
Examining and Comparing
Distributions



Example: Yearly Precipitation in New York City

The following table shows the number of inches of (melted)
precipitation, yearly, in New York City, (1869-1957).

43.6 37.8 49.2 40.3 45.5 44.2 38.6 40.6 38.7 46.0
37.1 34.7 35.0 43.0 34.4 49.7 33.5 38.3 41.7 51.0
54.4 43.7 37.6 34.1 46.6 39.3 33.7 40.1 42.4 46.2
36.8 39.4 47.0 50.3 55.5 39.5 35.5 39.4 43.8 39.4
39.9 32.7 46.5 44.2 56.1 38.5 43.1 36.7 39.6 36.9
50.8 53.2 37.8 44.7 40.6 41.7 41.4 47.8 56.1 45.6
40.4 39.0 36.1 43.9 53.5 49.8 33.8 49.8 53.0 48.5
38.6 45.1 39.0 48.5 36.7 45.0 45.0 38.4 40.8 46.9
36.2 36.9 44.4 41.5 45.2 35.6 39.9 36.2 36.5

The annual rainfall in Auckland is 47.17 inches, so this is
quite comparable.



Plots for a Collection of Numbers

• Often we have no idea what features a set of numbers
may exhibit.

• Because of this it is useful to begin examining the
values with general purpose tools.

• In this lecture we’ll examine a class of tools which give
information about the distribution of a set of values.



Stem-and-Leaf Plots

> stem(rain.nyc, scale = .5)

The decimal point is 1 digit(s) to the right of the |

3 | 344444
3 | 55666667777777888889999999999
4 | 000000011112222334444444
4 | 55555666677778999
5 | 0000113344
5 | 666

The argument scale=.5 is use above above to compress the
scale of the plot. Values of scale greater than 1 can be used
to stretch the scale.

(It only makes sense to use values of scale which are 1, 2 or
5 times a power of 10.



Stem-and-Leaf Plots

• Stem and leaf plots are very “busy” plots, but they show
a number of data features.

– The location of the bulk of the data values.

– Whether there are outliers present.

– The presence of clusters in the data.

– Skewness of the distribution of the data .

• It is possible to retain many of these good features in a
less “busy” kind of plot.



Histograms

• Histograms provide a way of viewing the general
distribution of a set of values.

• A histogram is constructed as follows:

– The range of the data is partitioned into a number
of non-overlapping “cells”.

– The number of data values falling into each cell is
counted.

– The observations falling into a cell are represented
as a “bar” drawn over the cell.



Types of Histogram

Frequency Histograms

The height of the bars in the histogram gives the number of
observations which fall in the cell.

Relative Frequency Histograms

The area of the bars gives the proportion of observations
which fall in the cell.

Warning: Drawing frequency histograms when the cells have
different widths misrepresents the data.



Histograms in R

• The R function which draws histograms is called hist.

• The hist function can draw either frequency or relative
frequency histograms and gives full control over cell
choice.

• The simplest use of hist produces a frequency
histogram with a default choice of cells.

• The function chooses approximately log2 n cells which
cover the range of the data and whose end-points fall at
“nice” values.



Example: Simple Histograms

Here is the simplest possible example of drawing a histogram
with R.

> hist(rain.nyc, col = hcl(0),

main = "New York City Precipitation",

xlab = "Precipitation in Inches" )

This draws a histogram with the default cell choice and with
the bars coloured pink.
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Example: Simple Histograms

Here are two examples of drawing histograms with R.

1. A request for approximately 20 bars.

> hist(rain.nyc, breaks = 20,

col = hcl(120),

main = "New York City Precipitation",

xlab = "Precipitation in Inches" )

2. Explicit setting of the cell breakpoints.

> hist(rain.nyc, breaks = seq(30, 60, by = 2),

col = hcl(240),

main = "New York City Precipitation",

xlab = "Precipitation in Inches")
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Example: Histogram Options

Optional arguments can be used to customise histograms.

> hist(rain.nyc, breaks = seq(30, 60, by=3),

prob = TRUE, las = 1, col = "lightgray",

main = "New York City Precipitation",

xlab = "Precipitation in Inches")

The following options are used here.

1. prob = TRUE makes this a relative frequency
histogram.

2. col = "gray" colours the bars gray.

3. las = 1 rotates the y axis tick labels.
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Histograms and Perception

• Information in histograms is conveyed by the heights of
the bar tops.

• Because the bars all have a common baseline, the
encoding is based on “position on a common scale.”

• Histograms convery their message using the best
possible encoding method.



Comparison Using Histograms

• Sometimes it is useful to compare the distribution of the
values in two or more sets of observations.

• There are a number of ways in which it is possible to
make such a comparison.

• One common method is to use “back to back”
histograms.

• This is often used to examine the structure of
populations broken down by age and gender.

