
Graphical Layouts

The par Function

R graphics are controlled by use of the par function.

par makes it possible to control low-level graphics by
querying and setting a large set of graphical parameters.
Graphical parameters control many features such as:

• the layout of figures on the device

• the size of the margins around plots

• the colours, sizes and typefaces of text

• the colour and texture of lines

• the style of axis to be used

• the orientation of axis labels

The Layout of Graphics

Graphs appear on R graphics devices as a series of rectangular
graphical figures.

Each figure consists of a rectangular plot region surrounded
by four margins.

Each element of a figure can be described as being in either
the plot region or the margins.

The sides of a plot are numbered 1 through 4.

Plot Region

Margin 1

M
ar

gi
n

2

Margin 3

M
ar

gi
n

4

Controlling The Margins

The sizes of the margins can be changed by making a call to
the function par before calling plot.new.

There are several possibilities:

1. Set the margin sizes in inches.

> par(mai=c(2, 2, 1, 1))

2. Set the margin sizes in lines of text.

> par(mar=c(4, 4, 2, 2))

3. Set the plot width and height in inches.

> par(pin=c(5, 4))

Querying the Margin Sizes

The par function can be used for querying the margin sizes.

The margin sizes in lines and inches can be obtained as
follows:

> par("mar")

[1] 5.1 4.1 4.1 2.1

> par("mai")

[1] 1.02 0.82 0.82 0.42

and the the plot dimensions in inches as follows:

> par("pin")

[1] 9.952913 5.927717

Multifigure Layouts

par can be used to set up arrays of figures on the page. These
arrays are then filled row-by-row or column-by-column.

The following example declares a 2× 2 array to be filled by
rows and then produces the plots.

> par(mfrow=c(2, 2))

> plot(rnorm(10), type = "p")

> plot(rnorm(10), type = "l")

> plot(rnorm(10), type = "b")

> plot(rnorm(10), type = "o")

A 2× 2 array to be filled by columns would be declared with

> par(mfcol = c(2, 2))

● ●

●

●

●

●

● ●

●

●

2 4 6 8 10

−
2.

0
−

1.
0

0.
0

1.
0

Index

rn
or

m
(1

0)

2 4 6 8 10

−
2

−
1

0
1

Index

rn
or

m
(1

0)

● ●

●

●

●

●

●

●

●

●

2 4 6 8 10

−
0.

5
0.

5
1.

0
1.

5

Index

rn
or

m
(1

0)

●

●

●

●

●

●

●

●
●

●

2 4 6 8 10

−
1.

5
−

0.
5

0.
5

Index

rn
or

m
(1

0)

Outer Margins

Arrays of figures can also be created with a set of outer
margins.

The size of outer margins can be specified with the oma or omi
arguments to par.

Here is an example which shows a 2× 2 array of figures
surrounded by an outer margin with space for 4 lines of text
on all sides.

> par(oma = c(4, 4, 4, 4),

mfrow = c(2, 2))

Figure 1 Figure 2

Figure 3 Figure 4

Outer Margin 1

O
ut

er
 M

ar
gi

n
2

Outer Margin 3

O
ut

er
 M

ar
gi

n
4

Eliminating Waste Margin Space

It can be useful to eliminate redundant space from multi-way
arrays by trimming the margins a little.

> par(mfrow=c(2, 2))

> par(mar = c(5.1, 4.1, 0.1, 2.1))

> par(oma = c(0, 0, 4, 0))

> plot(rnorm(10), type = "p")

> plot(rnorm(10), type = "l")

> plot(rnorm(10), type = "b")

> plot(rnorm(10), type = "o")

> title(main = "Plots with Margins Trimmed",

outer = TRUE)

Here we have trimmed space from the top of each plot, and
placed a 4 line outer margin at the top of of the layout.

●

●

●

●

●

●

●

●

● ●

2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

Index

rn
or

m
(1

0)

2 4 6 8 10

−
1.

0
0.

0
0.

5
1.

