
Chapter 5

Visual Perception

5.1 Visual Illusions

The human eye-brain system is arguably the most sophisticated computing system
which we have access to. It can easily handle complex visual processing and pattern
recognition tasks which would be impossible to attempt on even the most powerful
supercomputer.

If we are going to use our visual skills to assist us in data analysis, it is important to
remember that they have evolved to handle quite different tasks from those encountered
in a typical data analysis. The tasks which our visual system excels at are those which
were useful to our hunter-gatherer forbears. These tasks include recognising shapes,
discerning colour, judging sizes and distances, and tracing and extrapolating motion
in three dimensions. Some of these skills seem directly useful in data analysis, but it
is very important that we understand both the strengths and weaknesses of the visual
system when used in this way.

Despite its awesome power, we tend to take our visual system for granted; perhaps
because we make use of it in virtually every task we perform. One assumption that we
make is that we can trust what we see. After all, “seeing is believing”. In fact this is
not always the case, and sometimes we can fooled. This is revealed by the existence of
visual illusions and we’ll look at a number of these now.

Most of the time our eyes give us a good sense of the way the things are. Some-
times, however, we can be quite misled into seeing effects which are not really present.
Images which produce this kind of phenomenon are called visual illusions.

Figure 5.1 is a spectacular example of a visual illusion. It is hard to believe, but
all the lines in this figure are either horizontal or vertical, and all the black and white
polygons are squares. To check this, you should try lying a piece of paper along the
horizontal lines. The illusion was first discovered by accident when workmen used the
pattern to decorate the outside wall of a cafe with a black and white tiles.

The existence of visual illusions indicates that we need to be careful when using
graphics in data analysis. If an apparent feature in a graph is due to a visual illusion
rather than a real effect, then we may draw the wrong conclusions from our analysis.

There are many kinds of illusion, some are purely geometric, and others related to
colour perception. In this section we will examine a few of the more famous geometric
illusions and see what consequences the existence of these illusions may have for data
analysis.
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Figure 5.1: The cafe wall illusion.

5.2 Geometric Illusions

Perspective Illusions

We saw in section sec:perspective that the human eye acts as a “pinhole camera” and
that this results in the image of an object which appears on our retina as being larger
when that object is close than when it is far away. Our brain however corrects our
interpretation of the size of objects using any additional knowledge about how far away
the object is. When we are mislead about how far an object is away, we can also be
mislead about its size.

The Ames room leads us to misjudge the relative size of objects it contains because
it deliberately gives false cues about distance. We can also be lead to misjudge the size
of things in two dimensional pictures because we use depth cues based on apparent
perspective to “correct” the size of objects.

Figure 5.2: A perspective illusion
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Figure 5.2 shows such a perspective illusion. The perspective is emphasized be-
cause many of the lines in the picture converge to a common vanishing point. The
“figures” in the picture are all the same size, but because the appear to be progressively
further away, we see them as progressively larger.

In this figure there are obvious features which suggest perspective. Sometimes the
cues are more subtle, and we are not always aware that we are being mislead.

The Ponzo Illusion

Figure 5.2 has a clear interpretation as a three dimensional scene, so it is no surprise
that perspective influences our perception of the size of objects in it. The effects of
perspective an be much more subtle however.

The Ponzo illusion (named after the Italian psychologist Mario Ponzo) is a famous
example of how equal length lines can be perceived as having different lengths. The
lower of the two horizontal line segments appears to be shorter than the upper one.
One explanation for this is that the sloping lines create the same impression of depth
as, for example, railway lines. A line of a certain length is perceived as being longer
the further away you think it is. The phenomenon shows how the visual system tends
to treat figures as three dimensional.

Figure 5.3: The Ponzo illusion

The Müller-Lyer Illusion

The Müller-Lyer illusion takes its name from Franz Carl Müller-Lyer (1857–1916),
who studied medicine in Strasbourg and served as assistant director of the city’s psy-
chiatric clinic.

Figure 5.4: The Müller-Lyer Illusion.

The illusion shows that we can be deceived in our perception of the relative lengths
of two line segments, even when those line segments are aligned. The simplest variant
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of the illusion is presented in figure 5.4. Despite the fact that the line segments are of
equal length, the lower line segment appears to be longer.

