R Functions

Things Your Mother (Probably) Didn’t Tell You About
R and Extensibility

- The success that R currently enjoys is largely because the environment is *extensible*.
 - Developers can easily add new capabilities.
 - Users can quickly develop and customise their own methodology.

- Both developers and users implement their extensions in the same way — as new R functions.

- This uniform method of extension provides a certain unity to the process of R development and it is natural to move from being a user to being a developer.
What Is An R Function?

• An R function is a packaged recipe that converts one or more inputs (called arguments) into a single output.

• The recipe is implemented as a single R expression that uses the values of the arguments to compute the result.

• Functions are first-class values. They can be:
 – assigned as values of variables
 – passed as arguments to other functions
An Example

- The following function takes a single input value and computes its square.

  ```r
  > square = function(x) x * x
  ```

- The function is created and then assigned the name `square`.

- The variable, `x`, is a *formal parameter* of the function.

- When the function is *called* it is passed an *argument* that provides a value for the formal parameter.

  ```r
  > square(1:5)
  [1] 1 4 9 16 25
  ```
Combining Functions

- Functions defined by users are identical in nature to those provided by the system and can be used in exactly the same way.

```r
> sum(1:10)
[1] 55

> sum.of.squares = function(x)
  sum(square(x))

> sum.of.squares(1:10)
[1] 385
```
Optional Arguments

- R functions can have many arguments (the default `plot` function has 16).

- Function definitions can allow arguments to take default values so that users do not need to provide values for every argument.

- If the plot function is called with a single argument it is used to provide `y` values for the plot; all other arguments take on default values.

- Default arguments are specified as follows:

  ```
  parameter = expression
  ```
Example

- The following variant of `sum.of.squares` adds a second parameter so that the function returns the sum-of-squares of deviations about the second value.

- The second argument has a default value equal to the mean of the first.

  ```
  > sum.of.squares =
  function(x, about = mean(x))
  sum(square(x - about))
  ```

- Note that the default argument value is defined in terms of variables internal to the function.
• Since many arguments can take default values, it is useful to have a way of specifying which arguments do not.

 > sum.of.squares(1:10)
 [1] 82.5

 > sum.of.squares(1:10, about = 0)
 [1] 385

• There is a set of rules that determine how arguments are matched to parameters.

 > sum.of.squares(about = 0, 1:10)
 [1] 385
Example (Continued)

- The present definition of `sum.of.squares` does not work when `NA` values are present.

  ```
  > sum.of.squares(c(-1, 1, NA))
  [1] NA
  ```

- The inclusion of an `NA` value produces an `NA` result.

- It may well be that we want `NA` values ignored to produce the same result as:

  ```
  > sum.of.squares(c(-1, 1))
  [1] 2
  ```
Example (Continued)

- Let’s modify the `sum.of.squares` function so that it removes any `NA` values from `x`.

  ```r
  > sum.of.squares =
  function(x, about = mean(x)) {
    x = x[!is.na(x)]
    sum(square(x - about))
  }
  ```

  ```r
  > sum.of.squares(c(-1, 1, NA))
  [1] 2
  ```
Example (Continued)

- Let’s modify the `sum.of.squares` function so that it removes any `NA` values from `x`.

  ```r
  > sum.of.squares =
  >     function(x, about = mean(x)) {
  >         x = x[!is.na(x)]
  >         sum(square(x - about))
  >     }
  >
  > sum.of.squares(c(-1, 1, NA))
  [1] 2
  ```

- This produces the “right” result, but the fact that it does so is surprising.
Lazy Evaluation

- R function arguments are not evaluated until the value of the argument is needed.

- In the case of the preceding example, the value of `about` is not required until the expression

 \[
 \text{sum(square(x - about))}
 \]

 is evaluated.

- At that point, the NA values have been deleted from x so that the value of `mean(x)` is not NA.
Lazy Evaluation and Side Effects

- Because argument evaluation is lazy, it is dangerous to ever carry out assignment (or any operation with a side effect) in an argument to a function.

```
> x = 10
> y = 20
> f((x = 100), (y = 200))
[1] 300
```
Lazy Evaluation and Side Effects

• Because argument evaluation is lazy, it is dangerous to ever carry out assignment (or any operation with a side effect) in an argument to a function.

```r
> x = 10
> y = 20
> f((x = 100), (y = 200))
[1] 300
> x; y
[1] 10
[1] 20
```
Lazy Evaluation and Side Effects

- Because argument evaluation is lazy, it is dangerous to ever carry out assignment (or any operation with a side effect) in an argument to a function.

```r
> x = 10
> y = 20
> f((x = 100), (y = 200))
[1] 300
> x; y
[1] 10
[1] 20
```

- This is because the function `f` is defined as follows.

```r
> f = function(a, b) 300
```
Scoping

• The *scoping rules* of a language describe how the values of variables are determined.

• R uses *block-structured scope*, similar to languages like Algol-60 and Pascal and Scheme.

• If a function \texttt{g} is defined within a function \texttt{f}, the variables in \texttt{f} are visible in \texttt{g}, unless they are *shadowed* by a local variable.

