THE TRANSITIVITY misconception OF

PEARSON’S CORRELATION COEFFICIENT

ANA ELISA CASTRO SOTOS

Katholieke Universiteit Leuven

anaelisa1980@gmail.com

Stijn vanhoof

Katholieke Universiteit Leuven

stijn.vanhoof@ped.kuleuven.be

wim van den noortgate

Katholieke Universiteit Leuven

wim.vandennoortgate@ped.kuleuven.be

patrick onghena

Katholieke Universiteit Leuven

patrick.onghena@ped.kuleuven.be

ABSTRACT

Despite the relevance of correlational studies for most research domains, many students, teachers, and researchers alike hold misconceptions concerning the Pearson product-moment correlation coefficient. One of these, the transitivity misconception, has not yet been documented in a systematic way. This paper summarizes the first empirical study, using 279 university students, and examines the relationship between student-based and task-based factors and the appearance of this misconception. In particular, two task-based factors seemed to have a significant effect on its appearance. In addition, the respondents’ level of confidence in their answer to the transitivity item was significantly lower than for most other times.

Keywords: Statistics education research; University students; Confidence

*Statistics Education Research Journal, 8(2), 33-55,
http://www.stat.auckland.ac.nz/serj
*

** **

REFERENCES

Allen, K., Reed Rhoads, T., & Terry, R.
(2006, October). *Work in progress: Assessing student confidence of
introductory statistics concepts*. Paper presented at the Frontiers in
Education Conference, 36th Annual, San Diego, CA.

Batanero, C., Estepa, A., & Godino, J. D. (1997). Evolution of students’
understanding of statistical association in a computer based teaching
environment. In J. B. Garfield & G. Burrill
(Eds.), *Research on the role of technology in teaching and learning
statistics* (pp. 191-205). Voorburg, The
Netherlands: International Association for Statistical Education and
International Statistical Institute.

[Online: http://www.stat.auckland.ac.nz/~iase/publications/8/15.Batanero.pdf]

Batanero, C., Estepa, A., Godino,
J. D., & Green, D. R. (1996). Intuitive strategies and
preconceptions about association in contingency tables. *Journal for Research
in Mathematics Education,* *27*, 151-169.

Batanero, C., & Godino,
J. D. (1998). Understanding graphical and numerical
representations of statistical association in a computer environment. In L.
Pereira-Mendoza, L. Seu Kea, T. Wee Kee, & W-K. Wong (Eds.), *Proceedings of the Fifth
International Conference on Teaching Statistics* (pp. 1017-1024). Singapore.
Voorburg, The Netherlands: International Statistical
Institute.

[Online: http://www.stat.auckland.ac.nz/~iase/publications/2/Topic7zf.pdf]

Beyth-Marom,
R. (1982). Perception of correlation reexamined. *Memory and Cognition, 10,*
511-519.

Chance, B., delMas,
R., & Garfield, J. (2004). Reasoning about sampling distributions. In D.
Ben-Zvi & J. Garfield (Eds.), *The challenge of
developing statistical literacy, reasoning and thinking* (pp. 295-323). The
Netherlands: Kluwer Academic Publishers.

Cobb, P., McClain, K., & Gravemeijer, K. P. E. (2003). Learning about statistical covariation. *Cognition and Instruction, 21*(1), 1-78.

Cohen, J. (1988). *Statistical
power analysis for the behavioral sciences* (2nd ed.). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Estepa,
A., & Sánchez Cobo, F.
T. (2001). Empirical research on the understanding of association and implications
for the training of researchers. In C. Batanero
(Ed.), *Training researchers in the use of statistics* (pp. 37-51).
Granada, Spain: International Association for Statistical Education and
International Statistical Institute.

Estepa, A., & Sánchez Cobo, F. T. (2003).
Evaluación de la comprensión de la correlación y regresión a partir de la
resolución de problemas [Evaluation of the understanding of
correlation and regression through problem solving]. *Statistics** Education Research Journal, 2*(1), 54-68.

[Online: http://www.stat.auckland.ac.nz/~iase/serj/SERJ2(1).pdf]

Finney, S. J., & Schraw,
G. (2003). Self-efficacy beliefs in college statistics courses. *Contemporary
Educational Psychology, 28*, 161-186.

Gal, I. & Garfield, J. B. (1997). *The
assessment challenge in statistics education*. Amsterdam, The Netherlands:
IOS Press and the International Statistical Institute.

Garfield, J. (1995). How students learn
statistics. *International Statistical Review, 63*, 25-34.

Garfield, J. B. (2003). Assessing statistical
reasoning. *Statistics Education Research Journal, 2*(1), 22-38.

