R: A Language for Data
Analysis and Graphics

Ross THAKA and Robert GENTLEMAN

In this article we discuss our experience designing and implementing a statistical
computing language. In developing this new language, we sought to combine what we
felt were useful features from two existing computer languages We feel that the new lan-
guage provides advantages in the areas ot portability, computational etticiency, memory
management, and scoping.

Key Words: Computer language; Statistical computing.

1. INTRODUCTION

This article discusses some i1ssues involved in the design and implementation of a
computer language tor statistical data analysis. Our experience with these 1ssues occurred
while developing such a language. The work has been heavily influenced by two existing
languages—Becker, Chambers, and Wilks™ § (1985) and Steel and Sussman’s Scheme
(1975). We ftelt that there were strong points in each of these languages and that 1t would
be interesting to see 1t the strengths could be combined. The resulting language 1s very
stmilar 1n appearance to S, but the underlying implementation and semantics are derived
from Scheme. In fact, we implemented the language by first writing an interpreter tor a
Scheme subset and then progressively mutating it to resemble S.

We added S-like features 1n several stages. First, we altered the language parser so
that the syntax would resemble that of §S. This created a major change in the appearance
of the language, but it should be emphasized that the change was entirely superficial;
the underlying semantics remained those of Scheme. Next, we modified the data types
of the language by removing the single scalar data type we had put into our Scheme
and replacing it with the vector-based types of §. This was a much more substantive
change and required major modifications to the interpreter. The final substantive change
involved adding the S notion of lazy arguments for functions.

At this point we had enough ol a framework in place to begin building a full statistical
language. This process 1s ongoing, but we feel that we are well on the way to building a
complete and useful piece of software. The development of the key portions of language

Ross Thaka 1s Senior Lecturer, and Robert Gentleman 15 Semor Lecturer, Department of Statistics, University
of Auckland. Private Bag 92019, Auckland, New Zealand, e-mail thaka@stat auckland ac nz.

(C 1996 Americun Stanistical Assoctation, Instinute of Mathematicul Statistics,
and Interface Foundation of North America
Journal of Computational und Graphical Statstics, Volume 5. Number 3, Pages 299114

299

300 R. THAKA AND R. GENTLEMAN

took two years of part-time etfort on our part. This comparatively rapid development
has been possible because we were able to make use of the well-documented work of
Scheme (and Lisp) implementors and the pioneering work of Becker, Chambers. and
Wilks as well as that of Tierney (1990).

The language we have developed differs from S in a number of ways. Some of this
difference is just implementation detail, and some i1s more fundamental. In the tollowing
sections of this article we will describe what these differences are and the lessons that

we feel are to be learned from our work.

We have named our language R—in part to acknowledge the influence of S and in
part to celebrate our own efforts. Despite what has been a nearly all-consuming effort,
we have managed to remain on the best of terms and retain our interest in computers
and computing.

2. DESIGN ISSUES
2.1 SyYNTAX

A computer language 1s described by s svntax and semantics. These provide de-
scriptions of the form and substance of the language. In a sense, the syntax ot a language
1s entirely superfictal. What 1s or 18 not possible with a language 1s determined by its
semantics. On the other hand, the syntax of a language 1s important because 1t determines
the way that users of the language express themselves. Indeed. many users differenti-
ate computer languages on the basis of their syntax rather than the underlying semantic
ditterences.

This article concentrates on language structure. but clearly there are other 1ssues
that are important 1n a language for statistical computing. A major one being rools. The
language—that 1s, syntax and semantics—plus the tools are combined into what can
be called the run-time environment. This environment s the typical user’s view of the
program. Users want a language that 1s not only flexible but also provides them with
a variety of tools for performing computations. Having good syntactic and semantic
structure alone will not yield a useful language nor will their absence create a useless
language.

Scheme provides a particularly good example of the design of a programming lan-
guage. It 1s often regarded as a member of the Lisp family of languages, but Abelson,
Sussman, and Sussman (1985) pointed out that 1t 1s as closely akin to Algol 60 as to
early Lisps. Scheme concentrates on providing a small but powerful set of capabilities
that are easily extended and can be used to solve a wide variety ot problems.

