The R Language and Environment

- R is a computer language and run-time environment which can be used to carry out statistical (or other quantitative) computations.
- The base part of R comes with a wide range of standard statistical and graphical analyses built in, including:
 - nonparametric statistics
 - parametric statistical modelling
 - multivariate analysis
 - smoothing and nonparametric fitting
 - time series analysis
- There are a large number of user-developed extension packages which provide an even richer set of capabilities.

Uptake

- Because of its license, it is very hard to determine what the installed base of R might be.
- The R development group has confined itself to estimates of the form “somewhere in excess of 50,000.”
- A recent New York Times article presented the estimates one million (Intel Capital) and two million (Revolution computing).

The R Language

- R is an expression-based language.
 - Users type language expressions at the R prompt.
 - These expressions are evaluated by the R interpreter.
 - The computed values of the expressions are printed.
- R is extensible.
 - Users can implement new functionality in the form of functions.
 - Developers can implement new packages of functionality that extends the base system.

Example (Continued)

```r
> with(rats, tapply(WeightGain, Group, mean))
  Control  Ozone
        22.40435 11.00909

> with(rats, summary(aov(WeightGain ~ Group)))
     Df Sum Sq Mean Sq F value Pr(>F)
Group  1 1460.1 1460.1 6.1872 0.01682
Residuals 43 10147.5 236.0

> boxplot(WeightGain ~ Group, data = rats, main = "Rat Weight Gains")
```

Rat Weight Gains

Control

Ozone
Example Continued

```r
> with(rats, 
  qqplot(WeightGain[Group == "control"], 
         WeightGain[Group == "ozone"], 
         main = "QQ Plot", 
         xlab = "Control Group", 
         ylab = "Ozone Group"))
> abline(0, 1, col = "gray")
```

![QQ Plot](image)

Extensibility

Define a square root function using Newton's method.

```r
> sqrt = 
  function(x) {
    rold = 0
    rnew = 1
    while(any(rnew != rold)) {
      rold = rnew
      rnew = 0.5 * (rnew + x/rnew)
    }
    rnew
  }

> sqrt(1:4)
[1] 1.000000 1.414214 1.732051 2.000000
```

![Global Average Temperature](image)

![Computer Science PhD Graduates](image)

![Average Monthly Temperatures in London](image)
Early History - 1990

- Ross Ihaka joins the Department of Statistics at the University of Auckland.
- Robert Gentleman spends sabbatical from the University of Waterloo.
- During a chance encounter in the corridor, the following exchange takes place:
 Gentleman: “Let’s write some software.”
 Ihaka: “Sure, that sounds like fun!”
- The initial goal is to build a testbed for trying out ideas and to publish a paper or two.

The Initial Language

> (set x (seq 10))
(1 2 3 4 5 6 7 8 9 10)

> (sum x)
55

> (set factorial (lambda (x)
 (if (< x 1)
 1
 (+ x (factorial (- x 1))))))
<closure>

> (factorial 5)
120

Early History - 1992

- Robert Gentleman joins the department at Auckland.
- A decision is made to develop enough of a language to teach introductory statistics courses at Auckland.
 - It is decided to adopt the syntax of the S language developed at Bell Laboratories.
 - As a joke, the name “R” is coined for the language (standing for Robert and Ross).

Early History - 1994

- An initial version of the language is complete.
- We have begun discussing what we are doing with colleagues overseas.
- A number of these colleagues encourage us to release the language as “free software.”
- A little thought convinces us that there are limited prospects for the software as a commercial product.
- We adopt the free software foundation GPL as our license and begin to make releases via the internet.

Early History - 1996

- By 1996 we were becoming victims of our own success.
- We were being supplied with a continual stream of bug reports and suggestions for improvement.
- Maintaining the mailing list was becoming problematic.
- It was beginning to be clear that the project was getting close to the limit of what two of us could handle.

The original R developers plotting world domination.
R Becomes A GNU Project

From: Richard Stallman <rms@gnu.ai.mit.edu>
To: ihaka@stat.auckland.ac.nz
cc: rms@gnu.ai.mit.edu
Subject: Re: Seen on your wishlist
Date: Tue, 16 Sep 1997 21:56:06 -0400

So [explicitly], yes we would like R to be considered as a GNU program.
I hereby dub R GNU software!

1997 - The Watershed Year

- The mailing list turned out to be very successful and our user base increased enormously (to nearly 100!).
- The list was so successful that it was split into the present r-help and r-devel lists.
- Kurt Hornik and Fritz Leisch established the CRAN archive at TU Vienna as a repository for user contributions.
- We became so deluged with patches and requests for enhancements that we decided to open up the development process by giving a selected “core” of developers direct access to the CVS archive.

A Free Software Project

- Since we opened up the project, it has gone ahead in leaps and bounds.
- On February 29, 2000, the software was deemed fully featured enough and stable enough for the 1.0 release to take place.
- There are now nearly 20 core developers maintaining and extending the language interpreter and its basic functionality.
- The group includes a number of well-known researchers in Statistical Computing.
- The software now has a regular six-monthly release cycle and will shortly see the release of version 2.10

Current Status

- The R Project is an international collaboration of researchers in statistical computing.
- The formal structure for the project is provided by the R Foundation, a non-profit foundation based in Vienna.
- Development is carried out by the roughly 20 members of the “R Core Team”.
- Releases of the R environment are made through the CRAN (comprehensive R archive network) twice per year.
- The software continues to be released under a “free software” license.

The Future

- R is now a mature software system and is no longer a suitable base for experimentation.
- Although it fits many user’s needs, it does not perform well for analysis of large data sets.
- It also lacks a number of features:
 - Support for high-interaction graphics,
 - Ability to handle very large data sets,
 - High performance for scalar computation.
- These features are clearly desirable, but difficult to implement while at the same time providing backwards for existing applications.

Current Status

- There are some 50 books which have been published (or are in preparation) dealing with R and its applications.
- Springer has a book series dedicated to R (currently there are 20 titles in the series).
- The “R Newsletter” is about to be relaunched as the “R Journal.”
- There are over 1700 extension/packages which have been contributed to CRAN.

A New Language?

- Because of the performance and resource consumption problems with R, a new language is needed.
- Initial work indicates that it is possible to build a language which will perform two orders of magnitude faster than R for scalar computations and use significantly less memory than R for tasks such as model fitting.
- At the moment progress is slow because there are just three people working part-time on the project (Ihaka, Duncan Temple Lang and Brendan McArdle).
- Progress is slow because the research is unsupported.

The intense software development effort leading up to R version 1.