
A Function for R Session Scripting

Ross Ihaka

Abstract

This document describes an R command called “script” that fullfils
the same role as the Unix command of the same name. The command
diverts a copy of all the activity that takes place on the console in an R
session (user input, R output and error messages) to a file specified as the
argument to the function.

The document describes both the use of the command and also pro-
vides a literate version of the function itself.

1 The “script” Function

Once the “script” function is loaded,1 it can be invoked either with no ar-
guments or with a single argument giving the name of a file. If no argument
is specified, the R session is recorded in a file called “transcript.txt.” If a
filename is specified the session is recorded in that file.

When “script” is invoked, a sub-interpreter is run to process the user’s
commands. When this sub-interpreter is running, the the R command prompt
is changed to “script> ” and the continuation prompt to “script+ ”. The
sub-interpreter is exited by typing the command “q()”.

> script()
Script started, file is "transcript.txt"
script> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
script> max(rnorm(100))
[1] 2.592984
script> q()
Script done, file is "transcript.txt">

A record of everything that transpired between “script()” and “q()” is stored
in the file “transcript.txt” along with timestamps indicating when scripting
started and finished.

This is essentially all there is to know about using “script,” other than to
note that a “script” command cannot be run from a script sub-interpreter.2

1It seems like overkill to provide this function in an R package. It can easily be loaded
with the “source” function.

2There is nothing technical that prevents this; it’s just likely to be confusing for users to
try to use multiple script levels.

1

2 Implementation of the “script” Function

The “script” function is implemented as a closure. The support functions it
uses are encapsulated in a private environment, visible only to that function.
The mechanism used is as follows.

2a 〈script.R 2a〉≡
〈comments-and-copyright 13b〉
script =

local({
〈warning state variables 11b〉
〈support functions 9a〉
〈read-eval-print loop 4〉
〈main function 2b〉

})
This code is written to file script.R.

2.1 The Main Function

The main function takes a single argument that specifies the name of the file
used to store the transcript. It carries out basic housekeeping tasks and also
calls the main workhorse function that provides a read-eval-print-loop.

2b 〈main function 2b〉≡
function(file = "transcript.txt") {

〈open file connections 2c〉
〈print startup messages 2d〉
〈call the read-eval-print-loop 3a〉
〈print shutdown messages 3b〉
〈close file connections 3c〉
〈return an invisible value 3d〉

}

The function opens two file connections. The first of these is the connection
to the transcript file. The second is to a “scratch” file used to capture R output
and error messages. Using an empty name for this file means that no cleanup
is required when transcript recording finishes.

2c 〈open file connections 2c〉≡
transcon = file(file, "w")
outcon = file("")

Defines:
outcon, used in chunks 3–8 and 11a.
transcon, used in chunks 2–8, 10c, and 11a.

If the creation of the file connections is successful, the function writes two
messages; one to the terminal and one to the transcript file. The second message
contains a time stamp. This can be useful when the record is viewed at a later
time.

2d 〈print startup messages 2d〉≡
cat("Script started, file is \"", file, "\"\n", sep = "")
cat("Script started on", date(), "\n", file = transcon)

Uses transcon 2c.

2

Now, everything is ready to call the read-eval-print loop. The first argument
passed to the“repl” function is the environment that the “script” function was
called from. This will almost always be the R global enviroment. The other two
arguments are the file connections opened above.

3a 〈call the read-eval-print-loop 3a〉≡
repl(sys.parent(), transcon, outcon)

Uses outcon 2c, repl 4, and transcon 2c.

When the read-eval-print loop terminates, messages are again printed to the
transcript and the terminal. The transcript message is timestamped.

3b 〈print shutdown messages 3b〉≡
cat("Script done on", date(), "\n", file = transcon)
cat("Script done, file is \"", file, "\"\n", sep = "")

Uses transcon 2c.

Finally, the file connections are closed and the function returns an invisible
(NULL) value.

3c 〈close file connections 3c〉≡
close(outcon)
close(transcon)

Uses outcon 2c and transcon 2c.

