1. Write an R function which will draw population pyramids (back-toback histograms). Use the following data set (available on the class website) to test your function. The data set gives the number of people in New Zealand in 1996, broken down by age group and gender.

	Gender	
Age Group	Female	Male
0-4	135489	144111
5-9	140571	147723
10-14	128520	135663
15 - 19	129405	133572
20-24	136926	134832
25 - 29	140850	132453
30-34	151032	142452
35 - 39	145923	139293
40-44	129597	125439
45 - 49	120942	120249
50-54	93366	93351
55 - 59	79821	78783
60-64	67845	67419
65-69	67788	65187
70-74	61902	51762
75-79	48726	33561
80-84	34872	20409
85-89	18645	8385
90-94	6840	2385
95 +	1782	426

Your function should work for this and for similar data sets. The function should take the cell breakpoints and bars heights for the two populations being compared as arguments. There should also be arguments which allow customisation of the axis annotation and general labelling.

(Hint: using layout will be helpful.)

2. Write an R function which produces superimposed histograms. The function should take as arguments: a vector of cell breakpoints, a matrix of bar heights (each column corresponding to a different population group) and arguments which make it possible to customise the appearance of the plot. (You don't need layout for this.

3. Write an R function which operates like that in question 2, but produces a smoothed version of the histogams. You will probably find the splinefun function useful. The expression

s = splinefun(x, y)

obtains the function which interpolates the values in x and y. The derivative of s can be plotted as follows:

```
x = seq(min(x), max(x), length = 1001)
y = s(x, deriv = 1)
plot(x, y, type = "1")
```

You can produce the smoothed histograms by computing the corresponding distribution function at the cell breakpoints, fitting a spline through this to obtain a smooth distribution function and then plotting the derivative of this distribution function.