
R Graphics Lectures

Computer Graphics

• Drawing graphics in a window on the screen of a
computer is very similar to drawing by hand on a sheet
of paper.

• We begin a drawing by getting out a clean piece of paper
and then deciding what scale to use in the drawing.

• With those basic decisions made, we can then start
putting pen to paper.

• The steps in R are very similar.

Starting a New Plot

We begin a plot by first telling the graphics system that we are
about to start a new plot.

> plot.new()

This indicates that we are about to start a new plot and must
happen before any graphics takes place.

The call to plot.new chooses a default rectangular plotting
region for the plot to appear in.

The plotting region is surrounded by four margins.

Plot Region

Margin 1

M
ar

gi
n

2

Margin 3

M
ar

gi
n

4

Controlling The Margins

The sizes of the margins can be changed by making a call to
the function par before calling plot.new.

Set the margin sizes in inches.

> par(mai=c(2, 2, 1, 1))

Set the margin sizes in lines of text.

> par(mar=c(4, 4, 2, 2))

Set the plot width and height in inches.

> par(pin=c(5, 4))

Setting the Axis Scales

Next we set the scales on along the sides of the plot. This
determines how coordinates get mapped onto the page.

> plot.window(xlim = xlimits, ylim = ylimits)

The graphics system arranges for the specified region to
appear on the page.

xlimits and ylimits are vectors which contain lower and
upper limits which are to appear on the x and y axes.

For example,

... xlim = c(-pi, pi), ylim = c(-1, 1), ...

might be suitable for plotting sine and cosine functions.

Manipulating the Axis Limits

The statement

> plot.window(xlim = c(0, 1), ylim = c(10, 20))

produces axis limits which are expanded by 6% over those
actually specified. This expansion can be inhibited by
specifying xaxs="i" and/or yaxs="i".

For example, the call

> plot.window(xlim = c(0, 1), ylim = c(10, 20),

xaxs = "i")

produces a plot with 0 lying at the extreme left of the plot
region and 1 lying at the extreme right.

Aspect Ratio Control

There is also an optional argument to the function
plot.window() which allows a user to specify a particular
aspect ratio.

> plot.window(xlim = xlimits,

ylim = ylimits,

asp = 1)

The use of asp=1 means that unit steps in the x and y
directions produce equal distances in the x and y directions on
the page.

This is important if circles are to appear as circles rather than
ellipses.

Drawing Axes

The axis function can be used to draw axes at any of the four
sides of a plot.

axis(side)

The value of the side arguments which axis is drawn.

side=1 : below the graph (x axis),

side=2 : to the left of the graph (y axis),

side=3 : above the graph (x axis),

side=4 : to the right of the graph (y axis).

A variety of optional arguments can be used to control the
appearance of the axis.

Axis Customisation

The axis command can be customised. For example:

axis(1, at = 1:4, labels = c("A","B","C","D"))

places the tick marks on the lower x axis at 1, 2, 3, and 4 and
labels them with the strings “A”, “B”, “C” and “D”.

Label rotation can be controlled with the value of the optional
las argument.

las=0 : labels are parallel to the axis,

las=1 : labels are horizontally oriented,

las=2 : labels are at right-angles to the axis,

las=3 : labels are vertically oriented.

Additional Axis Customisation

Additional customisation can be produced with additional
arguments to the axis function:

col : the colour of the axis and tickmarks,

col.axis : the colour of the axis labels,

font.axis : the font to be used for the axis labels.

Colours can be specified by name (e.g. "red", "green", etc)
as well as in other ways (see later).

Fonts can be one of 1, 2, 3 or 4 for normal, bold, italic and
bold-italic.

Plot Annotation

The function title can be used to place labels in the margins
of a plot.

title(main=str, sub=str, xlab=str, ylab=str)

The arguments are as follows:

main : a main title to appear above the graph,

sub : a subtitle to appear below the graph,

xlab : a label for the x axis,

ylab : a label for the y axis.

Customising Plot Annotation

The elements of the plot annotation can be customised with
additional optional arguments.

font.main, col.main, cex.main
The font (1, 2, 3, or 4), colour and
magnification-factor for the main title.

font.sub, col.sub, cex.sub
The font, colour and magnification-factor for the
subtitle.

font.lab, col.lab, cex.lab
The font, colour and magnification-factor for the
axis labels.

Framing a Plot

It can be useful to draw a box around a plot. This can be done
with the function box. The call

> box()

draws a box around the plot region (the region within the plot
margins). The call

> box("figure")

draws a box around the figure region (the region containing
the plot and its margins).

An optional col argument makes it possible to specify the
colour for the box.

