
The R Project: A Brief History
and Thoughts About the Future

Ross Ihaka

The University of Auckland



The R Language and Environment

• R is a computer language and run-time environment which
can be used to carry out statistical (or other quantitative)
computations.

• The base part of R comes with a wide range of standard
statistical and graphical analyses built in.

– parametric statistical modelling

– multivariate analysis

– nonparametric statistics

– smoothing and nonparametric fitting

– time series analysis

• There are a large number of user-developed extension
packages which provide an even richer set of capabilities.



Licensing

• R is free software released under the Free Software
Foundation’s General Public License.

• This means that R is free of any restrictions on how it can be
disseminated.

• Versions of R can be obtained without charge and can be
redistributed to others.

• The license is intended to prevent the creation of encumbered
derived works (i.e. commercial versions).



Uptake

• Because of its license, it is very hard to determine what the
installed user base of R might be.

• The R development group has considered how to estimate the
number of R users, but considers the problem to be
intractable.

• A 2009 article in the New York Times presented the two
estimates: one million users (Intel Capital) and two million
users (Revolution Analytics).



The R Language

• R is an expression-based language.

– Users type language expressions at the R prompt.

– These expressions are evaluated by the R interpreter..

– The computed values of the expressions are printed.

• R is extensible.

– Users can implement new functionality in the form of
functions.

– Developers can implement new packages of
functionality that extends the base system.



An Example

The “sleep” data in R contains data that W. S. Gosset (“Student”)
used for one of the first t-tests.

The data set is stored as a data frame. We can find out what
variables it contains as follows:

> objects(sleep)
[1] "ID" "extra" "group"

We can examine the data with a box-and-whisker plot.

> boxplot(extra ~ group, data = sleep,
main = "Extra Hours of Sleep",
names = c("Placebo", "Treatment"))



Placebo Treatment

−
1

0
1

2
3

4
5

Extra Hours of Sleep



Example Continued . . .

Each subject has a pair of placebo/treatment observations, so it is
appropriate to carry out a paired t-test.

We are interested in whether the treatment provides more additional
sleep than the placebo.

> with(sleep,
local({

placebo = extra[group == 1]
treatment = extra[group == 2]
t.test(treatment, placebo,

alternative = "greater",
paired = TRUE)

}))



Example Continued . . .

The t-test produces the following output.

Paired t-test

data: treatment and placebo
t = 4.0621, df = 9, p-value = 0.001416
alternative hypothesis: true difference in means

greater than 0
95 percent confidence interval:
0.8669947 Inf
sample estimates:
mean of the differences

1.58



Early History - 1990

• Ross Ihaka joins the Department of Statistics at the
University of Auckland.

• Robert Gentleman spends 1990 in Auckland on sabbatical
from the University of Waterloo.

• During a chance encounter in the corridor, the following
exchange takes place:

Gentleman: “Let’s write some software.”
Ihaka: “Sure, that sounds like fun.”

• The initial goal is to build a testbed for trying out ideas and to
publish a paper or two.



The Initial Language

> (set x (seq 10))
(1 2 3 4 5 6 7 8 9 10)

> (sum x)
55

> (set factorial (lambda (x)
(if (< x 1)

1
(* x (factorial (- x 1))))))

<closure>

> (factorial 5)
120



Early History - 1992

• Robert Gentleman joins the Department of Statistics at
Auckland.

• We set a goal of developing enough of a language to teach
introductory statistics courses at Auckland.

– It is decided to adopt the syntax of the S language
developed at Bell Laboratories.

– As a joke, the name “R” is coined for the language
(standing for Robert and Ross).



Early History - 1994

• An initial version of the language is complete.

• Colleagues overseas encourage us to release the language as
“free software.”

• A little thought convinces us that there are limited prospects
for the software as a commercial product.

• We adopt the Free Software Foundation GPL as our license
and begin to make releases via the Internet.

• We start a small email list so that we and our users can
discuss R.



The original R developers plotting world domination.



Early History - 1996

• By 1996 we were becoming victims of our own success.

• We were being supplied with a continuous stream of bug
reports and suggestions for improvement.

