
A Simple Noweb-Like Tool

Implemented in R

Ross Ihaka

September 3, 2013

1 Introduction

In a 1984 paper, Donald Knuth introduced the concept of literate programming.

Knuth, Donald E. (1984). “Literate Programming.” The Computer
Journal 27, 97–111.

He argued that there needed to be a change in the way that programmers view
the way they work.

“Let us change our traditional attitude to the construction of pro-
grams: Instead of imagining that our main task is to instruct a com-
puter what to do, let us concentrate rather on explaining to human
beings what we want a computer to do.”

Over the years, there have been a number of literate programming systems
developed. One of the more popular ones is the noweb system developed by
Norman Ramsey.

Ramsey, Norman (1994). “Literate Programming Simplified.” IEEE
Software, 11, 97–105.

The noweb system has the advantage of being very lightweight and of supporting
a variety of programming languages.

One unfortunate aspect of noweb is that it depends on a tool chain that is not
readily available on all platforms (and specifically not on Microsoft Windows).
The Rnoweb program described by this document is an attempt aleviate this
situation by providing a “noweb-like” tool, suitable for maintaining R code, that
depends only on the R environment. It will thus be available to R programmers
no matter what platform they work on. This tool is not intended to replace
noweb, it is simply a stopgap measure for anyone who is unable able to run the
real thing.

The R noweb function aims to produce output that is close enough to pin-
compatible with noweb that the same LATEX macros can be used to typeset the
resulting document. There are some differences, however. These are described
in a different document.

This code is made available under the terms of the Free Software Foundation
GPL-3 License, with the option that licensees may distribute the code under
any later version of the GPL license, should they choose to.

1

2 Lexical Structure and the Main Function

The noweb function provides the user-callable interface to this software. It is
written in closure form to conceal the collection of helper functions used to help
carry out the computations. noweb is the only user-visible component of this
software.

2a 〈Rnoweb.R 2a〉≡
〈comments and copyright 25b〉
noweb = local({

〈constants 2c〉
〈chunk information assembly 11〉
〈document weaving 21b〉
〈code tangling 25a〉
〈main noweb function 2b〉

})

This code is written to file Rnoweb.R.

The noweb function manages the entire weaving and tangling process. It
has a single argument, called files, that contains a vector of filenames to be
processed. For each filename in this vector, noweb opens the file, reads its
contents into memory and extracts the basic information in the chunks that
make up the file. It then carries out the weaving and tangling process.

2b 〈main noweb function 2b〉≡
function(files, weave = TRUE, tangle = TRUE,

fullxref = FALSE) {

for(fileno in seq(along = files)) {

filename = files[fileno]

lines = readLines(filename)

info = extractChunkInfo(lines, filename, fileno)

hash = buildHash(info)

if (weave)

weaveFile(lines, info, hash,

filename, fileno, fullxref)

if (tangle)

tangleFile(lines, info, hash,

filename, fileno)

}

}

Uses extractChunkInfo 4, tangleFile 22, and weaveFile 12a.

The following regular expressions are placed here and used throughout the
code that follows. This ensures consistent usage and aids maintainability.

2c 〈constants 2c〉≡
CHUNKSTART = "(^<<[-. 0-9A-Za-z]*>>=)|(^\\@)|(^\\@$)"

CHUNKREF = "<<[-. 0-9A-Za-z]*>>"

Defines:
CHUNKREF, used in chunks 6c, 9, 18, and 24.
CHUNKSTART, used in chunk 5a.

2

3 Assembling Chunk Information

The extractChunkInfo function assembles all the information about code and
documentation chunks to be used in the weaving and tangling steps that take
place later in the noweb process. The information is returned in a list that has
one component for each (code or documentation) chunk in the file. The elements
of the list are themselves lists whose named components give information the
chunk. The names of the components are as follows:

number: The sequence number of the chunk.

name: The (canonicalised) name of the chunk.

label: The chunk label. There is a 1-1 correspondence be-
tween names and labels.

sublabel: The chunk sublabel. Each chunk has a unique
sublabel.

start: The first line of the chunk (includes the header).

end: The last line of the chunk.

uses: A vector containing the names of the chunks refer-
enced in this chunk.

useslabels: A vector containing the sublabels of the chunks ref-
erenced in this chunk.

usedin: A vector containing the sublabels of chunks that this
chunk is used in.

defines: A vector containing the identifiers defined in this
chunk.

usesdefs: A vector containing the identifiers defined in other
chunks that are used in this chunk.

