instructional classes. 
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Figure 5. Stimulation of interest in the course 

 
Students were also asked to rate how well the class structure facilitated their learning. 

This question was more specific than the one presented in Figure 4. The question 
represented in Figure 4 considered an overall communication of the class ideas. For the 
question on facilitation, students were asked to rate how well the instructional approach 
helped in learning. The results are presented in Figure 6. 
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Figure 6. Facilitation of learning 

 
As before, a much higher percentage of students in the activity-based class (84%) and 

team-based class (59%) rated the instructional approach as “Excellent” as compared to the 
traditional lecture-only approach (27%) (χ2(4) = 26.1, p-value < 0.01). Students seemed to 
feel much more confident with the activity-based learning (alone) than either of the other 
methods, although the activity + team project-based approach was favored by students 
over the lecture-only as well. 

Finally, the overall rating of the instructor was considered. These results are presented 
in Figure 7. The percentage of students rating the instructor as “Excellent” rose for each 
teaching approach: 37% (lecture only), 90% (lecture + active learning), and 70% (lecture 
+ active learning + team projects) (χ2(4) = 24.2, p-value < 0.01). This is expected because 
the question addresses more of rating of a person than course materials or instruction. 
Thus other confounding variables (such as friendliness of teacher) may account for the 
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percentage increase across all types of instruction. Yet the same pattern remains in which 
the “Lecture + Active Learning” class is rated best by students, followed by the “Lecture 
+ Active Learning + Team Projects” class, and lastly the “Lecture Only” class. 
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Figure 7. Overall assessment of instructor 

 
5.2. COGNITIVE RESULTS 

 
Assessment of student knowledge of regression and hypothesis tests was considered 

as the cognitive measure of the effectiveness of each instructional method. This final 
measure consisted of 33 questions randomly chosen from a validated and reliable bank of 
questions about regression and hypothesis testing ideas. A prior cognitive measure was 
also used: another 33 questions randomly selected from a validated and reliable bank of 
questions about basic statistical knowledge (graphs, descriptive statistics, and so on). 
Table 1 summarizes the cognitive measures for each class.  
 

Table 1. Descriptive statistics for prior and final cognitive measures 
 

  Prior Cognitive 
Measure 

Final Cognitive 
Measure 

 n Mean SD Mean SD 
Lecture Only 59 85.62 10.52 84.84 8.92 
Lecture + Active Learning 44 88.64 8.81 91.55 6.03 
Lecture + Active Learning + Project 47 83.51 9.10 89.20 9.90 
Total 150 85.84 9.75 88.17 8.93 

 
An initial check of assumptions revealed possible problems with outliers and 

normality (Figure 8). Because the cognitive outcomes were measured in such a way as to 
be considered a proportion, the cognitive measures were transformed using an arcsin 
transformation as suggested by Neter, Kutner, Nachtsheim, and Wasserman (1996). No 
outliers remained after transformation. Using these transformed variables, the 
assumptions of normality of sampling distributions, linearity, homogeneity of variance, 
homogeneity of regression, and reliability of the covariate were found to be satisfactory. 
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Figure 8. Boxplots of final cognitive measure by instructional methods 

 
After adjusting for prior cognitive abilities, final cognitive assessment varied 

significantly with type of instruction (F(2, 143) = 18.925, p-value < 0.001). The 
ANCOVA results are summarized in Table 2. The strength of the relationship between 
adjusted cognitive final measure and type of instruction was moderate with partial 2η̂ = 
0.209. The adjusted non-transformed marginal means, as shown in Table 3, indicate that 
the highest final cognitive measure was for the class that had lecture, active learning, and 
team projects. The lowest final cognitive measure was for the class with only the 
traditional lecture. A post-hoc test revealed significant differences between the “lecture + 
active learning” approach and the “traditional lecture,” as well as between the “lecture + 
active learning + team project” approach and the “traditional lecture.” There were no 
significant differences between the “lecture + active learning” and “lecture + active 
learning + team project” approaches. Based on these results, graduate students who are 
more actively involved in their learning (whether through in-class activities or in-class 
activities and team projects) have significant gains in cognitive understanding, on 
average.  

No statistically significant differences between males and females were found, nor 
was there a significant interaction effect between instruction type and gender. For gender, 
partial 2η̂ < 0.001 indicated an almost non-existent relationship between gender and final 
cognitive measure. For the interaction, partial 2η̂ = 0.01 indicated a weak relationship 
between adjusted final cognitive measure and combinations of gender/instructional 
method.  

 
Table 2. Analysis of covariance of final cognitive measure 

 
Source of Variance Adjusted SS df MS F 
Type of instruction 1.542 2 0.771 18.925* 
Gender 0.001 1 0.001 0.018 
Interaction 0.059 2 0.029 0.721 
Covariate (adjusted for all effects)     
Prior cognitive measure 4.589 1 4.589 112.634* 
Error 5.826 143 0.041  

*p-value < 0.01 
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Table 3. Adjusted and unadjusted mean cognitive measure for three designs of instruction 
(untransformed) 

 
Type of Instruction Adjusted Mean Unadjusted Mean 
Lecture Only 84.92 84.84 
Lecture + Active Learning 89.58 91.55 
Lecture + Active Learning + Team Projects 90.91 89.20 

 
5.3. POST-HOC QUESTIONNAIRE OF TEAM DYNAMICS 

 
The addition of team projects did not significantly improve student attitudes or the 

cognitive measure as compared to the class that only had in-class activities. This is 
surprising as students were often heard discussing the results with other students, and the 
researcher felt that peer instruction was occurring more often than in previous semesters 
without team projects. To understand this phenomenon better, students who were exposed 
to both active learning and team projects were asked to describe their learning experiences 
with the team projects. These results differ from earlier questions in that the goal of these 
questions was to isolate student attitudes specifically on team projects and not on the 
active-learning component of the course. The results for the overall experience with team 
projects are presented in Table 4. Overall, 87.3% of the class reported having a positive 
experience by inclusion of team projects. A small minority (4.2%) had negative 
experiences with team projects. In reviewing the reasons why, it was noted that one of 
these individuals did not feel respected by the other team members, and another student 
felt frustrated by the lack of work from some team members.  
 