Example: A “Bare” Plot

> plot.new()

> plot.window(xlim = c(0, 10),

ylim = c(-2, 4), xaxs = "i")

> box()

> axis(1, col.axis = "grey30")

> axis(2, col.axis = "grey30",

las = 1)

> title(main = "The Plot Main Title",

col.main = "green4",

sub = "The Plot Subtitle",

col.sub = "green4",

xlab = "x-axis", ylab = "y-axis",

col.lab = "blue", font.lab = 3)

> box("figure", col = "grey90")

0 2 4 6 8 10

−2

−1

0

1

2

3

4

The Plot Main Title

The Plot Subtitle
x−axis

y−
ax

is

Some Drawing Primitives

• Points

• Connected Line Segments

• Straight Lines Across A Plot

• Disconnected Line Segments

• Arrows

• Rectangles

• Polygons

• Text

• Legends

Drawing Points

The basic call has the form:

points(x, y, pch=int, col=str)

where:

• pch specifies the plotting symbol. Values 1 to 25 are
special graphical symbols, values from 33 to 126 are
taken to ASCII codes. A quoted character will also
work,

• col gives a colour specification. Examples are, "red",
"lightblue", etc. (More on colour later.)

Graphical Plotting Symbols

The following plotting symbols are available in R.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

●

●

●

● ● ●

●

Plotting Symbols and Colour

• The colour of plotting symbols can be changed by using
the col argument to points.

• Plotting symbols 21 through 25 can additionally have
their interiors filled by using the bg argument to
points.

Coloured Plotting Symbols

The effect of colour choice on plotting symbols.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

●

●

●

● ● ●

●

Drawing Connected Line Segments

The basic call has the form:

lines(x, y, lty=str, lwd=num, col=str)

where:

• lty specifies the line texture. It should be one of
"blank", "solid", "dashed", "dotted", "dotdash",
"longdash" or "twodash".

Alternatively the length of on/off pen stokes in the
texture. "11" is a high density dotted line, "33" is a
short dashed line and "1333" is a dot-dashed line.

• lwd and col specify the line width and colour.

A Line Graph

> x = 1995:2005

> y = c(81.1, 83.1, 84.3, 85.2, 85.4, 86.5,

88.3, 88.6, 90.8, 91.1, 91.3)

> plot.new()

> plot.window(xlim = range(x),

ylim = range(y))

> lines(x, y, lwd = 2)

> title(main = "A Line Graph Example",

xlab = "Time",

ylab = "Quality of R Graphics")

> axis(1)

> axis(2)

> box()

A Line Graph Example

Time

Q
ua

lit
y

of
 R

 G
ra

ph
ic

s

1996 1998 2000 2002 2004

82
84

86
88

90

Line Graph Variations

Additional forms can be produced by the lines function.
This is controlled by the type argument.

type="l" : line graph,

type="s" : step function — horizontal first,

type="S" : step function — vertical first,

side="h" : high density (needle) plot.

Additional variations:

type="p" : draw points,

type="b" : both points and lines,

type="o" : over-plotting of points and lines,

x

y
type = "l"

x

y

type = "s"
y

type = "S"

y

type = "h"

Drawing Straight Lines

The basic call has the forms:

abline(a=intercept, b=slope)

abline(h=numbers)

abline(v=numbers)

where

• The a / b form specifies a line in intercept / slope form.

• h specifies horizontal lines at the given y values.

• v specifies vertical lines at the given x values.

• Line texture, colour and width arguments can also be
given.

Straight Line Example

> x = rnorm(500)

> y = x + rnorm(500)

> plot.new()

> plot.window(xlim = c(-4.5, 4.5), xaxs = "i",

ylim = c(-4.5, 4.5), yaxs = "i")

> z = lm(y ~ x)

> abline(h = -4:4, v = -4:4, col = "lightgrey")

> abline(a = coef(z)[1], b = coef(z)[2])

> points(x, y)

> axis(1)

> axis(2, las = 1)

> box()

> title(main = "A Fitted Regression Line")

> title(sub = "(500 Observations)")

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

−4 −2 0 2 4

−4

−2

0

2

4

A Fitted Regression Line

(500 Observations)

Drawing Disconnected Line Segments

The basic call has the form:

segments(x0, y0, x1, y1)

where

• The x0, y0, x1, y1 arguments give the start and end
coordinates of the segments.

• Line texture, colour and width arguments can also be
given.

Rosettes

A rosette is a figure which is created by taking a series of
equally spaced points around the circumference of a circle
and joining each of these points to all the other points.

> n = 17

> theta = seq(0, 2 * pi, length = n + 1)[1:n]

> x = sin(theta)

> y = cos(theta)

> v1 = rep(1:n, n)

> v2 = rep(1:n, rep(n, n))

> plot.new()

> plot.window(xlim = c(-1, 1),

ylim = c(-1, 1), asp = 1)

> segments(x[v1], y[v1], x[v2], y[v2])

A Rosette with 17 Vertexes

A Curve Envelope

Here is another example which shows how the eye can
perceive a sequence of straight lines as a curve.