[Online: http://www.stat.auckland.ac.nz/~iase/serj/SERJ2(1).pdf]

Inhelder,
B. & Piaget, J. (1955). *De la logique de l'enfant á la logique de l'adolescent* [From the logic of the child to the logic
of the adolescent]. Paris: Presses Universitaires de France.

Kahneman, D., Slovic, P., & Tversky, A.
(1982). *Judgment under uncertainty: Heuristics and biases*.
Cambridge, MA: Cambridge University Press.

Konold,
C. (1989). Informal conceptions of probability. *Cognition and Instruction*,
*6*, 59-98.

Konold,
C. (1991). Understanding students' beliefs about probability. In E.Von Glaserfeld (Ed.), *Radical
constructivism in mathematics education* (pp. 139-156). Dordrecht,
The Netherlands: Kluwer Academic Publishers.

Langford, E., Schwertman, N., & Owens, M. (2001). Is the property of
being positively correlated transitive? *The American Statistician*, *55*(4),
322-325.

Lipson, K. (2002). The role of computer based
technology in developing understanding of the concept of sampling distribution.
In B. Phillips (Ed.), *Proceedings of the
Sixth International Conference on Teaching Statistics: Developing a
statistically literate society*, Cape Town, South Africa. [CD-ROM]. Voorburg, The Netherlands: International Statistical
Institute.

[Online: http://www.stat.auckland.ac.nz/~iase/publications/1/6c1_lips.pdf]

McKenzie, C. R. M., & Mikkelsen, L. A. (2007).
A Bayesian view of covariation
assessment. *Cognitive Psychology, 54*, 33-61.

McNemar,
Q. (1969). *Psychological statistics* (4th ed.). New York: John Wiley and
Sons, Inc.

Moore, T. L. (2006).
Paradoxes in film ratings. *Journal of Statistics Education*, *14*(1).

[Online: http://www.amstat.org/publications/jse/v14n1/datasets.moore.html]

Moritz, J. B. (2004). Reasoning about covariation. In D. Ben-Zvi &
J. B. Garfield (Eds.), *The challenge of developing statistical literacy,
reasoning and thinking* (pp. 227-256). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Nisbett,
R. E., & Ross, L. (1980). *Human inference: Strategies and shortcomings
of social judgment*. Englewood Cliffs, NJ: Prentice Hall.

Pfannkuch,
M., & Brouwn, C. M. (1996). Building on and
challenging students' intuitions about probability: Can we improve
undergraduate learning? *Journal of Statistics Education, 4*(1).

[Online: http://www.amstat.org/publications/jse/v4n1/pfannkuch.html]

Pressley, M., & McCormick, C. (1995). *Advanced
educational psychology for educators, researchers, and policymakers*. New
York: Harper-Collins.

Resnick, L.
B. (1987). Learning in school and out. *Educational Researcher, 16*(9),
13-20.

Rossman,
A. J., & Chance, B. (2004, August). *Anticipating and addressing student
misconceptions*. Paper presented at ARTIST Roundtable Conference, Appleton,
WI

[Online: http://www.rossmanchance.com/artist/proceedings/rossman.pdf]

Roth, W.-M. (1997). Where is the context in
contextual word problems? Mathematical practices and products in grade 8
students’ answers to story problems. *Cognition and Instruction, 14*,
487-527.

Shaughnessy,
J. M. (2003). Research on students’ understanding of probability. In J.Kilpatric, W. G. Martin, & D. Schifter
(Eds.), *A research companion to principles and standards for school
mathematics* (pp. 216-226). Reston, VA: National Council of Teachers of Mathematics.

Smith III, J. P., diSessa,
A. A., & Roschelle, J. (1993). Misconceptions
reconceived: A constructivist analysis of knowledge in transition. *The
Journal of the Learning Sciences, 3*(2), 115-163.

Stajkovic,
A. D., & Luthans, F. (1998). Self-efficacy and
work-related performance: A meta-analysis. *Psychological Bulletin, 124*(2),
240-261.

Zieffler,
A. (2006). *A longitudinal investigation of the development of college
students’ reasoning about bivariate data during an
introductory statistics course*. Unpublished doctoral dissertation,
University of Minnesota, USA.

ana elisa castro sotos

Centre for Methodology of Educational Research

Katholieke Universiteit Leuven

Andreas Vesaliusstraat 2

3000 Leuven

Belgium

*Statistics
Education Research Journal, 8(2), 33-55, http://www.stat.auckland.ac.nz/serj*

*Ó** International Association for Statistical Education (IASE/ISI),
November, 2009*