Statistics 120
 Multipanel Conditioning Plots

Trellis Graphics

- Trellis Graphics is a family of techniques for viewing complex, multi-variable data sets.
- The ideas have been around for a while, but were formalized by researchers at Bell Laboratories during the 1990s.
- The techniques were given the name Trellis because they usually result in a rectangular array of plots, resembling a garden trellis.
- A number of statistical software systems provide multi-panel conditioning plots under the name Trellis plots or Crossplots.

Conditioning

- Trellis plots are based on the idea of conditioning on the values taken on by one or more of the variables in a data set.
- In the case of a categorical variable, this means carrying out the same plot for the data subsets corresponding to each of the levels of that variable.
- In the case of a numeric variable, it means carrying out the same plots data subsets corresponding to intervals of that variable.

Example: Earthquake Locations

- R contains a data set called quakes which gives the location and magitude of earthquakes under the Tonga Trench, to the North of New Zealand.
- The spatial distribution of earthquakes in the area is of major interest, because this enables us to "see" the structure of the earthquake faults.
- Here is a plot from the Geology department at Berkeley, which tries to present the the spatial structure.

Tonga

Tonga	Trench Earthquakes
Yellow:	$0-70 \mathrm{~km}$
Orange:	$71-300 \mathrm{~km}$
Red:	$300-800 \mathrm{~km}$.

Tonga Trench Earthquakes
Orange:
$300-800 \mathrm{~km}$.

Problems with this Presentation

- There is a good deal of overplotting and this makes it hard to see all of the structure present in the data.
- The map makes it clear that we are looking down from above on the scene, but deeper quakes appear to be plotted on top of shallower ones.
- The division of depths into three intervals and presentation using colour is relatively crude.

A Trellis Plot

- We can overcome many of the problems of the previous plot by using a trellis display.
- We create the display by producing a sequence of graphs, each of which presents a different range of depths.
- In this case we will have a slight overlap of the intervals being plotted.

Explanation

- The plot is read left-to-right and bottom-to-top.
- Depth increases progressively through the plot.
- There are eight different depth intervals, each containing approximately the same number of earthquakes.
- Consecutive depth intervals overlap by a small amount.
- The range of depths covered by each interval is indicated in the bar above each plot.

Intepretation

- The shallower earthquakes are concentrated on two inclined fault planes.
- The most easterly of these fault planes is the one which bisects New Zealand.
- The Westerly fault plane has mainly shallow earthquakes, while the Easterly fault plane has both shallow and deep earthquakes.
- The deep earthquakes show distinct small angular fishhook structure which is not visible in the earlier plot.

Example: Barley Yields

- This example is concerned with the yields obtained from field trials of barley seed.
- The data comes from the 1930s so there is no direct genetic modification going here.
- The trials were conducted in 1931 and 1932, using:
- 10 different strains of barley
- 6 different growing sites
- There are $2 \times 10 \times 6=120$ observations.
- It was suspected for a long time that there was something odd about this data set.

The Trellis Plot

- The plot we will look at shows that barley yields for each of the 10 strains at the 6 sites and for each year.
- The results for each site are plotted on a separate graph - i.e. we are working conditional on the site.
- The yields from the two years are superimposed on each of the plots.

Interpretation

- When the data are present in this way it is easy to see what is odd about them.
- The yields for 1931 were higher than those for 1932 at all sites except Morris, where the pattern is reversed.
- The clear implication is that the yield values at Morris were switched at some point.

The Trellis Technology

- There are a variety of displays which can be produced by Trellis, including:
- Bar Charts
- Dot Charts
- Box and Whisker Plots
- Histograms
- Density Traces
- QQ Plots
- Scatter Plots
- A common framework is used to produce all these plots.

Some Terminology

- Every Trellis display consists of a series of rectangular panels, laid out in a regular row-by-column array.
- The indexing of the array is left-to-right, bottom-to-top.
- The x axes of all the panels are identical. This is also true for the y axes.
- Each panel of the a display corresponds to conditioning, either on the levels of a factor, or on sub-intervals of the range of a numeric variable.

Shingles

- The conditioning carried out in the earthquake plot is described by a shingle.
- A shingle consists of a number of overlapping intervals (like the shingles on a roof of a house).
- Assuming that the earthquake depths are contained in the variable depth, the shingle is created as follows.
> Depth = equal.count (depth,

$$
\begin{aligned}
& \text { number=8, } \\
& \text { overlap=.1) }
\end{aligned}
$$

- The shingle assigned to Depth has 8 intervals with adjacent intervals having 10% of their values in common.

Shingles

- A shingle contains the numerical values it was created from and can be treated like a copy of that variable. For example:
> range (Depth)
[1] 40680
> range(depth)
[1] 40680
- A shingle also has the information attached to it. This can be displayed by printing or plotting the shingle.
> plot(Depth)

Producing the Plot

- The display of the earthquakes is produced by the function xyplot, which is the Trellis variant of a scatter plot function.
- The plot was produced as follows:

```
> data(quakes)
> Depth = equal.count(quakes$depth,
        number=8,
        overlap=.1)
> xyplot(lat ~ long | Depth, data = quakes,
    xlab = "Longtitude", ylab = "Lattitude")
```

- There are three steps here (i) loading the data, (ii) creating the shingle and (iii) producing the display.

The Plot Formula

- The first argument to xyplot is a symbolic formula describing the plot.
- In this case the formula is:
lat ~ long | Depth
which is an instruction to plot lat on the y axis against long on the x axis with conditioning intervals as described in Depth.
- The second argument to xyplot specifies which data frame the data for the plot should be obtained from.
- Additional arguments control other aspects of the plot.

Unconditional Plots

- The xyplot function can be used to produced an unconditional plot by omitting the conditioning specification from the plot formula.

$$
\begin{gathered}
\text { > xyplot(lat } \sim \text { long, data }=\text { quakes, } \\
\text { xlab }=\text { "Longtitude", } \\
\text { ylab }=\text { "Lattitude") }
\end{gathered}
$$

The Barley Yield Plot

- The barley yield plot is produced by the function dotchart which can be used to numeric values against a categorical variable.
- In this case, the numeric variable is the barley yield and the categorical variable is the seed strain.
- We also condition on the value of another variable, the growing site.

A First Attempt

- The following code is a simple attempt at creating a dot chart using similar code to that for the earthquakes.

$$
\begin{gathered}
\text { > dotplot (variety } \sim \text { yield | site, } \\
\text { data=barley) }
\end{gathered}
$$

A Second Attempt

- We could also try conditioning on both site and year.

$$
\begin{gathered}
\text { > dotplot (variety ~yield | site * year, } \\
\text { data=barley) }
\end{gathered}
$$

A Third Attempt

- What we need is to superimpose the two years for each site on a single panel.

$$
\begin{aligned}
& \text { > dotplot (variety } \sim \text { yield | site, data=barley, } \\
& \text { panel }=\text { panel.superpose, } \\
& \text { group }=\text { year, } \\
& \text { pch }=c(1,3))
\end{aligned}
$$

A Fourth Attempt

- The last plot is quite close.
- We need to add a legend which indicates which year is which.

```
> dotplot(variety ~ yield | site, data=barley,
    panel = panel.superpose,
    group \(=\) year, pch \(=c(1,3)\),
    key \(=\) list (space="right",
        transparent = TRUE,
        points=list (pch=c (1, 3),
        col=1:2),
        text=list (c ("1932",
        "1931")) )
```


