Statistics 726 Assignment 4 Solutions

1. The easy way to approach these problems is to use the fact that if Y (¢)
is a filtered version of X () and the transfer function of the filter is A(\)
then

Fry () = AN fry (V).

In the examples below, the series of interest is related to white noise by
a simple filtering relationship.

(a) Here Y (¢) is produced from white noise by applying a differencing
filter. The differencing filter has impulse response defined by

1 u =0,
a(u) =< —1 u=1,
0 otherside,

— M2 (N2 =iy
= ¢7™2 25in )\ /2.

This means that
|AN)]> = 4 sin® \/2,

and so )

2
fyy()\) = i Sin2 )\/2
™

(b) A seasonal differencing filter (with seasonal period s) has impulse

response
1 u =0,
a(u) =< -1 u=s,

0 otherside.



By similar reasoning to part (a), the transfer function of this filter
is

A(N) = e7%/2 25in \s /2.

(You should try graphing |A(A)| for s = 12.) This means that the
power spectrum of seasonally differenced noise is
2

2
fry(\) = 7 §in? As/2.
™

From the notes, the spectrum of an MA(1) series is

2
fxx(\) = ;—(1 + 6% + 20 cos \)
T

and so the spectrum for a differenced MA(1) series must be

2
fry(A) = 20” (1462 +20cos \) sin® \s/2.
T

The general ARMA(p, q) series is defined by
(1= L' = =g, L)Y ()= (1 + 0L +---+0,)e.

This is a statement about the relationship between two filtered
series:

AlY](t) = Blel(t).

In the frequency domain this means that

AP fry (V) = B fee(A)

or
[B(V)[?
A) = ().

The individual transfer functions are:

AN) =1 —¢re™™ — oo — e
and ‘ '

BA)=1+0e ™+ + 0,
so that

0_2 ‘1 _ ¢l€—i)\ L ¢pe—i)\p’2

A = 5 , . .
fYY( ) 2 |1 + 916_2)‘ 4+ -4 eqe—z)\q|2

Or, in terms of the AR polynomial §(z) and MA polynomial ¢(z),

_ o g™

)= 5 e



2. Figure 1 shows the European wheat price series. The variability of the
series is clearly related to its mean level. This dependence can be re-
moved by taking logs (this is very common for price series). The logged
series is shown in figure 2.

The logged series is clearly nonstationary, so before estimating the power
spectrum it is important to remove the trend apparent in the series. If
this is not done, the trend will appear in the spectrum as a “peak” in the
spectrum close to frequency 0.

There are a number of possible ways to remove the trend. I've chosen
to do it by fitting a smooth curve throught the data will lowess and
substructing the curve out. I used a smoothing fraction of 0.2 so that
the smooth follows the data reasonably closely. The code used to do this
was:

lw = log(wheat)
dtlw = 1w - lowess(lw, f = .3)$y

and plots of the smooth and the residuals from the smooth are shown in
figures 3 and 4.

Figures 5 and 6 show spectrum estimates with spans of 3 and 5 respec-
tively for the residual series. There are possible low frequency peaks at
about 0.016, 0.062, 0.139, 0.435 and 0.477. The lowest frequency peak
is clear cut, the others are not.
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Figure 1: The European wheat index series.
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Figure 2: The logged European wheat index series.
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Figure 3: A lowess curve fitted to the logged European wheat index series.
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Figure 4: Residuals from the lowess curve fit.
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Figure 5: The power spectrum for the detrended wheat series with span=3.
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Figure 6: The power spectrum for the detrended wheat series, with span=>5.



[ did’t expect you to go this far, but it is interesting to try some tapering
on this series to see what effect it has. Tapering helps resolve peaks and
so it may be helpful here. Figure 7 shows the estimate spectrum with
50% tapering and a span of 5.

Figure 8 shows spectrum estimate with 50% tapering and a span off 3.
The gray lines show the confidence interval for a heavily smoothed es-
timate (span=21). The intent is to judge the significance of the peaks
by whether or not they protrude above the confidence band. The peaks
which do have been marked in the plot. They are at the following fre-
quencies:

0.016,0.061,0.080, 0.165,0.192,0.228, 0.292, 0.320, 0.427, 0.480.

Obviously not all of these are really significant, but some of them bear
further inspection.
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Figure 7: The power spectrum for the detrended wheat series, with 50%
tapering and span=>.
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Figure 8: The power spectrum for the detrended wheat series.



3. (I'm not really answering the question here — that was pretty routine.
There are some comments at the end of the answer. This is just having
a bit of fun ...)

When doing spectral analysis on time series it is important to carry out
smoothing with several different bandwidths or spans. Not to search
for the “best” amount of smoothing, but because different amounts of
smoothing will reveal different things about the series. In the case of the
Berlin and Vienna temperatures, light smoothing will do the best job of
showing off the peaks and heavier smoothing will show off the structure
elsewhere in the spectrum.

Figures 9 and 10 show power spectra for the Berlin and Vienna series
computed with a smoothing span of 3. The series have also been tapered
5% to help make the peaks stand out.

The spectra are very similar. Both show a very large peak corresponding
to a yearly cycle (frequency = 1/12), with a hint of another peak at an
even lower frequency of about 0.01, corresponding to a cycle of roughly
8 years. There is also evidence of a long-term trend in both series.

The major difference between the two spectra is the presence of a six-
monthly harmonic (frequency = 2/12) in the Vienna series. This cor-
responds to a real difference in termperature pattern in the two series;
Vienna warms up a little more quickly than Berlin in springtime. The
monthy average temperatures for the two cities, normalized to the inter-
val [0,1] are shown in figure 11.

The coherence fo the two series is shown in figure 12. The one-year and
eight-year cycles in the two series appear to be coherent, but the long-
term (frequency = 0) components are less coherent. This is also clear by
looking at the series. For example, the long-term trend in Vienna has
been toward lower summer temperatures, while summer temperature in
Berlin have been fairly constant. (You can see this by applying the
monthplot function to the two series.)

Figures 13 and 14 show the gain and phase of the filter which best
matches the Vienna series to the Berlin. Notice that the relative phases
corresponding to the six-monthly components of the series are different.
This again can be related to the differences shown in figure 11.

Finally, the inpulse response for the best fitting filter is shown in figure
15. The degree of smoothing does not affect the impulse response as
much as it does the frequency domain parameter.

These basic features of the cross spectral analysis are fairly insensitive



to the amount of smoothing used. This is particularly true of the impule
response, which is very stable indeed.
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Figure 9: The spectrum for the Berlin temperatures computed using a
smoothing span of 3.
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Figure 10: The spectrum for the Vienna temperatures computed using a
smoothing span of 3.
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Figure 11: The seasonal pattern of temperatures in Berlin and Vienna.
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Figure 12: The coherence for the Berlin and Vienna temperatures computed
using a smoothing span of 13.

12



11 4

1.0

0.9

0.8

Gain

0.7

0.6

0.5 —

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

Figure 13: The gain for the Vienna series over the Berlin one (computed
using a smoothing span of 13).
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Figure 14: The gain for the Vienna with respect to the Berlin one (computed
using a smoothing span of 13).
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Figure 15: The impulse response for the best-fitting filter which matches the
Vienna series to the Berlin one (computed using a smoothing span of 13).
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