There are a number of theories which attempt to explain this illusion, but there is no
definitive explanation. One theory is that we interpret the figures in three dimensions.
The upper image is seen as the outside edge of a box, while the lower image is seen
as the inside edge of a box. Since it is assumed that the two “solid objects” rest on the
same surface, the outside edge appears closer to the viewer than the inside edge. The
more “distant” line is then interpreted as larger, to correct for the difference in apparent
distance.

The Poggendorff Illusion

This illusion was invented by J. C. Poggendorff in 1860. It shows the incorrect percep-
tion of the continuation of a line.

Figure 5.5: The Poggendorff illusion.

In figure 5.5, it appears that it is the rightmost line below the rectangle which con-
tinues and protrudes from the top of the rectangle. In fact, it is the leftmost line.

One explanation for the illusion is based on the observation that people tend to
overestimate the size of sharp angles formed where the sloping and horizontal lines
meet. Figure 4.8 provides experimental backing for this view.

The Zöllner Illusion

The Zöllner illusion is related to the Poggendorff illusion because both are the result of
the misjudgement of angles. In the Zöllner illusion, the result is that the diagonal lines
through the plot seem to curve in a fashion similar to the horizontal lines in the cafe
wall illusion.

Figure 5.6: The Zöllner illusion.
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The Horizontal-Vertical Illusion

The horizontal-vertical (or upside-down T) illusion provides a third example of how
equal lengths can be perceived as different. Figure 5.7 shows two different arrange-
ments of two line segments. When most people look at figure 5.7 (a), they perceive the
horizontal line as being shorter than the vertical one. In experiments where subjects
are required to adjust the length of the vertical line until the lines appear to have equal
lengths, most people leave the vertical line at least 10% shorter, often more.

(a) (b)

Figure 5.7: The horizontal-vertical illusion

It might seem that we just perceive vertical and horizontal lengths in different ways,
but changing the placement of the lines, as shown in 5.7 (b), destroys the illusion.

5.3 Colour and Irradiation Illusions

The geometric illusions of the last section are based on the distortion of lines and
angles. They are created purely by arrangeing line segments on the page. The illusions
in this section result from the use of solid areas of gray or colour.

Irradiation Illusions

The irradiation phenomenon causes bright objects on a dark background to appear
bigger than the same objects displayed in darker colours on a brighter background. In
figure 5.8, the small black and white square are the same size.

This phenomenon is quite obvious in everyday life. When a sporting event takes
place with one team in white and one in black (such as when England plays New
Zealand at rugby), it is easy to start believing that there is an extreme physical mismatch
on the playing field. The players in the white team invariably look bigger.

Figure 5.8: The Irradiation Illusion.
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It is quite likely that the existence of this illusion explains the why black is a peren-
nially fashionable colour. Light colours make the wearer look larger, and as observed
by Wallis Simpson “you can never be too rich, or too thin”.

Mach Bands

The phenomenon of Mach banding occurs when strips of similar shades of gray (or
colour) are placed next to each other. The strips do not appear to be of constant colour,
but become lighter as they approach darker neighbours and darker as they approach
lighter neighbours.

Figure 5.9: Mach bands.

This is almost certainly a result of edge detection being performed somewhere in
the visual pathway, and may well be a result of lateral inhibition as discussed in section
4.2.4.

You might think that using a finer partition and a gentler transition between shades
of gray would make the banding effect diminish. In fact, doing this makes no differ-
ence. The visual system just works harder to make the edges stand out.

One simple way to eliminate the appearance of Mach banding is to replace the
straight line boundries between the grays with irregular wandering ones. In this cases
the eye does not detect the edges and a smooth blending of the grays takes place.

The Hermann Grid

The Hermann grid consists of a regular array of black squares, separated by thick white
lines as shown in figure 5.10. If you examine this figure closely you become aware of
“phantom” dark dots which appear and disappear at the intersection of the horizontal
and vertical white lines.

Once again, these dots are probably caused by lateral inhibition. Notice that, if you
fix your eyes on on one particular intersection, there is no dark dot there. The flashing in
and out of existence is caused by the saccades of the eyes as they try (without success)
to fixate on the dots.

