
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Statistics 120
Data Handling

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Data Formats

• Usually raw data sets are entered using spreadsheet or
produced in a form suitable for reading into a
spreadsheet (see STAT 220 for more details).

• The most common spreadsheet format for data has the
variables as columns and the cases as rows.

• This kind of layout is refered to as a data matrix.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A Data Matrix In Excel

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Saving in Text Format

• The way to get data from Excel into R is to save it in
plain text format.

• To do this in Excel

– Select Save as . . . from the File menu

– Set the save file type to Text (Tab delimited)

• Files produced in this way can be read directly into R
(or other software systems).

• Other spreadsheets will provide a similar save method.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Reading Data Into R

• Data can be read into R with the read.table function.

> degrees = read.table(file.choose(),

sep = "\t", header = TRUE)

• This pops up a dialog box which lets you choose the file
to be read.

• Once the file is chosen, R will read the data from it.

• The extra arguments mean that R will assume:

– the columns are separated by Tab characters

– the first row contains the variable names

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Data Frames

• The data values read by read.table are stored in a
special kind of object called a data frame.

• Data frames are simply containers which hold variables.

• In the case of the University degrees data, the data
frame degrees holds the variables, Subject,
Bachelor, Masters and Doctorate.

• Obtaining the names of the variables in a data frame.

> names(degrees)

[1] "X" "Bachelor"

[3] "Masters" "Doctorate"

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Examining Data Frames

> degrees

X Bachelor Masters Doctorate

1 Commerce 3072 574 9

2 Humanities 3063 406 129

3 Communication 682 176 10

4 Law 521 53 3

5 Education 991 200 10

6 Sciences 1503 371 47

7 Medicine 745 52 19

8 Engineering 640 97 15

9 Resource/Planning 359 28 0

10 Art and Music 252 31 2

11 Agriculture, Etc. 243 18 0

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Using Case Names

• The read.table function has an option which allows
one of the variables it reads to be used as case names
(i.e. row names).

• The item is called row.names and its value is the
column index of the variable containing the names.

> degrees = read.table(file.choose(),

sep = "\t", header = TRUE,

row.names = 1)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A Data Frame with Named Cases

> degrees

Bachelor Masters Doctorate

Commerce 3072 574 9

Humanities 3063 406 129

Communication 682 176 10

Law 521 53 3

Education 991 200 10

Sciences 1503 371 47

Medicine 745 52 19

Engineering 640 97 15

Resource/Planning 359 28 0

Art and Music 252 31 2

Agriculture, Etc. 243 18 0

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Accessing the Variables in a Data Frame

• The variables in a data frame can be extracted by using
the $ operator.

> degrees$Bachelor

[1] 3072 3063 682 521 991 1503

[7] 745 640 359 252 243

> sum(degrees$Bachelor)

[1] 12071

• This quite quickly becomes tedious to type.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Attaching a Data Frame

• An alternative way of getting access to the variables in a
data is with an attach statement.

• This adds the data frame to the list of places that R
searches for variables.

> attach(degrees)

> Bachelor

[1] 3072 3063 682 521 991 1503

[7] 745 640 359 252 243

> sum(Bachelor)

[1] 12071

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting Data Frames

• One of the most important steps in any data analysis is
the section of a data subset of interest.

• The R function subset provides a convenient way of
extracting subsets of data frames.

> subset(degrees, Bachelor > 1000)
Bachelor Masters Doctorate

Commerce 3072 574 9

Humanities 3063 406 129

Sciences 1503 371 47

• The result of subsetting is a (smaller) data frame which
can be assigned to another variable.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting Cases and Variables

• The subset function can also be used to obtain a subset
of the variables in a data frame, or to simultaneously
subset both cases and variables.

> subset(degrees, Bachelor > 1000,

select = c(Bachelor, Masters))

Bachelor Masters

Commerce 3072 574

Humanities 3063 406

Sciences 1503 371

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Data Summary

• The R function summary provides a quick way of
getting a summary of the contents of a variable or data
frame.

> summary(degrees)
Bachelor Masters Doctorate

Min. : 243 Min. : 18.0 Min. : 0.00

1st Qu.: 440 1st Qu.: 41.5 1st Qu.: 2.50

Median : 682 Median : 97.0 Median : 10.00

Mean :1097 Mean :182.4 Mean : 22.18

3rd Qu.:1247 3rd Qu.:285.5 3rd Qu.: 17.00

Max. :3072 Max. :574.0 Max. :129.00

• The mean, median, quartiles and extremes are printed.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Categorical Data

• A categorical variable records which of several distinct
categories an observation falls into.

• Categorical values are typically described by words
rather than numbers.

• For example, a person’s hair colour can be classified as
black, blond, brown or red, and temperatures can be
classified as cold, warm or hot

• There is a distinction between these two cases.
Temperatures can be ordered

cold < warm < hot

while hair-color cannot.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Terminology

• A variable which takes on categorical values is called a
factor.

• When there is a natural ordering to the categories, such
a variable is called an ordered factor.

• The values which a factor can take on are called the
levels of a factor.

• The programming language term for a factor is an
enumerated type (enum in C and C++). There is no
equivalent of an ordered factor.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Operations on Categorical Variables

• It makes no sense to try to perform arithmetic
operations on categorical data.