The function proceeds by first locating the start lines of every chunk. It also
determines the last lines of each chunk. The values are stored in the vectors
called start and end. The start values are used to extract the chunk headers
which are then stored in a vector called headers.

The chunk names are then extracted from headers and stored in a vector
called name. If a chunk is named it is a code chunk, otherwise it is a documen-
tation chunk. This is used to create a vector called type that holds the type
information as a character string.

Next the chunk labels and sublabels are constructed. First, a vector called
prefix is constructed that contains strings that are unique to each chunk name
(i.e. some prefixes may be the same). This is used to create the chunk labels,
which correspond directly to the chunk names, and chunk sublabels which are
unique to each chunk. The labels and sublabels are stored in vectors called
label and sublabel.

Next, information on chunk usage is compiled. The vectors of names of
chunks referenced within each chunk are determined and stored in the list
called uses. The corresponding vectors of sublabels are stored in the list called
useslabels. Vectors of the sublabels of chunks where each chunk is referenced
are also compiled and stored in the list called usein.

Finally, the vectors of identifiers defined in each chunk and the vectors of
identifiers used in chunk are determined. They are assembled into the lists

3

called defines and usesdefines.
All this information is then assembled into a list of named component lists;

one named component list for each chunk. It is this list of lists that is returned
by extractChunkInfo.

4 〈chunk information extraction 4〉≡
extractChunkInfo =

function(lines, filename, fileno) {

start = chunkStarts(lines)

end = c(start[-1] - 1, length(lines))

header = lines[start]

name = chunkName(header)

type = ifelse(name == "", "doc", "code")

prefix = chunkLabelPrefix(name, filename, fileno)

label = chunkLabel(prefix)

sublabel = chunkSublabel(prefix)

uses = chunkUsesChunks(lines, start, end, type)

useslabels = chunkUsesLabels(uses, name, sublabel)

usedin = chunkIsUsedInChunks(name, uses, sublabel)

defines = chunkDefines(header, type)

usesdefs = chunkUsesDefines(lines, start, end,

type, defines)

info = vector("list", length = length(start))

for(i in 1:length(start))

info[[i]] =

list(number = i,

type = type[i],

name = name[i],

label = label[i],

sublabel = sublabel[i],

start = start[i],

end = end[i],

uses = uses[[i]],

useslabels = useslabels[[i]],

usedin = usedin[[i]],

defines = defines[[i]],

usesdefs = usesdefs[[i]])

info

}

Defines:
extractChunkInfo, used in chunk 2b.

Uses chunkDefines 8b, chunkIsUsedInChunks 8a, chunkLabel 6a, chunkLabelPrefix 5c,
chunkName 5b, chunkStarts 5a, chunkSublabel 6b, chunkUsesChunks 7a,
chunkUsesDefines 9, and chunkUsesLabels 7b.

4

The extractChunkInfo function calls a variety of helper functions to compute
information about each of the chunks. These functions are described in the
following paragraphs.

The chunkStarts function examines a file and detects which lines contain
chunk starts. The regular expression it contains detects both code and docu-
mentation chunks.

5a 〈chunk starts 5a〉≡
chunkStarts =

function(lines)

grep(CHUNKSTART, lines)

Defines:
chunkStarts, used in chunk 4.

Uses CHUNKSTART 2c.

Given a vector of strings containing the header lines of code and documen-
tation chunks, chunkName extracts the chunk names. All documentation chunks
are given the name "".

