
Bill Venables, S and R

Ross Ihaka
University of Auckland



Talk Outline



Talk Outline

• Bill’s role in the R and S community.



Talk Outline

• Bill’s role in the R and S community.

• Some of Bill’s programming work (Examples).



Talk Outline

• Bill’s role in the R and S community.

• Some of Bill’s programming work (Examples).

– Code from the english package.



Talk Outline

• Bill’s role in the R and S community.

• Some of Bill’s programming work (Examples).

– Code from the english package.

– Some code from the polynom package.



Talk Outline

• Bill’s role in the R and S community.

• Some of Bill’s programming work (Examples).

– Code from the english package.

– Some code from the polynom package.

– The SOAR package.



Image credit: http://thomasmonson.com



Bill the Educator



Bill the Educator

• His original set of notes on S was an entry-point for many
early adopters of S.



Bill the Educator

• His original set of notes on S was an entry-point for many
early adopters of S.

• The MASS book (with Brian Ripley) has been a standard
introduction to both S and R as well providing guidance on
the use of statistics to students and practitioners.



Bill the Educator

• His original set of notes on S was an entry-point for many
early adopters of S.

• The MASS book (with Brian Ripley) has been a standard
introduction to both S and R as well providing guidance on
the use of statistics to students and practitioners.

• The S Programming book (again with Ripley) provided a
concise introduction to programming in S.



Bill the Educator

• His original set of notes on S was an entry-point for many
early adopters of S.

• The MASS book (with Brian Ripley) has been a standard
introduction to both S and R as well providing guidance on
the use of statistics to students and practitioners.

• The S Programming book (again with Ripley) provided a
concise introduction to programming in S.

• His code has often provided a prototype for how to build
software depending on some of the “less familiar” aspects of
S and R.



Bill the Educator

• His original set of notes on S was an entry-point for many
early adopters of S.

• The MASS book (with Brian Ripley) has been a standard
introduction to both S and R as well providing guidance on
the use of statistics to students and practitioners.

• The S Programming book (again with Ripley) provided a
concise introduction to programming in S.

• His code has often provided a prototype for how to build
software depending on some of the “less familiar” aspects of
S and R.

• Bill has spent a great deal of time explaining the finer points
of R and S to a worldwide community of users.



Image credit: Fernandoh Rosa (Brazil 2005)



Bill the Scholar

Bill brings a serious tone to any discussion.



Bill the Scholar

Bill brings a serious tone to any discussion.

• Exegesis – a critical explanation or interpretation of a text.



Bill the Scholar

Bill brings a serious tone to any discussion.

• Exegesis – a critical explanation or interpretation of a text.

• Infelicity – a thing that is inappropriate, especially a remark or
expression.



Bill the Programmer



Bill the Programmer

• Bill writes good software.



Bill the Programmer

• Bill writes good software.

“His negative binomial software was the first such
software I found that actually worked for me.”



Bill the Programmer

• Bill writes good software.

“His negative binomial software was the first such
software I found that actually worked for me.”

• His software is often designed to be read by others. This is a
mark of good software.



Bill the Programmer

• Bill writes good software.

“His negative binomial software was the first such
software I found that actually worked for me.”

• His software is often designed to be read by others. This is a
mark of good software.

• I have often been surprised when I have begin poking about
in an area only to find Bill’s footprints already there.



Bill the Programmer

• Bill writes good software.

“His negative binomial software was the first such
software I found that actually worked for me.”

• His software is often designed to be read by others. This is a
mark of good software.

• I have often been surprised when I have begin poking about
in an area only to find Bill’s footprints already there.

• So let’s take a look inside . . .



A Function for Printing Numbers as Words

This is a function extracted from the english package (with the
object-oriented wrapping discarded).



A Function for Printing Numbers as Words

This is a function extracted from the english package (with the
object-oriented wrapping discarded).

> words(123)



A Function for Printing Numbers as Words

This is a function extracted from the english package (with the
object-oriented wrapping discarded).

> words(123)

[1] "one hundred and twenty three"



A Function for Printing Numbers as Words

This is a function extracted from the english package (with the
object-oriented wrapping discarded).

> words(123)

[1] "one hundred and twenty three"

> words(1234)



A Function for Printing Numbers as Words

This is a function extracted from the english package (with the
object-oriented wrapping discarded).

> words(123)

[1] "one hundred and twenty three"

> words(1234)

[1] "one thousand two hundred and thirty four"



A Function for Printing Numbers as Words

This is a function extracted from the english package (with the
object-oriented wrapping discarded).

> words(123)

[1] "one hundred and twenty three"

> words(1234)

[1] "one thousand two hundred and thirty four"

> words(2^53)



A Function for Printing Numbers as Words

This is a function extracted from the english package (with the
object-oriented wrapping discarded).

> words(123)

[1] "one hundred and twenty three"

> words(1234)

[1] "one thousand two hundred and thirty four"

> words(2^53)

[1] "nine quadrillion seven trillion

one hundred and ninety nine billion

two hundred and fifty four million

seven hundred and forty thousand

nine hundred and ninety two"



Useful Programming Strategies

• Decompose big problems into smaller ones, recursively if
necessary.