3d 〈return an invisible value 3d〉≡
invisible()

3

2.2 The Read-Eval-Print Loop

The “repl” function takes over the role of the topmost level of functionality in
R. It reads the lines of text that the user types, parses them and evaluates the
results. It also has to handle exceptional conditions such as errors, warnings
and user interrupts.

There are two important strategies employed in this function. The first of
these is to use the “sink” function to divert user output and error messages to
the scratch file attached to the “outcon” connection. These can then be read
back and written to the transcript file. The logic used is as follows.

sink(outcon, split = TRUE)
activity that does some printing
sink()
seek(outcon, 0)
writeLines(readLines(outcon), transcon)

The second strategy is used to accumulate the lines the user types until a com-
plete expression has been read. Reading the lines is easy; it is done with
“readLines”. Checking for a complete expression is trickier because pars-
ing an incomplete expression trips an error. These must be caught using the
“tryCatch” mechanism and this type of error discriminated from other syntax
errors.

There is also the problem of user interrupts. These can occur at any point
in the read-eval-print process. To protect against such interrupts the whole
read-eval-print process is embedded in a loop whose sole task is to catch and
process interrupts.

The general structure of the “repl” function is shown by the following func-
tion. The depth of the current “sink” diversion is recorded in “sinkdepth”,
initial values are defined for the command prompt and the current expression
and then the interrupt catching loop is run.

4 〈read-eval-print loop 4〉≡
repl =

function(env, transcon, outcon) {
sinkdepth = sink.number()
prompt = "script> "
cmd = character()
repeat {

〈interrupt catching 5a〉
}

}

Defines:
cmd, used in chunks 5, 6, and 10c.
prompt, used in chunks 5, 6, and 9a.
repl, used in chunk 3a.
sinkdepth, used in chunk 5a.

Uses outcon 2c and transcon 2c.

4

The code inside the “repeat” loop, in the function above, runs the repl and
catches any interrupts that occur with a “tryCatch” statement. The statement
catches just interrupts and it takes one of two actions. If there is an output diver-
sion in place (i.e. if sink.number() > sinkdepth) then the interrupt occurred
during evaluation of an expression. In this case, the diversion is terminated and
the the contents of the diversion are sent to the transcript file. If there is no
diversion in place, the interrupt (probably) occured during parsing and we need
to copy the (possibly incomplete) command to the transcript. (Note that this
code uses the “sink” diversion depth recorded on entry to “repl” as well as
the command buffer “cmd”.)

5a 〈interrupt catching 5a〉≡
ans = tryCatch(repeat {

〈parse and evaluate expressions 5b〉
}, interrupt = function(x) x)
if (inherits(ans, "interrupt")) {

if (sink.number() > sinkdepth) {
sink()
echoOutput(transcon, outcon)

}
else

echoCommands(cmd, transcon)
cat("\nInterrupt!\n")
cat("Interrupt!\n", file = transcon)
prompt = "script> "
cmd = character()

}
else

stop("Interrupt catcher caught non-interrupt")
Uses cmd 4, echoCommands 10c, echoOutput 11a, outcon 2c, prompt 4, sinkdepth 4,

and transcon 2c.

Expressions are read and processed in a loop. A pass through the loop reads
a single line of input with readLine and adds it to the “cmd” buffer. Each time
a line is added, an attempt is made to parse the contents of “cmd” and obtain a
valid expression for evaluation. The parse is wrapped in a “tryCatch” to trap
any parsing errors that occur. The result of this attempted parse determines
what happens next.

5b 〈parse and evaluate expressions 5b〉≡
repeat {

cmd = c(cmd, readLine(prompt))
ans = tryCatch(parse(text = cmd),

error = function(e) e)
〈handle the results of the parse 6a〉

}
Uses cmd 4, prompt 4, and readLine 9a.

5

The result returned by the “tryCatch” is either a valid expression that can
be evaluated or an error condition. We branch depending on the type of result
obtained.

6a 〈handle the results of the parse 6a〉≡
〈if there was an error deal with it 6b〉
〈otherwise handle the expression 6c〉
There are two possible types of error to deal with. Errors can be caused by

an incomplete parse or by some other type of syntax error. If the expression is
incomplete, we change the prompt to indicate continuation and return to the
top of the loop to fetch another line of input. If there was some other type of
error, we emit the currently buffered input lines to the transcript. Then we deal
with the error and emit any resulting output. Finally, we reset the command
prompt and the state of the input buffer.