0

Index

rn
or

m
(1

0)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

−
1

0
1

2

Index

rn
or

m
(1

0)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

−
2

−
1

0
1

Index

rn
or

m
(1

0)

Plots with Margins Trimmed

An Example: Scatterplot Matrices

A scatterplot matrix is a multidimensional generalisation of a
simple scatterplot.

Given n variables, a scatterplot matrix presents scatterplots of
every possible variable in the set against every other possible
variable in the set.

The results are displayed in an n× n matrix, with the element
in the ij-th position being the plot of variable i against
variable j.

Since a plot of variable i against variable i is relatively
uninteresting, something more useful can be displayed in that
position.

Sepal.Length

●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●●

●
●

●

●●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●
●

●

●●

●

●
●
●

●

●●●

●
●

●

●

2.0 2.5 3.0 3.5 4.0

●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●●

●●

●
●

●

●●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

●●●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ●
●●

●●

●
●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●
● ●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

● ●●

●
●

●

●

0.5 1.0 1.5 2.0 2.5

4.
5

5.
5

6.
5

7.
5

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●

2.
0

3.
0

4.
0

Sepal.Width

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●●●
● ●

●
● ●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

●● ●●
●● ●● ●●

● ●●●
●

●●●
●
●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

● ●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●● ●
● ●

●
●●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

● ●●●
●● ● ●●●
● ●●●

●
●● ●
●

●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

● ●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

Petal.Length

●●●
●●

●
●●●●●●●

●●
●
●●

●
●

●
●

●

●
●
● ●●●
●● ●●●●
●●

●●
●

●●●
●

●

●
●
●●●

●
●
●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●●
●

●
●●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

1
2

3
4

5
6

7

●●●● ●

●
●

●●
●

●●
●●

●

●●
● ●●

●

●

●

●

● ●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●
●

●

●
●

●
●

●●●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

●● ●● ●

●
●
●●

●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●

●
●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●● ●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●●●●●

●
●
●●
●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●●●
●

●●
●●
●

●

●
●

●●●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
● ●

●

●

●
●

●

●

●
●
●

●

●●●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

1 2 3 4 5 6 7

Petal.Width

Anderson's Iris Data

Setting Up a Scatterplot Matrix

To create a scatterplot matrix we need to arrange a series of
plots on the page.

The basic arragement id to have the n2 plots arranged in an
n× n array.

To ensure that the plots are properly juxtaposed, we need to
eliminate the margins around the individual plots but to create
an outer margin around the whole array to hold the axes and
an overall title.

par(mfrow = c(ncol(x), ncol(x)),

mar = rep(0, 4),

oma = c(4.1, 4.1, 5.1, 4.1))

Saving and Restoring Parameter Values

Since the layout parameters for the scatterplot matrix only
apply to that matrix, it is useful to be able to revert back to the
previous set of values when the plot is complete.

The par function returns the previous values of any
parameters which are changed by a a call to it and these can
be save for later use.

opar = par(mfrow = c(ncol(x), ncol(x)),

mar = rep(0, 4),

oma = rep(4.1, 4))

The values can be restored later with another call to par.

par(opar)

Drawing The Scatterplots

Once the layout has been created it is easy to produce the
individual scatterplots.

for(i in 1:n)

for(j in 1:n) {

xrange = range(x[,j])

yrange = range(x[,i])

plot.new()

plot.window(xlim = xrange, ylim = yrange)

if (i == j)

text(mean(xrange), mean(yrange),

colnames(x)[j])

else points(x[,j], x[,i])

box()

}

Drawing Axes

Clearly, not every scatterplot in the matrix has axes and we
need a computation to determine which (if any) axes should
be drawn.

Only axes at the edge of the plot are drawn, and then only
alternate axes are drawn to avoid label collisions.

if (i == 1 && j %% 2 == 0)

axis(3)

if (i == n && j %% 2 == 1)

axis(1)

if (j == 1 && i %% 2 == 0)

axis(2)

if (j == n && i %% 2 == 1)

axis(4)

Printing a Title

If we want to have an overall title on the plot we need to
ensure that there is enough space in the top outer margin.

opar = par(mfrow = c(ncol(x), ncol(x)),

mar = rep(0, 4),

oma = c(4.1, 4.1, 5.1, 4.1))

We can then produce the title using the mtext function.

mtext(main, side = 3, line = 3,

font = 2, outer = TRUE)

This draws the text in the (middle of the) third line of the third
outer margin, in bold font.