Table 4. “What was your experience of team projects in this class?” 
 

 Frequency Percent 
Very Negative 1 2.1 
Negative 1 2.1 
Undecided 4 8.5 
Positive 28 59.6 
Very Positive 13 27.7 

 
Students were also asked how the team projects helped in the learning of the material. 

The summary of these results is presented in Table 5. The inclusion of team projects was 
meant to make the statistical content more meaningful to students. In this case, 82.9% of 
students felt that the projects helped them understand the material better. Interestingly, 
this percentage was less than the percentage for the overall experience. Slightly more 
students had a positive experience with team projects, with more students not feeling that 
the projects helped them. Yet, overall, inclusion of projects did seem to help. 

 
Table 5. “Did team projects help you understand course materials?” 

 
 Frequency Percent 
Strongly Disagree 3 6.4 
Disagree 5 10.6 
Undecided 0 0.0 
Agree 27 57.4 
Strongly Agree 12 25.5 
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Teams were set at four to five people at the beginning of the semester. Students were 
asked what group size they preferred working in. These results are presented in Table 6. 
Nearly half the subjects indicated that a three-member group would have been preferred 
over a larger group. The optimal group size for most students was three to four people, 
with most students feeling better about a 3 member group. 
 

Table 6. “What team size do you prefer to work in?” 
 

 Frequency Percent 
2 person team 7 14.9 
3 person team 23 48.9 
4 person team 16 34.0 
5 person team 1 2.1 

 
One potential problem with working in teams is that students do not always 

participate. Students in this sample indicated that this was sometimes a problem in their 
team projects (Table 7). Over one-third of all responses (36.1%) indicated that some 
teammates consistently failed to produce the results required of them in a timely manner. 
Obviously, this appears to be a problem with any team activities and should be addressed.  
 

Table 7. “Did any team members fail to produce results in a timely manner?” 
 

 Frequency Percent 
Don’t Know 1 2.1 
Never 19 40.4 
Rarely 10 21.3 
Sometimes 9 19.1 
Often 8 17.0 

 
As a final measure of the “lecture + active learning + team project” treatment, 

students were asked if more emphasis should be given to the projects in class (e.g., write-
up of discussions, examples from the literature, more computer emphasis). This question 
was needed to ascertain whether the balance of lecture, active learning, and cooperative 
teams was good. These results are presented in Table 8. The results were mixed. More 
than one-third of the class (42.5%) felt that more emphasis should be placed on the 
cooperative learning element. 

 
Table 8. “Should team project be emphasized more in class?” 

 
 Frequency Percent 
Strongly Disagree 2 4.3 
Disagree 9 19.1 
Undecided 16 34.0 
Agree 16 34.0 
Strongly Agree 4 8.5 

 
6. DISCUSSION 

 
6.1. CONCLUSIONS 

 
The inclusion of student activity (whether in-class activities or in-class activities 

combined with team projects) was seen to have a major impact upon graduate students 
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learning of statistics. This effect was not only seen in specific cognitive measures, but 
also in the students’ perceptions and attitudes toward the course. By doing hands-on 
activities, whether in class or outside of class in team projects, students appeared better 
able to make real connections to the knowledge they were learning. This, in turn, should 
provide more motivation to learn. 

In fact, by getting away from a pure lecture approach, significant gains in cognition of 
course content and attitudes appear to be possible. Similar to Keeler and Steinhorst 
(1995), this study included a typical lecture in addition to innovative instructional models. 
Instead of abandoning a method that has worked somewhat in the past (especially in 
graduate-level statistics education), this research has attempted to incorporate other 
proven instructional techniques to create a “balanced amalgamated” approach to teaching 
statistics to graduate students. In addition to Keeler and Steinhorst’s approach, this study 
also considered varying methods of active learning in teaching along with a team-based 
cooperative learning model. And though the results of this study are not conclusive about 
the use of team projects, more active involvement by students does appear to be the better 
way of approaching statistical instruction for graduate students. 

The optimal structure of a class that emphasizes more student activity is unclear. In 
this study, the biggest impact came from combining mini lectures with in-class activities. 
Adding team projects diminished this impact somewhat. Yet this may be due to many 
things other than the non-effectiveness of team projects. The addition of team projects 
(along with active in-class activities) did provide significant increases in cognitive 
measures over a traditional lecture approach. The diminishing effect of teams versus a 
pure in-class activity approach seems to be influenced heavily by group dynamics. Some 
of the groups in the study had personality clashes. One student actually asked to be moved 
to another team because of personality issues. In addition, almost one-third of the class 
mentioned the timeliness of other team members as being a detrimental factor. Finally, 
team projects do require more work. This may have an impact on team effectiveness. 