6b 〈if there was an error deal with it 6b〉≡
if (inherits(ans, "error")) {

if (incompleteParse((ans))) {
prompt = "script+ "

}
else {

echoCommands(cmd, transcon)
sink(outcon, split = TRUE)
handleParseError(ans)
sink()
echoOutput(transcon, outcon)
prompt = "script> "
cmd = character()

}
}

Uses cmd 4, echoCommands 10c, echoOutput 11a, handleParseError 9c, incompleteParse 9b,
outcon 2c, prompt 4, and transcon 2c.

If there was no error, we have a valid expression and we echo it to the
transcript. We then choose between a number of special cases (such as quitting
the transcript process) and the general case of evaluating the expression typed
by the user. When that is complete, we reset the command prompt and the
state of the command buffer before continuing on to read the next expression.

6c 〈otherwise handle the expression 6c〉≡
else {

echoCommands(cmd, transcon)
〈handle special expression cases 7〉
〈handle the general expression case 8〉
prompt = "script> "
cmd = character()

}
Uses cmd 4, echoCommands 10c, prompt 4, and transcon 2c.

6

If the expression was empty (the user idly typed the enter key) we simply go
back to fetch another expression. If the user typed q() then we exit from the
repl and return to the top-level function. If for some reason the user tried to
invoke script when session is already being recorded we issue an error. (This
probably needs further thought.)

7 〈handle special expression cases 7〉≡
if (length(ans) == 0) {

break
}
else if (isQuitCall(ans)) {

return()
}
else if (grepl("^script\\(",

deparse(ans[[1]], nlines = 1))) {
sink(outcon, split = TRUE)
cat("Error: You can’t call \"script\" while scripting\n")
sink()
echoOutput(transcon, outcon)
break

}
Uses echoOutput 11a, isQuitCall 13a, outcon 2c, and transcon 2c.

7

If none of these special cases hold, we are in the general situation. We
evaluate the expression that the user typed and print the answer. Note that it
is possible for parsing to produce several calls in the expression returned from
the parse. (Such calls are separated by semicolons.) To handle the general case,
we loop over the elements of the expression evaluating and printing each one in
turn.

Evaluation is carried out inside a tryCatchWithWarnings call. This means
that any warnings that occur are recorded (in the variables warningCalls and
warningMessages). After evaluation, a check is made of whether any new
warnings have been issued. If there were, the warnings are transferred to the
global variable last.warning. There, they can be accessed with calls to the
function warnings. Finally, a call is made to displayWarnings to display the
warning messages in the correct way.

8 〈handle the general expression case 8〉≡
else {

renewwarnings <<- TRUE
newwarnings <<- FALSE
for(e in ans) {

sink(outcon, split = TRUE)
e = tryCatchWithWarnings(withVisible(eval(e,

envir = env)))
if (inherits(e, "error"))

handleError(e)
else

handleValue(e)
sink()
echoOutput(transcon, outcon)

}
if (newwarnings) {

warnings = warningCalls
names(warnings) = warningMessages
assign("last.warning",

warnings[1:nwarnings],
"package:base")

sink(outcon, split = TRUE)
displayWarnings(nwarnings)
sink()
echoOutput(transcon, outcon)

}
}

Uses displayWarnings 12b, echoOutput 11a, handleError 10a, handleValue 10b,
newwarnings 11b, nwarnings 11b, outcon 2c, renewwarnings 11b, transcon 2c,
tryCatchWithWarnings 12a, warningCalls 11b, and warningMessages 11b.

8

2.3 Parsing Support Functions

The lines sent to parser are fetched by calling “readLine”. (We can’t use
“readline” because it trims spaces and we are trying to preserve the user’s
layout.)

9a 〈support functions 9a〉≡
readLine =

function(prompt) {
cat(prompt)
flush(stdout())
readLines(n = 1)

}
Defines:

readLine, used in chunk 5b.
Uses prompt 4.