In designing R, we chose to adopt the underlying evaluation model of Scheme
together with the syntax of S. We chose the S syntax for our language because it is a
powerful means for data analysts to express the computations that they need to carry out.
Indeed. 1t 1s possible that the continuing success of S relative to Lisp-Stat (Tierney 1990)
1s because 1t provides a syntactic structure that expresses statistical ideas in a manner
that statisticians feel comfortable with.

Scheme and 5 have obvious syntactic differences. Despite this they are actually
quite similar in their basic structure. Consider the similarity 1n two defimtions of a

R: A LANGUAGE FOR DATA ANALYSIS AND (QRAPHICS 301

simple factorial function.

factorial i1n S
factorial <- function(n)
1f{n <= 0) 1 else n * factorial{n - 1)

- factorial 1n Scheme
(define factori1al (lambda (n)
(1f (<= n 0) 1 (* n (factorial (- n 1))))))

Once one understands that Scheme writes f(r) as (f x) anda~bas (- a b) and
that define corresponds to <- and lambda to function, the two definitions are
seen to be essentially 1dentical. In fuct, turning S expressions into the s-expressions of
Scheme generally imvolves only simple rearrangements.

In what follows, we will suppose that the reader 1s familiar with S syntax. A de-
scription of that syntax can be found in Becker, Chambers, and Wilks (1983).

2.2 EVALUATION AND ENVIRONMENTS

A mathematical expression of the form cos(n/4) can be thought of as a symbolic
description of how to compute a numerical value. Such an expression is meaningful only
because we understand what its component symbols mean. In the case of this expression,
we understand that cos 15 a mathematical function that computes cosines. 7 1~ @ numerical
constant that gives the ratio of a circle’s circumterence to its diameter, 4 is a small integer,
and / is a binary operator (function of two arguments) that performs division. Similarly,
an expression written in a computer language i1s not sutficient in itself to dehine the value
to be returned by a computation. In addition, values must be associated with the symbols
that appear in the expression.

In both Scheme and S the association between symbols and values is provided by
what we will call an environment. An environment consists of a list of environment
frames, each of which can be thought of as a hst of symbol/value pairs. When a value
1s required for a symbol, the environment 1s searched frame-by-frame, pair-by-pair until
a matching svmbol/value pair 1s found. Because an environment is required by the eval-
uation process, we will speak of evaluating an expresston in an environment. The same
expression can vield different values when evaluated in different environments.

Environments are created during the process of function evaluation. For example.
suppose we have a function square defined by

square <- function(x) x * X
and we use it 1n the expression
square (10)

When this 1s evaluated, an environment frame 1s created that associates the symbol x
with the value 10. This becomes the first frame of an environment which we will write

302 R. IHAKA AND R. GENTLEMAN

as
{r— 10:p,}.

where p, denotes the tollowing or parent trames ot the environment. The body of the
function (1.e., x *) 1s then evaluated in this environment.
During the evaluation, values are sought for the symbols x and *. The value of x

1s found 1n the first environment frame. but the value of * 1s not defined there and must
be sought 1n the other trames of the environment.
In Scheme, these other environment frames are those that existed when the function

sguare was defined. This 1s tn contrast with S, where the environment frames are a
fixed set of global frames. This upparentlv minor difference has major ramifications and
arguably provides the major difference between the two languages. Because R 1s derived
from Scheme, 1t has adopted the Scheme evaluanon model.

To see that there 1s a difference between the two evaluation models. consider the
tollowing example (which can be run 1n either R or S).

v o<-— 123
f <- function(x) {
v o <—- X * X
g <~ function() print(y)

g ()

}
£{(10)

When this code fragment 1s executed, S prints 123 and R prints 100. This points to a
major ditference between R and S that involves free variables; variables used in functions
that are not defined by the formal parameters to the function. The manner in which values
arc attached to these free variables differs between R and S.

[t 1s informative to follow the evaluation process through for this code fragment. In S
the evaluation proceeds as tollows. The mnitial assignment v <- 123 defines the value
of v to be 123 in the global environment. We will represent this initial environment as

po = 1y — 123 p. 1.

where p. 1s the parent environment consisting of system-defined functions and constants.
Detining the function £ modihes o o

oo = {y— 123, f— oip.}.

where ¢ represents the function assigned to £.
When § evaluates £ (10) 1t creates a new environment frame that associates x with
the value 10 and which 1s parented by g.

pr = {r— 10:pa}.

