Trellis Plots

Trellis Graphics

- Trellis Graphics is a family of techniques for viewing complex, multi-variable data sets.
- The ideas have been around for a while, but were formalized by researchers at Bell Laboratories during the 1990s.
- The techniques were given the name Trellis because they usually result in a rectangular array of plots, resembling a garden trellis.
- A number of statistical software systems provide multi-panel conditioning plots under the name Trellis plots or Crossplots.

Trellis Graphics in \mathbf{R}

- The Trellis graphics system in R was written by Deepayan Sarkar of the University of Wisconsin, using the "Grid" graphics system written by Paul Murrell of Auckland.
- The system is a reimplementation of the the original Bell Labs Trellis system created by Bill Cleveland and Rick Becker.
- These class notes should show you all you need to know about producing simple Trellis displays.
- More extensive documentation is available on the class web site.

Using Trellis Graphics in \mathbf{R}

- The trellis graphics system exists in parallel with the normal R graphics system.
- You cannot mix commands from the two systems, but Trellis provides equivalents to most of the normal graphics system commands.
- In order to produce Trellis plots you must load the "Lattice" library and start a "trellis aware" device.

$$
\begin{aligned}
& \text { > library(lattice) } \\
& \text { > trellis.device() }
\end{aligned}
$$

Conditioning

- Trellis plots are based on the idea of conditioning on the values taken on by one or more of the variables in a data set.
- In the case of a categorical variable, this means carrying out the same plot for the data subsets corresponding to each of the levels of that variable.
- In the case of a numeric variable, it means carrying out the same plots data subsets corresponding to intervals of that variable.

Example: Earthquake Locations

- R contains a data set called quakes which gives the location and magitude of earthquakes under the Tonga Trench, to the North of New Zealand.
- The spatial distribution of earthquakes in the area is of major interest, because this enables us to "see" the structure of the earthquake faults.
- Here is a plot from the Geology department at Berkeley, which tries to present the the spatial structure.

Tonga

Tonga Trench Earthquakes

Yellow:	$0-70 \mathrm{~km}$
Orange:	$71-300 \mathrm{~km}$
Red:	$300-800 \mathrm{~km}$

Problems with this Presentation

- There is a good deal of overplotting and this makes it hard to see all of the structure present in the data.
- The map makes it clear that we are looking down from above on the scene, but deeper quakes appear to be plotted on top of shallower ones.
- The division of depths into three intervals and presentation using colour is relatively crude.

A Trellis Plot

- We can overcome many of the problems of the previous plot by using a trellis display.
- We create the display by producing a sequence of graphs, each of which presents a different range of depths.
- In this case we will have a slight overlap of the intervals being plotted.

Explanation

- The plot is read left-to-right and bottom-to-top.
- Depth increases progressively through the plot.
- There are eight different depth intervals, each containing approximately the same number of earthquakes.
- Consecutive depth intervals overlap by a small amount.
- The range of depths covered by each interval is indicated in the bar above each plot.

Intepretation

- The shallower earthquakes are concentrated on two inclined fault planes.
- The most easterly of these fault planes is the one which bisects New Zealand.
- The Westerly fault plane has mainly shallow earthquakes, while the Easterly fault plane has both shallow and deep earthquakes.
- The deep earthquakes show distinct small angular fishhook structure which is not visible in the earlier plot.

Example: Barley Yields

- This example is concerned with the yields obtained from field trials of barley seed.
- The data comes from the 1930s so there is no direct genetic modification going here.
- The trials were conducted in 1931 and 1932, using:
- 10 different strains of barley
- 6 different growing sites
- There are $2 \times 10 \times 6=120$ observations.
- It was suspected for a long time that there was something odd about this data set.

The Trellis Plot

- The plot we will look at shows that barley yields for each of the 10 strains at the 6 sites and for each year.
- The results for each site are plotted on a separate graph - i.e. we are working conditional on the site.
- The yields from the two years are superimposed on each of the plots.

The Trellis Technology

- There are a variety of displays which can be produced by Trellis, including:
- Bar Charts
- Dot Charts
- Box and Whisker Plots
- Histograms
- Density Traces
- QQ Plots
- Scatter Plots
- A common framework is used to produce all these plots.

Some Terminology

- Every Trellis display consists of a series of rectangular panels, laid out in a regular row-by-column array.
- The indexing of the array is left-to-right, bottom-to-top.
- The x axes of all the panels are identical. This is also true for the y axes.
- Each panel of the a display corresponds to conditioning, either on the levels of a factor, or on sub-intervals of the range of a numeric variable.

Shingles

- The conditioning carried out in the earthquake plot is described by a shingle.
- A shingle consists of a number of overlapping intervals (like the shingles on a roof of a house).
- Assuming that the earthquake depths are contained in the variable depth, the shingle is created as follows.

$$
\begin{aligned}
& \text { > depth }=\text { quakes\$depth } \\
& \text { > Depth }=\text { equal.count(depth, number=8, } \\
& \text { overlap=.1) }
\end{aligned}
$$

- The shingle assigned to Depth has 8 intervals with adjacent intervals having 10% of their values in common.