5b 〈chunk name 5b〉≡
chunkName =

function(chunkstart)

ifelse(grepl("(^\\@\\s)|(^\\@$)", chunkstart), "",

gsub("^\\s+", "",

gsub("\\s*>>.*$", "",

gsub("^.*<<\\s*", "",

chunkstart))))

Defines:
chunkName, used in chunks 4, 18a, and 24.

The chunkLabelPrefix function takes a vector of chunk names and produces
prefixes for the LATEX labels used in cross-referencing. The label prefix consists
of “RNW” with the first three letters of the file name and file number appended,
followed by “-,” followed by the first three letters of the chunk name followed,
by the chunk number. This ensures that each chunk’s label prefix is unique.

5c 〈chunk label prefix 5c〉≡
chunkLabelPrefix =

function(name, filename, fileno) {

number = as.numeric(factor(name, unique(name)))

ifelse(name == "", "",

paste("RNW",

substring(gsub(" ", "", filename), 1, 3),

fileno, "-",

substring(gsub(" ", "", name), 1, 3),

number,

sep = ""))

}

Defines:
chunkLabelPrefix, used in chunk 4.

5

The chunkLabel function takes the chunk label prefixes and constructs
LATEX labels that are unique to a code chunk name. All blocks in a file with the
same name share the same label value.

6a 〈chunk chunklabel 6a〉≡
chunkLabel =

function(prefix)

ifelse(prefix == "", "", paste(prefix, 1, sep = "-"))

Defines:
chunkLabel, used in chunk 4.

The chunkSublabel function takes the chunk label prefixes and constructs
LATEX labels that are unique to each code chunk. These are used to generate
the margin tags in the LATEX output.

6b 〈chunk sublabel 6b〉≡
chunkSublabel =

function(prefix) {

index = seq(along = prefix)

fprefix = factor(prefix, unique(prefix))

index[order(fprefix)] =

sequence(table(fprefix))

ifelse(prefix == "", "",

paste(prefix, index, sep = "-"))

}

Defines:
chunkSublabel, used in chunk 4.

The next two functions handle chunk inclusion. The first is a helper function
that extracts the names of all chunks included in the code chunk passed in as
its argument and returns them in a vector.

The function works as follows. First, the lines containing chunk references
are extracted. Next, the material between inclusions (including >> and << are
turned into newlines. Finally the starting material (incuding <<) and terminal
material (including >>) are removed. The remaining lines are split on newlines
and the results turned into a character vector.

6c 〈chunk uses chunks 6c〉≡
includedChunks =

function(chunk)

unlist(strsplit(sub(">>.*?$", "",

sub(".*?<<", "",

gsub(">>.*?<<", "\n",

grep(CHUNKREF,

chunk,

value = TRUE)

))), "\n"))

Defines:
includedChunks, used in chunk 7a.

Uses CHUNKREF 2c.

6

The second function uses the first to build a list of character vectors that contain
the names of all the inclusions in each code chunk. In the case of documentation
chunks, the vector of included names is character(0).

7a 〈chunk uses chunks 6c〉+≡
chunkUsesChunks =

function(lines, start, end, type) {

uses = vector("list", length(start))

for(i in 1:length(start))

if (type[i] == "doc" || start[[i]] >= end[[i]])

uses[[i]] = character(0)

else

uses[[i]] =

includedChunks(lines[(start[i] + 1):end[i]])

uses

}

Defines:
chunkUsesChunks, used in chunk 4.

Uses includedChunks 6c.

The chunkUsesLabels function maps the names, obtained by calling the pre-
vious function, into their corresponding sublabels. This is where the detection
of undefined code chunk references takes place.

7b 〈chunk uses labels 7b〉≡
chunkUsesLabels =

function(uses, names, sublabels)

lapply(uses,

function(u) {

labels = sublabels[match(u, names)]

if (any(is.na(labels)))

stop(paste("undefined chunk: <<",

u[is.na(labels)][1], ">>", sep = ""),

call. = FALSE)

labels

})

Defines:
chunkUsesLabels, used in chunk 4.