An incomplete parse is detected when the result of the parse is an error that
contains the string "unexpected end of input".

9b 〈support functions 9a〉+≡
incompleteParse =

function(e)
(inherits(e, "error") &&
grepl("unexpected end of input", e$message))

Defines:
incompleteParse, used in chunk 6b.

The most complicated support function is the one that handles the printing
of error messages from parsing. Because the parse is taking place using a char-
acter vector as input, the error messages produced look rather different from
those produced when the parser gets its input from the console. This function
transforms the error messages into that form.

9c 〈support functions 9a〉+≡
handleParseError =

function(e) {
msg = strsplit(conditionMessage(e), "\n")[[1]]
errortxt = msg[1]
msg = gsub("[0-9]+: ", "", msg[-c(1, length(msg))])
msg = msg[length(msg) - 1:0]
if (length(msg) == 1)

msg = paste(" in: \"", msg, "\"\n", sep = "")
else

msg = paste(" in:\n\"",
paste(msg, collapse = "\n"),
"\"\n", sep = "")

cat("Error",
gsub("\n.*", "",

gsub("<text>:[0-9]+:[0-9]+", "",
errortxt)),

msg, sep = "")
}

Defines:
handleParseError, used in chunk 6b.

9

2.4 Input-Output Support

The error messages produced during evaluation are easy to process. We simply
cat them to the (split) output.

10a 〈support functions 9a〉+≡
handleError =

function(e) {
cat("Error in", deparse(conditionCall(e)),

":", conditionMessage(e), "\n")
}

Defines:
handleError, used in chunk 8.

Printing the values that result from evaluating expressions has one wrinkle
to it. We have to check the visibility of the result and only print “visible”
results.

10b 〈support functions 9a〉+≡
handleValue =

function(e) {
if (e$visible) {

print(e$value)
}

}
Defines:

handleValue, used in chunk 8.

This function echos any accumulated commands to the transcript. They
have already appeared on the console so there is no need to echo them there.

10c 〈support functions 9a〉+≡
echoCommands =

function(cmd, transcon) {
cat(paste(c("> ",

rep("+ ", max(length(cmd) - 1), 0)),
cmd, "\n", sep = ""), sep = "",

file = transcon)
}

Defines:
echoCommands, used in chunks 5 and 6.

Uses cmd 4 and transcon 2c.

10

The echoOutput function echos output to the transcript file. To do this we
rewind the output collection connection and echo its contents to the transcript.

11a 〈support functions 9a〉+≡
echoOutput =

function(transcon, outcon) {
seek(outcon, 0)
lines = readLines(outcon, warn = FALSE)
writeLines(lines, transcon)
seek(outcon, 0)
truncate(outcon)

}
Defines:

echoOutput, used in chunks 5–8.
Uses outcon 2c and transcon 2c.

2.5 Warning Support

A number of top-level closure variables are used to manage the warning messages
produced by evaluation of expressions. The following variables manage the
accumulation of error messages.

warningCalls holds the calls that produced warnings
warningMessages holds the warning messages
nwarnings the number or warnings accumulated
renewwarnings purge the warning list on next warning?
newwarnings has the evaluation produced new warnings

The variables are initialised as follows.

11b 〈warning state variables 11b〉≡
warningCalls = vector("list", 50)
warningMessages = character(50)
nwarnings = 0
renewwarnings = TRUE
newwarnings = FALSE

Defines:
newwarnings, used in chunks 8 and 12a.
nwarnings, used in chunks 8 and 12.
renewwarnings, used in chunks 8 and 12a.
warningCalls, used in chunks 8 and 12a.
warningMessages, used in chunks 8 and 12a.

11

Warnings are trapped by the following two functions. The effect is to simply
add warnings to the accumulated list of warnings and then call the built-in
muffleWarning restart.

12a 〈support functions 9a〉+≡
warningHandler = function(w) {

newwarnings <<- TRUE
if (renewwarnings) {

renewwarnings <<- FALSE
nwarnings <<- 0

}
n = nwarnings + 1
if (n <= 50) {

warningCalls[[n]] <<- conditionCall(w)
warningMessages[n] <<- conditionMessage(w)
nwarnings <<- n

}
invokeRestart("muffleWarning")

}
tryCatchWithWarnings =

function(expr)
withCallingHandlers(tryCatch(expr,

error = function(e) e),
warning = warningHandler)

Defines:
tryCatchWithWarnings, used in chunk 8.