 
6.2. LIMITATIONS 

 
One of the major limitations of this study is the presence of confounding effects and 

potential sampling bias. The same teacher taught all three classes, and students were not 
randomly selected to participate nor randomly assigned among the three treatments. 
Though prior knowledge was included as a covariate, higher scores on the pretest could 
indicate a more positive disposition of students entering the course affecting their 
attitudes and learning gains. Replication of this study with other teachers would be 
beneficial, as well as with departments other than Education. This research always 
assumed that a lecture approach was part of any class. No teaching paradigms were 
considered where a class setting whould be purely active or cooperative. The use of team 
projects along with mini lectures with no active-learning component, the use of only 
active learning, or the use of team projects as the sole instructional approach was not 
considered. A course that spends more time on team projects may see a bigger team 
project effect. Such a class would be a “practitioner” course in that the total emphasis is 
on application of statistics and not so much theoretical knowledge (as provided in a 
lecture). This type of course was not considered in this study. However, to know the 
impact of these instructional elements fully, studies should be conducted that look at an 
approach using these methods in teaching statistics.  
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6.3. SUMMARY 
 
This research attempted to answer a central question: Does a structure incorporating 

more active student involvement help graduate students learn statistics? The answer based 
on this study does appear to be “yes.” Still, the question of what combinations of 
instructional design to use remains unanswered. Though incorporating both active 
learning and team projects with lectures showed more positive effects than a lecture only 
approach, there was no statistical difference between that approach and the “lecture + 
active learning” approach. Furthermore, from this instructor’s experience, student 
attitudes are often better when the instructor was more in control of the active component. 
Perhaps the inclusion of team projects shifts the locus of control too far for graduate 
students? Such consideration is worthy of future study. Regardless, this study suggests 
that any active component in a graduate-level statistics class makes it better, both 
affectively and cognitively. 

 
6.4. IMPLEMENTATION STRATEGIES 

 
My own experience with incorporating active learning in teaching has always been 

successful. When I incorporated the active component into the class, I could see an 
immediate effect upon students. In previous semesters I had tried a more constructivist 
approach to teaching and felt that the class was not successful. Based on that experience, 
the inclusion of some form of lecture component seemed necessary. This amalgamated 
approach took away many of the fears I had in incorporating the ideas. By having small 
active-learning components in the middle of lecture components, I could see whether 
students really understood what I had just shown them. Also, this builds confidence in 
students. Theresa, the student mentioned earlier, was one such example as she was in the 
“lecture + active learning” group. By the end of the second week, she expressed to me 
how she was really enjoying the class and how it was not nearly as bad as she had 
originally thought. I cannot imagine teaching without some form of active learning now. I 
have applied this same teaching paradigm to more advanced statistical classes with 
similar results of improved morale, attention, and assimilation of information. 

The inclusion of team projects posed mixed results, however. First, there was more of 
a struggle with how to allocate class time for such matters. Although including active 
learning would seem to present the same challenge, team projects always presented the 
major challenge in time. For me, team dynamics was a factor that grew tiring to oversee. I 
still see the benefits in team projects, yet it seems that I see little difference in 
performance by leaving it out and using active components in class (which still involve 
working with others). This is a matter of further investigation for me. Of particular 
interest would be studying the different outlooks and motivations for undergraduate 
versus graduate students in regard to team projects and team learning. 

To successfully implement such a change in a classroom requires a radical shift in 
perspective for most instructors. Thus, I offer the following suggestions that I have 
learned over the past 10 years of trying to incorporate such designs in my own classes: 

 
1. Review learning and cognition materials – Although direct research (like this study) 

is obviously important to consider, I have found that there is a wealth of information 
about such matters in the learning and cognition domain. One would also greatly 
benefit by finding someone who specializes in this field and discussing matters with 
them. Though I have not always incorporated their ideas or techniques, I have often 
come away from such conversations with clarity of thought and purpose. The 
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statistical education domain would greatly benefit if there were more collaborations in 
research with learning/cognition researchers, not to mention how beneficial textbooks 
might be if such collaborations extended into authorship. As mentioned previously, 
most current graduate statistical textbooks ignore these new teaching methods 
altogether.  

2. Study effective teaching models – There is a wealth of ideas often right on our own 
campuses about effective teaching models. I occasionally ask other faculty members 
to let me sit in on their class for my own personal benefit. In my younger years, I 
would too often want to emulate the habits and mannerisms of those I admired or 
respected. I remember the first time I saw Jaime Escalante in the Stand and Deliver 
famed movie. After seeing him in action, I wondered if I should dress up in costumes 
and use props in my classes, or have my classes do chants in the classroom. Yet, in 
time, I have seen that I need to become a unique expression of these effective 
techniques I have learned. I believe this is important because at times I have rejected 
whole approaches in teaching because I could not see myself implementing them in 
the same manner. For example, I have seen instructors using a “game” for an in-class 
activity, and had inner struggles with incorporating this particular expression: “That 
may work for an undergraduate class, but this is a graduate class on Bayesian 
analysis! Won’t this seem ‘childish’ to the students? Even if I were to try it, how can I 
come up with a game in this class?” What I have learned is that I may not always 
prefer or use a particular expression, but I can still strive to incorporate the spirit of 
the expression (e.g., in this case by creating active components that are interesting and 
fun to students). 

3. Start small – If you are new to active-based learning (whether in-class activities or 
team projects), it might be beneficial to incorporate this new learning style in small 
ways until you are comfortable with the approach. Consider the worksheet in 
Appendix A. One suggested approach is to design such a worksheet for a particular 
class lecture, and have students work on it for a few minutes in the middle or end of 
class. The key to incorporating such active-based learning is to keep the activities 
short (average of 5-10 minutes). Some activities may require longer periods of time to 
complete, possibly up to 30 minutes. But those activities should be the exception, not 
the rule. Take one lecture and add one active component to it. Do this over a period of 
time and increase the amount that you use until you feel you have reached a balance 
that works for you and your teaching style. 

