
1. (a) There are two definitions of stationarity.

Strict stationarity : For any choice of k > 0, t1, . . . , tk and u, the joint
distribution of Yt1 , . . . , Ytk

is the same as that joint distribution of
Yt1+u, . . . , Ytk+u.

Weak Stationarity : The mean of the series is constant, the variance
exists and the autocovariance between Yt and Ys is a function only
of t− s.

(b) A series is causal, if it has a moving-average representation of the
form

Yt =
∞∑

u=0

ψuεt−u

for some white-noise series εt. In simple terms, Yt depends only on
present and past outcomes, not future ones.

(c) A series is an AR(1) series if it can be represented in the form

Yt = φYt−1 + εt

where εt is a white noise series.
(d) An AR(1) series will be stationary and causal if |φ| < 1.
(e) The standard trick says to write down the definition of Yt+u multiply

by Yt and take expectations.

γ(u) = E[Yt+uXt]
= E[(φYt+u−1 + εt+u)Yt]
= E[φYt+u−1Yt] + E[εt+uYt]
= γ(u− 1),

for u > 0. To start this recursion, note that

var[Yt] = φ2var[Yt−1] + var[εt],

or
γ(0) = φ2γ(0) + σ2

ε ,

or

γ(0) =
σ2

ε

1− φ2
.

Combining the results above gives

γ(u) =
σ2

εφ
u

1− φ2
for u = 1, 2, . . .

The full result follows because γ(u) = γ(−u).
(f) Starting with

Yt = φYt−1 + εt

we form differences

Yt − Yt−1 = (φYt−1 + εt)− (φYt−2 + εt−1)
= φ(Yt−1 − Yt−2) + εt − εt−1
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If we let Zt denote the diffenced series, it satisfies

Zt = φZt−1 + εt − εt−1

which is an ARMA(1,1) series.
(g) We can compute the variance of the differenced series as follows.

var[Yt − Yt−1] = var[Yt] + var[Yt−1]− 2cov(Yt, Yt−1)
= γ(0) + γ(0)− 2γ(1)

=
σ2

ε(1 + 1− 2φ)
1− φ2

=
2σ2

ε(1− φ)
(1 + φ)(1− φ)

=
2σ2

ε

1 + φ

(h) The formula is

(1− L)d(1− φ1L
1 − · · · − φpL

p)Yt = (1 + θ1L
1 + · · ·+ θqL

q)εt

or
(1− L)dφ(L)Yt = θ(L)εt.

2. (a) Differencing is a way of dealing with nonstationarity in time series.
It can be used to deal with the presence of slowly varying trends
or regular seasonal fluctation. Typically, the need for differencing is
judged by examining a plot of the data for trends (either simple or
seasonal) and perhaps examining the acf of the data looking for slow
decay at either simple or seasonal lags.
In the case of the unemployment series, the slow (simple lag) variation
looks to be the biggest effect. This should be removed first and then
the resulting series checked for a remaining seasonal effect.

(b) There appears to be slow variation at simple lags in the acf with
cutoff in the pacf after lag 3. There is what appears to be exponential
decay at multiple of the seasonal period in the pacf and sharp cutoff
after one seasonal lag in the pacf. This is a strong indicator that the
appropriate model is ARIMA(3, 1, 0)× (0, 1, 1)12 (this is a very cool
example).

(c) The model is:

(1− L)(1− L12)(1− φ1L− φ2L
2)(1− Φ1L− Φ2L

2)Yt

= (1− θ1L− θ2L
2)(1−Θ1L−Θ2L

2)εt

(d) The sar2 term is clearly not significant and can be dropped. Once
this has been done the model should be refitted and the coefficients
rexamined. Once all non-significant coefficients have been eliminated
a check should be made to see if any other terms should be added to
the model. Blind application of criteria such as AIC should not be
used.

2



(e) The ACF for the residuals indicates whether there are any corre-
lations which are significantly different from 0. The Ljung-Box p-
values indicate whether there are groups of correlations in the resid-
uals which are significant. The raw residual plot can indicate large
outliers and other patterns which do not show up in the correlation
plots.