> x1 = seq(0, 1, length = 20)

> y1 = rep(0, 20)

> x2 = rep(0, 20)

> y2 = seq(0.75, 0, length = 20)

> plot.new()

> plot.window(xlim = c(0, 1),

ylim = c(0, 0.75), asp = 1)

> segments(x1, y1, x2, y2)

> box(col = "grey")

A Curve Envelope

Drawing Arrows

The basic call has the form:

arrows(x0, y0, x1, y1, code=int,

length=num, angle=num)

where

• The x0, y0, x1, y1 arguments give the start and end
coordinates of the arrows.

• code=1 – head at the start, code=2 – head at the end
and code=3 – a head at both ends.

• length and angle – length of the arrow head and angle
to the shaft.

Basic Arrows

Here is a simple diagram using arrows.

> plot.new()

> plot.window(xlim = c(0, 1), ylim = c(0, 1))

> arrows(.05, .075, .45, .9, code = 1)

> arrows(.55, .9, .95, .075, code = 2)

> arrows(.1, 0, .9, 0, code = 3)

> text(.5, 1, "A", cex = 1.5)

> text(0, 0, "B", cex = 1.5)

> text(1, 0, "C", cex = 1.5)

A

B C

Using Arrows as Error Bars

> x = 1:10

> y = runif(10) + rep(c(5, 6.5), c(5, 5))

> yl = y - 0.25 - runif(10)/3

> yu = y + 0.25 + runif(10)/3

> plot.new()

> plot.window(xlim = c(0.5, 10.5),

ylim = range(yl, yu))

> arrows(x, yl, x, yu, code = 3,

angle = 90, length = .125)

> points(x, y, pch = 19, cex = 1.5)

> axis(1, at = 1:10, labels = LETTERS[1:10])

> axis(2, las = 1)

> box()

●

●

●

●

●

● ●

●

●

●

A B C D E F G H I J

5.0

5.5

6.0

6.5

7.0

7.5

Using Arrows as Error Bars

Drawing Rectangles

The basic call has the form:

rect(x0, y0, x1, y1, col=str, border=str)

where

• x0, y0, x1, y1 give the coordinates of diagonally
opposite corners of the rectangles.

• col and border specify the colour of the interior and
border of the rectangles.

• line texture and width specifications can also be given.

Rectangle Example

The following code illustrates how a barplot or histogram
could be constructed.

> plot.new()

> plot.window(xlim = c(0, 5),

ylim = c(0, 10))

> rect(0:4, 0, 1:5, c(7, 8, 4, 3),

col = "lightblue")

> axis(1)

> axis(2, las = 1)

0 1 2 3 4 5

0

2

4

6

8

10

A Plot Composed of Rectangles

Drawing Polygons

The basic call has the form:

polygon(x, y, col=str, border=str)

where

• x and y give the coordinates of the polygon vertexes. NA
values separate polygons.

• col and border specify the colour of the interior and
border of the polygons.

• line texture and width specifications can also be given.

A Simple Polygon Example

Here is a simple example which shows how to produce a
simple polygon in a plot.

> x = c(0.32, 0.62, 0.88, 0.89, 0.59, 0.29)

> y = c(0.83, 0.61, 0.66, 0.18, 0.36, 0.14)

> plot.new()

> plot.window(xlim = range(x),

ylim = range(y))

> polygon(x, y, col = "lightyellow")

> box()

A Simple Polygon

Spiral Squares

> plot.new()

> plot.window(xlim = c(-1, 1),

ylim = c(-1, 1), asp = 1)

> x = c(-1, 1, 1, -1)

> y = c(1, 1, -1, -1)

> polygon(x, y, col = "cornsilk")

> vertex1 = c(1, 2, 3, 4)

> vertex2 = c(2, 3, 4, 1)

> for(i in 1:50) {

x = 0.9 * x[vertex1] + 0.1 * x[vertex2]

y = 0.9 * y[vertex1] + 0.1 * y[vertex2]

polygon(x, y, col = "cornsilk")

}

Spiral Squares

Drawing Text

The basic call has the form:

text(x, y, labels)

where

• x and y give the text coordinates.

• labels gives the actual text strings.

Optionally,

• font and col give the font and colour of the text,

• srt and adj give the rotation and justification of the
strings.

A Text Example

> plot.new()

> plot.window(xlim = c(0, 1), ylim = c(0, 1))

> abline(h = c(.2, .5, .8),

v = c(.5, .2, .8), col = "lightgrey")

> text(0.5, 0.5, "srt = 45, adj = c(.5, .5)",

srt=45, adj=c(.5, .5))

> text(0.5, 0.8, "adj = c(0, .5)", adj = c(0, .5))

> text(0.5, 0.2, "adj = c(1, .5)", adj = c(1, .5))

> text(0.2, 0.5, "adj = c(1, 1)", adj = c(1, 1))

> text(0.8, 0.5, "adj = c(0, 0)", adj = c(0, 0))

> axis(1); axis(2, las = 1); box()

sr
t =

 4
5,

 a
dj

=
c(

.5
, .

