Statistics 120 Good and Bad Graphs

∍First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

The Plan

- In this lecture we will try to set down some basic rules for drawing good graphs.
- We will do this by showing that violating the rules produces bad graphs.
- Later in the course we see that there is a solid perceptual basis for some of these rules.

Data Content

- It does not make sense to use graphs to display very small amounts of data.
- The human brain is quite capable of grasping one two, or even three values.

Data Relevance

- Graphs are only as good as the data they display.
- No amount of creativity can produce a good graph from dubious data.

Auckland City Council: City Scene

Complexity

- Graphs should be no more complex than the data which they portray.
- Unnecessary complexity can be introduced by
 - irrelevant decoration
 - colour
 - 3d effects
- These are collectively known as "chartjunk."

Age Structure of College Enrolment (1972-1976)

This graph presents five values. It uses six colours, unnecessary perspective and a split axis to do so.

American Education Magazine.

First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Age Structure of College Enrolment

Percent of Total Enrolment, Aged 25 and Over

Year

Age Structure of College Enrolment

Percent of Total Enrolment, Aged 25 and Over

Year

Share Results

The extra dimension used in this graph has confused even the person who created it.

The Washington Post, 1979.

Earnings Per Share and Dividends

First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Distortion

- Graphs should not provide a distorted picture of the values they portray.
- Distortion can be either deliberate or accidental.
- (Of course, it can be useful to know how to produce a graph which bends the truth.)

FACULTIES

∍First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Faculty Size

Percentage of Female Students

First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

The "Lie Factor"

- Ed Tufte of Yale University has defined a "lie factor" as a measure of the amount of distortion in a graph. (Don't take this too seriously i.e don't learn it for the exam).
- The lie factor is defined to be:

 $Lie Factor = \frac{size \text{ of effect shown in graphic}}{size \text{ of effect shown in data}}$

• If the lie factor of a graph is greater than 1, the graph is exaggerating the size of the effect.

This line, representing 27.5 miles per gallon in 1985, is 5.3 inches long.

Data Effect =
$$\frac{27.5 - 18}{18} = 0.53$$
, Graph Effect = $\frac{5.3 - .6}{.6} = 7.83$,
Lie Factor = 14.8

Required Fuel Economy Standards:

year

Common Sources of Distortion

- The use of 3 dimensional "effects" is a common source of distortions in graphs.
- Another common source is the inappropriate use of linear scaling when using area or volume to represent values.

Lie Factor = 9.4

Is the bottom dollar note roughly half the size of the top one?

Purchasing Power of the Diminishing Dollar

Deliberate Distortion

- Sometimes graphs contain deliberate distortions.
- Usually these are an attempt to hide some feature of the data.

Median Net Incomes

Median Net Incomes

Year

Errors

- Sometimes distortions occur because of errors.
- This can be because the artist tried to be clever and sometimes because they don't understand statistics.

Source: DB Global Markets Research, Statistics NZ. HERALD GRAPHIC

Drawing Good Graphs

- If the "story" is simple, keep it simple.
- If the "story" is complex, make it look simple.
- Tell the truth don't distort the data.