• Solve the smaller problems, preferably in simple ways.

• Combine small solutions into bigger ones, simple
combination methods are preferable to complex ones.

• Write code for people to read and understand rather than for
machines to execute.



Dealing with Smaller Values

For numbers less than one thousand, the basic idea is to split the
value into its individual digits.

123 → 1, 2 and 3

These are used to make up the component words of the value.

1 → “one” “hundred”

2 → “twenty”

3 → “three”

If the number is greater than 99 and either of the tens or one digits is
non-zero then “and” must be inserted.

“one hundred and twenty three”



Dealing with Larger Values

Values of one thousand or more are split into groups of three digits

1,234,567 → 1, 234 and 567.

Each group of three is treated in the same way as smaller values, but
has a suitable size suffix added.

1 → “one” “million”

234 → “two hundred and thirty four” “thousand”

567 → “five hundred and sixty seven” “”



Implementation

The following components are apparent from this analysis:

• Tables in which to look up the character string components of
numbers and size suffixes.

• A function that handles “small” (less than 1000) values.

• A function that uses the “small value” function to encode
larger values.

There is really only one thing of interest here; the function that can
be applied to both big and small values.

The tables and “small value” function should be hidden away.



Hiding Complexity

R provides a way or hiding “private” functions and variables
“inside” a function.

These are visible inside the function, but not outside.

fun =

local({

〈private variable and function definitions〉

〈function definition〉
})

This closure mechanism is inherited from Lisp and Scheme and
provides a powerful way of building software components.



Code Structure

words = local({

helper =

local({

〈Tables for word component lookup〉
function(x) {

〈Code for the small number helper function〉
}

})

function(x) {

〈Code for the general case function〉
}

})



Alternative Code Structure

words = local({

〈Tables for word component lookup〉

helper =

function(x) {

〈Code for the small number helper function〉
}

function(x) {

〈Code for the general case function〉
}

})



A Small Worry

The code contains the following definition.

trim =

function (text)

sub("^ *", "",

sub(" *$", "",

gsub(" +", " ", text)))

This function removes, leading, trailing and repeated spaces.



A Small Worry

The code contains the following definition.

trim =

function (text)

sub("^ *", "",

sub(" *$", "",

gsub(" +", " ", text)))

This function removes, leading, trailing and repeated spaces.

This is a classic cleanup hack.



Possible Enhancements

It is standard to place a hyphen between tens and ones digits (for
values greater than twenty).

Numbers are sometimes written in a comma separated form.

1234567 → 1,234,567

It can be useful to use this kind of separation when writing numbers
in words. (This is controversial and should perhaps be optional.)

One million, two hundred and thirty-four thousand,
five hundred and sixty-seven.



Restrictions

Care must be taken when dealing with integer values greater than or
equal to 253.



Restrictions

Care must be taken when dealing with integer values greater than or
equal to 253.

> as.character(2^53 - 1)

[1] "9007199254740991"



Restrictions

Care must be taken when dealing with integer values greater than or
equal to 253.

> as.character(2^53 - 1)

[1] "9007199254740991"

> as.character(2^53)

[1] "9007199254740992"



Restrictions

Care must be taken when dealing with integer values greater than or
equal to 253.

> as.character(2^53 - 1)

[1] "9007199254740991"

> as.character(2^53)

[1] "9007199254740992"

> as.character(2^53 + 1)

[1] "9007199254740992"

It might be useful to warn users that the number passed in may not
be as accurate as they think they are.



Polynomial Manipulation

• A polynomial

a0 +a1x+a2x2 + · · ·+adxd

can be represented as an R vector

c(a0, a1, . . .,ad).

• Polynomial manipulation using operations such as addition,
subtraction etc. can then be carried out using R.

• This is what Bill’s polynom library does.

• The library is written as an example of how to write
object-oriented code.



Polynomial Multiplication

Consider multiplying the polynomials

p = a0 +a1x+a2x2,

q = b0 +b1x+b2x2 +b3x3.

This can be done by multiplying out terms

aixi×b jx j = aib jxi+ j

and combining like powered terms by addition.(
∑

k=i+ j
aib j

)
xk



Polynomial Multiplication Computation

The individual polynomial coefficient products can be computed as
the outer product of the coefficient vectors.

a0b0 a0b1 a0b2 a0b3

a1b0 a1b1 a1b2 a1b3

a2b0 a2b1 a2b2 a2b3




a0

a1

a2

b0 b1 b2 b3



Polynomial Coefficient Calculation

The coefficients of the product polynomial can then be calculated
by by summing the appropriate elements of the outer product.

a0b0 a0b1 a0b2 a0b3

a1b0 a1b1 a1b2 a1b3

a2b0 a2b1 a2b2 a2b3




a0

a1

a2

b0 b1 b2 b3

The coefficients above can be summed to obtain the coefficient of x2

in the polynomial.