5)

adj = c(0, .5)

adj = c(1, .5)

adj = c(1, 1)
adj = c(0, 0)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Drawing Strings

Drawing a Legend

A simple example has the form:

legend(xloc, yloc, legend=text

lty=linetypes, lwd=linewidths,

pch=glyphname, col=colours,

xjust=justification, yjust=justification)

where

xloc and yloc give the coordinates where the
legend is to be placed and xjust and yjust give
the justification of the legend box with respect to
the location. The other values describe the legend
contents.

The legend function is very flexible. Consult its manual
entry for details.

Legend

> xe = seq(-3, 3, length = 1001)

> ye = dnorm(xe)

> xa = seq(-3, 3, length = 201)

> ya = dnorm(xa) + rnorm(201, sd = .01)

> ylim = range(ye, ya)

> plot.new()

> plot.window(xlim = c(-3, 3), ylim = ylim)

> lines(xe, ye, lty = "11", lwd = 2)

> lines(xa, ya, lty = "solid", lwd = 1)

> legend(3, max(ylim),

legend = c("Exact", "Approximate"),

lty = c("11", "solid"),

lwd = c(2, 1),

xjust = 1, yjust = 1, bty = "n")

> axis(1); axis(2, las = 1); box()

Exact
Approximate

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

Using a Legend in a Plot

Drawing Curves

• There are no general curve drawing primitives available
in R (yet).

• To draw a curve you must approximate it by a sequence
of straight line segments.

• The question is how many line segments are required to
obtain a visually “smooth” approximation to the curve.

Approximating the Normal Density
Using 31 Equally−Spaced Points

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

Lack of Smoothness

• Using 31 points to approximate the curve, there is a
noticeable lack of smoothness in regions where the
curve has high curvature.

• This is because our eye-brain system is good a detecting
large changes of direction but sees changes in direction
of less than 5◦ as “smooth.”

• Checking the changes of angle in the approximation
shows that there are some very large changes of angle.

• Increasing the number of approximating points to 331
means that there are no changes of direction which
exceed 5◦.

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

−3 −2 −1 0 1 2 3

0

10

20

30

40

50
A

bs
ol

ut
e

C
ha

ng
e

of
 A

ng
le

 (
D

eg
re

es
)

Change of Angle with 31 Points

Approximating the Normal Density
Using 331 Equally−Spaced Points

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●

●●●●
●●●

●●●
●●●

●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●

●●

−3 −2 −1 0 1 2 3

0

1

2

3

4

5
A

bs
ol

ut
e

C
ha

ng
e

of
 A

ng
le

 (
D

eg
re

es
)

Change of Angle with 331 Points

Nonuniform Point Placement

• It is wasteful to use equally spaced points to
approximate a curve. Regions with high curvature
require closely packed points while regions of low
curvature may need only a few points.

• This means that techniques which take account of
curvature can lead to approximations with many fewer
points.

• One technique is to place points so that the segment to
segment direction change is less than a fixed threshold
(e.g. 5◦).

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

Approximation With 51 Points

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●●●●●
●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

Approximation With 51 Points

Circles

The circle with centre (xc, yc) and radius R is defined by the
equation

(x− xc)
2 + (y − yc)

2 = R 2.

It can also be defined parametrically with the equations

x(t) = R cos t

y(t) = R sin t

for t ∈ [0, 2π).

There is no simple R function for drawing a circle. Circles
must be approximated with a regular polygon.

Using at least 71 vertexes for the polygon ensures that the
change of direction between edges is less than or equal to 5◦.

Drawing Circles

> R = 1

> xc = 0

> yc = 0

> n = 72

> t = seq(0, 2 * pi, length = n)[1:(n-1)]

> x = xc + R * cos(t)

> y = yc + R * sin(t)

> plot.new()

> plot.window(xlim = range(x),

ylim = range(y), asp = 1)

> polygon(x, y, col = "lightblue",

border = "navyblue")

A 71−Vertex Polygon Approximating a Circle

Ellipses

An ellipse is a generalisation of circle defined by the equation:(
x− xc

a

)2

+

(
y − yc

b

)2

= 1.

An ellipse can be defined in parametric form by:

x(t) = a cos t + xc,

y(t) = b sin t + yc,

with t ∈ [0, 2π).

The distortion of the ellipse happens in such a way that it can
be approximated by the same number of straight line
segments as a circle.

Drawing Ellipses

> a = 4

> b = 2

> xc = 0

> yc = 0

> n = 72

> t = seq(0, 2 * pi, length = n)[1:(n-1)]

> x = xc + a * cos(t)

> y = yc + b * sin(t)

> plot.new()

> plot.window(xlim = range(x),

ylim = range(y),

asp = 1)

> polygon(x, y, col = "lightblue")

An Ellipse

Rotation

We want to rotate (x, y) through an angle
θ about the origin to (x′, y′).