5.4 Graphical Perception

There are two different ways in which we extract information from graphs. The first of
these occurs when we take a quick glance at a graph. Without any apparent conscious
effort it is possible to extract a good deal of information. Impressions such as “the
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Figure 5.10: The Hermann grid illusion.

graph slopes upwards” are obtained in this way. Because there is no conscious effort
involved, this kind of visual processing has been called pre-attentive vision. Since our
interest here is specifically with statistical graphics, we will use the term graphical
perception suggested by Cleveland [1].

The second kind of viewing is a more extended process where we consciously think
about particular aspects of the graph. It is this kind of viewing that enables us to draw
conclusions such as “the tallest peak in the graph occurs very close to x � 4” or “a
straight line through the points intersects the y axis at about y � 5”. We will use the
term graphical cognition for this kind of viewing.

Both these ways of looking at graphs are important, but we will concentrate more
on the first of them, because it is the one which makes the use of graphics attractive. In
presentation graphics, an understanding of graphical perception can help us to provide a
graph with what has been called inter-occular traumatic impact1. In exploratory work,
such an understanding can help us develop and use techniques with the best chance of
revealing hidden data features.

Statistical graphs almost always encode one or more sets of numbers so that the
brain’s built-in graphical perception facilities can be used to process them. If we are to
have confidence in what we perceive in a plot we need to know that we can effectively
decode the information in a plot. We will refer to the decoding process as a graphical
perception task.

Cleveland [1] lists gives ten elementary graphical perception tasks which are of
possible interest in graphics applications.

1. Angle

2. Area

3. Colour hue

4. Colour saturation

5. Density (amount of black)

6. Length (distance)

7. Position along a common scale

8. Position along identical, nonaligned scales

9. Slope

10. Volume
1It hits the viewer between the eyes.
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For the moment, we will ignore the colour related tasks 3, 4, and 5 and consider
just the remaining (geometric) tasks.

Angle Judgements

There are a number of ways in which angle judgements are important in statistical
graphics. The most familiar example of the use of angles is the commonly used “pie
chart”. Figure 5.11 shows a pie chart used to to display five numbers. The figure shows
that pie charts do a bad job of displaying numbers. It is not immediately clear from the
figure how to order the values.

A

B

C

D

E

Figure 5.11: A pie chart, showing numbers represented by angles.

It was recognised as far back as last century that there are problems making judge-
ments about angles. We tend to underestimate acute angles and overestimate obtuse
ones [6]. This is the source of the Poggendorff illusion. Another problem is that angle
judgements depend on orientations. Angles whose bisectors are horizontal tend to be
seen as larger than whose bisectors are vertical [8].

Recent experimentation has shown that the best judgements are made about angles
of 45

�

(half-way between acute and obtuse) and line slopes which are close to one (this
is a point we will return to).

Area Judgements

Area is often used to encode information in graphs. Perceptual experiments have shown
that such information is generally not decoded very well, even when optimally pre-
sented. Figure 5.12 shows a square and circle. It is not easy to tell which figure has the

Figure 5.12: Which figure has the larger area?.
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FL

GA

Figure 5.13: A map of the south-eastern United States produced using the Albers equal
area projection.

larger area. (In fact, the areas are equal.)
The shapes in 5.12 are relatively simple, convex ones. The problem of decoding ar-

eas becomes even more difficult with general shapes. In general, if an area is displayed
in a long thin figure, it is perceived as larger than if it is displayed in a compact convex
one. There are also distortions in area decoding which can occur as a result colour and
shading, as demonstrated by the irradiation illusion shown in figure 5.8.

Cleveland [1] points out that these biases in area decoding probably have an in-
fluence on how we judge the area of countries, states and provinces. He gives the
example of the areas of the states Florida and Georgia in the USA. Figure 5.13 shows
a map of the contiguous Unites States constructed using a projection which preserves
areas (the Albers equal area projection). The states of Florida and Georgia are labelled
on the plot. It appears that Florida is rather larger than Georgia, but in fact, it is slightly
smaller. It appears larger because it is more extended.

Length Judgements

Length is an obvious geometric quality which can be used to encode numerical values.
The Ponzo, Müller-Lyer, and horizontal-vertical illusion show that we need to take
some care when making length judgements, but despite this, we might expect that we
might be able to decode lengths fairly well so long as we keep the figure simple. Figure
5.14 shows that this is not the case. It is quite difficult to tell that the A and B lengths

A

B

Figure 5.14: Length decoding.

are different.
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It is possible to to rather better than figure 5.14 using a the simple device shown in
figure 5.15. This amounts to adding a simple benchmark “scale” to the plot.