Final Cleanup

For general hygiene it is important to reset any parameters
before leaving the function.

par(opar)

Customisation

The scatterplot matrix function we’ve described is very
inflexible.

We could customise it by adding of optional arguments.

pairs = function(x, col = 1, pch = 1, ...)

and then passing these arguments on to the points function.

points(x[,j], x[,i], col = col, pch = pch)

Panel Functions

The heart of the scatterplot matrix function is the call

points(x[,j], x[,i])

We can make the function highly customisable by making the
function which is invoked at this point be an argument to the
function.

pairs = function(x, y, ...,

panel = function(x, y, ...)

pairs(x, y, ...))

and invoking this function in the body of the function.

Panel Function Example

Here is an example which shows a panel function which plots
the points and then superimposes the regression line between
the pair of variables.

pairs(x,

panel = function(x, y, ...) {

points(x, y)

abline(lm(y ~ x))

})

Using par

The par function can be used to control margins and the
layout of plots on the page, using the parameters mar, mai,
pin, oma, omi, mfrow and mfcol.

This is just the tip of the iceberg; there are 71 graphics
parameters in all.

You can view the settings of the parameters by typing

> par()

and view their names by typing

> names(par())

The Full Set of Graphical Parameters

xlog ylog adj ann ask
bg bty cex cex.axis cex.lab
cex.main cex.sub cin col col.axis
col.lab col.main col.sub cra crt
csi cxy din err family
fg fig fin font font.axis
font.lab font.main font.sub gamma lab
las lend lheight ljoin lmitre
lty lwd mai mar mex
mfcol mfg mfrow mgp mkh
new oma omd omi pch
pin plt ps pty smo
srt tck tcl usr xaxp
xaxs xaxt xpd yaxp yaxs
yaxt

Important Groups of Graphics Parameters

Graphics parameters come in groups (usually with related
names). Important groups correspond to names as follows:

cex An abbreviation for character expansion factor.
This provides a magnification of text relative to
the default.

col The colour to be used for text or graphics
elements.

font The font to be used for drawing character
strings.

Controlling Font Size

Setting the value of cex controls the default size of text
elements and symbols in graphs. A value of cex=2 makes text
twice its standard size.

More specialized cex values are as follows:

cex.main The expansion factor for the main title.

cex.lab The expansion factor for xlab and ylab.

cex.axis The expansion used for the text printed at axis
tickmarks.

cex.sub The expansion used for plot subtitles (sub).

Controlling Colour

Setting the value of col controls the default colour of text
elements and symbols in graphs.

More specialized col values are as follows:

col.main The colour for the main title.

col.lab The colour for xlab and ylab.

col.axis The colour used for the text printed at axis
tickmarks.

col.sub The colour used for plot subtitles (sub).

Controlling Fonts

Setting the value of font controls the default font of the text
elements in graphs.

More specialized font values are as follows:

font.main The font for the main title.

font.lab The font for xlab and ylab.

font.axis The font used for the text printed at axis
tickmarks.

font.sub The font used for plot subtitles (sub).

The value of font is 1 for normal font, 2 for bold, 3 for italic
and 4 for bold-italic.

An Example

Many par values can be passed as arguments to plotting
functions or passed to par to set the values for all future plots.

> plot(rnorm(100), col = "red", cex = 2,

font.axis = 1, col.axis = "blue",

font.main = 4, col.main = "green4",

font.lab = 3, col.lab = "brown",

cex.main = 2, main = "Par Overload")

> par(col = "red", cex = 2,

font.axis = 1, col.axis = "blue",

font.main = 4, col.main = "green4",

font.lab = 3, col.lab = "brown",

cex.main = 2)

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

0 20 40 60 80 100

−
2

−
1

0
1

2

Par Overload

Index

rn
or

m
(1

00
)

All Those Other pars . . .

There are many other par values which we have not
discussed.