(x, y)

(x′, y′)

θ
φ

Rotation

We want to rotate (x, y) through an angle
θ about the origin to (x′, y′).

(x, y)

(x′, y′)

θ
φ

In polar coordinates:

x= R cos φ,

y= R sin φ.

Rotation

We want to rotate (x, y) through an angle
θ about the origin to (x′, y′).

(x, y)

(x′, y′)

θ
φ

In polar coordinates:

x= R cos φ,

y= R sin φ.

and:

x′= R cos(φ + θ) y′= R sin(φ + θ)

Rotation

We want to rotate (x, y) through an angle
θ about the origin to (x′, y′).

(x, y)

(x′, y′)

θ
φ

In polar coordinates:

x= R cos φ,

y= R sin φ.

and:

x′= R cos(φ + θ) y′= R sin(φ + θ)

= R(cos φ cos θ − sin φ sin θ) = R(cos φ sin θ + sin φ cos θ)

Rotation

We want to rotate (x, y) through an angle
θ about the origin to (x′, y′).

(x, y)

(x′, y′)

θ
φ

In polar coordinates:

x= R cos φ,

y= R sin φ.

and:

x′= R cos(φ + θ) y′= R sin(φ + θ)

= R(cos φ cos θ − sin φ sin θ) = R(cos φ sin θ + sin φ cos θ)

= x cos θ − y sin θ = x sin θ + y cos θ

Rotation Formulae

If the point (x, y) is rotated though an angle θ around the
origin to a new position (x′, y′) then

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ,

or in matrix terms(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
.

Rotated Ellipses

Often it is useful to consider rotated ellipses rather than
ellipses aligned with the coordinate axes. This can be done by
simply applying a rotation.

If the ellipse is rotated by an angle θ, its equation is

x(t) = a cos t cos θ − b sin t sin θ + xc

y(t) = a cos t sin θ + b cos t sin θ + yc

for t ∈ [0, 2π).

Again, the same number of straight line segments can be used
to approximate the ellipse.

Drawing Rotated Ellipses

> a = 4

> b = 2

> xc = 0

> yc = 0

> n = 72

> theta = 45 * (pi / 180)

> t = seq(0, 2 * pi, length = n)[1:(n-1)]

> x = xc + a * cos(t) * cos(theta) -

b * sin(t) * sin(theta)

> y = yc + a * cos(t) * sin(theta) +

b * sin(t) * cos(theta)

> plot.new()

> plot.window(xlim = range(x),

ylim = range(y), asp = 1)

> polygon(x, y, col = "lightblue")

A Rotated Ellipse

Ellipses in Statistics

Suppose that (X1, X2) has a bivariate normal distribution,
with Xi having mean µi and variance σ2

i , and the correlation
between X1 and X2 being ρ.

If we define
d = arccos ρ,

the equations

x = µ1 + k σ1 cos(t + d),

y = µ2 + k σ2 cos(t),

describe the contours of the density of (X1, X2).

Choosing the appropriate value for k makes it possible to
draw prediction ellipses for the bivariate normal distribution.

Statistical Ellipses

Here µ1 = µ2 = 0, σ1 = σ2 = 1 and k = 1.

> n = 72

> rho = 0.5

> d = acos(rho)

> t = seq(0, 2 * pi, length = n)[1:(n-1)]

> plot.new()

> plot.window(xlim = c(-1, 1),

ylim = c(-1, 1), asp = 1)

> rect(-1, -1, 1, 1)

> polygon(cos(t + d), y = cos(t))

> segments(-1, 0, 1, 0, lty = "13")

> segments(0, -1, 0, 1, lty = "13")

> axis(1); axis(2, las = 1)

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Density Ellipse: ρ = .5

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Density Ellipse: ρ = −.75

Spirals

A spiral is a path which circles a point at a radial distance
which is changing monotonically.

x(t) = R(t) cos t

y(t) = R(t) sin t

for t > 0.

In particular, an exponential spiral is obtained when

R(t) = αt

where α < 1.

Such a path resembles a snail or nautilus shell.

Drawing a Spiral

These commands draw a spiral, centred on (0, 0). The spiral
does 5 revolutions:

> k = 5

> n = k * 72

> theta = seq(0, k * 2 * pi, length = n)

> R = .98^(1:n - 1)

> x = R * cos(theta)

> y = R * sin(theta)

> plot.new()

> plot.window(xlim = range(x),

ylim = range(y), asp = 1)

> lines(x, y)

An Exponential Spiral

Filling Areas In Line Graphs

Annual year temperatures in New Haven (1920-1970).