4. Plan and delegate – One concern in using active learning along with lecture is anxiety 
about covering the breadth of material that is covered in a lecture-only format. 
Though this concern might have some degree of merit, I have found in my own 
experience that this is not the case. However, successful implementation does require 
some degree of thought and preparation. I have personally found that I save time 
while lecturing by not spending as much time working through an example in class. 
Before, I would spend a lot of time in order to make sure students understood every 
facet. Now, I realize that any part they don’t understand will be magnified in the 
active component which follows my example. Also, there are often concepts that can 
be learned in the active component rather than taught in lecture. This provides a 
unique form of constructivist learning and is easy to implement within such a 
structure. Whereas there is much discussion of the fatigue that faces students in a long 
lecture, I think a neglected area of research is the fatigue that occurs with an 
instructor. I find by using mini-lectures that I stay focused on my teaching and can 
cover the same material in less time. 
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5. Be active yourself – While students are working on an activity, consider walking 
among them and observe their progress. This can be beneficial for many reasons 
including making sure students are working on the task you have asked them to work 
on. Also, some students may not volunteer problems they are having in front of the 
entire class and this provides you with an opportunity to see particular problems they 
may be having. Obviously with moderate (as in the case of this study) to large classes, 
it might be impossible to go to each person or group in the allotted time for the 
activity. In this situation, if you have more than one activity for that day, consider 
randomly moving around during each activity. In my case, I will mentally cluster 
students in various parts of the room and randomly choose clusters to visit during an 
activity. I strive to visit each cluster at least once during a class. 

6. Don’t confuse noise for control (or lack of) – Students in my classes are often quiet 
during the first few weeks of active components, perhaps because it seems such a 
foreign approach for a mathematically-based class. Yet over time, they usually 
embrace it heartedly to the point that the classroom is filled with talk and laughter. 
For someone coming from a lecture-only format, this can seem threatening, as if you 
have lost control of the class. Always keep in mind that you are actively engaging 
your students and helping them master the material. Some of my classes have been so 
engaged that it has taken me quite a few seconds to regain their attention. At first this 
would bother me greatly to the point of questioning my new approach. Now, I can 
usually regain control of the class easier by simply talking to them while moving 
around among them and simply saying, “OK, let’s talk about something that I see you 
all are having a problem with.” Others may wish to utilize visible clues that are 
discussed earlier with the class (e.g., turning the lights on and off a few times). If you 
are new to this teaching style, do not let such matters deter you from exploring this 
“brave new world.”  

 
6.5. FUTURE RESEARCH 

 
One possible extension of this study is to adjust the way in which team projects are 

done. Some students wished for more freedom in the choice of their projects. A future 
study could consider this effect. Smaller group sizes should also be considered as this may 
reduce some of the tensions in groups found in this study. Also, an approach in which the 
instructor supervises the teams more vigorously might prove valuable and eliminate the 
slightly diminishing results from team projects. The approach taken in this study was not 
as rigorous because the instructor assumed that graduate students would not need as much 
oversight. This study considered only the basic-level statistics course for graduate 
students in order to serve as a bridge with similar research in undergraduate studies. 
Further studies applied to advanced courses (e.g., regression, multi-level models, 
structural equation modeling) should be investigated. Tying together affective and 
cognitive measures in a unified statistical analysis, as well as tracking changes or growth 
over time in longitudinal studies, would also be beneficial. 
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APPENDIX A: AN EXAMPLE OF ACTIVITY-BASED IN-CLASS LEARNING 
 
 
 
 
 
 
 
 
 
 
 
 
 

The least square regression line for homework score (x) and final exam score (y) is 
ˆ 23.87 0.71y x= + . The slope of b = 0.71 indicates that if homework grade were to 

increase by 1-point, we would expect on average for the final exam grade to increase by 
0.71 points. The estimated y-intercept (a = 23.87) indicates that a student who made a 0 
on their homework grade would have a predicted final exam grade of 23.87.  

Let’s pretend we have a student who has a 90 homework grade, and we wish to 
predict their final exam grade. One way to do this is to use the scatterplot and our least 
squares regression line. If you find 90 on the x-axis and trace up to the regression line, 
you can look across and get a predicted value for y (final grade) of around 87 or 88. 
Another way to do this would be to plug the value x = 90 into the regression equation: 
ˆ 23.87 0.71(90) 87.77y = + = . 

 
Your Turn! 
 
Assume that the hours a student watches television and their test grade are linearly 
related. The least squares regression line was calculated as ˆ 95.3 1.54y x= − , where y is 
the test grade and x is the number of hours a student watches television during a week.  
 
(a)  Interpret the value of the estimated slope b = –1.54. 
 
 
(b)  How would you interpret the y-intercept of a = 95.3? Does the interpretation make 

practical sense in this instance? 
 
 
(c)  What would you predict the test grade to be for a student who watches 5 hours of 

television on a given week? 
 
 
(d)  What would you predict the test grade to be for a student who watches 70 hours of 

television on a given week? 
 
 
(e)  Why do you think your answer to part (d) was so inaccurate?  
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APPENDIX B: SAMPLE OF TEAM PROJECTS 
 

Data  
 

1. It has been reported that college students are pessimistic about the future of the 
social security system. How would you survey students at our school to learn 
more about how confident they are that they will receive substantial social 
security checks when they retire? Develop a short questionnaire, and explain 
exactly how you would select the students to be questioned. 

2. Ask 25 randomly selected people this question: “Karl Marx said, ‘Whenever a 
form of government becomes destructive of these ends, it is the right of the 
people to alter or to abolish it.’ Do you agree?” Now ask 25 randomly selected 
people this question: ‘The U.S. Declaration of Independence says: ‘Whenever a 
form of government becomes destructive of these ends, it is the right of the 
people to alter or to abolish it.’ Do you agree?” Compare your responses. 

3. Working either in pairs, or alone, go to a well populated area (like a shopping 
center). Randomly select people and ask them if you can do a quick survey for 
your statistics class. If they say yes, ask them the following two questions: “Do 
you believe in cloning? Do you believe in life-saving organ replication?” Record 
the answers for at least 50 people. Summarize your findings. 