7

Given the vector of chunk names and the list of uses computed by chunkUsesChunks,
this function computes the set of sublabels of the chunks where each chunk name
is referenced.

8a 〈chunk is used in chunks 8a〉≡
chunkIsUsedInChunks =

function(names, uses, sublabel) {

usedin = vector("list", length(names))

for(i in 1:length(names)) {

usedin[[i]] = sublabel[sapply(uses,

function(u) any(u == names[i]))]

}

usedin

}

Defines:
chunkIsUsedInChunks, used in chunk 4.

This function creates a list containing vectors of character strings giving
the identifiers listed in the “@ %def” statment following each code block. The
variable “header” contains all the chunk header lines and “type” contains their
types. The identofiers are sorted alphabetically within each chunk.

8b 〈chunk defines 8b〉≡
chunkDefines =

function(header, type) {

defs = c(header[-1], "")

defs = ifelse(grepl("^@\\s+%def\\s+", defs), defs, "")

defs = ifelse(type == "code" &

c(type[-1], "code") == "doc",

sub("\\s*$", "",

sub("^@\\s+%def +", "", defs)), "")

lapply(strsplit(defs, "\\s+"), sort)

}

Defines:
chunkDefines, used in chunk 4.

8

For each chunk, this function determines which defines from other chunks
are used in this chunk. The function returns a list of character vectors. The
uses in documentation blocks are set to character(0).

The header line of the chunk has been removed in the caller and chunk
references are removed by the first grep statement. This means that spurious
identifier matches in chunk names should be eliminated.

There is also work that needs to be done to avoid spurious identifier in strings
and comments. The is done by first emptying string contents and then stripping
comments stripped before matching the identofiers. (The order in which these
operations is carried out is important.)

The reason that strings must be emptied first is that there may be a com-
ment character “#” within a string. Emptying the strings first means that any
comment character that remains must start a comment. There remains an issue
with strings of the left-hand side of assignments, however. Even parsing the
chunks with R and walking the resulting parse tree extracting symbol names
would not work in this case.

One issue remains. Weird identifiers can be quoted with backticks ‘‘. If
such identifiers contain “#” then they will be mangled by the comment removal
mechanism above and will not appear in the cross-listing of variable uses. Of
course, anyone including “#” within an identifier deserves everything that fate
throws at them.

9 〈chunk uses defines 9〉≡
chunkUsesDefines =

function(lines, start, end, type, define) {

usesdefs = vector("list", length(start))

for(i in 1:length(start)) {

if (type[i] == "code") {

chunk = grep(CHUNKREF,

chunkContent(lines, start[i], end[i]),

value = TRUE, invert = TRUE)

chunk = gsub("#.*", "",

gsub("’.*?’", "’’",

gsub(’".*?"’, ’""’,

gsub(’\\\\"|\\\\\’’, "",

chunk))))

defs = unlist(define[-i])

pats = paste("(^|[^a-zA-Z0-9._])",

gsub("\\.", "\\\\.", defs),

"($|[^a-zA-Z0-9._])", sep = "")

usesdefs[[i]] = sort(defs[sapply(pats,

function(p)

any(grepl(p, chunk)))])

}

else usesdefs[[i]] = character()

}

usesdefs

}

Defines:
chunkUsesDefines, used in chunk 4.

Uses chunkContent 10a and CHUNKREF 2c.

9

Given a chunk starting at line “start” and ending at line “end” and includ-
ing a chunk header line, this function extracts the chunk contents (i.e. all but
the first line of the chunk).

10a 〈chunk content 10a〉≡
chunkContent =

function(lines, start, end)

if (start < end) lines[(start + 1):end] else character(0)

codeChunkContent =

function(lines, start, end)

if (start < end) lines[(start + 1):end] else character(0)

docChunkContent =

function(lines, start, end)

c(sub("^@ ", "", lines[start]),

if (start < end) lines[(start + 1):end] else character(0))

Defines:
chunkContent, used in chunks 9 and 15.
codeChunkContent, never used.
docChunkContent, used in chunk 14a.