> y

[1] 49.3 51.9 50.8 49.6 49.3 50.6 48.4

[8] 50.7 50.9 50.6 51.5 52.8 51.8 51.1

[15] 49.8 50.2 50.4 51.6 51.8 50.9 48.8

[22] 51.7 51.0 50.6 51.7 51.5 52.1 51.3

[29] 51.0 54.0 51.4 52.7 53.1 54.6 52.0

[36] 52.0 50.9 52.6 50.2 52.6 51.6 51.9

[43] 50.5 50.9 51.7 51.4 51.7 50.8 51.9

[50] 51.8 51.9

The corresponding years.

> x = 1920:1970

1920 1930 1940 1950 1960 1970

48

50

52

54

Average Yearly Temperature

D
eg

re
es

 F
ah

re
nh

ei
t

Year

Plot Construction

Setting up the plot and drawing the background grid.

plot.new()

plot.window(xlim = c(1920, 1970), xaxs = "i",

ylim = c(46.5, 55.5), yaxs = "i")

abline(v = seq(1930, 1960, by = 10),

col = "grey")

abline(h = seq(48, 54, by = 2), col = "grey")

Drawing the filled polygon.

xx = c(1920, x, 1970)

yy = c(46.5, y, 46.5)

polygon(xx, yy, col = "grey")

Finishing up

Add the axes, bounding box and annotation.

axis(1)

axis(2, las = 1)

box()

title(main = "Average Yearly Temperature")

title(ylab = "Degrees Fahrenheit")

title(xlab = "Year")

Some Graphics Examples

Here is a short set of examples to show the kind of graphics
that is possible to create using the R graphics primitives.

These are not necessarily all “good” graphs. They just show
what is possible with a little effort.

0 5 10 15 20 25 30

0

2

4

6

8

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
● ●

●

●

●
●

Enhanced Presentation Graphics

Points and Lines with Drop Shadows.

0 10 20 30 40

Lamb

Mutton

Pigmeat

Poultry

Beef

New Zealand Meat Consumption by Category

Percentage in Category

1980 1985 1990 1995 2000

0

20

40

60

80

Don't Create Plots Like This!

Not even in the privacy of your own room.

100

80

60

40

20

0

%
 O

ther

100

80

60

40

20

0

%
 N

at
io

na
l

100 80 60 40 20 0

% Labour

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

New Zealand Electorate Results, 1999

1960 1970 1980 1990 2000

−0.2

0.0

0.2

0.4

0.6

Annual Global Temperature Increase (°C)

Time

5

10

15

20
Jan

Feb

M
ar

A
pr

M
ay

JunJul

Aug

S
ep

O
ct

Nov

Dec

Average Monthly Temperatures in London

$4.0
$4.6

$5.5

$6.2
$6.7

$7.4
$7.8

$8.5

$9.7

$10.7 $10.8

1966−
'67

'67−
'68

'68−
'69

'69−
'70

'70−
'71

'71−
'72

'72−
'73

'73−
'74

'74−
'75

'75−
'76

'76−
'77

New York State
Total Budget Expenditures and
Aid to Localities In billions of dollars

Total Budget

Total Aid to
Localities*
*Varying from a low
of 56.7 percent of
total in 1970−71
to a high of 60.7
percent in 1972−73

Estimated Recommended

$4.0
$4.6

$5.5

$6.2
$6.7

$7.4
$7.8

$8.5

$9.7

$10.7 $10.8

1966−
'67

'67−
'68

'68−
'69

'69−
'70

'70−
'71

'71−
'72

'72−
'73

'73−
'74

'74−
'75

'75−
'76

'76−
'77

New York State
Total Budget Expenditures and
Aid to Localities In billions of dollars

Total Budget

Total Aid to
Localities*
*Varying from a low
of 56.7 percent of
total in 1970−71
to a high of 60.7
percent in 1972−73

Estimated Recommended

0°
− 9°

− 21°
− 11°

− 20°
− 24°

− 30°− 26°

Oct.18Nov.9Nov.14Nov.28Dec.1Dec.6Dec.7

100 km

Moscow

MaloyaroslavetsVyazma

Polotsk

Minsk

 Vilna Smolensk

Borodino

Dnieper R.

Berezina R.

Nieman R.

The Minard Map of Napoleon's 1812 Campaign in Russia

Packaging Graphics Functionality

We have seen lots of ways of drawing graphs. Now let’s look
at how this capability can be packaged as general purpose
tools (i.e. R functions).

There are two types of tool to consider.

• Tools which set up and draw a complete plot,

• Tools which add to existing plots.

The tools are slightly simplified versions of real tools which
are part of R, or can be found in extension libraries.

A Scatterplot Function

There are a number of tasks which must be solved:

• Determining the x and y ranges.

• Setting up the plot window.

• Plotting the points.

• Adding the plot axes and frame.

Each of these tasks is relatively simple.

Scatterplot Code

Here are the key steps required to produce a scatterplot.

• Determine the x and y ranges.

xlim = range(x)

ylim = range(y)

• Set up the plot window.

plot.new()

plot.window(xlim = xlim, ylim = ylim)

• Plot the points.

points(x, y)

A Scatterplot Function

By “wrapping” the steps in a function definition we can
produce a simple scatter plot function.

