Writing Efficient Programs in R
(and Beyond)

Ross Ihaka, Duncan Temple Lang**, Brendan McAuliffe

*The University of Auckland
**The University of California, Davis

Example: Generating a 2d Simple Random Walk

A two dimensional (discrete) random walk can be defined as follows:

Start at the point (0,0).
For \(i = 1, 2, 3, \ldots \) take a unit step in a randomly chosen direction; N, S, E, W.

It is possible to theory to study such a random walk, but it is also useful to use simulation to study the properties of random walks.

The sample Function

A virtual lotto ticket line.

\[
\text{> sample}(1:49, 7)
\]
\[
\begin{array}{c}
[1] 34 15 3 32 4 39 37
\end{array}
\]

Sampling with replacement.

\[
\text{> sample}(1:49, 7, \text{replace} = \text{TRUE})
\]
\[
\begin{array}{c}
[1] 13 21 23 39 23 \ 6 38
\end{array}
\]

Simple random directions and step sizes.

\[
\text{> sample}(\text{c}(\text{TRUE}, \text{FALSE}), 1)
\]
\[
\begin{array}{c}
[1] \text{TRUE}
\end{array}
\]

\[
\text{> sample}(\text{c}(-1, 1), 1)
\]
\[
\begin{array}{c}
[1] -1
\end{array}
\]

Version One: Naïve Implementation

In this version we’ll write the program the way a C, C++ or Java programmer might.

This means running a loop and generating the values one at a time.

At the heart of the program we have to choose a direction (x or y) to step in and a step size (either +1 or -1).

These random choices are made using the \text{sample} function.

Version One: R Code

\[
\text{> rs2dl1 =}
\begin{verbatim}
function(n) {
 xpos = ypos = numeric(n)
 xdir = c(\text{TRUE}, \text{FALSE})
 yml = c(1, -1)
 for(i in 2:n) {
 if (\text{sample}(xdir, 1)) {
 xpos[i] = xpos[i-1] + \text{Sample}(yml, 1)
 ypos[i] = ypos[i-1]
 } else {
 xpos[i] = xpos[i-1]
 ypos[i] = ypos[i-1] + \text{Sample}(yml, 1)
 }
 }
 list(x = xpos, y = ypos)
}
\end{verbatim}
\]

Performance

We can time the performance of this algorithm using the \text{system.time} function.

\[
\text{> system.time(rs2dl1(1000000))}
\]

\[
\begin{array}{c}
\text{user} \ \text{system} \ \text{elapsed}
\end{array}
\begin{array}{c}
2.587 \ 0.062 \ 2.591
\end{array}
\]

We’ll use this figure as a baseline for comparison with other methods we’ll develop later.

Version Two: Vectorisation

Rather than computing the position element by element, this version computes the vectors of position changes and then uses \text{cumsum} to compute the positions.

To compute \(n \) positions we need \(n-1 \) position changes.

The step sizes can be computed as

\[
\text{steps} = \text{sample}(\text{c}(-1, 1), n-1, \text{replace} = \text{TRUE})
\]
and whether or not to step in the \(x \) direction can be determined as

\[
\text{xdir} = \text{sample}(\text{c}(\text{TRUE}, \text{FALSE}), n-1, \text{replace} = \text{TRUE})
\]
Version Two: R Code

```r
> n2d2 =
  function(n) {
    steps = sample(c(-1, 1), n - 1,
     replace = TRUE)
    xdir = sample(c(TRUE, FALSE), n - 1, 
     replace = TRUE)
    xpos = c(0, cumsum(ifelse(xdir, steps, 0)))
    ypos = c(0, cumsum(ifelse(xdir, 0, steps)))
    list(x = xpos, y = ypos)
  }
```

Version Three: R Code

```r
> n2d3 =
  function(n) {
    xsteps = c(-1, 1, 0, 0)
ysteps = c(0, 0, -1, 1)
dir = sample(1:4, n - 1, replace = TRUE)
xpos = c(0, cumsum(xsteps[dir]))
ypos = c(0, cumsum(ysteps[dir]))
    list(x = xpos, y = ypos)
  }
```

Version Three: Heavy Vectorisation

A potential problem with the previous version is the use of the `ifelse` function to deal with the x and y directions separately.