(f) The two lower plots indicate that there are no significant correlations
present in the residuals. The standardized residuals do show some
evidence of lack of fit. In particular there is a large spike present in the
mid seventies which is probably due to the oil shock(s) then. There is
also an effect of the presidency of Ronald Reagan on unemployment.
This probably don’t effect the forecasts significantly, but we should
keep in mind that particular events can produce significant deviations
from the forecasts.

(g) There is evidence of a small on-going seasonal pattern with two peaks
each year in the series. One in January (post Christmas) and another
in June/July (post graduation?). However, the confidence intervals
around the forecasts indicate that there is a great deal of uncertainly
present in the series and that forecasts out beyond three or four
months are not very reliable.

3. (a) i. The impulse response is

a(u) =


1/2 u = −1

−1/2 u = 1

0 otherwise.

ii. The transfer function is

A(λ) =
∞∑

u=−∞
a(u)e−iλu

= eiλ/2− e−iλ/2

= (eiλ − e−iλ)/2

= (2i sinλ)/2

= i sinλ.

iii. A graph of this transfer function A(λ)shows that it is zero at
λ = 0 and λ = π and has a peak at λ = π/2. This means that
the filter will tend to eliminate very high and very low frequencies
and to pass through cosines at frequencies at about π/2 (i.e. 4
cycles per unit time).

(b) i. The power spectrum is defined to be

fXX(λ) =
1
2π

∞∑
u=−∞

γ(u)e−iλu.
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ii. The relationship is

fY Y (λ) = |A(λ)|2fXX(λ)

where A(λ) is the transfer function of the filter.
iii. The periodogram is asymptotically distributed as fXX(λ)χ2

2/2
or, equivalently, exponential with mean fXX(λ). If λ 6= µ mod 2π,
then IT

XX(λ) and IT
XX(µ) are asymptotically independent.

iv. The periodogram is an inconsistent estimator of the power spec-
trum. On its own it provides a very spikey estimate because of
the asymptotic independence of its values. The estimate can be
improved by smoothing the periodogram with a moving average.
This can be set up in such a way that it produces a consistent
estimator.

(c) i. The model to be fitted is

Y (t) =
∞∑

u=−∞
a(u)X(t− u) + ε(t).

where {a(u)} is the impulse response of the filter and ε(t) is a
“noise” series (not necessarily white-noise) which is independent
of X(t).

ii. The coherence between X(t) and Y (t) is defined by

R2
Y X(λ) =

|fY X(λ)|2

fY Y (λ)fXX(λ)
.

The coherence provides a measure of the degree of association
between the two series at frequency λ. It satisfies

0 ≤ R2
Y X(λ) ≤ 1.

4. (a) The first two plots show the power spectra of the input and output
series. The spectra show a great deal of similarity at low frequencies,
but the output series shows a higher level of high frequency noise.

The second and third plots show the gain and phase of the fitted
filter. The filter passes through low frequencies and stops higher fre-
quencies — in other words it is a smoothing filter. The phase shows
a negative linear trend at low frequencies which show that very low
frequencies are being delayed relative to moderate low frequencies.

The fifth and sixth plots show the choherence and residual spectrum.
The coherence shows a high degree of relations ships for frequencies
out to about 0.1. The coherence then drops, but shows evidence of
significance across the full range of frequencies. The residual spec-
trum does not seem to be white noise, but is whiter than the input
and output series.

The last plot shows the fitted filter coefficients. The plot indicates
that the output is obtained from the input series by averaging the
current and prior 8 or 9 values of the input series, with the weights
appearing to decrease in a linear fashion. This is, indeed, a smoothing
filter with properties in accord with those described above.
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(b) The first plot shows a basic cosinusoid wave whose amplitude is being
modulated by another, lower-frequency, cosinusoid. In other words
it has the form

Y (t) = A(t) cosλct

where A(t) = cosλmt with λm << λc.

The second series appears to show two significant peaks at close fre-
quencies of about 0.3, along with a number of possible harmonics.
The power in these two components is roughly equal, which means
that the associated cosinusoids have roughly equal amplitudes. This
suggests a model of the form

Y (t) = A(cosλ1t+ cosλ2t)

with λ1 ≈ λ2.

The models can be seen to be very similar (perhaps identical) when
we recognise that

2 cos θ cosφ = cos(θ − φ) + cos(θ + φ).

This suggests that λc = λ2 − λ1 and λm = λ1 + λ2.
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