The body of f 1s then evaluated in p;. The first assignments of the function body modify
p1 with assignments to v and g.

o = Ar— 10,y — 100, g+ ~v:pp}.

R: A LANGUAGE FOR DATA ANALYSIS AND GRAPHICS 303

where < 15 a function that prints the value of the symbol yv. When the function g 1s
invoked, a new environment frame 15 created. Because g has no formal arguments, this
environment 1s given by

)2 — { :{J{}}.

Note that the parent environment here 1s pg. The body ot g is now evaluated. Durning
this process a value tor v is sought. The search (starting in p») finds the value 123 1n
the first frame of py and so 1t 1s this value that 1s printed.

[n R, the evaluation process 1s identical up to the evaluation ot g (). At this point
the body of g 1s evaluated 1n the environment

Py ={ ;]

because 1t was p; that was in effect when g was defined. The search for y now finds the
value 10C in the first frame of).

One might think that the difterence between R and S s that, in S, matching of
variables 10 values takes place after the functuion i1s executed. but in R 1t takes place

when the tunction is created via the associated environment. This. however. 1s not true.
In R there 1s no association between symbols and values prior to tunction invocation.
The associated environment is simply a repository for possible values; these can be
changed directly by accessing the environment or indirectly via the actual arguments (0
the tfunction. The real difference 1s that there 1s this associated environment that can be
used to store information between tunction calls.

2.3 MAINTAINING STATE WITHIN FUNCTIONS

In both § and R. functions are important because they are the means by which
computation takes place. Functions are first-class objects 1n both languages. This means
that they are treated in the same way as other objects 1n the language (numbers, strings.
etc). They may be returned as values by other functions and can be assigned as the value
of a symbol.

R and S differ fundamentally in their ability to maintain state information within
functions. As mentioned in the previous section, each function in R has an associated
environment, namely the environment that was in effect when the function was defined.
When a function 1s invoked, a new environment frame is created that associates the
formal and actual arguments for that function. The body of the function s then evaluated
in the environment obtained by nserting this frame betore the tirst frame of the function’s
assoclated environment.

Assignments in the function body using the < - operator change the first frame of
this environment. Both R and S provide a second assigniment operator, << -: y<<-10,
for example. The effect of this kind of assignment in S 1s that a change 1s made directly
to the global environment. In R. a search 1s made. starting with the parent environment
and traversing upwards through the parent environments unttl the global environment 1s
reached. The value of the first v encountered 1s changed. It no v symbol 1s encountered.
then the global environment 1s modilied to include a definition tor v

304 R. InaAkA AND R. GENTLEMAN

The combination of the Scheme/R evaluation model and the << - operator provides
a means for functions to maintain local state. Roughly speaking, this means that functions
are able to remember the values of variables between invocations. The actual implications

are much more profound.
To see how this works, consider the tollowing function which models the way a

bank account might work. Although this example 1s not statistical in nature there are
many statistical problems, such as random number generation, for which such capability

IS 1mportant.

account <~ function(total)

list (
balance = function() total,
deposit = function{amount) total <<- total + amount,
wilithdraw = function(amount) total <<- total - amount

)

The tunction account takes a numerical argument total and returns a list con-
taining three functions. Because these functions are defined in an environment that con-
tains total, they will have access to its value. This will be true even after the function
account has returned.

The ettect of this function can be seen 1n the following dialog.

Robert <«<- account (1000)
Ross <- account (500)
Robert$Sdeposit (100)
RossSwithdraw (150)

> RobertSbalance ()

V V. VvV ¥V

(1] 1100
> RossSbalance ()
[1] 350

The accounts for Robert and Ross are maintained separately as we would expect. with
deposits, withdrawals, and balance inquiries for each Robert and Ross taking place on
the appropriate account. This separation 1s possible because there 1s a distinct value of
total ftor-each Robert and Ross. The two totals exist in different environments. The
first of these environments 1s created when account i1s invoked for the first time and an
environment frame 1s created that associlates total with the value 1,000. An extended
environment that includes this frame 1s associated with the three functions returned by
account. An environment with a ditterent first frame 1s created by the second invocation
of account and associated with the tunctions returned from 1t. These functions then
manipulate the value of total in their associated environment. This manipulation 1s
carried out with the << - form of assignment. The three functions returned by a call
to account share common persistent state information in the form of the value of the
symbol total.

