Low Dimensions

e There are many techniques which can be used for
examining a set of observations: E.g. one-dimensional
scatterplots, boxplots, stem-and-leaf plots, histograms,
density traces, ...

o In two dimensions the workhorse plot is the scatterplot,
by we can also look at contour plots of density
estimates. One dimensional plots can be used to
examine marginal distributions.

e In three dimensions, we can use animation to convey the
impression of a rotating cloud of points. It is also
possible to estimate and plot the isosurfaces of a three
dimensional density estimate.
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Two Dimensional Density Estimation

Here is a simple example of two dimensional density
estimation using the ks library.

> library(ks)
> H = Hpi(faithful)
> d = kde(faithful, H)
> plot(d, xlab = "Eruption Time",
ylab = "Time Between Eruptions")
plot(d, display = "persp",
theta = 15, phi = 10, expand = .5,
ltheta = -100, shade = .5,
col = "lightblue",
xlab = "Eruption Time",
ylab = "Time Between Eruptions")
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A Density Isosurface

Special Techniques for Three Dimensions

e The first two variables are represented in the standard
way in a scatterplot.

e The third variable is represented by using different
symbols at the locations in the scatterplot.

Bubble Plots

o The symbols used in the scatterplot are circles whose
size is proportional to the value of the third variable.

e There are many possible measures of size: The most
common are area and radius

o The following code uses radius.

> symbols(trees[,2], trees[,1],
circles = trees[,3]1/50, inches = FALSE,
xlab = "Height", ylab = "Girth",
main = "Tree Volume")
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Thermometer Plots

e When the points are well spaced in the z-y plane, other
symbols work well.

e On the basis of his work on graphical perception, Bill
Cleveland has suggested using a symbol which looks
like a thermometer.

> p =0.95 * trees[,3]/max(trees[,3])

> symbols(trees[,2], trees[,1],
thermometers = cbind(.05, .5, p),
xlab = "Height", ylab = "Girth",
main = "Tree Volume")
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Sunflower Plots

o Another representation of three dimensional data is the
sunflower plot.

e Here the symbols look like flowers, with more petals
representing higher values.

> n = ceiling(20 * trees[,3]/max(trees[,3]))
> sunflowerplot(trees[,2], trees[,1], n,
seg.col = "black",
xlab = "Height", ylab = "Girth",
main = "Tree Volume")

Encoding Using Colour

e Bearing in mind that colour is not a good way of
encoding numerical values, it is also possible to encode
the third value as a colour.

> hue = (1 - .9 * trees[,3]/
max(trees[,3])) * 2 / 3
> plot(trees[,2], trees[,1],
pch = 21, cex = 2, bg = hsv(hue),
xlab = "Height", ylab = "Girth",
main = "Tree Volume")

Four or More Directions

o In four dimensions our perceptual abilities fail us.

e We would not able to understand a four-dimensional
display, even if one were available.

o A large number of indirect ways of examining high
dimensional data have been developed.
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The Iris Data

e This set of data was collected by a botanist - Edgar
Anderson.

o It gives the widths and lengths of the petals and sepals
of three species of Iris:
— Iris Setosa
— Iris Versicola
— Iris Virginica
e The dataset is often used to test statistical techniques

which attempt to distinguish different groupings on the
basis of measurements.




The Iris Data
Sepal Length  Sepal Width Petal Length Petal Width

5.1 35 14 0.2
4.9 3.0 1.4 0.2
4.7 32 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2
54 39 1.7 0.4
4.6 34 1.4 0.3
5.0 3.4 L.5 0.2
4.4 2.9 1.4 0.2

4.9 3.1 1.5 0.1

Neglected Iris Data

Iris Setosa Iris Versicolor Iris Virginica

Unfortunately, the data set doesn’t contain the most important
information about the Iris flowers.

Scatterplot Matrices (Draughtsman’s Displays)

e A simple way to examine high dimensional datasets is
to plot all possible pairs of variables.

e There are p x (p — 1) scatter plots to be viewed.