4. Working either in pairs, or alone, go to a well populated area (like a shopping 
center). Randomly select people and ask them if you can do a quick survey for 
your statistics class. If they say yes, ask them the following two questions: 
“Disposable diapers account for 6% of landfill waste, whereas yard wastes and 
plastic bottles account for 40% of yard wastes. In light of this fact, do you think it 
is fair to ban disposable diapers?” Record the answers for at least 30 people. 
Summarize your findings. Then rephrase the question to be more neutral. Redo 
another random sample of 30 people. Compare the response to the original 
question. Comment. 

5. Should kids between 12 and 18 have cell phones? Conduct a survey of local 
residents to find their opinions. Be sure to ask both adults who have wireless 
service and those who don’t. Report any general findings, and also see what 
general differences in opinion exist for adults who use cell phones and those who 
do not. Be sure to report on your sampling method (whether good or bad), 
possible bias in the survey, and ways the study could be improved. Try to get 
about 50 subjects if possible. 

6. Conduct a survey of students (other than your statistics class) on the subject of the 
internet and cheating. In particular, design and administer a survey that asks 
several questions about whether students have used the internet and committed 
plagiarism. Make the survey anonymous, and stress that to students. What effect 
do you think such a loaded question might have on the response? Report your 
findings in a general sense? How often do students tend to cheat if they do at all? 

 
Descriptive statistics 
 

7. Sample a group of students in regard to a fictitious question (for example, “Do 
you support the rebel efforts in Alfa-Centuri?” … Alfa-Centuri does not exist.). 
Feel free to use my question or come up with one of your own. Develop a survey 
with a few factual questions and stick this fictitious question among them. Survey 
at least 30 students or people. Try to get a mixture of males and females. 
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Compare males and females using some of the graphs and summaries discussed 
in class. 

8. Select teachers (you cannot select me ☺), and record the number of times that this 
teacher says “Uh” or “Um” during the class period. Try to obtain at least 10 
teachers, and if possible at least 5 male and female. Summarize the results 
numerically by teacher. Do a side-by-side boxplot comparing the gender of the 
teacher. What differences did you find? Which gender had more variability? 
[Note: Creating boxplots with so few data values becomes a class discussion 
point.] 

9. Post a sign on the main entrance to a campus building requesting the use of a less 
convenient entrance; for example, “Please use the door on the north side of 
building.” From an inconspicuous location, observe how many people ignore the 
sign and use the main entrance and how many people do not use the main 
entrance. Compare the behavior of students and professors or males and females. 
Try to pick a building and time when traffic is light, so that large numbers do not 
try to enter simultaneously. Try to get at least 50 in your sample. 

 
Hypothesis testing 
 

10. Do more expensive cookies taste better than less expensive cookies? Choose two 
brands of cookies that appear to be similar but cost quite different amounts. Ask 
at least 40 people to taste an unlabeled cookie from each brand and to rate each 
cookie on a scale of 1 to 10; use a matched-pair test to assess the statistical 
significance of your results. 

11. Do males over-exaggerate their heights? Take a random sample of at least 50 
males. Ask them their heights. Then measure their heights. Do a matched pairs t 
test to see if males tend to over-exaggerate their heights. 

12. Do males and females differ in terms of the number of traffic tickets they get? Or 
in the number of accidents they’ve been involved in? Do a survey of at least 25 
males and 25 females. Compare each gender on both issues using a 2-sample t 
test at a 5% significance level. Are there any differences? 

13. Does a difference exist between males and females in regard to the number of 
hours of television they watch per week? Does a difference exist in the number of 
hours of video games played? Conduct a survey and test the differences between 
males and females on both issues at a 5% significance level using a 2-sample t 
test. Try to get at least 25 males and 25 females. 

14. Is there a statistical difference in the pulse rates of smokers and nonsmokers? In 
particular, test that the pulse rate of smokers is higher than that of nonsmokers. 
Sample at least 25 from both groups. Use a 2-sample t test and a 5% significance 
level. 

 
Regression 
 

15. Go to your campus bookstore, and select 30 new hardcover textbooks. (Be sure to 
explain how these books were selected.) For each book, record the number of 
pages and the price. Now use a scatterplot to see if there appears to be a positive 
or negative relationship between the number of pages and the price. Calculate the 
correlation coefficient, and determine whether there is a statistically significant 
relationship between number of pages and price. 
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16. Collect data for at least 10 years on the cost of attending your college. Using 
years as an independent variable, perform a regression analysis to see if there is a 
trend in the real cost of attending this college. [Note: Adjusting for inflation can 
become a class discussion point.] 

17. Ask at least 50 people their height, and the height of their parent (same gender). 
Perform a regression analysis with the student’s height as the dependent variable 
and the parent’s height as the explanatory variable. 

18. Conduct a survey to see if there is a relationship between GPA and the number of 
alcoholic drinks that a student consumes. What type of relationship do you think 
would exist? Did it? You need to consider what constitutes an alcoholic drink, 
and must also decide what to measure for the number of drinks (oz? Containers? 
etc). Let GPA be the dependent (response) variable. 

19. A CNN/USA TODAY poll conducted by Gallup asked a sample of employed 
Americans the following question: “Which do you enjoy more, the hours when 
you are on your job, or the hours when you are not on your job?” Construct a 10-
item Likert scale survey (of which 5-items address satisfaction with leisure, and 
5-items measure satisfaction with job), and give the survey to a random selection 
of 30-40 adults who work. Sum each of the 5-items to get an overall satisfaction 
score. Perform a complete regression analysis to see what relationship exists 
between leisure and job satisfaction. 

20. Conduct a study to see whether there is a relationship between a student’s GPA 
and the number of hours the student watches television each week. Perform a 
thorough regression analysis, and try to get at least 30 students in your survey. 

21. Conduct a survey of 30-40 students where you ask them to estimate the number 
of hours spent on the internet (including school work), number of hours working 
each week (job), number of classes, and GPA. Find correlations between each of 
these variables. Pick two variables of interest and perform a regression analysis. 