As a final improvement let’s deal with the four-step directions separately and simply choose one of the four directions at random.

The directions can be chosen via

```r
dirs = sample(1:4, n - 1, replace = TRUE)
```

and this can then be used to select the appropriate increments in the x and y directions from precomputed vectors.

Version Three: R Code

```r
> n2d3 =
  function(n) {
    xsteps = c(-1, 1, 0, 0)
ysteps = c(0, 0, -1, 1)
dir = sample(1:4, n - 1, replace = TRUE)
xpos = c(0, cumsum(xsteps[dir]))
ypos = c(0, cumsum(ysteps[dir]))
    list(x = xpos, y = ypos)
  }
```

Profiling

Profiling is a useful tool which can be used to find out how much time is being spent inside each function when some R code is run.

When profiling is turned on, R gathers information on where the program is at regularly spaced time points (20 millisecond separation by default) and stores the information in a file.

After profiling is turned off the information stored in the file can be analysed to produce a summary of how much time is spent in each function.

It can be quite surprising to find out just where R is spending its time and this can help to find ways to make programs run faster.

Profiling Example

The following code will enable you to find out where R is spending its time when running the `n2d2` function.

Because the process is statistical we’ll run the function a number of times to ensure that enough data is being gathered.

```r
> Rprof()
> for(i in 1:100)
  pos = n2d2(100000)
> Rprof(NULL)
```

Profiling Analysis

```r
> prof = summary prof()
> profBy = self[1:length(self.time)]

<table>
<thead>
<tr>
<th>Function</th>
<th>self.time</th>
<th>self.pct</th>
<th>total.time</th>
<th>total.pct</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;ifelse&quot;</td>
<td>5.68</td>
<td>52.2</td>
<td>7.94</td>
<td>81.5</td>
</tr>
<tr>
<td>&quot;a&quot;</td>
<td>1.39</td>
<td>13.3</td>
<td>1.39</td>
<td>13.3</td>
</tr>
<tr>
<td>&quot;sample&quot;</td>
<td>1.19</td>
<td>11.3</td>
<td>1.19</td>
<td>11.3</td>
</tr>
<tr>
<td>&quot;!!&quot;</td>
<td>1.68</td>
<td>11.1</td>
<td>1.68</td>
<td>11.1</td>
</tr>
<tr>
<td>&quot;cumsum&quot;</td>
<td>0.34</td>
<td>3.4</td>
<td>0.34</td>
<td>3.4</td>
</tr>
</tbody>
</table>
```

81.5% of the time is being spent in the `ifelse` function (and calls made to other R functions from inside the `ifelse` function).

This explains why removing the `ifelse` calls has such a big effect.
Lessons

- Producing efficient programs in R requires thought and experimentation.
- In general, vectorisation is a big win and converting loops into vectorised alternatives almost always pays off.
- Code profiling can give a way to locate those parts of a program which will benefit most from optimisation.
- Unfortunately, it is not always possible to produce efficient programs using vectorisation.

Directions for New Research

- There are new high-level languages which which produce very efficient code by using careful code analysis and transformation.
 - SaC — Single assignment C (University of Kiel)
 - CT — C for Throughput Computing (Intel)
- These languages are not interactive.
- Whether it is possible to bring the techniques used by these languages to an interactive language is an open question.
- The other alternative is to try to make naively written programs run fast.
- How to do this in an interactive language is an open question.

A Quick Progress Report

- We believe that it is possible to make naively specified programs in a language not unlike R run much faster than R (up to 600 times faster for some problems).
- Integrating this with method-dispatch in object-oriented languages is tricky, but looks possible.
- This is not going to be enough to take advantage of the potential offered by the parallel processing architectures now becoming available.
- To harness that potential, the techniques used in languages like SaC and CT must be used.
- It is not clear whether this is possible in interactive languages.