Theoretical Quantile-Quantile Plots

- A theoretical QQ plot examines whether or not a sample X₁,...,X_n has come from a distribution with a given distribution function F(x).
- The plot displays the sample quantiles $X_{(1)}, \ldots, X_{(n)}$ against the distribution quantiles $F^{-1}(p_1), \ldots, F^{-1}(p_n)$, where

 $p_i = \frac{i - 1/2}{n}.$

• The next slide shows a normal q-q plot for the New York rainfall data.

Notes

- The plot seems to show deviation from normality.
- The pattern of points seems to indicate that the distribution is skewed or perhaps light-tailed.
- However, we need be careful because sampling variability might cause the plot from linearity.
- We need to have some way of indicating the likely range of sampling variability in the plot.

Notes

- It is possible to draw a straight-line across the plot lying entirely within the confidence band.
- This means that the apparent deviation from normality is consistent with simple sampling variability.
- There is no reason to believe that the data is anything other than normally distributed.

Confidence Bands

- It is clearly useful to add confidence bands to qq plots.
- The methodology for doing this has been available for 30 years, but it isn't used very often.
- We will take a while to examine the theory which makes it possible to derive the formulae for the bands.

The Probability Integral Transform

If X is a random variable with distribution function F(x) then Y = F(X) is uniformly distributed on the interval [0,1].

Because F(x) is a monotone increasing function

$$P[F(X) \le F(x)] = P[X \le x]$$
$$= F(x).$$

Writing Y = F(X) and y = F(x), this becomes

$$P[Y \le y] = y.$$

This means that Y is distributed as U[0,1].

The Empirical Distribution Function

For a random sample X_1, \ldots, X_n from a distribution F, the empirical distribution function is defined to be

$$F_n(x) = \frac{\text{Number of } X_i \le x}{n}.$$

This is a step function which has a jump of size 1/n at each of the X_i values.

Note that Number of $X_i \le x$ is binomially distributed with n trials and probability of success F(x).

This means that

$$E[F_n(x)] = F(x)$$
.

The Kolmogorov-Smirnov Test

The Kolmogorov test uses a sample X_1, \ldots, X_n with distribution function F(x) to test the null hypothesis $H: F = F_0$.

The test is based on the Kolmogorov-Smirnov statistic:

$$S = \sup_{x} |F_n(x) - F|,$$

with the test being rejected if S is too large.

The distribution of S has been determined and critical points are available in tables.

Normal QQ Plot Confidence Bands

A normal distribution function lies within the bands if

$$F_n(x) - k \le \Phi(\frac{x - \mu}{\sigma}) \le F_n(x) + k.$$

This is equivalent to having a straight-line lie between the transformed bounds:

$$\Phi^{-1}(F_n(x) - k) \le \frac{x - \mu}{\sigma} \le \Phi^{-1}(F_n(x) + k).$$

This provides the confidence bands for the normal QQ plot.

The normal QQ plot itself is based on the function $\Phi^{-1}(F_n(x))$. Both this function and the confidence bands are evaluated at the sample order statistics, $X_{(1)}, \ldots, X_{(n)}$.

Empirical QQ Plot Confidence Bands

An empirical qq plot is a plot of the quantiles of one sample against the quantiles of another. This can be regarded as a plot of $F_{Yn}^{-1}(p)$ versus $F_{Xn}^{-1}(p)$ for p in the interval [0,1].

Confidence bands can be based on the two-sample Kolmogorov-Smirnov statistic

$$S = \sup_{x} |F_{Yn}(x) - F_{Yn}^{-1}(p)|.$$

Again, this distribution has been studied and tabulated.

The Uniform Distribution is Enough

Suppose that X_1,\ldots,X_n is a random sample from a distribution with distribution function F(x). Let p be a value in [0,1] with $x_p=F^{-1}(p)$ the pth quantile of the distribution.

The distribution of $F_n(x_p)$ is

$$\frac{\operatorname{Binomial}(n,p)}{n}$$

independent of the distribution function F(x).

This makes it possible to work out the theory for the Uniform[0,1] distribution and apply it to any distribution F.

From Test to Confidence Band

Suppose that k is the critical point for the KS statistic. Then we know that $P[S \le k] = 1 - \alpha$.

This means that with probability $1-\alpha$ each of the following is true.

$$|F_n(x) - F(x)| \le k$$
$$-k \le F(x) - F_n(x) \le k$$
$$F_n(x) - k \le F \le F_n(x) + k$$

A $1 - \alpha$ simultaneous confidence band for F is thus

$$[F_n(x) - k, F_n(x) + k]$$

We could test for normality by seeing if a normal distribution function lies in this band.

The Empirical Shift Function

The standard two sample t-test makes the hypothesis the the x sample and the y sample have the same distribution up to a constant shift. In other words:

$$F_X(x) = F_Y(x + \Delta).$$

The value $\Delta|$ measures how much the x distribution must be shifted to obtain the y distribution.

A more general model is the general shift-function model:

$$F_X(x) = F_Y(x + \Delta(x)).$$

Interpreting the Shift Function

Suppose that the x sample corresponds to a control group and the y sample corresponds to a treatment group. The shift function provides the effect of the treatment for different members of the population. Eg.

- Small members of the population are made bigger and large members are left unchanged (a selective effect).
- Small members of the population are made smaller and large members are made larger (an increase in spread).

Estimating the Shift Function

The shift function satisfies:

$$\Delta(x) = F_Y^{-1}(F_X(x)) - x$$

It can be estimated by replacing the theoretical distribution functions by the empirical ones based on the observed samples.

The shift function is closely related to the empirical quantile-quantile plot and confidence bands can be obtained in a similar way.

An Example - Rats and Ozone

A group of young rats was randomly split into two groups. One group was used as a control and the other raised in an ozone enriched environment

The following weight gains were observed:

\mathcal{L}	0 0				
Control	41.0	38.4	24.4	25 . 9	21.9
	18.3	13.1	27.3	28.5	-16.9
	26.0	17.4	21.8	15.4	27.4
	19.2	22.4	17.7	26. 0	29.4
	21.4	26.6	22.7		
0	10.1	C 1	90.4	7.0	149
Ozone	10.1	6.1	20.4	7. 3	14.3
	15.5	- 9.9	6.8	28.2	17.9
	-9. 0	-12.9	14.0	6.6	12.1
	15.7	39.9	-15.9	54.6	-14.7
	44.1	-9. 0			

A "Standard" Analysis

- A standard analysis would use a two-sample *t*-test to see whether ozone exposure has a significant effect on weight gain.
- The mean weight gains were:

 Control
 22.4

 Ozone
 11.0

- The *p*-value for a two-sided test is 0.02.
- This is weak evidence that ozone exposure decreases the growth rates of juvenile rats.