R Code

Here is the R code that implements polynomial multiplication.

pmult =

function(a, b) {

m = outer(a, b)

tapply(m, row(m)+col(m), sum)

}

This code is simple, clear and very useful for teaching
object-oriented programming.



R Code

Here is the R code that implements polynomial multiplication.

pmult =

function(a, b) {

m = outer(a, b)

tapply(m, row(m)+col(m), sum)

}

This code is simple, clear and very useful for teaching
object-oriented programming.

However . . .



R Code

Here is the R code that implements polynomial multiplication.

pmult =

function(a, b) {

m = outer(a, b)

tapply(m, row(m)+col(m), sum)

}

This code is simple, clear and very useful for teaching
object-oriented programming.

However . . .

There are other ways of multiplying polynomials.



Polynomial Multiplication Via the FFT

The coefficients of the product polynomial can be obtained by
convolution of the coefficients of the polynomials being multiplied.

This can be done efficiently using the FFT.

pmult =

function(a, b) {

na = length(a)

nb = length(b)

Re(fft(fft(c(a, rep(0, nb - 1))) *

fft(c(b, rep(0, na - 1))),

inverse = TRUE)) / (na + nb - 1)

}



●

●
●

●

●

●

●

●

●

●

2 4 6 8 10

0

10

20

30

40

50

● ● ● ● ● ● ● ● ● ●

Time Taken for 100,000 Multiplies (Seconds)

Polynomial Degrees

outer/tapply

fft convolution



The SOAR Package

SOAR provides a way for you to have your data immediately
available while still leaving memory free to get work done.



The SOAR Package

SOAR provides a way for you to have your data immediately
available while still leaving memory free to get work done.

> objects()

character(0)



The SOAR Package

SOAR provides a way for you to have your data immediately
available while still leaving memory free to get work done.

> objects()

character(0)

> x = 1:10



The SOAR Package

SOAR provides a way for you to have your data immediately
available while still leaving memory free to get work done.

> objects()

character(0)

> x = 1:10

> objects()

[1] "x"



The SOAR Package

SOAR provides a way for you to have your data immediately
available while still leaving memory free to get work done.

> objects()

character(0)

> x = 1:10

> objects()

[1] "x"

> Store(x)



The SOAR Package

SOAR provides a way for you to have your data immediately
available while still leaving memory free to get work done.

> objects()

character(0)

> x = 1:10

> objects()

[1] "x"

> Store(x)

> objects()

character(0)



The SOAR Package

SOAR provides a way for you to have your data immediately
available while still leaving memory free to get work done.

> objects()

character(0)

> x = 1:10

> objects()

[1] "x"

> Store(x)

> objects()

character(0)

> x

[1] 1 2 3 4 5 6 7 8 9 10



The Mechanism

• SOAR relies on the delay / force mechanism (inherited from
Scheme) that R uses to implement lazy evaluation of function
arguments.

• The underlying data structure is a “promise” which consists
of a “thunk” (a function of no arguments that can be called to
obtain a value) and a cached version of the value it returns.

• When a promise is referenced, the value in the cache is
returned.

• If there is no value in the cache, the thunk is called to obtain a
value for the cache.



How SOAR Works

• When the Store function is called, the data value is written
to disk and a promise to fetch the value is created and given
the same name.

• The original value is then removed.

• If the value is referenced, the “promise to load” is forced and
the value becomes available.

• If the value remains unreferenced, the promise cache remains
empty and memory is conserved.



A Warning

From the SOAR documentation:

While it is convenient to carry objects over from one
session to another, particularly during the period where
an analysis is being developed, it can be a mistake to
rely on R data objects gradually severing the link with
the primary sources of the data. We would encourage
users to make and keep scripts which construct all
important data sets and analyses from primary sources
and to be able to re-construct the entire process from
them.



Summary

• I have just touched briefly on Bill’s ongoing contributions to
the S and R communities.

• I have tried to show show some of the sophistication present
in his programming work.



Summary

• I have just touched briefly on Bill’s ongoing contributions to
the S and R communities.

• I have tried to show show some of the sophistication present
in his programming work.

• Long may both types of contribution continue!



Summary

• I have just touched briefly on Bill’s ongoing contributions to
the S and R communities.

• I have tried to show show some of the sophistication present
in his programming work.

• Long may both types of contribution continue!

• Which just leaves . . .




	Title Page
	Talk Outline
	Figure: The Prophet
	Bill the Educator
	Figure: Bill the Rockstar
	Bill the Scholar
	Bill the Programmer
	A Function for Printing Numbers as Words
	Useful Programming Strategies
	Dealing with Smaller Values
	Dealing with Larger Values
	Implementation
	Hiding Complexity
	Code Structure
	Alternative Code Structure
	A Small Worry
	Possible Enhancements
	Restrictions
	Polynomial Manipulation
	Polynomial Multiplication
	Polynomial Multiplication Computation
	Polynomial Coefficient Calculation
	R Code
	Polynomial Multiplication Via the FFT
	Figure: Performance
	The SOAR Package
	The Mechanism
	How SOAR Works
	A Warning
	Summary
	Figure: Happy Birthday!