• These are referred to as “population pyramids.”
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Back to Back Histograms and Perception

• Comparisons within either the “male” or “female” sides
of this graph are made on a “common scale.”

• Comparisons between the male and female sides of the
graph must be made using length, which does not work
as well as position on a common scale.

• A better way of making this comparison is to
superimpose the two histograms.

• Since it is only the bar tops which are important, they
are the only thing which needs to be drawn.
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Smoothed Histograms

• The discontinuous nature of histograms creates visual
clutter in the previous plot.

• It can be useful to produce a smoothed version of the
plot.

• This can be done as follows:

– Integrate the histogram to obtain a distribution
function (this is just a cumulative sum).

– Fit a spline curve through the points of the
distribution function.

– Differentiate the distribution function to obtain a
density.
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Superposition and Perception

• Superimposing one histogram on another works well
because comparisons both within and between
distributions are made on a common scale.

• The separate histograms provide a good way of
examining the distribution of values in each sample.

• Comparison of two (or more) distributions is easy.



The Effect of Cell Choice

• Histograms are very sensitive to the choice of cell
boundaries.

• We can illustrate this by drawing a histogram for the
NYC precipitation with two different choices of cells.

– seq(31, 57, by = 2)

– seq(32, 58, by = 2)

• These different choices of cell boundaries produce quite
different looking histograms.
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The Inherent Instability of Histograms

• The shape of a histogram depends on the particular set
of histogram cells chosen to draw it.

• This suggests that there is a fundamental instability at
the heart of its construction.

• To illustrate this we’ll look at a slightly different way of
drawing histograms.

• For an ordinary histogram, the height of each histogram
bar provides a measure of the density of data values
within the bar.

• This notion of data density is very useful and worth
generalising.



Histogram Density Estimates

• The height of bar in a relative frequency histogram
provides a measure of the density of data points in the
histogram cell that the bar is drawn over.

• If a cell centred at x has width w and contains k data
points, the height of the bar is

h(x) =
k

n
× 1

w

which is directly proportional to the density of points in
the interval.

data density =
k

w



Moving Cell Histograms

• We can use a single histogram cell, centred at a point x
and having width w to estimate the density of data
values near x.

• By moving the cell across the range of the data values
we will get an estimate of the density of the data points
throughout the range of the data.
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Stability

• The basic idea of computing and drawing the density of
the data points is a good one.

• It seems, however, that using a sliding histogram cell is
not a good way of producing a density estimate.

• This is because there seems to be a good deal of
instability in the estimate.

• We will now look at more stable estimates of data
density.



Terminology

• The function h(x) is called the histogram estimate of
data density.

• The value of w is called the bandwidth of the estimate.

• The graph of h(x) plotted against x is called a density
trace.

Notes

• h(x) is defined for every x value.

• The area under h(x) is 1.
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The Quality of Histograms

• A moving-bar histogram provides information on h(x)
at all x values.

• A fixed bar histogram provides information on h(x)
only at its cell midpoints.

• Comparing both kinds of histograms shows just how
much information is lost by a standard histogram.
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A Histogram and Density Trace
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Lack of Smoothness

• Histogram density estimates have a very rough
appearance.

• This is because points enter and leave the window
(histogram cell) suddenly and this causes jumps in h(x).

• When a point is within a distance w/2 of x, it
contributes an amount 1/nw to the value of h(x).

• When it is a greater distance away its contribution is 0.

• It is this sudden change in the contribution of points to
h(x) which makes histogram density traces so rough.



Kernel Density Estimates I

• It is possible to make density traces smoother by
changing the way points make a contribution to h(x).

• Smooth density estimates work by making the
contribution a point makes to h(x) depend on its
distance to x. A small distance means a large
contribution and vice versa.



Kernel Density Estimates II

• One way to achieve smoothness is to make the
contribution of a value at y to h(x) be k(y − x), where
k(u) is a function which has a peak at u = 0 and falls
away to zero as u increases in magnitude.

• The function k(u) is called the kernel of the density
estimate.

• The function k(u) is usually taken to be symmetric
about 0, positive, and to integrate to 1.

• The most common kernel function is the normal
probability density function.
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Bandwidth

• It is possible to vary the appearance of a histogram by
varying its cell width.

• A similar effect is possible with kernel density estimates
by varying how spread-out the kernel function is.

• The spread of a kernel is controlled by a scale parameter
which is also called the bandwidth.

• The bandwith is the width of the support of a
rectangular kernel with the same standard deviation as
the given kernel.

• Estimates with the same bandwith perform roughly the
same amount of smoothing, even if they have different
kernels.



R Functions

• The R function density computes density estimates.

• A better option is to use the R “dtrace” library which is
available from the class web site).

• The library contains a function called dtrace which
can be used to compute density traces.

• The estimates produced dtrace by can be plotted with
the plot function, or added to an existing plot with the
lines function.



R Examples

It is simple to construct density plots using R.

Long hand . . .