• Maintaining the mailing list was becoming problematic.

• It was beginning to be clear that the project was getting close
to the limit of what two of us could handle.



Early History - 1997

• The mailing list turned out to be very successful and our user
base increased enormously (to nearly 100!).

• The list was so successful that was split into the present
r-help and r-devel lists.

• Kurt Hornik and Fritz Leisch established the CRAN archive
at the Technical University of Vienna as a repository for user
contributions.

• We became so deluged with patches and requests for
enhancements that we decided to open up the development
process by giving a selected “core” of developers direct
access to the CVS archive.



R Becomes A GNU Project

From: Richard Stallman <rms@gnu.ai.mit.edu>
To: ihaka@stat.auckland.ac.nz
cc: rms@gnu.ai.mit.edu
Subject: Re: Seen on your wishlist
Date: Tue, 16 Sep 1997 21:56:06 -0400

So [explicitly], yes we would like R to be
considered as a GNU program.

I hereby dub R GNU software!



A Free Software Project

• Since we opened up the project, it has gone ahead in leaps
and bounds.

• On February 29, 2000, the software was deemed fully
featured enough and stable enough for the 1.0 release to take
place.

• There are now nearly 20 core developers maintaining and
extending the language interpreter and its basic functionality.

• The group includes a number of well-known researchers in
Statistical Computing.

• The software now has a regular six-monthly release cycle and
will shortly see the release of version 2.14.



The intense software development effort leading up to R version 1.



R Core Developers

Peter Dalgaard University of Copenhagen
John Chambers Bell Labs and Stanford University
Robert Gentleman Genentech
Kurt Hornik University of Vienna
Stefano Iacus University of Milan
Ross Ihaka University of Auckland
Friedrich Leisch University of Munich
Thomas Lumley University of Auckland
Martin Mächler ETH Zurich
Duncan Murdoch University of Western Ontario
Paul Murrell University of Auckland
Martyn Plummer International Agency for Research on Cancer
Brian Ripley Oxford University
Duncan Temple Lang University of California
Luke Tierney University of Iowa
Simon Urbanek AT&T



Current Status

• The R Project is an international collaboration of researchers
in statistical computing.

• The formal structure for the project is provided by the R
Foundation, a non-profit foundation based in Vienna.

• The Foundation collects donations and uses them to maintain
infrastructure and sponsor some development work.

• The software is stable and is undergoing only relatively
minor enhancements.

• The software continues to be released under a “free software”
license.



Current Status

• There are more than a hundred books which have been
published (or are in preparation) dealing with R and its
applications.

• Springer has a dedicated book series dedicated to R (UseR).

• The “R Newsletter” has matured and been relaunched as the
“R Journal.”

• There are nearly 3000 extension packages which have been
contributed to CRAN. (The number is growing
exponentially).



R’s Limitations

R is a useful piece of software, but it does have limitations.

• It discourages direct solution of problems and favours the use
of some rather strange idioms.

• It can make huge demands on system resources, particularly
memory.

• It is very slow, particularly for element-by-element
computations.

• It uses a single thread of execution model which is very
restrictive.



A Code Example

Given numeric x and y vectors, the following R fragment carries out
a useful computation. What does it do?

> x[apply(outer(x, y, function(x, y) abs(y - x)),
2, function(u) which(u == min(u))[1])]



A Code Example

Given numeric x and y vectors, the following R fragment carries out
a useful computation. What does it do?

> x[apply(outer(x, y, function(x, y) abs(y - x)),
2, function(u) which(u == min(u))[1])]

Answer: It computes the nearest x to each y.

> x = seq(0, 1, by = .1)
> y = runif(5)
> nx = x[apply(outer(x, y, function(x, y) abs(y - x)),

2, function(u) which(u == min(u))[1])]
> rbind(y, nx)

[,1] [,2] [,3] [,4] [,5]
y 0.9880671 0.5387734 0.184014 0.5022672 0.3539751
nx 1.0000000 0.5000000 0.200000 0.5000000 0.4000000



Alternative Coding

The computation can also be written in a more straightforward way.