The following function builds a hash table that provides a fast way of look-
ing up chunk labels and sublabels given the chunk name. This is used when
processing code lines containing chunk references. It could probably be used
more widely.

10b 〈build chunk hash table 10b〉≡
buildHash =

function(info) {

hash = new.env(parent = emptyenv())

for(chunk in info)

with(chunk,

if (name != "")

assign(name,

list(label = label,

sublabel = sublabel),

envir = hash))

hash

}

10

The functions in this section are assembled together (by concatenation) as
follows.

11 〈chunk information assembly 11〉≡
〈chunk starts 5a〉
〈chunk name 5b〉
〈chunk label prefix 5c〉
〈chunk chunklabel 6a〉
〈chunk sublabel 6b〉
〈chunk uses chunks 7a〉
〈chunk uses labels 7b〉
〈chunk is used in chunks 8a〉
〈chunk defines 8b〉
〈chunk uses defines 9〉
〈chunk content 10a〉
〈chunk information extraction 4〉
〈build chunk hash table 10b〉

11

3.1 Document Weaving

Once the information in a noweb file has been analysed, the file is woven to
produce produce a LATEX document describing the software components in the
file. The weaving process is carried out by the sequence of functions listed in
this section.

The following function processes a single source file. It opens the file that
will contain the woven output. Next it processes any initial non-chunk (as
documentation) by calling weaveInitial and then processes the documentation
and code chunks as they appear in the input file. The actual work of processing
the chunks is carried out in the specialised weaveDoc and weaveCode functions.

Immediately after the last code chunk has been processed all indexing in-
formation is processed and written to the output file. The indexing is done
separately for chunks and identifiers.

12a 〈file weaving 12a〉≡
weaveFile =

function(lines, info, hash, filename, fileno, fullxref) {

lastcode = max(which(sapply(info,

function(i) i$type) == "code"))

file = openWeaveFile(filename)

start = info[[1]]$start

if (start > 1)

weaveInitial(lines[1:(start - 1)], file)

for (i in seq(along = info)) {

if (i == 1) weaveFilename(filename, file)

if (info[[i]]$type == "doc")

weaveDoc(lines, info[[i]], file)

else

weaveCode(lines, info[[i]], hash, file)

if (i == lastcode) {

weaveChunkIndex(info, file, fullxref)

weaveIdentifierIndex(info, file)

}

}

weaveNewline(file = file)

close(file)

}

Defines:
weaveFile, used in chunk 2b.

Uses openWeaveFile 12b, weaveCode 15, weaveDoc 14a, weaveFilename 13a, weaveInitial 13c,
and weaveNewline 17d.

12b 〈file weaving support 12b〉≡
openWeaveFile =

function(filename) {

texfilename = sub("^.*/", "",

sub("\\.[^.]*$", ".tex", filename))

file(texfilename, "w")

}

Defines:
openWeaveFile, used in chunk 12a.

12

The weaveFilename function sets the name of the file being processed when
the first code or document chunk is encountered.

13a 〈file weaving support 12b〉+≡
weaveFilename =

function(filename, file)

cat("\\nwfilename{", filename, "}", sep = "",

file = file)

Defines:
weaveFilename, used in chunk 12a.

The weaveDocLine prints lines in both weaveInitial and weaveDoc. The
function handles code fragments quoted with double brackets. This is just a
crude approximation to noweb’s behaviour. It uses a non-greedy regular expres-
sion to match the quotation delimiters. This means that such code fragments
may not contain either of the code quotation delimiters. It is also not permissi-
ble to have newlines within quoted code. These restrictions could be eliminated
by properly parsing the documentation lines. I’m just not sure that it is worth
the effort.

The function surrounds the quoted fragment with \verb?...?. This means
the world will end if a user puts a question mark inside quoted text.

13b 〈documentation line cleaning 13b〉≡
weaveDocLine =

function(line)

gsub("\\[\\[(.*?)\\]\\]", "\\\\verb?\\1?", line)

Defines:
weaveDocLine, used in chunks 13c and 14a.

