
Quantiles and Quantile
Based Plots



Percentiles and Quantiles

The k-th percentile of a set of values divides them so that k %
of the values lie below and (100− k)% of the values lie above.

• The 25th percentile is known as the lower quartile.

• The 50th percentile is known as the median.

• The 75th percentile is known as the upper quartile.

It is more common in statistics to refer to quantiles. These are
the same as percentiles, but are indexed by sample fractions
rather than by sample percentages.



Some Difficulties

The previous definition of quantiles and percentiles is not
completely satisfactory. For example, consider the six values:

3.7 2.7 3.3 1.3 2.2 3.1

What is the lower quartile of these values?

There is no value which has 25% of these numbers below it
and 75% above.

To overcome this difficulty we will use a definition of
percentile which is in the spirit of the above statements, but
which (necessarily) makes them hold only approximately.



Defining Quantiles

We define the quantiles for the set of values:

3.7 2.7 3.3 1.3 2.2 3.1

as follows.

First sort the values into order:

1.3 2.2 2.7 3.1 3.3 3.7

Associate the ordered values with sample fractions equally
spaced from zero to one.

Sample fraction 0 .2 .4 .6 .8 1
Quantile 1.3 2.2 2.7 3.1 3.3 3.7



Defining Quantiles

The other quantiles of

1.3 2.2 2.7 3.1 3.3 3.7

can be obtained by linear interpolation between the values of
the table.

The median corresponds to a sample fraction of .5. This lies
half way between 0.4 and 0.6. The median must thus be
.5× 2.7 + .5× 3.1 = 2.9

The lower quartile corresponds to a sample fraction of .25.
This lies one quarter of the way between .2 and .4. The lower
quartile must then be .75× 2.2 + .25× 2.7 = 2.325.



Computing the Median and Quartiles
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The General Case

Given a set of values x1, x2, . . . .xn we can define the
quantiles for any fraction p as follows.

Sort the values in order

x(1) ≤ x(2) ≤ · · · ≤ x(n).

The values x(1), . . . , x(n) are called the order statistics of the
original sample.

Take the order statistics to be the quantiles which correspond
to the fractions:

pi =
i− 1

n− 1
, (i = 1, . . . , n),



The Quantile Function

In general, to define the quantile which corresponds to the
fraction p, use linear interpolation between the two nearest pi.

If p lies a fraction f of the way from pi to pi+1 define the pth
quantile to be:

Q(p) = (1− f)Q(pi) + fQ(pi+1)

As special cases, define the median and quartiles by:

Median: Q(.5)
Lower Quartile: Q(.25)
Upper Quartile: Q(.75)

The function Q defined in this way is called the Quantile
Function.



Computing Quantiles with R

The R function quantile can be used to compute the
quantiles of a set of values.

> x = c(1.3, 2.2, 2.7, 3.1, 3.3, 3.7)

> quantile(x)

0% 25% 50% 75% 100%

1.300 2.325 2.900 3.250 3.700

> quantile(x, seq(0, 1, by=.1))

0% 10% 20% 30% 40% 50% 60% 70%

1.30 1.75 2.20 2.45 2.70 2.90 3.10 3.20

80% 90% 100%

3.30 3.50 3.70



Plots Based on Quantiles

• Boxplots

• QQ plots

• Empirical shift function plots

• Symmetry plots



Boxplots and Variations

• Real name box-and-whisker plots.

• Draw a box from the lower quartile to the upper quartile.

• Extend a whisker from the ends of the box to the
furthest observation which is no more than 1.5 times
inter-quartile range from the box.

• Mark any observations beyond this as “outliers.”



Producing Boxplots With R

A single boxplot, vertically aligned.

> boxplot(rain.nyc,

main = "New York City Rainfall",

ylab = "Inches")

The basic call can be heavily customized.

> boxplot(rain.nyc,

col = "lightgray",

horizontal = TRUE,

main = "New York City Rainfall",

xlab = "Inches")
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Comparing Samples with Boxplots

• It is possible to compare two or more samples with
boxplots.

• By producing the plots on the same scale we are able to
make direct comparisons of:

– medians

– quartiles

– inter-quartile ranges

• The comparison of medians using boxplots can be
regarded as the graphical equivalent of two-sample
t-tests and one-way analysis of variance.



The New York Ozone Data

• The ozone levels in Yonkers and Stamford can be
compared with boxplots.

