R Functions
Things Your Mother (Probably) Didn’t Tell You About

R and Extensibility

- The success that R currently enjoys is largely because the environment is extensible.
 - Developers can easily add new capabilities.
 - Users can quickly develop and customise their own methodology.
- Both developers and users implement their extensions in the same way — as new R functions.
- This uniform method of extension provides a certain unity to the process of R development and it is natural to move from being a user to being a developer.

What Is An R Function?

- An R function is a packaged recipe that converts one or more inputs (called arguments) into a single output.
- The recipe is implemented as a single R expression that uses the values of the arguments to compute the result.
- Functions are first-class values. They can be:
 - assigned as values of variables
 - passed as arguments to other functions

An Example

- The following function takes a single input value and computes its square.
 > square = function(x) x * x
- The function is created and then assigned the name square.
- The variable, x, is a formal parameter of the function.
- When the function is called it is passed an argument that provides a value for the formal parameter.
 > square(1:5)
 [1] 1 4 9 16 25

Optional Arguments

- R functions can have many arguments (the default plot function has 16).
- Function definitions can allow arguments to take default values so that users do not need to provide values for every argument.
- If the plot function is called with a single argument it is used to provide y values for the plot; all other arguments take on default values.
- Default arguments are specified as follows:
 parameter = expression

Example

- The following variant of sum.of.squares adds a second parameter so that the function returns the sum.of.squares of deviations about the second value.
- The second argument has a default value equal to the mean of the first.
 > sum.of.squares = function(x, about = mean(x))
 > sum(square(x - about))
- Note that the default argument value is defined in terms of variables internal to the function.

Example (Continued)

- Since many arguments can take default values, it is useful to have a way of specifying which arguments do not.
 > sum.of.squares(1:10)
 [1] 82.5
 > sum.of.squares(1:10, about = 0)
 [1] 385
- There is a set of rules that determine how arguments are matched to parameters.
 > sum.of.squares(about = 0, 1:10)
 [1] 385
Example (Continued)

- The present definition of `sum.of.squares` does not work when NA values are present.

  ```r
  > sum.of.squares(c(-1, 1, NA))
  [1] NA
  ```

- The inclusion of an NA value produces an NA result.

- It may well be that we want NA values ignored to produce the same result as:

  ```r
  > sum.of.squares(c(-1, 1))
  [1] 2
  ```

Lazy Evaluation

- R function arguments are not evaluated until the value of the argument is needed.

- In the case of the preceding example, the value of `about` is not required until the expression

  ```r
  sum(squares(x - about))
  ```

 is evaluated.

- At that point, the NA values have been deleted from `x` so that the value of `mean(x)` is not NA.

Lazy Evaluation and Side Effects

- Because argument evaluation is lazy, it is dangerous to ever carry out assignment (or any operation with a side effect) in an argument to a function.

  ```r
  > x = 10
  > y = 20
  > f(x = 100), (y = 200)
  [1] 300
  > x; y
  [1] 10
  [1] 20
  ```

- This is because the function `f` is defined as follows.

  ```r
  > f = function(a, b) 300
  ```

Scoping

- The scoping rules of a language describe how the values of variables are determined.

- R uses block-structured scope, similar to languages like Algol-60 and Pascal and Scheme.

- If a function `g` is defined within a function `f`, the variables in `g` are visible in `g`, unless they are shadowed by a local variable.

- The use of these scoping rules make R a very different language from the earlier S language developed at Bell Laboratories.

Example

- Consider the following nested function definition.

  ```r
  > linmap = function(x, a, b, swap = FALSE) {
    transform = function(x) {
      if (swap) b + a * x
      else a + b * x
    }
    transform(x)
  }
  ```

- Within the function `transform`, the variable name `x` refers to the argument of `transform` while `a`, `b` and `swap` refer to the arguments of the enclosing `linmap` function.

A Simple Function

- The following function adds the value of the global variable `x` to its argument.

  ```r
  > add.x.to = function(u) x + u
  > x = 20
  > add.x.to(10)
  [1] 30
  > x = 30
  > add.x.to(10)
  [1] 40
  ```

Nested Functions

- The function `add.x.to` looks just like the previous one, but now the value of `x` is an argument to the enclosing function `add`.

  ```r
  > add = function(x, y) {
    add.x.to = function(u) x + u
    add.x.to(y)
  }
  ```

  ```r
  > add(10, 20)
  [1] 30
  ```
A Function that Returns a Function

- Now we'll change the example so that instead of returning a numeric value the outer function returns the inner function.

```r
> make.add.to =
  function(u) {
    add.x.to = function(x) x + u
    add.x.to
  }
> add.10.to = make.add.to(10)
> add.10.to(100)
[1] 110
```

Captured Variables are Private

- Each time `make.add.to` is called, a new `x` variable is created.

```r
> add.10.to = make.add.to(10)
> add.20.to = make.add.to(20)

> add.10.to(100)
[1] 110
> add.20.to(100)
[1] 120
```
- This means that each function returned by `make.add.to` has its own private `x` variable.