> scat =

function(x, y) {

xlim = range(x)

ylim = range(y)

plot.new()

plot.window(xlim = xlim, ylim = ylim)

points(x, y)

axis(1)

axis(2)

box()

}

Using The Scatterplot Function

We can use this function just like any other R function to
produce scatter plots.

> xv = 1:100

> yv = rnorm(100)

> scat(xv, yv)

> title(main = "My Very Own Scatterplot")

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 20 40 60 80 100

−
2

−
1

0
1

2

My Very Own Scatterplot

Customisation

The scat function is very restricted in what it can do. Let’s
add a little flexibility.

• Optional plotting symbol specification

• Optional colour specification

• Optional range specification

• Optional logarithmic axes

• Optional annotation

The Customised Scatterplot Function

> scat =

function(x, y, pch = 1, col = "black",

log = "", asp = NA,

xlim = range(x, na.rm = TRUE),

xlim = range(y, na.rm = TRUE),

main = NULL, sub = NULL,

xlab = NULL, ylab = NULL) {

plot.new()

plot.window(xlim = xlim, ylim = ylim,

log = log, asp = asp)

points(x, y, pch = pch, col = col)

axis(1); axis(2); box()

title(main = main, sub = sub,

xlab = xlab, ylab = ylab)

}

An Ellipse Drawing Function

Now we show a function which can be draw a single ellipse
with centre (ax,yc), axis lengths a and b and rotated by theta

degrees.

It is possible to pass the function parameters which change the
colour of the ellipse and its border, and to change the line type
used for the border.

A real ellipse drawing function would be more complex (but
harder to fit onto a single slide).

An Ellipse Drawing Function

> ellipse =

function(a = 1, b = 1, theta = 0,

xc = 0, yc = 0, n = 72, ...)

{

t = seq(0, 2 * pi, length = n)[-n]

theta = theta * (pi / 180)

x = xc + a * cos(theta) * cos(t) -

b * sin(theta) * sin(t)

y = yc + a * sin(theta) * cos(t) +

b * cos(theta) * sin(t)

polygon(x, y, ...)

}

Querying and Specifying Graphics State

The par function provides a way of maintaining graphics
state in the form of a variety of graphics parameters.

The call

> par(mar = c(4, 4, 2, 2))

sets the plot margins to consist of 4, 4, 2 and 2 lines of text.

The call

> par("mar")

returns the current setting of the mar parameter.

There are a large number of graphics parameters which can
be set and retrieved with par.

Device, Figure and Plot Size Enquiries

The graphics system uses inches as its basic measure of
length. Note that 1 inch = 2.54 cm.

par("din") : the device dimensions in inches,

par("fin") : the current figure dimensions in inches,

par("pin") : the current plot region dimensions in inches,

par("fig") : NDC coordinates for the figure region,

par("plt") : NDC coordinates for the plot region,

NDC = normalised device coordinates.

User Coordinate System Enquiries

The upper and lower x and y limits for the plot region may
not be exactly those specified by a user (because of a possible
6% expansion). The exact limits can be obtained as follows:

> usr = par("usr")

After this call, usr will contain a vector of four numbers. The
first two are the left and right x scale limits and the second
two are the bottom and top y scale limits.

A call to par can also be used to change the limits.

> par(usr = c(0, 1, 10, 20))

The specified limits must be sensible.

Computing Direction Change in Degrees

Here is a sketch of how the change of angle computations
were done in the “smooth curve” examples. This works by
transforming from data units to inches.

> x = c(0, 0.5, 1.0)

> y = c(0.25, 0.5, 0.25)

> plot(x, y, type = "l")

> dx = diff(x)

> dy = diff(y)

> pin = par("pin")

> usr = par("usr")

> ax = pin[1]/diff(usr[1:2])

> ay = pin[2]/diff(usr[3:4])

> diff(180 * atan2(ay * dy, ax * dx) / pi)

[1] -115.2753

0.0 0.2 0.4 0.6 0.8 1.0

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

x

y

Multifigure Layouts

par can be used to set up arrays of figures on the page. These
arrays are then filled row-by-row or column-by-column.

The following example declares a two-by-two array to be
filled by rows and then produces the plots.

> par(mfrow=c(2, 2))

> plot(rnorm(10), type = "p")

> plot(rnorm(10), type = "l")

> plot(rnorm(10), type = "b")

> plot(rnorm(10), type = "o")

A two-by-two array to be filled by columns would be declared
with

> par(mfcol = c(2, 2))

●

●

●
●

●

●

● ●

●

●

2 4 6 8 10

−
0.

5
0.

5
1.

0
1.

5

Index

rn
or

m
(1

0)

2 4 6 8 10

−
2

−
1

0
1

2

Index

rn
or

m
(1

0)
●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

−
1.

0
0.