• For example, it it hard to see what meaning could be
attached to the calculation

Black+Blond+Brown+Red
4

.

• The only manipulations which are sensible are counting
the number of observations falling in each category and
dividing the observations into groups which correspond
to the levels of a factor.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Creating Factors

• Factors are generaly created from character variables
with the function factor.

> sex = c("Male", "Female", "Male",

"Male", "Female")

> sexf = factor(sex)

> sexf

[1] Male Female Male Male Female

Levels: Female Male

• Note that the levels are obtained in alphabetic order.
This can be changed by specifying the levels, in the
desired order, as a second argument.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Creating Ordered Factors

• Ordered factors are generally created with the function
ordered.

• Specifying an order for factor levels is especially
important when creating ordered factors. In that case,
having the levels in alphabetical order is almost always
not what you want.

> temp = c("hot", "warm", "cold",

"cold", "hot", "hot")

> tempf = ordered(temp)

> tempf
[1] hot warm cold cold hot hot

Levels: cold < hot < warm

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Creating Ordered Factors

• A second argument can be used to specify the order of
the levels (for both factor and ordered).

> tempf = ordered(temp, levels = c("cold",

"warm", "hot"))

> tempf
[1] hot warm cold cold hot hot

Levels: cold < warm < hot

• The order of the levels of a factor can be changed by
reapplying factor or ordered.

> tempf = ordered(tempf, levels = c("hot",

"warm", "cold"))

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Categorical Variables and read.table

• When the columns of a data file contains character
strings, read.table converts them into factors.

• This is almost always the correct thing to do with
statistical data sets.

• The exception to this are row names, but these are
handled specially.

• The argument as.is to read.table provides a way of
overriding the conversion of character variables to
factors.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Data Summaries For Categorical Data

• The function summary can be applied to factors and
ordered factors. It prints a count of the numbers of
times each level occurs in the variable.

> summary(sexf)

Female Male

2 3

• When factors and ordered factors occur in data frames,
summary prints the appropriate summary for those
variables.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Cross Tabulation

• The function table can be used to carry out
cross-tabulation of several factors.

• Applying table to several factors produces a
contingency table, which shows how frequently
combinations of factors occur.

• As an example, we will look at a data set
students.dat contains observations of the hair colour,
eye colour and gender for 592 statistics students (the
data was collected in America in the 1970s).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The Student Data

The first 11 lines of the data are as follows.

Hair Eye Sex

Brown Green Female

Brown Brown Female

Brown Brown Female

Brown Blue Female

Brown Brown Female

Brown Blue Male

Brown Hazel Male

Blond Blue Male

Black Hazel Female

Blond Blue Male

...

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Reading and Summarising the Data

• Here is how to read the data.

> students = read.table("students.txt",

header = TRUE)

• And to create a basic summary.

> summary(students)

Hair Eye Sex

Black:108 Blue :215 Female:328

Blond:127 Brown:220 Male :264

Brown:286 Green: 64

Red : 71 Hazel: 93

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Cross Tabulation

• Here is how to produce a contingency table.

> attach(students)

> table(Hair, Eye)

Eye

Hair Blue Brown Green Hazel

Black 20 68 5 15

Blond 94 7 16 10

Brown 84 119 29 54

Red 17 26 14 14

• There is clearly an association between hair and eye
colour.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Cross Tabulation

• We can make the association more apparent by
reordering the levels of the factors.

> Hair = factor(Hair, levels = c("Black",

"Brown", "Red", "Blond"))

> Eye = factor(Eye, levels = c("Brown",

"Hazel", "Blue", "Green"))

> table(Hair, Eye)
Eye

Hair Brown Hazel Blue Green

Black 68 15 20 5

Brown 119 54 84 29

Red 26 14 17 14

Blond 7 10 94 16

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Cross Tabulation

• It is also interesting to examine the relationship
between hair colour and gender.

> table(Hair, Sex) > table(Sex)

Sex Sex

Hair Female Male Female Male

Black 52 56 328 264

Brown 158 128

Red 37 34

Blond 81 46

• Note that although there are only 25% more females
than males, there are nearly twice as many blond
females as blond males.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Higher-Order Cross Tabulation

• A higher-order cross-tabulation can be obtained by
including the effects of gender. This can be done with
the command

> table(Hair, Eye, Sex)

• The result of this is a three-way table, with rows
corresponding to hair colour, columns to eye-color and
sheets to gender.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Higher-Order Cross Tabulation

The first sheet produced by the analysis is for Females.

, , Sex = Female

Eye

Hair Brown Hazel Blue Green

Black 36 5 9 2

Brown 81 29 34 14

Red 16 7 7 7

Blond 4 5 64 8

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Higher-Order Cross Tabulation

The second sheet produced by the analysis is for Males.

, , Sex = Male

Eye

Hair Brown Hazel Blue Green

Black 32 10 11 3

Brown 38 25 50 15

Red 10 7 10 7

Blond 3 5 30 8

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The Need For Visualisation

1. Tables of counts clearly contain information, but it can
be hard to extract.

2. We need to have techniques which let us “see” the
patterns present in count data.

3. We will look at techniques for visualising count data
next time.