You get a description of all the par values by looking at the
documentation for par.

> ?par

> help("par")

More Flexible Layouts

The multifigure layouts which can be specified with par are
very rigid.

All the panels in the plot have exacly the same size.

The layout function provides an alternative way of
producing multiple figures.

The function still imposes constraints, but they only require
that the widths of figures in the same column be equal and
that the heights of figures in the same row be equal.

1 2 3

4 5 6

7 8 9

Combining Figures

The arrangements produced by layout are a little more flexible
because adjacent figures can be combined.

In the next arrangement, the 4th and 5th figures of the
previous layout are combined into a single figure.

Beware, however, that attempts to combine non-adjacent
figures produces very strange results.

1 2 3

4 5

6 7 8

Arguments to Layout

The three main arguments to layout; mat, widths and
heights.

The mat argument associates a figure number with each
element of a rectangular layout.

The first example layout had the following mat argument.

> layout(matrix(1:9, nc = 3, byrow = TRUE),

...)

The second layout combined the 4-th and 5-th figures from
this layout as follows

> layout(matrix(c(1:4,4:8), nc = 3, byrow = TRUE),

...)

Arguments to Layout

The widths of the columns in the arrangement are specied by
the widths argument.

These can either be relative widths - e.g. c(1, 2) specifies
that the second column is twice as big as the first, or they can
be absolute widths specified in centimetres.

The specification

widths = c(lcm(1), 1, 2)

says that the first column is exactly 1cm wide and the third
column is twice the width of the second.

The row heights are specified by heights in a similar fashion.

Layouts and Margins

It is important to note that layout ignores the outer margin
parameters set with par.

All par values which work within figures (such as mar and
mai) still have an effect.

It can be useful to set figure margins to 0 when working with
sets of figures which are to be juxtaposed.

The effect of outer margins can be obtained by specifing extra
rows and columns in the mat argument.

These extra rows and columns can be associated with “figure
0” so that no plotting is done in them.

Example: An Augmented Scatterplot

We’ll illustrate what layouts can be used for with a specific
example.

The example will produce a standard scatterplot which is
enhanced with boxplots of the marginal distributions of the x
and y variables.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

y
● ●●

●

●

●

An Enhanced Scatterplot

Choosing a Layout

We need a big figure for the scatterplot, regions along its top
and right for the scatterplots and a figure at the very top for a
title.

> layout(rbind(c(0,4,4,0),

c(0,2,0,0),

c(0,1,3,0),

c(0,0,0,0)),

height = c(lcm(2), lcm(2), 1, lcm(2)),

width = c(lcm(2), 1, lcm(2), lcm(1)))

> layout.show(4)

> box("outer", lty = "dotted")

1

2

3

4

Producing the Graph

We constrain the margins of the plots to be zero so that the
plots are juxtaposed. Then we produce the plots, in the order
specified in mat. The last plot is a simple one which contains
just the title.

> par(mar = rep(0, 4), cex = 1)

> plot(x, y, las = 1)

> boxplot(x, horizontal = TRUE, axes = FALSE)

> boxplot(y, axes = FALSE)

> plot.new()

> plot.window(xlim = c(0, 1), ylim = c(0, 1))

> text(.5, .25, "An Enhanced Scatterplot",

cex = 1.5, font = 2)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

y
● ●●

●

●

●

An Enhanced Scatterplot

A Two-Panel Plot with Labelling

Suppose that (for some reason) we want a plot consisting of
two panels with a strip for labelling between them.

How do we arrange this?

> layout(matrix(c(0,0,0,0,0,

0,1,3,2,0,

0,0,0,0,0), nc = 5, byrow = TRUE),

widths = c(lcm(2), 1, lcm(2), 1, lcm(2)),

heights = c(lcm(2), 1, lcm(2)))

> layout.show(3)

> box("outer", lty = "dotted")

Note that this just a start. You need extra panels for the
labelling at the top and bottom, and some space for the axes to
appear in.