0
1.

0
2.

0

Index

rn
or

m
(1

0)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

−
2.

0
−

1.
0

0.
0

1.
0

Index

rn
or

m
(1

0)

Eliminating Waste Margin Space

It can be useful to eliminate redundant space from multi-way
arrays by trimming the margins a little.

> par(mfrow=c(2, 2))

> par(mar = c(5.1, 4.1, 0.1, 2.1))

> par(oma = c(0, 0, 4, 0))

> plot(rnorm(10), type = "p")

> plot(rnorm(10), type = "l")

> plot(rnorm(10), type = "b")

> plot(rnorm(10), type = "o")

> title(main = "Plots with Margins Trimmed",

outer = TRUE)

Here we have trimmed space from the top of each plot, and
placed a 4 line outer margin at the top of of the layout.

●

●

●
●

●

●

● ●

●

●

2 4 6 8 10

−
0.

5
0.

0
0.

5
1.

0
1.

5

Index

rn
or

m
(1

0)

2 4 6 8 10

−
2

−
1

0
1

2

Index

rn
or

m
(1

0)
●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

−
1.

0
0.

0
1.

0
2.

0

Index

rn
or

m
(1

0)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

−
2.

0
−

1.
0

0.
0

1.
0

Index

rn
or

m
(1

0)

Plots with Margins Trimmed

	Lecture: R Graphics Lectures
	Computer Graphics
	Starting a New Plot
	Figure: Margins
	Controlling The Margins
	Setting the Axis Scales
	Manipulating the Axis Limits
	Aspect Ratio Control
	Drawing Axes
	Axis Customisation
	Additional Axis Customisation
	Plot Annotation
	Customising Plot Annotation
	Framing a Plot
	Example: A ``Bare'' Plot
	Figure: Example: A ``Bare'' Plot

	Some Drawing Primitives
	Drawing Points
	Graphical Plotting Symbols
	Plotting Symbols and Colour
	Coloured Plotting Symbols
	Drawing Connected Line Segments
	A Line Graph
	Figure: A Line Graph

	Line Graph Variations
	Figure: Line Graph Types
	Drawing Straight Lines
	Straight Line Example
	Figure: Straight Line Example

	Drawing Disconnected Line Segments
	Rosettes
	Figure: Rosettes

	A Curve Envelope
	Figure: A Curve Envelope

	Drawing Arrows
	Basic Arrows
	Figure: Basic Arrows

	Using Arrows as Error Bars
	Figure: Using Arrows as Error Bars

	Drawing Rectangles
	Rectangle Example
	Figure: Rectangle Example

	Drawing Polygons
	A Simple Polygon Example
	Figure: A Simple Polygon Example

	Spiral Squares
	Figure: Spiral Squares

	Drawing Text
	A Text Example
	Figure: A Text Example

	Drawing a Legend
	Legend
	Figure: Legend

	Drawing Curves
	Figure: Displaying a Curve
	Lack of Smoothness
	Figure: Change of Angle
	Figure: Displaying a Curve
	Figure: Change of Angle
	Nonuniform Point Placement
	Figure: Nonuniform Point Placement
	Figure: Nonuniform Point Placement

	Circles
	Drawing Circles
	Figure: Drawing Circles

	Ellipses
	Drawing Ellipses
	Figure: Drawing Ellipses

	Rotation
	Rotation Formulae
	Rotated Ellipses
	Drawing Rotated Ellipses
	Figure: Drawing Rotated Ellipses

	Ellipses in Statistics
	Statistical Ellipses
	Figure: Statistical Ellipses
	Figure: Statistical Ellipses

	Spirals
	Drawing a Spiral
	Figure: Drawing a Spiral

	Filling Areas In Line Graphs
	Figure: The Plot
	Plot Construction
	Finishing up
	Some Graphics Examples
	Figure: Enhanced Presentation Graphics
	Figure: Meat Barplot
	Figure: Filled Time Series Graphs
	Figure: Barycentric Plot
	Figure: Colour Ramp
	Figure: Circular Histogram
	Figure: Tufte Barplot
	Figure: Tufte Noise
	Figure: Tufte Signal
	Figure: Colour Cube
	Figure: Lattitude Longtitude
	Figure: The Minard Map
	Packaging Graphics Functionality
	A Scatterplot Function
	Scatterplot Code
	A Scatterplot Function
	Using The Scatterplot Function
	Figure: Using The Scatterplot Function

	Customisation
	The Customised Scatterplot Function
	An Ellipse Drawing Function
	An Ellipse Drawing Function
	Querying and Specifying Graphics State
	Device, Figure and Plot Size Enquiries
	User Coordinate System Enquiries
	Computing Direction Change in Degrees
	Figure: Computing Direction Change in Degrees

	Multifigure Layouts
	Figure: Multifigure Layouts

	Eliminating Waste Margin Space
	Figure: Eliminating Waste Margin Space