> nx = numeric(length(y))
> for(j in 1:length(y)) {

dmin = Inf
imin = 0
for(i in 1:length(x)) {

d = abs(x[i] - y[j])
if (d < dmin) {

dmin = d
imin = i

}
}
nx[j] = x[imin]

}



Comparison

The first code fragment is “cute,” but there are several problems
with it.

• It is hard to tell what it does.

• It uses a potentially huge amount of machine memory and,
hence, time.

The second fragment is transparent and, in theory, makes less
demand on machine resources, but it also has a problem.

• It runs very slowly in R (element-by-element computations
are slow).



Fixing the Problems

• There are two approaches to fixing the problems with R.

• The first approach is to try to make R run faster.

• There have been (at least) three projects which have sought to
improve R’s performance.

• At best, these approaches offer a 5–10 fold improvement in
speed and little improvement in resource use.



A Second Approach

• Another way to gain performance is to make fundamental
changes to the way the language works.

• This means defining a new (incompatible) language which
avoids those features of R which cause problems.

• The major problems are that:

– There is far too much unnecessary copying of data in
R.

– Scalar (i.e. element-by-element) computation is slow.

– There are bizarre effects which result from the way R
handles scoping.

• These issues are inherent in the way R works and eliminating
them requires a new language.



Copying

• R semantics mean that functions are not permitted to change
their arguments (“call by value”).

• Essentially, functions work on copies of their arguments.

• Moving to a call-by-reference model will eliminate
over-copying, but code will have to be changed to avoid
destroying valuable data.



Scalar Performance

• R’s slow element-by-element performance results from the
fact that it has no scalars and every operation incurs array
access and bound checking overhead.

• One way to speed things up is provide true scalar support.

• This makes the language much more complicated and will
require the addition of (optional) type declarations to gain
maximum performance.



Scoping Issues

• R variables are created by assignment.

• This overloading of declaration and assignment is rather
peculiar.

• Variables may or may not be local and whether the variable
even exists is not determined until runtime.

• It sort this problem out it will be necessary to introduce
mandatory scope declarations.



A New Language

• Research is under way to provide the technology which can
be used to build a better language for doing statistics (and
other quantitative calculations).

• Present collaborators are Duncan Temple Lang, Brendan
McArdle and myself.

• Initial experiments indicate that we can expect a three
order-of-magnitude speedup in the kind of computations
which are slow in R.

• By using the right algorithms it should be possible to reduce
memory demands significantly.



An Example

A small sum function written in R.

sum =
function(x) {

s = 0
for(i in 1:length(x))

s = s + x[i]
s

}



An Example

A small sum function with scoping declarations in a hypothetical
new language.

sum =
function(x) {

local i, s = 0
for(i in 1:length(x))

s = s + x[i]
s

}



An Example

A small sum function with scoping and type declarations in a
hypothetical new language.

sum =
function(double x[]) {

local integer i, n = length(x)
local double s = 0
loop(i = 1; i <= n; i = i + 1)

s = s + x[i]
s

}



Summary

• R provides a useful platform carrying out statisti.cal
computations.

• Its particular strength is its extensibility.

– New techniques can be added “on the fly.”

– New methodology is easily packaged and distributed.

• R is limited in the size of problem it can attack.

• A new, but similar, language is under development which will
make it possible to keep the advantages of R while making it
possible to handle (much?) larger problems.


	Title Page
	The R Language and Environment
	Licensing
	Uptake
	The R Language
	An Example
	Figure: Sleep Data Boxplot
	Example Continued …
	Example Continued …
	Early History - 1990
	The Initial Language
	Early History - 1992
	Early History - 1994
	Figure: The Original R Guys
	Early History - 1996
	Early History - 1997
	R Becomes A GNU Project
	A Free Software Project
	Figure: Wiedenbrau
	R Core Developers
	Current Status
	Current Status
	R's Limitations
	A Code Example
	Alternative Coding
	Comparison
	Fixing the Problems
	A Second Approach
	Copying
	Scalar Performance
	Scoping Issues
	A New Language
	An Example
	An Example
	An Example
	Summary