The ability to preserve state information between function invocations i1s a very
useful feature for a programming language to have. Those with a deeper knowledge of
programming systems will see immediately that it would be possible to build an object-

R: A LANGUAGE FOR DATA ANALYSIS AND GRAPHICS 305

oriented system using precisely this kKind of local state. We discussed some statistical
applications of these 1deas in Gentleman and lThaka (1994).

Functions in S do not have the ability to preserve state information in this straight-
forward manner. This 1s because they do not have environments associated with them.
In fact they can be thought of as /iterals in S. In other regards. functions in R and S are
very similar. Both match formal and actual arguments in the same way and both allow
default values that will give a value to a formal when no matching actual 1s supphed.

2.4 LAZY ARGUMENTS AND DEFAULT VALUES

Scheme uses a policy of eager evaluation tor function arguments. All the arguments
to a function are evaluated before the tunction body is evaluated. Some special tunctions,
such as 1f. are exceptions to this general rule By contrast, S uses u policy of lazy
evaluation tor function arguments. This means that the expressions given as function
arguments are not evaluated before the tunction 1s called. Instead, the expressions are
packaged together with the environment in which they should be evaluated and 1t 1s this
package that 15 passed to the function. Evaluation takes place only when the value ot the

argument 1s required. Such a package can be thought of as a promuse (o evaluate should
the need arise

A policy of lazy arguments 1s very useful because 1t means that, in addition to the
value of an argument, 1ts symbolic form can be made available 1n the tunction being
called. This can be very useful for specifying tunctions or models in symbolic torm.

For example, consider the tollowing tunction which can be used to draw smooth curves,
specified as a tfunction of x.

f

curve <- function(expr, from, to) {
x <- seg(from, to, length=500)
v <~ eval (substitute (expr))
plot(x, v, type="1"}

-1.-
4

To draw the graph of the function f(.r) = o> — | over the interval —2.2]. this function
would be invoked as tollows.

curve (x™2 - 1, -2, 2)

The unevaluated first argument to curve is returned by substitute (expr). This
1s then evaluated by eval in the environment that the body 1s being evaluated in. This
environment contains the value of x created by the call to seq.

There are several means of providing default values for missing arguments. In the
first example, the function missing 1s used 1o determine whether an argument was
supplied. The function missing when applied to a tormal parameter returns true if the
argument was not supplied and talse 1if the argument was supphed.

sumsg <- function(y, about) /{
1f{missing (about))
sum((y - mean(y)) "2}
else

306 R. IHAKA AND R. GENTLEMAN

sum((y - about}))”"2)
}

It the parameter about 1s supplied. then it is used to center the yv’'s and if not, the mean
of the values 1s used as a centering value A second method of providing default values
1S to assign them 1n the argument list using the = operator.

sumsg <- function(y, about=mean{(y))
sum((y - about)”™2)

If no value 1s specified for about 1n a call of sumsq. the mean of the y values 18 used.
In fact, the expression mean (y) 1s packaged in an evaluation promise together with
the environment that the function body will be evaluated in. This means that the default
argument ts not evaluated until the argument 1s used tor the first time. This delay of
evaluation can be quite useful as the next version of sumsqg shows.

sumsg <- function(y, about=mean{y), na.rm=F) {
1f(na.rm)
y <- yll'is.nal(y)]
sum((v - about) "2}
J

The evaluation of the centering constant does not take place until after the NA’s have been
processed. An NA represents a mussing value. Computations on vectors that contain NA’s
generally result in NA so they are often removed before the calculation is carried out.
The detault argument for about. in our example, has the correct value of the centering
constant regardless of whether na . rm 15 set to true or false.

Another advantage of lazy evaluation i1s that functions ke 1f do not need to be
special. In Scheme 1f 15 a special form. With lazy evaluation it can be implemented as
a standard tunction that chooses which of its arguments to evaluate.