Some noweb files start with an initial undeclared chunk. This is taken to be
a documentation chunk but is processed differently; no LATEX start- and end-of-
chunk directives are emitted. The weaveInitial function handles any initial
non chunk.

13c 〈weave an initial nonchunk 13c〉≡
weaveInitial =

function(lines, file) {

for(i in 1:length(lines))

cat(weaveDocLine(lines[i]), "\n",

sep = "", file = file)

}

Defines:
weaveInitial, used in chunk 12a.

Uses weaveDocLine 13b.

13

Processing of documentation chunks is very simple. LATEX start- and end-
of-chunk delimiters are emitted and any quoted code within the chunk is turned
into verbatim text. (This could be replaced by the noweb quoted code mecha-
nism.)

14a 〈weave a documentation chunk 14a〉≡
weaveDoc =

function(lines, info, file) {

with(info, {

chunk = docChunkContent(lines, start, end)

weaveBeginDoc(number, file, chunk[1] == "")

for(i in seq(along = chunk))

cat(weaveDocLine(chunk[i]), "\n",

sep = "", file = file)

weaveEndDoc(file)

})

}

Defines:
weaveDoc, used in chunk 12a.

Uses docChunkContent 10a, weaveBeginDoc 14b, weaveDocLine 13b, and weaveEndDoc 14c.

The weaveBeginDoc and weaveEndDoc functions are invoked at the start
and end of each documentation chunk. The first function specifies the chunk
number and sets up a mode suitable for typesetting documentation; the second
provides a bracketing close for documentation. If a documentation chunk starts
with a blank line then a paragraph break is output at the start of the chunk.

14b 〈output support for documentation chunk weaving 14b〉≡
weaveBeginDoc =

function(n, file, parbreak = FALSE) {

cat("\\nwbegindocs{", n, "}", sep = "", file = file)

if(parbreak)

cat("\\nwdocspar ", sep = "", file = file)

}

Defines:
weaveBeginDoc, used in chunk 14a.

14c 〈output support for documentation chunk weaving 14b〉+≡
weaveEndDoc =

function(file)

cat("\\nwenddocs{}", file = file)

Defines:
weaveEndDoc, used in chunk 14a.

14

The following function weaves a code chunk. It is complicated because of all
the cross-referencing of code chunks that takes place.

15 〈weave a code chunk 15〉≡
weaveCode =

function(lines, info, hash, file) {

with(info, {

chunk = chunkContent(lines, start, end)

unused = length(usedin) == 0

weaveBeginCode(number, name, label, sublabel, file)

if (length(usedin) == 0)

weaveNotUsedHeader(file)

weaveNewline(file)

for(i in seq(along = chunk))

if (containsInsert(chunk[i]))

weaveInsert(chunk[i], hash, file)

else

weaveCodeLine(chunk[i], file)

if (number == 1)

cat("\\nosublabel{", sublabel, "-u4}",

sep = "", file = file)

weaveDefines(defines, sublabel, file)

weaveDefineUses(usesdefs, sublabel, file)

if (length(usedin) == 0)

weaveNotUsedChunk(name, file)

if (notused) notusedfile(name, file)

weaveEndCode(file)

})

}

Defines:
weaveCode, used in chunk 12a.

Uses chunkContent 10a, containsInsert 18b, weaveBeginCode 16a, weaveCodeLine 19,
weaveDefines 16c, weaveDefineUses 17a, weaveEndCode 17c, weaveInsert 18a,
weaveNewline 17d, weaveNotUsedChunk 17b, and weaveNotUsedHeader 16b.

15

The next series of function provides support for typesetting code chunks.
This is much more complex than the code for documentation chunks because
the cross-referencing of chunk names and identifiers defined in the chunk.

If the sublabel for a chunk is not the same as the label then this is not
the first chunk with this name. In such a case, the terminating directive is
\plusendmoddef rather than \endmoddef.