• The use of these scoping rules make R a very different language from the earlier S language developed at Bell Laboratories.
Example

- Consider the following nested function definition.

```r
> linmap =
  function(x, a, b, swap = FALSE) {
    transform = function(x) {
      if (swap) b + a * x
      else a + b * x
    }
    transform(x)
  }
```

- Within the function `transform`, the variable name `x` refers to the argument of `transform` while `a`, `b` and `swap` refer to the arguments of the enclosing `linmap` function.
A Simple Function

- The following function adds the value of the global variable `x` to its argument.

```r
> add.x.to = function(u) x + u

> x = 20
> add.x.to(10)
[1] 30

> x = 30
> add.x.to(10)
[1] 40
```
Nested Functions

- The function `add.x.to` looks just like the previous one, but now the value of `x` is an argument to the enclosing function `add`.

```r
> add = function(x, y) {
    add.x.to = function(u) x + u
    add.x.to(y)
}

> add(10, 20)
[1] 30
```
A Function that Returns a Function

- Now we’ll change the example so that instead of returning a numeric value the outer function returns the inner function.

```javascript
> make.add.to =
    function(x) {
        add.x.to = function(u) x + u
        add.x.to
    }

> add.10.to = make.add.to(10)
> add.10.to(100)
[1] 110
```
Variable Capture and Closures

- In the previous example, the variable \(x \) came into existence when the outer function `make.add.to` was called.

- This variable continues to exist after `make.add.to` returns because it is required for the value returned by `make.add.to` to make sense.

- The outer functions local variable \(x \) has been *captured* by the function returned as a value.

- The variable \(x \) is, in a sense “enclosed” within the function returned by `make.add.to`.

- Functions that enclose data in this way are called *closures*.
Captured Variables are Private

- Each time `make.add.to` is called, a new `x` variable is created.

  ```
  > add.10.to = make.add.to(10)
  > add.20.to = make.add.to(20)
  
  > add.10.to(100)
  [1] 110
  > add.20.to(100)
  [1] 120
  ```

- This means that each function returned by `make.add.to` has its own private `x` variable.
Other Ways of Creating Private Variables

- The use of nested functions is not the only way to create private variables.

- Here are some alternatives.

  ```
  > add.10.to =
  with(list(x = 10),
       function(u) x + u)
  
  > add.20.to =
  local({
    x = 20
    function(u) x + u
  })
  ```
How This is Useful

• The ability to create closures might seem like a fairly esoteric capability, but it provides a way to directly provide many kinds of object used directly in statistics.

• The mechanism is used in many R functions (e.g. `splinefun`).

• I’ll show just one example: likelihoods.
Likelihoods

- Here is a function that creates a function that computes the negative log likelihood for a sample of normal observations stored in a vector \(x \).

```r
> negloglike =
  local({
    x = rnorm(100)
    function(theta)
      -sum(log(dnorm(x,
                   theta[1],
                   theta[2])))
  })
```
Likelihood-Based Estimation

- Given the negative log likelihood it is easy to obtain parameter estimates and standard errors.

```r
> res = optim(c(0, 1), negloglike,
             hessian = TRUE)

> res$convergence
[1] 0

> res$par
[1] -0.03126232 0.86081820

> sqrt(diag(solve(res$hessian)))
[1] 0.08608182 0.06087361
```
Other Applications

- Many statistical problems can be attacked using likelihood-based analyses, even when they have a non-standard form.

- Markov chains with their associated transition matrices and current states are naturally modelled as closures.

- Complex software can be written without worrying about “namespace clutter.”

- The R package facility is implemented using these ideas.

- The S4 object system is implemented using closures.
Recursion

- The Devil’s DP Dictionary defines recursion as follows:

 Recursion (n). *See Recursion.*

- In computing, a function is recursive if, either directly or indirectly, it can make a call itself.

- The prototypical example of recursion is the factorial function.

  ```plaintext
  > factorial =
    function(n)
      if (n == 0) 1 else n * factorial(n - 1)
  ```
Example: Computation Using Recursion

- In the good old days the following kind of problem would have been found in an introductory statistics course:

 There are 8 girls and 4 boys in a class. How many ways can they be arranged in a line so that the boys are separated by at least one girl?

- (These days, questions that require thought lead to bad class reviews and they’ve been done away with.)

- There is a trivial solution to this problem, but let’s assume that we aren’t smart enough to spot it.

- Instead, we’ll attack the problem using recursion.
Formulating the Problem as a Recursion

- First let’s generalise to the case of \(g \) girls and \(b \) boys.
- If the number of arrangements is \(f(b, g) \), then we have the following recursion.

\[
f(b, g) = g \times f(b, g - 1) + b \times g \times f(b - 1, g - 1)
\]

- This recursion comes from considering what happens when we pick either a girl or a boy as our first choice.
- In addition to the basic recursion, we also need ensure that there are termination rules that provide a way of stopping the recursion.
Termination Rules

- The consideration of special cases gets us a number of termination rules.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Function Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b = 1$, $g = 0$,</td>
<td>$f(b, g) = 1$</td>
</tr>
<tr>
<td>$g < b - 1$</td>
<td>$f(b, g) = 0$</td>
</tr>
<tr>
<td>$b = 0$</td>
<td>$f(b, g) = g!$</td>
</tr>
</tbody>
</table>
A Computational Solution

> f =

 function(b, g) {
 if (b == 1 && g == 0) 1
 else if (g < b - 1) 0
 else if (b == 0) factorial(g)
 else g * f(b, g - 1) +
 b * g * f(b - 1, g - 1)
 }

> f(4, 8)

[1] 121927680
A Computational Solution

> f =

 function(b, g) {
 if (b == 1 && g == 0) 1
 else if (g < b - 1) 0
 else if (b == 0) factorial(g)
 else g * f(b, g - 1) +
 b * g * f(b - 1, g - 1)
 }

> f(4, 8)
[1] 121927680

> factorial(8) * prod(9:6)
[1] 121927680
The Number of Function Calls

- The evaluation of $f(4, 8)$ takes 307 calls to f.
- Of these, 306 are calls by f to itself.