1 23

4 3 2 1 0

Male

0 1 2 3 4

Female

0−4
5−9

10−14
15−19
20−24
25−29
30−34
35−39
40−44
45−49
50−54
55−59
60−64
65−69
70−74
75−79
80−84
85−89
90−94
95+

New Zealand Population (1996 Census)

Percent of Population

Layouts and Plots

We’ve seen that layouts provide a way to partition the page
into a number of regions which can be used to draw multiple
figures or a single plot with multiple components.

One simple approach is to use a high-level R plotting function
such as plot, hist, barplot or boxplot, and to let the high
level function take care of all the details.

An alternative, much more flexible, approach is to divide the
page into subregions which each forms a single component of
a graph.

It is useful to create a software component to match each of
the types of region which will appear in the graph.

Handling Margins

Margins are added to plots to provide space for axes and
annotations such as axis labels and titles.

Under the component model, such elements are represented
by separate plotting areas, so the need for margins is gone.

When working with layouts in this way it can be very useful
to remove the margins completely with a specification of the
form

> opar = par(mar = rep(0, 4))

Example: A Simple Scatterplot

We can build a layout for a simple scatterplot as follows:

> layout(matrix(c(0, 0, 0,

0, 1, 0,

0, 0, 0), nc = 3, byrow = TRUE),

widths = c(lcm(2), 1, lcm(2)),

heights = c(lcm(2), 1, lcm(2)))

> layout.show(1)

1

Choice of Margin Size

While it is possible to specify the margin size in centimetres,
it is much more natural to specify it in lines of text (just like
the mar and oma parameters).

By defining the function

> lines =

function(x)

lcm(x * par("csi") * 2.54)

it is possible to specify margin size in lines of text.

A margin of 2.1 lines is just enough to fit the standard axis.

Example: A Simple Scatterplot

We can build a layout for a simple scatterplot, using just the
minimum of space needed for the axes as follows:

> par(mar = rep(0, 4))

> layout(matrix(c(0, 0, 0,

0, 1, 0,

0, 0, 0), nc = 3, byrow = TRUE),

widths = c(lines(2.1), 1, lines(1.1)),

heights = c(lines(1.1), 1, lines(2.1)))

> par(cex = 1)

> plot(rnorm(10), ann = FALSE)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

−
2

−
1

0
1

Axis Labels

Now suppose that we want to add axis labels to the
scatterplot. This means adding another line at the top and left
of the layout.

> par(mar = rep(0, 4))

> layout(matrix(c(0, 0, 0, 0,

3, 0, 1, 0,

0, 0, 0, 0,

0, 0, 2, 0),

nc = 4, byrow = TRUE),

widths = c(lines(2.1), lines(2.1),

1, lines(1.1)),

heights = c(lines(1.1), 1,

lines(2.1), lines(2.1)))

> par(cex = 1)

Producing the Labels

The plot labels are produced by moving to the region for the
label (with plot.new) and drawing the text at the centre of
the region.

> plot.new()

> text(0.5, 0.5, "An X Label")

> plot.new()

> text(0.5, 0.5, "A Y Label", srt = 90)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

A Label for the X Axis

A
 L

ab
el

 fo
r

th
e

Y
 A

xi
s

Other Features

It is possible to add other features to the plot such as
additional axes at the top and right or an overall title by
adding further plotting regions.

With a little willingness to experiment, there is virtually no
limit to the kinds of plot which you can produce in this way.

The following plot shows a dotchart comparison of land
animal speeds produced in exactly this way.

●
●
●

●

0 2

●
●
●
●

●
●
●

●
●

●
●

●
●
●
●
●

●
●

●
●
●
●

●
●
●
●

●
●

●
●

●
●
●
●

●
●

25 50 75 100

Garden Snail
Three−Toed Sloth

Giant Tortoise
Spider (Tegenaria atrica)

Chicken
Pig (domestic)

Squirrel
Wild Turkey

Six−Lined Race Runner
Black Mamba Snake

Elephant
Human

White−Tailed Deer
Wart Hog

Grizzly Bear
Cat (domestic)

Reindeer
Giraffe

Rabbit (domestic)
Mule Deer

Jackal
Whippet

Greyhound
Hyena
Zebra

Mongolian Wild Ass
Gray Fox

Coyote
Elk

Cape Hunting Dog
Quarterhorse

Wildebeest
Lion

Thomson's Gazelle
Pronghorn Antelope

Cheetah

Land Animal Speeds

Speed (km/hr)

Justification and Rotation of Strings

By default, the R graphics systems draws strings centred at
locations specified by the arguments x and y.