22. Conduct a study to see whether there is a relationship between a student’s grade 
point average and the number of hours the student studies each week. Perform a 
thorough regression analysis, and try to get at least 30 students in your survey. 
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FORTHCOMING IASE CONFERENCES9 
 

ISI-57 
THE 2009 SESSION OF THE INTERNATIONAL STATISTICAL INSTITUTE 

Durban, South Africa, August 16 – 22, 2009 
 

IASE sponsored Invited Paper Meetings for 57th 
Session in Durban are being organised by Helen 
MacGillivray (Australia, h.macgillivray@qut.edu.au). 
The IASE Programme Committee for ISI-57 has chosen 
the theme “Statistics Education for the Future.” 

IASE has nine IPM (Invited Paper Meeting) 
sessions, two of which include issues raised by the local 
organisers, and has two joint sessions with IAOS.  
 

Session 
Number 

Section 
representation 

Title of Invited Paper 
Meeting Organiser(s) 

IPM15 IAOS 
IASE 

The challenge of building a 
supply of statisticians for the 
future 

To be determined, c/o Nancy 
McBeth, 
Nancy.McBeth@stats.govt.nz 

IPM36 IASE 
IAOS 

The roles of statistical 
agencies in developing 
statistical literacy 

Reija Helenius, Finland, 
Reija.Helenius@stat.fi 

IPM37 IASE 
Local Hosts 

Educating the public on how 
to use official statistics. 

Peter Wingfield-Digby, 
pwdigby@loxinfo.co.th 

IPM38 IASE 
Local Hosts 

Challenges faced in Statistics 
Education in African 
countries 

Delia North, South Africa, 
northd@ukzn.ac.za 

IPM39 IASE Balancing the training of 
future statisticians for 
workplace and research 

Charles Rohde, USA, 
crohde@jhsph.edu  

IPM40 IASE Exploiting the Progress in 
Statistical Graphics and 
Statistical Computing for the 
benefit of Statistical Literacy 

Juana Sanchez, USA, 
jsanchez@stat.ucla.edu 

IPM41 IASE Survey Research in Statistics 
Education 

Irena Ograjensek, Slovenia, 
irena.ograjensek@ef.uni-lj.si 

IPM42 IASE Research on Informal 
Inferential Reasoning 

Katie Makar, Australia, 
k.makar@uq.edu.au 

IPM43 IASE Teaching, Learning and 
Assessing Statistics Problem 
Solving in Higher Education 

Neville Davies, UK, 
neville.davies@ntu.ac.uk 

IPM44 IASE Technologies for learning 
and teaching in developing 
countries 

Gabriella Belli, USA, 
gbelli@vt.edu 

IPM45 IASE Virtual Learning 
Environments for Statistics 
Education  

Adriana Backx Noronha Viana, 
Brazil, backx@usp.br 
and Pieternel Verhoeven, 
Netherlands, n.verhoeven@roac.nl 

 

                                                      
Statistics Education Research Journal, 8(1), 131-137, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), May, 2009 
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The website http://www.statssa.gov.za/isi2009/ has information on all matters 
relating to ISI 2009, including important dates, and will be regularly updated as new 
information develops. 

More information: Helen MacGillivray, h.macgillivray@qut.edu.au 
 
2009 IASE SATELLITE CONFERENCE TO THE 57TH SESSION OF THE ISI  

“NEXT STEPS IN STATISTICS EDUCATION” 
Durban , South Africa August 14 -15, 2009 

(Immediately before ISI 57 in Durban) 
 

All submissions addressing the theme “Next Steps in Statistics Education “ will be 
welcome. This theme has been chosen to particularly attract papers under the 
following headings:  

1.  What constitutes best practice for the curriculum beyond the “Introductory 
Statistics” course? What courses should follow on for those wishing to major 
in Statistics and what additional training should we offer to those in other 
disciplines?  

2.  What elements of our undergraduate curriculum specifically prepare our 
students for their careers post-graduation, either in the workplace or as 
masters/doctoral students? How can we improve these elements?  

3.  Now that more countries have school curricula that include substantial 
emphasis on data and chance, how can we better prepare teachers for 
implementing those curricula? What curricular materials and tools can we 
develop to improve students' learning of statistics at school level?  

4.  Since the 1949 formation of its precursor, the ISI Statistical Education 
Committee, the IASE has matured as an organisation. As we move towards 
ICOTS 8, we note that great progress has already been made in the field of 
Statistics Education but the challenge we face now is to consider the next steps 
that we must take. How can we build on past progress to raise the profile of our 
field so that it becomes a more visible and vibrant pursuit?  

More information can be found on conference webpage: 
http://www.ucd.ie/statdept/2009_iase_satellite.html 
Conference Email: IASE_Satellite@maths.ucd.ie 

 
SRTL-6 

THE SIXTH INTERNATIONAL RESEARCH FORUM ON STATISTICAL 
REASONING, THINKING, AND LITERACY 

The Role of Context and Evidence in Informal Inferential Reasoning 
Brisbane, Australia, July 10 - 16, 2009 

 
The sixth in a series of 

International Research Forums 
on Statistical Reasoning, 

Thinking, and Literacy (SRTL-6) is to be held in Brisbane, Australia from July 10 to July 
16, 2009. The School of Education at The University of Queensland, will host the Forum. 
The Forum’s focus will build on the work presented and discussed at SRTL-5 on informal 
ideas of statistical inference. Recent research suggests an important role for developing 
ideas of informal types of statistical inference even at early educational levels. 
Researchers have developed instructional activities that encourage students to infer 
beyond samples of data and use technological tools to support these informal inferences.  
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The findings of these studies reveal that the context of the data and the use of evidence 
may be important factors to study further. The role of context is of particular interest 
because in drawing (informal) inferences from data, “students must learn to walk two fine 
lines. First, they must maintain a view of data as ‘numbers with a context’ (Moore, 
1992).” At the same time, “they must learn to see the data as separate in many ways from 
the real-world event they observed” (Konold & Higgins, 2003, p. 195). That is, they must 
abstract the data from that context. The role of evidence is also of particular interest 
because in learning how to make data-based claims (argumentation), students must 
consider the evidence used to support the claim, the quality and justification of the 
evidence, limitations of the evidence and finally, an indication of how convincing the 
argument is (Ben-Zvi, Gil, & Apel, 2007). 