How This is Useful

- The ability to create closures might seem like a fairly esoteric capability, but it provides a way to directly provide many kinds of object used directly in statistics.
- The mechanism is used in many R functions (e.g., `splinefun`).
- I'll show just one example: likelihoods.

Likelihood-Based Estimation

- Given the negative log likelihood it is easy to obtain parameter estimates and standard errors.

```r
> res = optim(c(0, 1), negloglike, hessian = TRUE)
> res$convergence
[1] 0
> res$par
[1] -0.03131223 0.8608180
> sqrt(diag(solve(res$hessian)))
[1] 0.08608182 0.06087361
```

Variable Capture and Closures

- In the previous example, the variable `x` came into existence when the outer function `make.add.to` was called.
- This variable continues to exist after `make.add.to` returns because it is required for the value returned by `make.add.to` to make sense.
- The outer function's local variable `x` has been captured by the function returned as a value.
- The variable `x` is, in a sense “enclosed” within the function returned by `make.add.to`.
- Functions that enclose data in this way are called closures.

Other Ways of Creating Private Variables

- The use of nested functions is not the only way to create private variables.
- Here are some alternatives.

```r
> add.10.to =
  with(list(x = 10),
    function(u) x + u)
> add.20.to =
  local({
    x = 20
    function(u) x + u
  })
```

Likelihoods

- Here is a function that creates a function that computes the negative log likelihood for a sample of normal observations stored in a vector `x`.

```r
> negloglike =
  local({
    x = rnorm(100)
    function(theta) 
    -sum(log(dnorm(x,
      theta[1],
      theta[2])))
  })
```

Other Applications

- Many statistical problems can be attacked using likelihood-based analyses, even when they have a non-standard form.
- Markov chains with their associated transition matrices and current states are naturally modeled as closures.
- Complex software can be written without worrying about “namespace clutter.”
- The R package facility is implemented using these ideas.
- The S4 object system is implemented using closures.
Recurrent

• The Devil's DP Dictionary defines recursion as follows:
 \textbf{Recursion} (n). See \textit{Recursion}.

• In computing, a function is recursive if, either directly or indirectly, it can call itself.

• The prototypical example of recursion is the factorial function.

 \[\textbf{factorial} = \]
 \[\begin{array}{ll}
 & \text{function(n)} \\
 \text{if} & (n \equiv 0) \quad 1 \\
 \text{else} & n \times \text{factorial}(n - 1) \\
\end{array} \]

Example: Computation Using Recursion

• In the good old days the following kind of problem would have been found in an introductory statistics course:

 \[\text{There are 8 girls and 4 boys in a class. How many ways can they be arranged in a line so that the boys are separated by at least one girl?} \]

• (These days, questions that require thought lead to bad class reviews and they've been done away with.)

• There is a trivial solution to this problem, but let's assume that we aren't smart enough to spot it.

• Instead, we'll attack the problem using recursion.

Formulating the Problem as a Recursion

• First let's generalise to the case of \(g \) girls and \(b \) boys.

• If the number of arrangements is \(f(b, g) \), then we have the following recursion.

 \[f(b, g) = g \times f(b, g - 1) + b \times g \times f(b - 1, g - 1) \]

• This recursion comes from considering what happens when we pick either a girl or a boy as our first choice.

• In addition to the basic recursion, we also need ensure that there are termination rules that provide a way of stopping the recursion.

Termination Rules

• The consideration of special cases gets us a number of termination rules.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Function Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b = 1) \quad & \quad g = 0 \rangle</td>
<td>(f(b, g) = 1)</td>
</tr>
<tr>
<td>(g < b - 1)</td>
<td>(f(b, g) = 0)</td>
</tr>
<tr>
<td>(b = 0)</td>
<td>(f(b, g) = g!)</td>
</tr>
</tbody>
</table>

A Computational Solution

 \[\textbf{> f =} \]
 \[\begin{array}{ll}
 & \text{function(b, g)} \\
 & \text{if} (b = 1 \quad \& \quad g = 0) \quad 1 \\
 & \text{else if} (g < b - 1) \quad 0 \\
 & \text{else if} (b = 0) \quad \textbf{factorial}(g) \\
 & \text{else} \quad g \times f(b, g - 1) + \\
 & \quad b \times g \times f(b - 1, g - 1) \\
 & \} \\
\]

 \[\textbf{> f(4, 8)} \]
 \[121927680 \]

 \[\textbf{> factorial(8) * prod(9:6)} \]
 \[121927680 \]

The Number of Function Calls

• The evaluation of \(f(4, 8) \) takes 307 calls to \(f \).

• Of these, 306 are calls by \(f \) to itself.