> d = dtrace(rain.nyc)

> plot(d, main = "A Kernel Density Estimate")

Or equivalently . . .

> plot(dtrace(rain.nyc))

> title(main = "A Kernel Density Estimate")
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Showing the Data

The function rug can be used to draw vertical lines at the
bottom of the plot at the locations of the data values (the
result looks a little like the tassels on a Persian rug).

> plot(dtrace(rain.nyc))

> rug(x)
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Control of Bandwidth

The default bandwidth chosen by R often produces quite good
results, but sometimes it can be useful to try alternative values
to see what the effect of more or less smoothing might be.

We’ll illustrate this with data on the time between erruptions
for the old-faithful geyser in Yellowstone National Park,
Wyoming, USA.

The variables in the data set can be accessed as follows:

> attach(faithful)



Bandwidth for the Geyser Eruptions

We can leave R free to choose the bandwidth and determine
the chosen bandwidth as follows:

> d = dtrace(eruptions)

> d$bw

[1] 1.159702

Plots for this bandwidth can be produced as follows.

> plot(d, xlab = paste("bw =", d$bw))

We can also produce plots for other bandwidths. E.g.

> plot(dtrace(eruptions, bw = .5))

> title(xlab = "bw = .5")
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Comparing Distributions

• Density traces provide a good way of comparing the
distribution of two batches of values.

• All that is necessary is to superimpose the two (or more)
density traces on the same graph.

• This example is about comparing the levels of ozone
from two areas in metropolitan New York (Yonkers and
Stamford).

• Ozone is a pollutant which is formed when sunlight
shines on to car exhaust emissions. It is implicated in
respiratory and cardiac health problems (particularly
asthma).
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Graphical Comparison Using Density Traces

Read in and clean the data. The na.omit statements omt any
missing values.

> ozone = read.table("ozone.dat", header = TRUE)

> stamford = na.omit(ozone$stamford)

> yonkers = na.omit(ozone$yonkers)

Compute the density estimates for the Stamford and Yonkers
values.

> d = dtrace(list(Stamford = stamford,

Yonkers = yonkers))

> plot(d, lty = c("solid", "dashed"),

main = "New York Ozone",

xlab = "Ozone (ppm)", las = 0)
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Data Transformation

• The previous plot indicates that the ozone
concentrations in Stamford are a multiple of those in
Yonkers (about 1.5 to 2 times).

• We can check this by transforming to a logarithmic
scale – a multiplicative effect will be transformed to a
shift.

• We can do this as follows:

> d = dtrace(list(Stamford = log10(stamford),

Yonkers = log10(yonkers)))

> plot(d, lty = c("solid", "dashed"),

main = "New York Ozone",

xlab = "Log10 Ozone (ppm)")
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Relative Ozone Patterns

The graphs show that the distributions of ozone levels are
related by

log10 Stamford = log10 Yonkers + 0.25.

In raw terms this means

Stamford = 1.78× Yonkers.

In in other words, ozone levels in Stamford are approaching
double those of Yonkers.


	Lecture: Examining and Comparing Distributions
	Example: Yearly Precipitation in New York City
	Plots for a Collection of Numbers
	Stem-and-Leaf Plots
	Stem-and-Leaf Plots
	Histograms
	Types of Histogram
	Histograms in R
	Example: Simple Histograms
	Figure: Simple Histogram
	Example: Simple Histograms
	Figure: Number of Bars
	Figure: Explicit Breakpoints
	Example: Histogram Options
	Figure: Histogram Options
	Histograms and Perception
	Comparison Using Histograms
	Figure: Population Pyramid
	Back to Back Histograms and Perception
	Figure: Superimposed Histograms
	Smoothed Histograms
	Figure: Smoothed Histogram
	Superposition and Perception
	The Effect of Cell Choice
	Figure: Cell Choice 1
	Figure: Cell Choice 2
	The Inherent Instability of Histograms
	Histogram Density Estimates
	Moving Cell Histograms
	Figure: Moving Cell Histogram
	Stability
	Terminology
	Figure: Bandwidth = 2
	Figure: Bandwidth = 5
	The Quality of Histograms
	Figure: Histogram
	Figure: Density & Histogram
	Figure: Density
	Lack of Smoothness
	Kernel Density Estimates I
	Kernel Density Estimates II
	Figure: Kernel
	Figure: Gaussian Kernel
	Figure: Rectangular Kernel
	Figure: Both Kernels
	Bandwidth
	R Functions
	R Examples
	Figure: Kernel Density
	Showing the Data
	Figure: Trace With Rug
	Control of Bandwidth
	Bandwidth for the Geyser Eruptions
	Figure: Default Bandwidth
	Figure: Small Bandwidth
	Comparing Distributions
	Figure: NYMAP
	Graphical Comparison Using Density Traces
	Figure: NY Ozone
	Data Transformation
	Figure: Transformed NY Ozone
	Relative Ozone Patterns