16a 〈output support for code chunk weaving 16a〉≡
weaveBeginCode =

function(n, name, label, sublabel, file)

cat(paste("\\nwbegincode{", n, "}",

"\\sublabel{", sublabel, "}",

"\\nwmargintag{{\\nwtagstyle{}\\subpageref{",

sublabel, "}}}", "\\moddef{", name,

"~{\\nwtagstyle{}\\subpageref{", label, "}}}\\",

if(sublabel != label) "plus" else "",

"endmoddef", sep = ""),

file = file)

Defines:
weaveBeginCode, used in chunk 15.

16b 〈output support for code chunk weaving 16a〉+≡
weaveNotUsedHeader =

function(file)

cat("\\let\\nwnotused=\\nwoutput{}", file = file)

Defines:
weaveNotUsedHeader, used in chunk 15.

16c 〈output support for code chunk weaving 16a〉+≡
weaveDefines =

function(defines, sublabel, file)

if (length(defines) > 0) {

cat(paste("\\nwindexdefn{", defines, "}{",

defines, "}{", sublabel, "}", sep = ""),

"\\eatline\n", sep = "", file = file)

cat("\\nwidentdefs{",paste("\\\\{{", defines, "}{",

defines,"}}", sep = ""),

"}", sep = "", file = file)

}

Defines:
weaveDefines, used in chunk 15.

16

17a 〈output support for code chunk weaving 16a〉+≡
weaveDefineUses =

function(usesdefs, sublabel, file) {

if (length(usesdefs) > 0) {

cat("\\nwidentuses{",

paste("\\\\{{", usesdefs, "}{",

usesdefs, "}}", sep = ""),

"}", sep = "", file = file)

cat(paste("\\nwindexuse{",

usesdefs, "}{", usesdefs,

"}{", sublabel, "}", sep = ""),

sep = "", file = file)

}

}

Defines:
weaveDefineUses, used in chunk 15.

17b 〈output support for code chunk weaving 16a〉+≡
weaveNotUsedChunk =

function(name, file)

cat(paste("\\nwnotused{", name, "}", sep = ""),

file = file)

Defines:
weaveNotUsedChunk, used in chunk 15.

17c 〈output support for code chunk weaving 16a〉+≡
weaveEndCode =

function(file)

cat("\\nwendcode{}", file = file)

Defines:
weaveEndCode, used in chunk 15.

17d 〈output support for code chunk weaving 16a〉+≡
weaveNewline =

function(file)

cat("\n", file = file)

Defines:
weaveNewline, used in chunks 12a and 15.

17

The weaveInsert function weaves lines that contain chunk references. It
works as follows:

While there are still references to process in the line.

Split off any text that preceeds the first reference and print it.

Remove the text from the start of the line.

Split off the reference that now starts the line and and process it.

Remove the reference from the start of the line.

Print any text that is left in the line.

18a 〈output support for code chunk weaving 16a〉+≡
weaveInsert =

function(line, hash, file) {

while(grepl(CHUNKREF, line)) {

text = sub("(^|[^@])<<.*$", "\\1", line)

cat(text, file = file)

line = substring(line, nchar(text) + 1, nchar(line))

text = sub("<<([-. 0-9A-Za-z]*)>>.*$", "\\1", line)

name = chunkName(text)

sublabel = get(name, envir = hash)$sublabel

cat("\\LA{}", name,

"~{\\nwtagstyle{}\\subpageref{",

sublabel, "}}\\RA{}", sep = "", file = file)

line = substring(line, nchar(text) + 5, nchar(line))

}

cat(line, "\n", sep = "", file = file)

}

Defines:
weaveInsert, used in chunk 15.

Uses chunkName 5b and CHUNKREF 2c.

18b 〈contains insert 18b〉≡
containsInsert =

function(line)

grepl(CHUNKREF, line)

Defines:
containsInsert, used in chunk 15.

Uses CHUNKREF 2c.

18

The weaveCodeLine function processes lines of code and writes them to the
output file. The function maps “{” and “}” to “\{” and “\}” and “\” to “\\.”
In addition it strips the protecting “@” from “@@<<.”