The device works because rather than comparing the black portions of the figures,
we compare the lengths of the white lengths.

B

A

Figure 5.15: Length decoding using a scale benchmark.

Note that the lengths of the white portions of the bars differ by the same absolute
amount as the lengths of the black portions. The fact that the white bars are clearly
of different lengths while the black ones are not, makes it clear that it is the relative
difference which we perceive rather than the absolute one.

Position Along a Common Scale

Position along a common scale is the basis for many of the standard plots used in
statistics; this includes histograms, bar plots and scatterplots. Decoding values by
judging position along a scale is one of the perceptual tasks which we seem to perform
best. To see that it is superior to decoding by comparing areas, let us reexamine the
values presented in the pie chart of figure 5.11, but this time using a barchart.

The barchart makes it clear that the values are ordered as

E
�

C
�

A
�

D
�

B �

something which is only discerned with great difficulty from the pie chart.

Position Along Non-Aligned Scales

Our ability to decode information from positions along identical non-aligned scales is
not as good as our ability to decode information from positions on a single scale, but it
is still quite good.

Figure 5.15 is an example of decoding along common, non-aligned scales. Clearly
we are better at this than we are at direct length judgements.

Slope Judgements

Making slope judgements can be of importance when looking at curves and straight
lines. Making assessments of slope has a good deal in common with making assess-
ments of angles as shown in figure 5.18. Indeed, there is evidence that when we make
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A B C D E

0
5

10
15

Figure 5.16: Decoding using position along a scale.

Figure 5.17: Decoding using positions on non-aligned scales.

assessments about slopes and changes of slope, it is angles which we look at. These
means that making slope judgements suffers from the same problems as making angle
judgements. In particular, the best decoding of slopes happens when the slopes are
about 1.

Figure 5.18: Slope decoding using angles.
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Volume Judgements

Our ability to visually assess volumes is not good as our ability to assess areas. In data
analysis it is very dangerous to try to encode values as volumes because we cannot
actually represent three-dimensional objects on screen or paper. Because we work
with two dimensional renderings, it is not clear whether the viewer is seeing a two
dimensional or a three-dimensional object (or perhaps even something between).

5.5 Perception “Laws”

The way we decode information from graphs and pictures is of great interest to percep-
tual psychologists, and has been the subject of a great deal of study and speculation. In
the course of this study, a number of “laws of perception” have been formulated. These
laws are based on empirical study, but give some quite useful guidelines which can be
applied in graphics.

Weber’s Law

Weber’s law, formulated by the 19th century psychophysicist E. H. Weber, is one of
the most important of the laws of human perception. Suppose that wp

�
x � is a positive

number such that a line of length x � wp
�
x � is detected as longer than a line of length x

with probability p. Weber’s law states that for a fixed value of p,

wp
�
x � � kpx �

where the value of kp does not depend on x. In simple terms, Weber’s law states that
it is relative rather than absolute differences which are perceived when we compare
lengths.

Figures 5.14 and 5.15 show an example of Weber’s law in action. It is easy see the
difference of lengths in the second of these figures because the relative difference in
the white part of the bars is quite large. Detecting the difference in the first figure is
harder because the relative difference in the lengths of the dark portions of the bars is
small.

The same example suggests that comparisons along identical but non-aligned scales
will be more accurate than pure length comparisons.

Stevens’ Law

Suppose that we have chosen a way of encoding numerical values in a graph. How do
the values decoded from the graph relate to the original values? Stevens’ law, formu-
lated and extensively investigated by psychologist S. S. Stevens, give a general answer
to this question. It says that the for a given person and a given perceptual task the
perceived values follow the general law

p
�
x � � cxβ

where c and β depend on the particular person and perceptual task.
Suppose that we had encoded values x1 and x2 in a graph. Then the perceived

values for x1 and x2 will be p
�
x1 � and p

�
x2 � . If we compare the relative sizes of the

perceived values we see
p
�
x1 �

p
�
x2 � ��� x1

x2 � β �
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This shows that it is β is the key parameter in Steven’s law.
Stevens’ law provides and excellent description of how we perceive values through

a number of encodings, including length, area and volume. Because of the importance
of β many experiments have been conducted to try to estimate its value for particular
ways of encoding graphical information.