• The two samples are passed to boxplot as separate
arguments.

• Labels can be provided to label the two samples.

> boxplot(yonkers, stamford,

names = c("Yonkers", "Stamford"),

main = "New York Ozone Levels",

ylab = "Ozone Levels (ppb)")
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Transformations

• The median ozone level in Stamford is higher than that
in Yonkers.

• The spread of the values in Stamford is also larger than
the spread in Yonkers.

• When there is a difference in data spreads it is common
to transform the values so that the speads are equal.

• This makes it possible to compare the medians in the
absence of any other differences.

> boxplot(log10(yonkers), log10(stamford),

names = c("Yonkers", "Stamford"),

main = "New York Ozone Levels",

ylab = "Log10 Ozone Levels (ppb)")



●

Yonkers Stamford

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

New York Ozone Levels

Lo
g1

0 
O

zo
ne

 L
ev

el
s 

(p
pb

)



Significance Testing

• The boxplot function can be used to carry out a formal
significance test of whether there is difference between
the median levels of the underlying populations.

• This is done by specifying notch=TRUE as an argument.

• If the resulting notches in the sides of the boxplots do
not overlap then there is a significant difference
between the medians of the underlying values.

> boxplot(log10(yonkers), log10(stamford),

names = c("Yonkers", "Stamford"),

main = "New York Ozone Levels",

ylab = "Log10 Ozone Levels (ppb)",

notch = TRUE)
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Quantile Plots

• Quantile plots directly display the quantiles of a set of
values.

• The sample quantiles are plotted against the fraction of
the sample they correspond to.

• There is no built-in quantile plot in R, but it is relatively
simple to produce one.

> x = rain.nyc

> n = length(x)

> plot((1:n - 1)/(n - 1), sort(x), type="l",

main = "Quantiles for the NYC Rain Data",

xlab = "Sample Fraction",

ylab = "Sample Quantile")
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Quantile-Quantile Plots

• Quantile-quantile plots allow us to compare the
quantiles of two sets of numbers.

• This kind of comparison is much more detailed than a
simple comparison of means or medians.

• There is a cost associated with this extra detail. We need
more observations than for simple comparisons.



Drawing Quantile-Quantile Plots

• Obtain the sample fraction values for the larger batch of
values.

• For each batch, compute the quantiles corresponding to
the computed fractions.

• Plot the computed quantiles against each other.

> n = max(length(x), length(y))

> p = (1:n - 1)/(n - 1)

> qx = quantile(x, p)

> qy = quantile(y, p)

> plot(qx, qy)

But there is an easier way . . .



The R Quantile-Quantile Plot Function

• Q-Q plots are an important tool in statistics and there is
an R function which implements them.

• The function is called qqplot.

• The first two arguments to qqplot are the samples of
values to be compared.
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Modelling The Relationship

The points in the plot fall close to a straight line. This
suggests that the the quantiles of the two samples satisfy:

stamford = a + b× yonkers

or
stamford = b× yonkers

One way to check which of these situations applies is to add
some straight lines to the plot.

We also need to expand the limits on the graph, because we
want to check whether the points lie on a line through and
origin.



An Improved Plot

First we get the ranges of the two samples.

> xlim = range(0, yonkers)

> ylim = range(0, stamford)

Now we produce a Q-Q plot with the expanded limits and
mark in the line y = x.

> qqplot(yonkers, stamford,

xlim = ylim, ylim = ylim,

xlab = "Yonkers",

ylab = "Stamford",

main = "Ozone Levels (ppb)")

> abline(a=0, b=1, lty="dotted")
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A Multiplicative Relationship

The model “stamford = b× yonkers” seems to explain the
relationship. What is the value of b?

We can find out by averaging the ratios of the quantiles.

> y = yonkers

> s = stamford

> n = max(length(y), length(s))

> mean(quantile(s, seq(0, 1, length = n))/

quantile(y, seq(0, 1, length = n)))

[1] 1.589835

The values in Stamford are about 1.6 times those in Yonkers.



An Alternative Procedure

A alternative way to proceed here is to work with the logs of
the data values. This has the advantage of turning
multiplication into addition.
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Investigating Further . . .

The distance between the two lines is about .2. Since

100.2 = 1.584893

we come to same conclusion this way.



Theoretical Quantile Quantile Plots

• Quantile-quantile plots can be used to compare the
distributions of two sets of numbers.