Lazy argument evaluation 15 a very useful 1dea. Our original implementation of R
omitted 1t, but 1t quickly became clear that other methods of providing the same func-
tionality were much less elegant. There 1s one disadvantage to lazy evaluation, however.
If assignments are made in tunction mvocations, unusual behavior may result, as the
following example shows.

silly <- function(x,y) {
1f(y < 10) print (x)
else print (v)
}
silly(z <- 3, 14)
11 14
> 7

v+ 4+ +

Error: Object "z" not found
> g1lly(z <- 3, 4)

(1] 3

> Z

(1] 3

R A LanNGUAGE FOR DATA ANALYSIS AND (GRAPHICS 307

Notice that the assignment. z< -3, takes place in the environment that si11y was called
from. The difference between the first call to s1 11y and the second is that in the first.
because y was larger than 10. the first line of code was not evaluated and hence the
argument x was never evaluated So the value 3 was never assigned to z. In the second
case x was evaluated and hence the assignment of the value 3 to z did take place.
Because of this possibility 1t 1s recommended that one not use assignments (or indeed
any expressions with side-effects) in function calls.

It would be easy (o modity the grammar of R to disallow assignments as func-
tion arguments. This would also introduce the possibility of using = as the assignment
operator instead of, or in addition to, <-. We have chosen not to do this mainly for
compatibility reasons. It S or R used = as the assignment operator under the current

syntactic paradigm there would be contusion. It would not be clear whether the function
invocation fco (x=5) meant invoke the function £oo with formal argument x bound to

5 or to invoke foo with the first formal argument bound to 5 and set the global vanable
x equal to 5.

3. IMPLEMENTATION ISSUES
3.1 PORTABILITY

We planned to carry out development of R on Unix workstations, but wanted to be
able to use the production code 1n an mstructional laboratory consisting of Macintosh
computers. From the outset, then, portability was a major concern for us. Although 1t
would have been possible to create a version ol R that would run on smaller computers
(such as those the based on the Intel 286 processor). this would have introduced unwanted
complications and we decided to target the implementation at machines with at least 32-
bit addresses. In addition, we decided to develop for an environment that provided two
or more megabytes of directly addressable memory. Machines of this type are now the
rule rather than the exception in computing.

To further foster portability, we chose to code R in ANSI standard C since this is

now the standard programming cnvironment for most computing plattorms C makes it
possible to write efficient. compact code and provides easy access to all but the lowest
level of machine capabilities. It might be argued that C++ would provide a better devel-
opment vehicle. but because we planned on implementing higher-order tunctionality in
R itself, it 1s unlikely that we would have taken advantage ot the additional abstraction
facilities of C++.

The decision to code in C meant that large amounts of useful FORTRAN applications
code such as LINPACK (Dongarra, Bunch, Moler, and Stewart 1978) were not directly
available to us. The availability of the AT&T/Bellcore f2c¢ FORTRAN-to-C translator
(Feldman 1990) provided a convement solution to this problem. On plattorms where
C/FORTRAN interlanguage calling 1s cither not available or inconvenient, we use £2c
to obtain easy access to such FORTRAN code.

308 R. Inaka AND R. GLNTLEMAN

3.2 IMPLEMENTATION STRATEGY

We began the implementation of R by creating an interpreter for a subset of Scheme
(continuations were the most notable omission from the subset). Implementing a Scheme

interpreter ts a comparatively straightforward task. Useful pointers on how to do 1t can
be found 1n the books by Abelson. Sussman, and Sussman (1985) and Kamin (1990). We
particularly recommend the latter for those interested 1n the practicalities of interpreter

design. Our nitial interpreter contained basic mechanisms for symbol-table management,
memory management, and evaluation. It consisted of roughly 1.000 hnes of C code.
Despite its small size, the interpreter was quite powerful.

The first step in mutating the nterpreter into something S-like was to add a parser
to convert ¢xpressions 1n S syntax mto Scheme As mentioned i Section 2, this involves
only trivial rearrangement of expressions. and is a straighttforward programming task. We
used the yacc parser generator (Johnson 1975) to generate computer code to carry out
the rearrangement.

To this base we added the vector data types of S. These types are vectors that consist
homogeneously of elements which are either logicals, integers, reals, or character strings.
We chose not to implement a single-precision real type and have not yet implemented
a complex type. but we did include an enum type for the representation of categorical
variables. Integrating these vector types and providing the capability to access and mutate
subsets of vector objects took a considerable amount of time. The final change we made

was to add lazy evaluation and default values for function arguments. This mvolved

comparatively minor changes to the syntax and evaluator.

