
Towards a New Statistical
Computing System

Ross Ihaka & Brendan McArdle
University of Auckland

Outline

• So what’s wrong with R anyway?

• The design space and some choices we’ve made.

• Some consequences of these choices.

• Where things stand at the moment.

• Some other possibilities.

A Simplified Example

For each of y1, . . . ,ym, find the closest value in x1, . . . ,xn.

The solution should take the form of a function.

nearest(x, y)

Here:

x is a vector that contains the x values,

y is a vector that contains the y values,

nearest returns the vector of closest values.

Strategy One – R (Vectorised) Style

An experienced R programmer would produce the following
type of solution.

> nearest =

function(x, y)

x[apply(outer(y, x,

function(y, x)

abs(y - x)), 1,

function(x)

which(x == min(x))[1])]

Strategy One – Explanation

Compute the m×n matrix D of distances between each y
value (row index) and each x value (column index).

di j = |yi− x j|

Obtain the indices of the minimum value in each row. (The
index of the closest x value to each y value.)

ji = argmin
j

di j

Return the vector of x values corresponding to these values.

{x ji : i = 1, . . . ,m}

Strategy Two – Naive Style

> nearest =

function(x, y) {

xmatch = numeric(length(y))

for (i in seq(along = y)) {

dist = Inf; xv = NA

for(j in seq(along = x)) {

ndist = abs(y[i] - x[j])

if (ndist < dist) {

dist = ndist; xv = x[j]

}

}

xmatch[i] = xv

}

xmatch

}

Strategy Two – Explanation

The following pseudo code explains the function.

Allocate space for the computed values.
For each value y in y,

determine the closest x value in x to y.
Return the vector of closest values.

The inner loop compares the current minimum distance with
the distance between x and y and updates that minimum value
and its associated x value if a smaller value has been found.

Cost Evaluation

Strategy One

ONE array of size m is allocated to contain the matches.

THREE temporary arrays of m×n elements are allocated
during evaluation.

Looping over arrays takes place in C.

Strategy Two

ONE array of size m is allocated to contain the matches.

No additional temporary space is allocated.

Looping over arrays takes place in R.

Problems with Current Systems

• Tree-walking interpreters.

– Inherently slow.

– No optimisation.

• Call-by-value semantics.

– Produces vast amounts of data copying.

– Prevents some useful programming techniques.

• No scalar data types.

• The problems go unnoticed because systems have
gotten much faster and memory is cheap.

The Design Space

• Try to make existing systems run faster.

– Refine the existing interpreter.

– Luke Tierney, byte compiler.

– Jan Vitek et al, trace compilation.

• Use automatic translation of high-level descriptions into
low level equivalents.

– Sholz, Grelck et al, Single Assignment C.

• Develop new languages that are less hostile to
compilation.

Some Ways to Avoid Current Problems

• Use machine resources to refine and optimise code.

– Traditional compilation techniques.

– Automagically rewrite specifications for solving
problems in ways that are more efficient.

• Avoid unnecessary copying at all costs.

– Use reference counting to avoid unnecessary
copying.

– Change language semantics to be
call-by-reference.

• Introduce and use scalar data types.

Our Design Choices

• Full ahead-of-time compilation.

– Initially, byte-coded virtual machine.
– Later, machine code generation via LLVM or

GCC.

• Call-by-reference semantics.

• Support for scalars.

– Full numeric tower, including integers, floats of
various sizes, bignums and rationals.

• Declarations

– Mandatory scope declarations.
– Optional type declarations.

(Hoped for) Consequences of Design Choices

• TWO to THREE orders of magnitude speedup for
interpreted code (100 to 1000 times faster).

– This kind of speedup should make it possible to
do qualitatively different things.

• Much less copying.

– Copying will be under programmer control.

– Arguments can be overwritten.

• A particular goal is to be able to stream data rather than
holding it in memory.

Progress

• We have an approach that lets us represent and reason
about code at a high level.

• We still need to be able to generate machine instructions
from this high-level representation. (LLVM and GCC
will help.)

• Currently, there is no syntax. (Syntax is simultaneously
both trivial and very important.)

• Unfortunately, there seems to be no appetite for funding
this type of work. This makes progress slow.

Other Possibilities

• This is just one approach.

• It provides a quick way to side-step the problems
apparent in R and similar software.

• Once the compiler framework is in place it should be
possible to try other models.

– E.g. Call-by-value with reference counting.

• We have yet to experiment with macros and object
models.

Summary

• New computing environments for statistics are needed.

• They can be created by looking for incremental
improvements to existing systems or by creating
something new.

• Completely new systems offer the possibility of a
quantum leap in performance.

• The effort has been constrained by lack of resources,
but should show results in the next year or two.

	Title Page
	Outline
	A Simplified Example
	Strategy One – R (Vectorised) Style
	Strategy One – Explanation
	Strategy Two – Naive Style
	Strategy Two – Explanation
	Cost Evaluation
	Problems with Current Systems
	The Design Space
	Some Ways to Avoid Current Problems
	Our Design Choices
	(Hoped for) Consequences of Design Choices
	Progress
	Other Possibilities
	Summary