— There are p choices for the = variable.
— For each z variable there are p — 1 possible
choices for the y variable.

e One way to display the plots is to lay them outa p x p
matrix.

e This kind of display is called a scatterplot matrix or a
draughtsman’s display.

Scatterplot Matrices in R

e The R function pairs produces a scatterplot matrix.
> pairs(iris)

o The function allows a degree of customisation — plotting
symbol and default colour can be easily changed.

> £ill = rep(c("red", "green4", "blue"),
c(50, 50, 50))
> pairs(iris[,1:4], pch = 21, bg = fill)
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Limitations of Scatterplot Matrices

o Scatterplot matrices can give a good overall view of a
set of data values, but they also be misleading.

e This is because they only show a very limited view of
the data. To illustrate the problem, we will look at the
“randu” dataset.

e This data set consists of consecutive triples produced by
the randu random number generator.

> pairs(randu)

> cloud(y ~ x * z, data=randu,
screen = list(y = 147),
perspective = FALSE)
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Comments

e The consecutive triples produced by randu are
constrained to lie on a series of parallel planes which
cut through the unit cube.

o The paper which pointed this fact out was titled “The
Random Numbers Fall Mainly on the Planes.”

e The planes are not aligned with the sides of the unit
cube and so do not show up in any of the panels of the
scatter plot.

e This problem can be even worse in higher dimensions.

Clustering

e One of the ways we seek to make sense of the world
around us is by grouping the things we see about us into
classes of similar objects.

o If the objects in a group are sufficiently similar and
sufficiently distinct from other objects we may give
them a common name — person, dog, chair, etc.

o In a further step, we may begin to create theories about
the relationships between groups.

o In statistics, forming groups of similar objects is known
as cluster analysis or clustering.

Clustering and Graphics

e There are a number of graphical techniques which aim
to help users establish the degree to which observations
are similar or different.

o All these techniques work by encoding each
observations as a symbol or glyph.

e The visual system is very good at letting us detect visual
simularity.

o This can form the basis for informally clustering
observations.

Example — United States Voting

Percentage of Republican Votes
in Presidential Elections in Six Southern States
in the Years 1932-1940 and 1960-1968.

1932 1936 1940 1960 1964 1968

Missouri 35 38 48 50 36 45
Maryland 36 37 41 46 35 42
Kentucky 40 40 42 54 36 44
Louisiana 7 11 14 29 57 23
Mississippi 4 4 25 87 14
South Carolina 2 1 4 49 59 39

Stars — A Simple Glyph

e One simple way of encoding the vote data is to draw a
star with one arm for each voting year.

e The lengths of the arms will be proportional to the vote
for the corresponding year.

e Each State will be encoded as a six-pointed star.

Creating a Star Plot

> votes =

data.frame(yr1932 = c(35, 36, 40, 7, 4, 2),

yri936 = c(38, 37, 40, 11, 3, 1),

yr1940 = c(48, 41, 42, 14, 4, 4),

yri960 = c(50, 46, 54, 29, 25, 49),

yr1964 = c(36, 35, 36, 57, 87, 59),

yri968 = c(45, 42, 44, 23, 14, 39),

row.names = c("Missouri", "Maryland",
"Kentucky", "Louisiana", "Mississippi",

"South Carolina"))
> stars(votes/max(votes), scale = FALSE,

x1lim =c(0, 8), ylim = c(0, 8),

locations = cbind(c(1, 4, 1, 4, 1, 4),
c(7, 7, 4, 4, 1, 1)),

col.stars = rep(hcl(180), 6),

key.loc = c(7, 4),

key.labels = c(1932, 1936, 1940, 1960, 1964, 1968))
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Interpretation

e Clearly Missouri, Maryland and Kentucky exhibit very
similar voting patterns.

e They can be regarded as forming a cluster.

e Louisiana, Mississippi and South Carolina are different
from each other and the other cluster.