3.3 INTERNAL STRUCTURE

The internal structure of R will be familiar to Lisp implementors. A common data
structure is shared by the internal representation of most elements of the language (we will
call these basic language elements or BLLEs). The data structure consists of five machine
words. The first of these 15 a tag that contains type intormatton and some miscellaneous
bit-fields that are used for internal purposes. The second word contains a (possibly null)
pointer that 1s used to attach a list ot attnbutes to objects. The contents of the remaining
three words are interpreted according to the type ot object being represented. The machine
words are:

L | attr 0y (' Uiy

-—

In all there are about 20 distinct types of BLE. In this section we will show the structure
of a tew of them.

3.3.1 Symbols

Symbols are the language elements used to name objects in R, In a symbol’s BLE,
w18 a pointer to a character string that gives the symbol’s (print) name and wu» and s
are pointers that can be used to associate system level objects with the symbol. Distinct

R: A LANGUAGE FOR DATA ANALYSIS AND (GRAPHICS 309

element, name element, name

Fireure I R Internal Memory Orgamization

symbol BLEs are guaranteed to have different aming strings. This means that symbol
comparisons can be done using the address of the BLE rather than the string comparison.
Symbols and values are associated mainly through environments and not through w» and

i,

3.3.2 Cons cells

These objects are the basic “glue” that holds the internal structures of the interpreter
together. In particular, they are the building blocks of lists. In cons cells, w; and wu» are
interpreted as Lisp car and cdr pointers and wy 1s taken to provide an optional name for
the object pointed to by the car pointer. Lists are assembled from cons-cells as shown
in Figure |.

3.3.3 Environments

The role of environments 1n the evaluation process has been described earlier 1n this
article. An environment, BLE. has . a pointer to a pointer to a frame (which s a list of
names and associated values), and w-, a pointer to a parent environment. u': 1S unused.

3.3.4 Vectors and Strings

These are variable-size objects that must be stored 1n contiguous blocks of memory.
Each such block is referenced by a header stored in another five-word BLE. Such BLEs
have the array length stored m «; and a pointer to the values in w».

3.4 MEMORY MANAGEMENT

The basic functionality that uny computer language must provide 18 data manage-
ment: the ability to store and retrieve data from computer memory. It 1s important that this
base level memory management be as etficient as possible because all other tunctionality
will build upon this layer. The cost of using a bad memory-management strategy can be
very high, particularly in virtual memory systems. Such systems allow executing pro-
grams to (apparently) use more memory than i1s physically present in the computer. This
1s achieved by partitioning the executing image into memory pages and onlv keeping a

310 R. IHAKA AND R. GENTLEMAN

small subset of the pages in memory at any given time. If consecutive memory refer-
ences are localized this works well, but if the references are widely dispersed through the
image, system pertormance can sufter drastically. 'This happens because memory pages
must be copied to and from disk 1n a process called paging. Because disk access 1s
extremely slow In comparison to memory access, programs that page heavily tend to run
very slowly. Therefore, languages should use as little memory as possible to avoid paging
and increase performance. S arguably uses more memory than 1s strictly necessary.
The problems of memory management are not unique to statistical software. Con-
siderable effort has been expended by computer scientists 1n producing good memory-
management strategies. An extensive review of techniques for uniprocessor systems can

be found in Wilson (1990). A key point 1s that the amount of virtual memory allocated
by a program should not exceed the amount of physical memory available. It this 1s not
possible, 1t 18 important that memory references be as localized as possible.

We have used relatively simple memory management techniques i R. When R
begins execution, a large array of BLEs 15 allocated in the memory heap. At the same
time, another large portion of memory 1s allocated for the storage of variable sized objects
(vectors and strings). The array of BLEs i1s linked together into a list structure and it
1s from this list that free BLEs arc allocated as the interpreter needs them. Vectors and
strings are stored in the memory set aside for variable sized objects.

When the hist of tree BLEs or the space tor vectors 1s exhausted, a process called
garbage collection 1s 1nitiated. Garbage collection takes place in two phases. During the
marking phase, all BLEs that can potentially take part in future computations are detected
and marked. The BL.E array is then swepr and all unmarked BL.Es are assembled back into
a free BLE hist structure. Stmultaneously, all vector elements are moved into contiguous
memory n a process called compacrion.

The combination mark-sweep/compaction strategy 1s simple and effective. Garbage
collection can happen at any ume, allowing the best possible use of limited memory.
Compaction ot the vector area means that heap tragmentauon 1s avoided and that a
maximally large piece of contiguous memory can always be made available for vector
allocation. Using these strategies we have been able to run R on small- to moderate-sized
problems with less than two megabytes of memory allocated for object storage.