The optional arguments srt and adj make it possible to
rotate the string and change its placement relative to the
specified coordinates.

First, rotation takes place about the specified point and then
the string is justified with respect to the point.

str = 0, adj = c(0.5 ,0.5)

str
 =

 4
5,

 a
dj

=
c(

0.
5

,0
.5

) str = −45, adj = c(0.5 ,0.5)

str = 0, adj = c(0 ,0.5) str = 0, adj = c(1 ,0.5)

str = 0, adj = c(0.5 ,0)

Label Rotation and Justification

Rotation and justification can be used to place labels within
labelling regions.

> layout(matrix(c(0, 4, 0,

3, 1, 0,

0, 2, 0), nc = 3, byrow = TRUE),

width = c(lcm(1), 1, lcm(1)),

height = c(lcm(1), 1, lcm(1)))

> par(mar = rep(0, 4), cex = 1)

> plot.new()

> plot.new(); text(.5, .5, "x-axis");

> plot.new(); text(.5, .5, "y-axis", srt = 90)

> plot.new()

> text(0, .5, "left", adj = 0)

> text(1, .5, "right", adj = 1)

x−axis

y−
ax

is

left right

Scaling of Axis Limits

Normally, a call to plot.window (or any high-level plot
which calls plot.window) expands the plot limits by 8%.

This is to prevent plotting symbols from overlapping the edge
of the graphics area.

This expansion can be prevented by adding either or both of
the optional arguments xaxs = "i" and yaxs = "i".

If the last plot.new call was followed by

> plot.window(xlim = c(0, 1), xaxs = "i",

ylim = c(0, 1), yaxs = "i")

The labels would be placed at the edges of the label region.

x−axis

y−
ax

is

left right

	Lecture: Graphical Layouts
	The par Function
	The Layout of Graphics
	Figure: Margins
	Controlling The Margins
	Querying the Margin Sizes
	Multifigure Layouts
	Figure: Multifigure Layouts

	Outer Margins
	Figure: Outer Margins
	Eliminating Waste Margin Space
	Figure: Eliminating Waste Margin Space

	An Example: Scatterplot Matrices
	Figure: Scatterplot Matrices
	Setting Up a Scatterplot Matrix
	Saving and Restoring Parameter Values
	Drawing The Scatterplots
	Drawing Axes
	Printing a Title
	Final Cleanup
	Customisation
	Panel Functions
	Panel Function Example
	Using par
	The Full Set of Graphical Parameters
	Important Groups of Graphics Parameters
	Controlling Font Size
	Controlling Colour
	Controlling Fonts
	An Example
	Figure: Colour Overload
	All Those Other pars …
	More Flexible Layouts
	Figure: Layout Constraints
	Combining Figures
	Figure: Combined Figures
	Arguments to Layout
	Arguments to Layout
	Layouts and Margins
	Example: An Augmented Scatterplot
	Figure: An Enhanced Scatterplot
	Choosing a Layout
	Figure: Choosing a Layout
	Producing the Graph
	Figure: An Enhanced Scatterplot
	A Two-Panel Plot with Labelling
	Figure: A Useful Layout
	Figure: A Population Pyramid
	Layouts and Plots
	Handling Margins
	Example: A Simple Scatterplot
	Figure: A Simple Scatterplot
	Choice of Margin Size
	Example: A Simple Scatterplot
	Figure: A Simple Scatterplot
	Axis Labels
	Producing the Labels
	Figure: A Simple Scatterplot
	Other Features
	Figure: Animal Speeds
	Justification and Rotation of Strings
	Figure: Rotation and Justification
	Label Rotation and Justification
	Figure: Label Rotation and Justification
	Scaling of Axis Limits
	Figure: Label Rotation and Justification