Based on SRTL-5, we characterize Informal Inferential Reasoning (IIR) as the 
cognitive activities involved in drawing conclusions with some degree of uncertainty that 
go beyond the data and having empirical evidence for them. Three principles appear to be 
essential to informal inference: (1) generalizations (including predictions, parameter 
estimates, and conclusions) that go beyond describing the given data; (2) the use of data 
as evidence for those generalizations; and (3) conclusions that express a degree of 
uncertainty, whether or not quantified, accounting for the variability or uncertainty that is 
unavoidable when generalizing beyond the immediate data to a population or a process 
(Makar & Rubin, 2007). 

An interesting range of diverse research presentations and discussions have been 
planned and we look forward to a stimulating and enriching gathering. These papers will 
address the role of context and evidence when reasoning about informal inference at all 
levels of education including the professional development of elementary and secondary 
teachers.  

The structure of the scientific program will be a mixture of formal and informal 
sessions, small group and whole group discussions, and the opportunity for extensive 
analysis of video-taped research data. There will also be a poster session for exhibiting 
current research of participants on additional topics related to statistics education. The 
Forum is co-chaired by Dani Ben-Zvi (University of Haifa, Israel) and Joan Garfield 
(University of Minnesota, USA), locally organized by Katie Makar and Michael Bulmer 
(The University of Queensland), and planned by a prestigious international advisory 
committee. Conference attendance is by invitation only.  

For more information, visit the SRTL website at:  
http://srtl.stat.auckland.ac.nz/ or email SRTL2009@gmail.com.  

 
ICOTS-8 

DATA AND CONTEXT IN STATISTICS EDUCATION: 
TOWARDS AN EVIDENCE-BASED SOCIETY 

Ljubljana, Slovenia, July 11-16, 2010 
 

The 2010 International Conference on Teaching Statistics 
will be held in the city of Ljubljana, Slovenia, July 11-16. It is 
being organised by the IASE and the Slovenian Statistical 
Association. The venue will be the Ljubljana Cultural and 
Congress Centre. 

Statistics educators, statisticians, teachers, and educators at 
large are invited to contribute to the scientific programme. Types of contribution include 
invited papers, contributed papers, and posters. No person may author more than one 
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Invited Paper at the conference, although the same person can be co-author of more than 
one paper, provided each paper is presented by a different person. 

Voluntary refereeing procedures will be implemented for ICOTS-8. Details of how to 
prepare manuscripts, the refereeing process and final submission arrangements will be 
announced later. 

 
INVITED PAPERS 

Invited Paper Sessions are organized within 10 Conference Topics as follows.  
 
Topics and Topic Convenors 
1.  Data and Context in Statistics Education: Towards an Evidence-based Society. 
     Brian Phillips (Australia)    bphillips@swin.edu.au 
     Irena Ograjensek (Slovenia)   irena.ograjensek@ef.uni-lj.si 
2.  Statistics Education at the School Level. 
     Mike Shaughnessy (USA)   mikesh@pdx.edu 
     Doreen Connor (UK)   doreen.connor@ntu.ac.uk 
3.  Learning to Teach Statistics. 
     Katie Makar (Australia)   k.makar@uq.edu.au 
     Joachim Engel (Germany)   engel@math.uni-hannover.de 
4.  Statistics Education at the Post Secondary Level. 
     Elisabeth Svensson (Sweden)   elisabeth.svensson@esi.oru.se 
     Larry Weldon (Canada)   weldon@sfu.ca 
5.  Assessment in Statistics Education. 
     Beth Chance (USA)   bchance@calpoly.edu 
     Iddo Gal (Israel)   iddo@research.haifa.ac.il 
6.  Statistics Education, Training and the Workplace. 
     Gabriella Belli (USA)   gbelli@vt.edu 
     Peter Petocz (Australia)   peter.petocz@mq.edu.au 
7.  Statistics Education and the Wider Society. 
     Richard Gadsden (UK)   R.J.Gadsden@lboro.ac.uk 
     Oded Meyer (USA)  meyer@stat.cmu.edu 
8.  Research in Statistics Education. 
     Arthur Bakker (The Netherlands)   a.bakker@fi.uu.nl 
     Tim Burgess (New Zealand)  t.a.burgess@massey.ac.nz 
9.  Technology in Statistics Education. 
     Deborah Nolan (USA)   nolan@stat.berkeley.edu 
     Paul Darius (Belgium)   paul.darius@biw.kuleuven.be 
10. An International Perspective on Statistics Education. 
      Delia North (South Africa)   northd@ukzn.ac.za 
      Enriqueta Reston (Phillipines)   edreston@usc.edu.ph 
Session themes within each Topic are currently being discussed. The themes and 

Session organizers with email contact are available on the ICOTS-8 web site 
http://icots8.org/, under “Scientific Programme.” Those interested in submitting an invited 
paper should contact the appropriate Session Organiser before December 1, 2008. 
 