In the future, as R grows in size, we may have to resort to more sophisticated
memory-management techniques. At present, however. it appears that the simple method
described gives satistactory performance.

4. TIMING

One of our goals in writing R was to provide better performance than S. In this section
we report some comparisons. Unfortunately, t 1s very difficult to provide meaningful
timing comparisons tor R and S. There are a multitude of problems that cannot easily be
overcome. A major problem 1s how time should be measured. It could certainly be argued
that the real time it takes an individual to perform a task is the relevant time on which

to make comparisons, but even this will be problematic. The time used by the CPU 15
not a practical measure because time used paging will not be measured 1f we concentrate

R: A LANGUAGE FOR IDATA ANALYSIS AND (GRAPHICS 311

Table 1 Timing Comparisons

1000.1 15001 2000.1 Int

S 941 (18) 1804 (34) 2912 (33) 515/(.17)
R 18.1 (18) 28.9 (.28) 40.1 { 35) 95 (.17)
Rat:o 52 _6 2 7.3 54

on CPU time. For R the amount of time required to do certain tasks will depend on the

amount of memory available. The more times garbage collection occurs the more time
a task will take. There 15 a similur problem with S; as a session proceeds 1t appears that
some fragmentation occurs and that subsequent operations are slower. Although we have
chosen to report real time on a particular machine with a clean image (both R and § are
in pristine condition at the start of the test), the reader 1s cautioned not to over-interpret

the results reported. Another major problem is that R 1s evolving. As we find procedures
that can be simplihied and memory allocation that can be avoided. we change the program
(as do the developers of S). Thus, the timing comparisons reported here will probably
be for a version of R that 1s obsolete by the time this article 18 published.

For many algorithms, both languages use internal calls to a compiled language and
hence all we would compare 1n this case would be the algorithms rather than the languages
and these are better compared elsewhere. We have decided to program some tasks in the
interpreted language and to compare R and S (actually S-Plus, ver. 3.1) on these. The two
tasks that we report on are heap sort and numerical integration. They have been coded in
a form that runs under both systems. A Sparcstation [IPX was used to run the comparisons
with both R and S binaries located on a remote file server. For heap sort, the task 1s to
sort the integers from 1,000 down to | mto ascending order. For numerical integration,
the function j{x} = (100/.r7)sin(10/.r) is integrated for - € [1.3]. Both tunctions and
associated code are given in the appendix. Their inclusion i1s for completeness: neither
ts intended to be a defintive implementation.

The results 1n Table 1 are mean ume 1n seconds with the standard error (of the mean)
indicated in parentheses. These results indicate that R 1s faster than §. Furthermore, the
larger the problem the more the gain since the ratio of the times taken for heap sort are
5.1, 6.2, and 7.3. To some extent this reflects savings due to a conservative approach
with copying in R, but they also reflect better memory management. A big cost n
performance comes from copying all arguments to functions. In R we have adopted a
conservative approach to this. Basically we attempt to only copy an object when 1t 1s
changed (mutated) in the body of the function. Objects that cannot be accessed trom the
symbol table can be mutated directly rather than copied and then mutated. This approach
can save a great deal of time especiaily if the structure being copied/mutated 18 large

5. CONCLUSIONS
5.1 THE CosT OF R

So far we have concentrated on the advantages of R. We would now like to indicate
some of the problems, or costs, that are associated with the decisions we have made. Per-

312 R. IHAKA AND R. GENTLEMAN

haps the largest problem that results from our design decisions is the fact that everything
must be stored internally. This 1s in contrast to S, where most data objects are stored in
files on disk. If R crashes, there 1s no method of saving the current environment because
1t 1s almost surely corrupted. This suggests that it 1s a good strategy to save images fairly
often so that only a small amount of work s lost.

Another problem 1s caused by the scoping method used in R. The tact that functions
have an associated environment means that there is no simple way in which functions can
be saved. They must be stored together with their environment, and any other functions
that refer to that environment. their associated environments, and so on.

In fact, the only way to save portions of work from an R session 18 to save the
entire memory image from the session (including system functions). This makes saved
R 1mages quite large.