• They can also be used to compare the distributions of
one set of values with some theoretical distribution.

• Most commonly, the yardstick distribution is the
standard normal distribution:

P [X ≤ x] =
1√
2π

∫ x

−∞
e−t2/2 dt

• If the values being plotted resemble a sample from a
normal distribution, they will lie on a straight line with
intercept equal to the mean of the values and slope
equal to the standard deviation.
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1 R Functions
• The function qqnorm produces a basic Q-Q plot

comparing a set of values with the normal distribution.

• The function qqline adds a straight line to the plot.
The line passes through the point defined by the lower
quartiles and the point defined by the upper quartiles.

> qqnorm(rain.nyc,

main = "New York Precipitation")

> qqline(rain.nyc)
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2 Deviations From Normality
• The NYC rainfall plot shows a systematic deviation

from normality.

• Detecting such deviations is important because many
statistical techniques depend on the data they are
applied to having an approximately normal distribution.

• Note: The importance of normality is often overstated
in elementary statistics courses. The NYC rainfall
would be fine to use for most normally based statistical
techniques.



Some Departures from Normality

(a) Normally Distributed (b) Heavy Tails (c) Light Tails

(d) Skewed to the Left (e) Skewed to the Right (f) Separate Clusters
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Distribution Symmetry

• Suppose we have a collection of values x1, . . . , xn. We
will say that the values are symmetrically distributed if
their quantile function satisfies:

Q(.5)−Q(p) = Q(1− p)−Q(0.5), for 0 < p < .5.

• This says that the pth quantile is the same distance
below the median as the (1− p)th quantile is above it.

• When a set of values is “close” to normally distributed,
a normal Q-Q plot can help to detect departures from
symmetry,



A Symmetry Plot

• The obvious way to check the symmetry of a set of
numbers is to plot the values Q(1−p1), . . . , Q(1−pn/2)
against the values of Q(p1), . . . , Q(pn/2).

• If the plotted points fall on the line y = x, then
x1, . . . , xn are symmetrically distributed.

• There is no built-in R function which produces
symmetry plots, but it is very easy to create such a plot.



R Code

> symplot =

function(x)

{

n = length(x)

n2 = n %/% 2

sx = sort(x)

mx = median(x)

plot(mx - sx[1:n2], rev(sx)[1:n2] - mx,

xlab = "Distance Below Median",

ylab = "Distance Above Median")

abline(a = 0, b = 1, lty = "dotted")

}

> symplot(rain.nyc)
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Transforming to Symmetry

• There appears to be evidence of lack of symmetry in the
symmetry plot.

• The upper quantiles of the distribution are further from
the median than the corresponding lower quartiles.

• This indicates that the distribution of values is skewed
to the right.

• It can sometimes be useful to transform skewed
distributions to more symmetric ones. Transformations
which can be used to do this are:square roots, cube and
other roots, logarithms and reciprocals.



Transforming to Symmetry

• In the case of the rainfall data, it is hard to find a
transformation which makes the distribution more
symmetric.

• This is because of the internal clustering present in the
values.

• Negative reciprocals do a fairly good job.

> symplot(-1/rain.nyc)
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Sample Size Considerations

• Both normal Q-Q plots and symmetry plots require
large sample sizes to reliably represent the population
being sampled.

• This is especially true for symmetry plots.

• Sample sizes of at least 1000 are desirable, although the
plots do tend to get used on much smaller sample sizes.

• Running the command below repeatedly can show just
how how unstable the plots are with smaller sample
sizes.

> symplot(rnorm(100))



Stability of QQ Plots

• Elementary statistics courses often recommend using
normal qq plots to assess normality.

• They don’t tend to explain that qq plots are very
variable, especially in the tails.

• Unless the sample size is larger than 1000, the plots
cannot really be trusted when judging normality.
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Code: Confidence Bounds by Simulation

nrep = 1000

n = 100

x = qnorm(1:n/(n+1))

y = matrix(rnorm(nrep * n), nc = n)

for(i in 1:nrep)

y[i,] = sort(y[i,])

y95 = apply(y, 2, quantile, c(.025, .975))

plot(x, x, ylim = range(y95), type = "n",

xlab = "Theoretical Quantiles",

ylab = "95% Bounds on Observed Quantiles",

main = paste("Sample Size =", p))

polygon(c(x, rev(x)), c(y95[1,], rev(y95[2,])),

col = "grey")
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