o Many other glyphs have been proposed.
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Figure 1. Profiles, Stars, Glyphs, Faces, and Boxes of Percentage of Republican Votes in Six Presi-
dential Elections in Six Southern States. The Circles in the Stars Are Drawn at 50%. The Assignment of
Variables to Facial Features in the Faces ls: 1932—Shape of Face; 1936—Length of Nose; 1940—Cur-
vature of Mouth; 1960—Width of Mouth; 1964—Slant of Eyes; 1968—Length of Eyebrows

Critique

e Glyphs work well when there are just a few
observations.

e With even moderate numbers of observations the ability
of the brain to group the observations is overwhelmed.

e Little is known about how well our interpretation of the
similarity of glyphs corresponds to the true similarity
between the observations.

e In the case of faces, there are likely to be strong cultural
and gender biases in an individuals groupings.

Representation as Functions

e Since glyphs only work well for a small number of
observations, attempts have been made to look at other
techniques for representing multivariate data.

e One of the more interesting is the idea that observations
can be represented and plotted as functions.

Andrews Plots

e Andrews plots represent an observation (z1, ..., z,) in
the form:

f(t) =21/y/(2) + xasint + 3 cost
+ x48in2t + x5cos2t + - -+
o This function is graphed over the interval [—m, ].

e It is possible to superimpose the functions associated
with many observations on the same graph.

Properties of Andrews Plots I

e The function mapping preserves means.
1 n
Jelt) = =3 Fult)
i=1

e The function mapping preserves distances.

1 us
= [ 10 - fora = x -y
e The function mapping preserves linear relationships. If

y lies on the line joining x and z then f,(¢) lies between
Jx(t) and f,(t) for all ¢.

Properties of Andrews Plots 11

e For each ¢, the function mapping produces a projection
of the data onto a one-dimensional subspace. Thus,
each ¢ tells us about a particular aspect of the data set. If
two functions take on different values for some ¢ there
are important differences between the observations.

o Andrews plots are a useful tool for looking for clusters
and outliers.

An Andrews Plot for the Votes Data
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Figure 1. Profiles, Stars, Glyphs, Faces, and Boxes of Percentage of Republican Votes in Six Presi-
dential Elections in Six Southern States. The Circles in the Stars Are Drawn at 50%. The Assignment of
Variables to Facial Features in the Faces Is: 1932—Shape of Face; 1936—Length of Nose; 1940—Cur-
vature of Mouth; 1960—Width of Mouth; 1964—Slant of Eyes; 1968—Length of Eyebrows
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An Andrews Plot for the Iris Data

Parallel Coordinate Plots

e Parallel coordinate plots are quite similar in nature to
Andrews plots.

e The jth variable is assigned position j on the z axis and
the points for that variable are plotted against the y axis
at that position.

o The coordinates for all the variables of the ith
observation are joined by straight-line segments.

o The plots reveal clusters and outliers in the same way
that andrews plots do.

An Parallel Coordinates Plot for the Iris Data

Judge Rating Data

Lawyers’ ratings of state judges in the Connecticut State
Court. The variables are:

CONT  Number of contacts of lawyer with judge.
INTG  Judicial integrity.
DMNR Demeanor.

DILG  Diligence.

CFMG Case flow managing.
DECI  Prompt decisions.
PREP  Preparation for trial.
FAMI  Familiarity with law.
ORAL  Sound oral rulings.
WRIT  Sound written rulings.
PHYS  Physical ability.
RTEN  Worthy of retention.

An Parallel Coordinates Plot for the Judges Data

An Parallel Coordinates Plot for the Judges Data

A Parall

pcoord =
func

{

el Coordinates Function

tion(x, scale.data = TRUE,
col = "black", 1lty = "solid", lwd = 1)

if (scale.data)

x = scale(x)
nobs = nrow(x)
col = rep(col, length = nobs)
1ty = rep(lty, length = nobs)
lwd = rep(lwd, length = nobs)
matplot (1:ncol(x), t(x),

type = "1",
col = col,
1ty = lty,

1lwd = lwd, axes = FALSE, ann = FALSE)
axis(1, at = 1:ncol(x)); axis(2); box()