CONTRIBUTED PAPERS 

Contributed paper sessions will be arranged in a variety of areas. Those interested in 
submitting a contributed paper should contact either Gilberte Schuyten 
(Gilberte.Schuyten@UGent.be), John McKenzie (mckenzie@babson.edu), or Flavia 
Jolliffe (F.Jolliffe@kent.ac.uk) before September 1, 2009. 
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POSTERS 
Those interested in submitting a poster should contact Mojca Bavdaz 

(mojca.bavdaz@ef.uni-lj.si) or Alesa Lotric Dolinar (alesa.lotric.dolinar@ef.uni-lj.si) 
before January 15, 2010. 

 
GENERAL ISSUES 

More information is available from the ICOTS-8 web site at http://icots8.org/ which 
will continue to be updated over the next three years, or from the ICOTS IPC Chair John 
Harraway, (jharraway@maths.otago.ac.nz), the Programme Chair, Roxy Peck 
(rpeck@calpoly.edu), and the Scientific Secretary, Helen MacGillivray 
(h.macgillivray@qut.edu.au). 
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OTHER FORTHCOMING CONFERENCES 
 

USCOTS 2009 
UNITED STATES CONFERENCE ON TEACHING STATISTICS 

“LETTING GO TO GROW” 
Columbus, OH, USA, June 25 - 27, 2009 

 
The third biennial United States Conference on Teaching Statistics (USCOTS 09) will 

be held on June 25-27, 2009 at the Ohio State University in Columbus, Ohio, hosted by 
CAUSE, the Consortium for the Advancement of Undergraduate Statistics Education. The 
target audience for USCOTS is teachers of undergraduate and AP statistics, from any 
discipline or type of institution. Teachers from two-year colleges are particularly 
encouraged to attend. 

The theme for USCOTS 09 is Letting Go to Grow. “Letting Go” has many 
interpretations, such as letting go of some classic course content in order to better align 
with course goals, letting go of some old ideas about pedagogy in order to use more 
effective methods, or letting go of old notions about the students we teach in order to 
better facilitate their learning. USCOTS is a “working conference” with many 
opportunities for hands-on activities, demonstrations, networking, sharing ideas, and 
receiving the latest information on research and best practices in teaching statistics. 
Leaders in statistics education and assessment will give plenary talks, including Dani 
Ben-Zvi (Haifa, Israel), George Cobb (USA), Peter Ewell (USA), Ronald Wasserstein 
(USA), and Chris Wild (Auckland, New Zealand). 

Details are available at USCOTS web page: http://www.causeweb.org/uscots 
 

INNOVATIVE APPROACHES TO TURN STATISTICS INTO KNOWLEDGE 
Washington, D.C., USA, July 15 – 16, 2009 

 
This two-day seminar and a plenum should contribute to the development of tools to 

help people transform statistics into knowledge and decisions. A first condition for 
statistics to be used this way is that relevant statistics become known, available, and 
understood by wider audiences. The seminar is held in the context of the OECD Global 
Project on “Measuring the Progress of Societies.” It should contribute to one of the goals 
quoted in the Istanbul Declaration: “Produce a broader, shared, public understanding of 
changing conditions, while highlighting areas of significant change or inadequate 
knowledge.” 

The seminar can be seen as a continuation of the previous seminars organized 
in Rome and Stockholm and of the first International Exhibition on “Innovative Tools to 
Transform Information into Knowledge,” organised during the second OECD World 
Forum on “Statistics, Knowledge and Policy” (Istanbul, 27-30 June 2007). 

We want to look at tools and applications for making statistics more popular, while 
avoiding the pitfalls of populism, over-simplification, or propaganda. We want to base all 
these initiatives on scientific standards, observing the basic principles of objectivity and 
good communication. We would therefore welcome experts in statistical methodology, 
cognitive science, and communication as active participants in the workshop. 

Details are available at seminar web page: 
http://www.oecd.org/progress/ict/statknowledge 
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10TH INTERNATIONAL CONFERENCE OF THE MATHEMATICS 
EDUCATION INTO THE 21ST CENTURY PROJECT 

MODELS IN DEVELOPING MATHEMATICS EDUCATION 
Dresden, Saxony, Germany, September 11 – 17, 2009 

 
The Mathematics Education into the 21st Century Project was 

founded in 1986 and is dedicated to the planning, writing and 
disseminating of innovative ideas and materials in Mathematics 

and Statistics Education. You are invited to attend our 10th anniversary project 
conference to be held in the historic city of Dresden, Germany. The conference is 
organized in full cooperation with the Saxony Ministry of Education. All our conferences 
have a string Statistics Education component. You are warmly invited to attend our 
conference in the heart of the historic city of Dresden. 

 
INTERNATIONAL ORGANISERS 

Dr. Alan Rogerson, Coordinator of the Mathematics in Society Project (Poland), Prof. 
Fayez Mina, Faculty of Education, Ain Shams University (Egypt) 
 

CHAIR OF THE LOCAL ORGANISING COMMITTEE  
Prof. Dr. Ludwig Paditz, Dresden University of Applied Sciences. 
 
Further information: Alan Rogerson, arogerson@inetia.pl 
Website: http://math.unipa.it/~grim/21project.htm 

 
2009 JOINT STATISTICAL MEETINGS 
Washington, D.C., USA, August 1-6, 2009 

 
JSM (the Joint Statistical Meetings) is the largest gathering of statisticians held in 

North America. It is held jointly with the American Statistical Association, the 
International Biometric Society (ENAR and WNAR), the Institute of Mathematical 
Statistics, and the Statistical Society of Canada. Attended by over 5000 people, activities 
of the meeting include oral presentations, panel sessions, poster presentations, continuing 
education courses, exhibit hall (with state-of-the-art statistical products and 
opportunities), career placement service, society and section business meetings, 
committee meetings, social activities, and networking opportunities.  

More information: jsm@amstat.org 
Website: http://www.amstat.org/meetings/jsm/2009/ 
 
 
 

  