Shingles

- A shingle contains the numerical values it was created from and can be treated like a copy of that variable. For example:

```
> range(Depth)
[1] 40 680
> range(depth)
[1] 40 680
```

- A shingle also has the information attached to it. This can be displayed by printing or plotting the shingle.
> plot(Depth)

Producing the Plot

- The display of the earthquakes is produced by the function xyplot, which is the Trellis variant of a scatter plot function.
- The plot was produced as follows:

$$
\begin{aligned}
& >\text { Depth }=\text { equal.count (quakes } \$ \text { depth, } \\
& \text { number }=8, \\
& \text { overlap }=.1 \text {) } \\
& >\text { xyplot (lat } \sim \text { long | Depth, data }=\text { quakes, } \\
& \text { xlab }=\text { "Longtitude", } \\
& \text { ylab }=\text { "Lattitude") }
\end{aligned}
$$

- There are two steps here (i) creating the shingle and (ii) producing the display.

The Plot Formula

- The first argument to xyplot is a symbolic formula describing the plot.
- In this case the formula is:
lat ~ long | Depth
which is an instruction to plot lat on the y axis against long on the x axis with conditioning intervals as described in Depth.
- The second argument to xyplot specifies which data frame the data for the plot should be obtained from.
- Additional arguments control other aspects of the plot.

Unconditional Plots

- The xyplot function can be used to produced an unconditional plot by omitting the conditioning specification from the plot formula.

$$
\begin{gathered}
\text { > xyplot(lat } \sim \text { long, data }=\text { quakes, } \\
\text { xlab }=\text { "Longtitude", } \\
\text { ylab }=\text { "Lattitude" })
\end{gathered}
$$

The Barley Yield Plot

- The barley yield plot is produced by the function dotchart which can be used to numeric values against a categorical variable.
- In this case, the numeric variable is the barley yield and the categorical variable is the seed strain.
- We also condition on the value of another variable, the growing site.

A First Attempt

- The following code is a simple attempt at creating a dot chart using similar code to that for the earthquakes.

$$
\begin{gathered}
>\text { dotplot(variety ~ yield | site, } \\
\text { data = barley) }
\end{gathered}
$$

A Second Attempt

- We could also try conditioning on both site and year.

$$
\begin{gathered}
>\text { dotplot(variety ~ yield | site } * \text { year, } \\
\text { data = barley) }
\end{gathered}
$$

A Third Attempt

- What we need is to superimpose the two years for each site on a single panel.

$$
\begin{aligned}
& >\text { dotplot }(v a r i e t y ~ \sim \text { yield | site, } \\
& \text { data }=\text { barley } \\
& \text { panel }=\text { panel. superpose } \\
& \text { group }=\text { year, } \\
& \\
& \text { pch }=c(1,3))
\end{aligned}
$$

A Fourth Attempt

- The last plot is quite close.
- We need to add a legend which indicates which year is which.

$$
\begin{aligned}
& >\text { dotplot(variety } \sim \text { yield | site, } \\
& \text { data }=\text { barley, } \\
& \text { panel }=\text { panel.superpose, } \\
& \text { group }=\text { year, pch }=c(1,3), \\
& \text { key }=\text { list }(\text { space }=\text { "right", } \\
& \text { transparent }=\operatorname{TRUE}, \\
& \text { points }=\operatorname{list}(p c h=c(1,3), \\
& \operatorname{col}=1: 2), \\
& \text { text }=\text { list }(c(" 1932 ", " 1931 "))))
\end{aligned}
$$

Choice of Colour Scheme

- The default colour scheme used by Trellis uses light colours on a medium-gray background.
- This is a bad choice of colour scheme because there is less contrast between foreground colours and the background than there might be.
- It is a good idea to use an alternative colour scheme which uses a dark colours on a white background.

$$
\begin{aligned}
& \text { > trellis.par.set(theme = col.whitebg()) } \\
& \text { > xyplot(lat } \sim \text { long | Depth, data }=\text { quakes) }
\end{aligned}
$$

Titles and Axis Annotation

- As with all graphics it is possible to add a title and axis annotation using main=, lab= and ylab= arguments.
> xyplot(lat ~ long | Depth, data = quakes, main = "Tonga Trench Earthquakes",
xlab = "Longtitude", ylab = "Lattitude")

Tonga Trench Earthquakes

Layout Control

- By default, Trellis usually chooses a good plot layout, but sometimes it is useful to override the choice using the layout argument.
- The layout argument should be a vector of three values giving the number of rows, number of columns and number of pages desired for the display.
- For example, we can rearrange the earthquake plot as follows:

$$
\begin{gathered}
>\text { xyplot }(l a t \sim \text { long | Depth, data }=\text { quakes, } \\
\text { layout }=c(4,2,1) \\
\text { xlab }=\text { "Longtitude", } \\
\\
\text { ylab }=\text { "Lattitude" })
\end{gathered}
$$

Aspect Ratio Control

- The panels in the previous plot are rather too tall relative to their widths.
- By default, plots are sized so that they they occupy the full surface of the output window.
- This can changed by specifying the aspect ratio for the plots.

$$
\begin{aligned}
& >\text { xyplot }(\text { lat } \sim \text { long | Depth, data }=\text { quakes, } \\
& \text { aspect }=1, \\
& \\
& \text { layout }=c(4,2,1) \\
& \\
& \text { xlab }=\text { "Longtitude" } \\
& \\
& \text { ylab }=\text { "Lattitude" })
\end{aligned}
$$

Trellis Examples

- For the rest of the lecture we will look at a variety of examples of Trellis plots.
- This is really just scratching the surface of what can be done with trellis.