Uses newwarnings 11b, nwarnings 11b, renewwarnings 11b, warningCalls 11b,
and warningMessages 11b.

The displayWarnings function is used to display warnings at the end of an
evaluation. If there are 10 or fewer messages they are displayed. If there are
more than 10 messages, the user is told to inspect them with “warnings()”.
Only the first 50 messages are stored.

12b 〈support functions 9a〉+≡
displayWarnings =

function(n) {
if (n <= 10)

print(warnings())
else if (n < 50) {

cat("There were",
nwarnings,
"warnings (use warnings() to see them)\n")

}
else

cat("There were 50 or more warnings",
"(use warnings() to see the first 50)\n")

}
Defines:

displayWarnings, used in chunk 8.
Uses nwarnings 11b.

12

2.6 Miscellany

The following function does a quick-and-dirty check of whether a user typed
“q()” at the command prompt. It is rather easy to defeat this. For example,
typing “(q())” will cause an immediate exit from R.

13a 〈support functions 9a〉+≡
isQuitCall =

function(e)
(!inherits(e, "error") &&
length(e) == 1 &&
deparse(e[[1]], nlines = 1) == "q()")

Defines:
isQuitCall, used in chunk 7.

2.7 Comments and Copyright

13b 〈comments-and-copyright 13b〉≡
Copyright Ross Ihaka, 2011
###
Distributed under the terms of GPL3, but may also be
redistributed under any later version of the GPL.
###
To be clear: If this code is included as part of an R
distribution, even if that distribution is broken into
component parts, all of distribution’s parts must be
made available under the terms of GPL3.
###
(Suck on that you Revolution Analytics swine!)
###
Session Transcripts for R
###
Synopsis:
###
This function provides an analog of the Unix script(1)
command. It records what happens during an R session
in a file.
###
script(filename)
...
q()
###
Unlike the txtStart etc functions, this preserves the
formatting of the lines the user types.
###
Exit from scripting using using q()
###
This is best regarded as an exercise in getting familar
with R’s condition system and a demonstration of how
to write an interpreted REPL.

13

Chunk Index

〈call the read-eval-print-loop 3a〉
〈close file connections 3c〉
〈comments-and-copyright 13b〉
〈handle special expression cases 7〉
〈handle the general expression case 8〉
〈handle the results of the parse 6a〉
〈if there was an error deal with it 6b〉
〈interrupt catching 5a〉
〈main function 2b〉
〈open file connections 2c〉
〈otherwise handle the expression 6c〉
〈parse and evaluate expressions 5b〉
〈print shutdown messages 3b〉
〈print startup messages 2d〉
〈read-eval-print loop 4〉
〈return an invisible value 3d〉
〈script.R 2a〉
〈support functions 9a〉
〈warning state variables 11b〉

14

Identifier Index

cmd: 4, 5a, 5b, 6b, 6c, 10c
displayWarnings: 8, 12b
echoCommands: 5a, 6b, 6c, 10c
echoOutput: 5a, 6b, 7, 8, 11a
handleError: 8, 10a
handleParseError: 6b, 9c
handleValue: 8, 10b
incompleteParse: 6b, 9b
isQuitCall: 7, 13a
newwarnings: 8, 11b, 12a
nwarnings: 8, 11b, 12a, 12b
outcon: 2c, 3a, 3c, 4, 5a, 6b, 7, 8, 11a
prompt: 4, 5a, 5b, 6b, 6c, 9a
readLine: 5b, 9a
renewwarnings: 8, 11b, 12a
repl: 3a, 4
sinkdepth: 4, 5a
transcon: 2c, 2d, 3a, 3b, 3c, 4, 5a, 6b, 6c, 7, 8, 10c, 11a
tryCatchWithWarnings: 8, 12a
warningCalls: 8, 11b, 12a
warningMessages: 8, 11b, 12a

15