5.2 FUuturRE DEVELOPMENTS

In any project of this size—and 1n particular 1in the area of computing—there are
lots of extensions that can be made. Some that are particularly relevant are source-level
debugging and compiling. Again, we hope to adapt procedures already common 1n Lisp

implementations to our situation. Most Lisp implementations have very good. intelligent
compilers and with some work 1t 1s feasible that these can be adapted to R. There are
reasons that this may not result in as great an increase in speed as for other languages
though. Part of the success of S is that the looping facilities are very general. One may
iterate over lists containing virtually any type of object. In order to write a compiler it
will be difficult to obtain good, fast code while maintaining this generality. That does not
preclude the possibility of selectively compiling some functions while leaving others as
interpreted functions. If the compiler 1s sutficiently specific, it may be the case that most
users get more speed and functionality through a simplified foreign function interface.

APPENDIX: PROGRAM LISTING
A.1 HEgAP SORT

heap <- function(ra) {
n<-length{ra)
1l <- tloor(n/2)+1
1r <— N
while (5

5) |

if (1 > 1) {

l<-1-1

rra <- ral[l]} else {
rra <- ral[ir]
ralir] <- rall]
1r <- 1r-1
1f (1r == 1) {

R: A LANGUAGE FOR DATA ANALYSIS AND (GRAPHICS 313

rall] <- rra
return{ra)

}
}
1 <=1
] <= 1*2

whilile (] <= 1r) {
1t (7 < 1r)
1f (ral3] < ral[j+1]) 3<-3+1

1f (rra < ral[j]) {
ralil] <- ral7j]
1<— 7
7 <= 3 + 1
} else 7 <- 1r+]
}

rali] <-rra;

A.2 INTEGRATION

EPS <- 1.0e-5
Jmax <- 20

gtrap<-function(f,a, b}

{
olds<-1(-1.0e30)
fcr (73 1n 1:3max) {
s<-trapzd(f,a,b, J)
1if {(abs(s-olds) < EPS*abs{(olds)) retarn(s)
oilds<-s
}
print ("too many i1terations")
¥

trapzd<-function(f,a,b,n)
if(n==1) [{
git<<-1
strap<<- 0.5*(b-a)*(f(a)+f(b))
return(strap)

else {
tnm<-git
del<-{b-a) /tnm

314 R. IHAKA AND R. GENTLEMAN

x<-a+0.b*del
sum<-0
for(3 in l:git) {
sum<-sum+ £ (x)
X<-xX+del
}
gqlt<<-git*2
strap<<~0.5* (strap+(b-a) *sum/tnm)
return(strap)

ACKNOWLEDGMENTS

The authors thank John Chambers, Mike Meyer, and Duncan Murdoch for their helpful comments on a
dratt of this article. We also thank our colleagues and students that were and still are our guinea pigs

[Received Mav 1995. Revised April 1996.]

REFERENCES

Abelson, H., Sussman, G I, and Sussman, 1. (19833, Srrucrure and Interpretatton of Computer Programs,
Cambridge, MA MIT Press.

Becker, R. A, Chambers, I M . and Wilks. A R. (1988), The New § Language, Pacific Grove, CA Wadsworth,

Dongarra. J , Bunch,] R, Moler, C B, and Stewart, G W (1978}, LINPACK Users Guide, Philadelphia, PA
SIAM Publications

Feldman, S 1, Gay,. D M, Maimone, M W., and Schryer, N L (1990), “A Fortran-to-C Converter,” Computing
Science Technical Report No 149, AT&T Bell Laboratories, Murray Hill, NJ 07974,

Gentleman, R. C, and Thaka, R. (1994), “Lexical Scope and Statistical Computing ™ Technical Report No 2,
University of Auckland, Dept of Statistics.

Johnson, S. C. (1975). “Yacc Yet Another Compiler Compiler 7 Computing Science Technical Report No 32,
AT&T Bell Laboratories, Murray Hill, NJ 07974

Kamin. 5 N (1990). Programnung Languages Reading, MA- Addison-Wesley

Steel, G. L.. and Sussman, G. I. (1975), “Scheme" An Interpreter tor the Extended Lambda Calculus,” Memo
349, MIT Artificial Intelligence Laboratory.

Tierney. L (1990), Lisp-Stat, New York' John Wiley

Wilson, P R. (1990). “Uniprocessor Garbage Collection Techniques,” 1n The Proceedings of the 1992 Interna-
fronal Workshop on Memory Management, Springer-Verlag Lecture Notes on Computer Science