The following ranges have been determined for the value of β (averaged across
experiments and subjects).

Attribute Range for β
Length 0.9 – 1.1
Area 0.6 – 0.9

Volume 0.5 – 0.8

Because the value of β is close to 1 for length judgements, the ratio of the perceived
values will be close to the ratio of the actual values.

p
�
x1 �

p
�
x2 ��� x1

x2

�
This means that judgements of relative sizes of values encoded by length will show
little bias.

On the other hand, if we take the middle of the range of β values for area judge-
ments, we see that the ratio of the perceived values is

p
�
x1 �

p
�
x2 � � � x1

x2 � 0 � 7 �
If we compare an area of 1

�
2 with an area of 1, the perceived ratio of areas is 0

�
62,

which is rather larger than the actual ratio of 0
�
5. If we compare an area of 2 with an

area of 1, the perceived ratio of areas is 1
�
62, which is rather smaller than the actual

ratio of 2. In general, large areas are perceived as smaller than they actually are and
small areas are perceived as larger than they really are.

Since the range of β values for volume judgement is even further removed from 1,
representing values with volumes leads to even greater distortions.

5.6 Perception Experiments

Weber’s and Stevens’ laws give some guidance in choosing graphical encodings for
numerical values. We know for example that length provides a less-biased way of
encoding values than area and that area is less biased than volume. We also know that
positions along non-aligned scales will provide a better encoding than length.

Although these facts are useful, it would be more useful how all the ten perception
tasks listed the start of section 5.4 relate to each other. Ideally, we would like to order
the tasks from best to worst. One way to go about this is to conduct experiments to
determine which tasks are easier to carry out than others.

Such experiments were carried out in the early 1980s by researchers Bill Cleveland
and Robert McGill at Bell Laboratories [3], [2], [4]. In one experiment, subjects were
asked to decode values which had been encoded in the following ways.

1. Vertical distances of dots from a common baseline
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2. Vertical distances of dots above non-aligned baselines

3. Lengths of lines

4. Slopes of lines

5. Sizes of angles

6. Areas of circles

7. Areas of irregular blobs

Figure 5.19 shows the kind of display used in this experiment. In each of the seven
panels, the object on the left is a standard and the subject is asked to give values for
the other values in the panel as a percentage of the standard. Thus for each test sheet a
subject was asked to make 3 � 7 judgements and each subject was given 10 such sheets.
In all there were 127 subjects in the experiment. The results of the experiment were
assessed by considering

error ��� judged percent � true percent �
�

A graphical presentation of the results is given in figure 5.20. We can clearly see
that the encoding of values by angle, slope or area produces significantly larger errors
than position along aligned or non-aligned scales or length.

Using additional experiments, Cleveland and McGill were able to produce an or-
dering of the perception tasks from easiest to hardest. Some of the ordering (that con-
nected with colour perception tasks) is based on conjecture, but it seems to be in accord
with what is found in practice. The ordering proposed by Cleveland and McGill is as
follows.

1. Position along a common scale

2. Position along identical, nonaligned scales

3. Length

4. Angle — slope

5. Area

6. Volume

7. Colour hue — Colour saturation — Density

5.7 Applying Graphical Perception Ideas

When constructing a graphical display, it is important to take into account the ideas
discussed in this chapter. Taking account of how your display can help you to produce
much more effective displays.

� Use an encoding scheme which leads to a decoding task as high up the Cleveland
McGill ordering as possible.

� Avoid the use of area, and volume. Stevens’ law shows that there will be signifi-
cant biases which occur as a result of using these encodings.
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Figure 5.19: A sheet containing seven perception tasks.
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Figure 5.20: Measures of the errors in the elementary perception tasks. The two-tiered
error bars are 50% and 95% confidence intervals for the measures.

� Avoid the use of colour and shading to encode numerical values. The decod-
ing task is significantly harder for these encodings and will make your displays
harder to use.

� Be careful that you do not create visual illusions either through the layout of your
plots or through the use of noisy patterns. Such illusions make it significantly
harder to see what the graph is truly saying.