Death Rates by Gender and Location

- In this example we'll look at the Virginia death rate data.
- The data values are death rates per 1000 of population cross-classified by age and population group.
- We are intested in how death rate changes with age and how the death rates in the different population groups compare.

Data Manipulation

- The data values are stored by R as a matrix.
- We first have to turn the death rates into a vector and create the cross-classifying factors.
> rate = as.vector(VADeaths)
> age $=$ row(VADeaths, as.factor $=$ TRUE)
> group $=$ col (VADeaths, as.factor $=$ TRUE)

Dotchart 1

- We start by displaying deaths against age, conditional on population group.
- The command below uses layout to force the panels to be stacked above each other to make comparisons easy.

$$
\begin{aligned}
& >\operatorname{dotplot}(\text { group } \sim \text { rate | age, } \\
& \text { xlab }=\text { "Death Rate (per 1000)" }, \\
& \\
& \text { layout }=c(1,5,1))
\end{aligned}
$$

Dotchart 2

- The first display is hard to read because the variantion within each age group is "noisy."
- We could try to get around this by ordering the population categories differently.
- Alternatively we can interchange the roles of the cross-classifying variables.

$$
\begin{aligned}
& >\operatorname{dotplot}(\text { age } \sim \text { rate | group, } \\
& \text { xlab }=\text { "Death Rate }(\text { per 1000)" }, \\
& \text { layout }=c(1,4,1))
\end{aligned}
$$

Dotchart 3

- The second display is better than the first, but can improve it with a different ordering of the panels.
- We'll arange the panels in a 2×2 array.
- This will allow us to make direct male/female and urban/rural comparisons.

$$
\begin{aligned}
& >\text { dotplot (age } \sim \text { rate | group, } \\
& \text { xlab }=\text { "Death Rate (per 1000)", } \\
& \text { layout }=c(2,2,1))
\end{aligned}
$$

Alternative Displays

- The previous displays presented the data in "dotchart" displays.
- There are other alternatives, barcharts for example.

```
> barchart(age ~ rate | group,
    xlab = "Death Rate (per 1000)",
    layout \(=c(2,2,1))\)
```


Heights of Singers

- In this example we'll examine the heights of the members of a large choral society.
- The values are in a data set called singer which is in the Lattice data library. They can be loaded with the data command once the Lattice library is loaded.
- The variables are named height (inches) and voice.part.

$$
\begin{aligned}
& \text { > bwplot (voice.part } \sim \text { height, data=singer, } \\
& \text { xlab="Height (inches)") } \\
& >\text { qqmath }(\sim \text { height | voice.part, } \\
& \text { aspect }=1 \text {, data = singer) }
\end{aligned}
$$

Measurement of Exhaust from Burning Ethanol

- The ethanol data frame records 88 measurements (rows) for three variables (columns) NOx, C, and E from an experiment in which ethanol was burned in a single cylinder automobile test engine.
- NOx gives the concentration of nitric oxide (NO) and nitrogen dioxide (NO2) in engine exhaust, normalised by the work done by the engine.
- C gives the compression ratio of the engine.
- E gives the equivalence ratio at which the engine was run - a measure of the richness of the air/ethanol mix.

Exploring the Relationship

- We can get a basic idea of the form of the relatioship between the variables using a simple conditioning plot.

$$
\begin{gathered}
>E E=\text { equal.count }(\text { ethanol\$E, number }=9, \\
\text { overlap }=1 / 4) \\
>\operatorname{xyplot}(\mathrm{NOx} \sim \mathrm{C} \mid \mathrm{EE}, \text { data }=\text { ethanol })
\end{gathered}
$$

A More Complex Plot

- We can enhance the previous plot by adding a smooth line through the points in each panel.
- This is done using the lowess smoother.

$$
\begin{gathered}
>\text { xyplot (NOx } \sim \text { C | EE, data = ethanol, } \\
\text { xlab }=\text { "Compression Ratio", } \\
\text { ylab }=\text { "NOx (micrograms } / \mathrm{J}) ", \\
\text { panel }=\text { function }(x, y)\{ \\
\text { panel.grid(h }=-1, \mathrm{v}=2) \\
\text { panel.xyplot }(x, y) \\
\text { llines(lowess }(x, y)) \\
\text { \}) }
\end{gathered}
$$