19 〈output support for code chunk weaving 16a〉+≡
weaveCodeLine =

function(line, file)

cat(gsub("\\{", "\\\\{",

gsub("\\}", "\\\\}",

gsub("\\\\", "\\\\\\\\",

gsub("@<<", "<<",

line)))), "\n",

sep = "", file = file)

Defines:
weaveCodeLine, used in chunk 15.

19

The next section of code deals with indexing. (This is where the work
carried out in extractChunkInfo pays off.) There are two kinds of indexing
information. The chunk index contains information about where chunks are
defined and where they are used. The identifier index contains information
about where indentifiers are defined and where they are used.

The chunk index is generated from lines that have the form:

\nwixlogsorted{c}{{name}{sublabel}{ . . . }

where name is the chunk name, sublabel is the chunk sublabel and . . . is a list
of elements of the form

\nwixd{sublabel}

indicating where the chunk was defined, or of the form

\nwixu{sublabel}

indicating locations where the chunk was used.
The function that produces these lines is shown below. It is invoked imme-

diately after the last code chunk is processed. (It could be output anywhere
during the weaving process, but this is where noweb does it.)

20 〈weave chunk index 20〉≡
weaveChunkIndex =

function(info, file, fullxref) {

code = sapply(info, function(i) i$type) == "code"

name = sapply(info, function(i) i$name)[code]

sublabel = sapply(info, function(i) i$sublabel)[code]

usedin = lapply(info, function(i) i$usedin)[code]

o = order(name)

name = name[o]

sublabel = sublabel[o]

usedin = sapply(usedin[o],

function(u) {

if (length(u) == 0) "" else

paste("\\nwixu{", u, "}",

sep = "", collapse = "")

})

cat("\n", file = file)

if (fullxref)

o = TRUE

else

o = !duplicated(name)

cat(paste("\\nwixlogsorted{c}{{", name[o],

"}{", sublabel[o], "}{\\nwixd{",

sublabel[o], "}",

usedin[o], "}}%\n", sep = ""),

sep = "", file = file)

}

20

The indentifier index is much simpler because information about indentifier
definition and use is produced as the chunks are processed. The identifier index
is produced from lines that have the form

\nwixlogsorted{i}{{identifier}{identifier}}%

The code that produces the lines is shown below.

21a 〈weave identifier index 21a〉≡
weaveIdentifierIndex =

function(info, file) {

code= sapply(info, function(i) i$type) == "code"

defines = lapply(info, function(i) i$defines)[code]

if (length(defines) > 0) {

defines = unique(sort(unlist(defines)))

cat(paste("\\nwixlogsorted{i}{{", defines,

"}{", defines, "}}%\n", sep = ""),

sep = "", file = file)

}

}

The components of the weaving process are assembled together by concate-
nation as follows.

21b 〈document weaving 21b〉≡
〈file weaving 12a〉
〈file weaving support 13a〉
〈documentation line cleaning 13b〉
〈weave an initial nonchunk 13c〉
〈weave a documentation chunk 14a〉
〈contains insert 18b〉
〈weave a code chunk 15〉
〈output support for documentation chunk weaving 14c〉
〈output support for code chunk weaving 19〉
〈weave chunk index 20〉
〈weave identifier index 21a〉

21

3.2 Code Tangling

The function tangleFile builds a “chunk table,” called chunktable, which is
an environment providing a map from canonical chunk name to the contents
of that (concatenated) chunk. It then writes out, to an approppriate file, any
chunks which are not referenced by any other chunk, with references to other
chunks expanded recursively. Note that files are only created if the chunk name
contains nothing other than letters digits and “.”. In particular, if there are
spaces in the chunk name then no file is written and a warning is issued.

22 〈tangle file 22〉≡
tangleFile =

function(lines, info, hash, filename, fileno) {

chunktable = new.env(parent = emptyenv())

code = which(sapply(info,

function(i) i$type) == "code")

for(i in code)

with(info[[i]],

storeChunk(name,

if (start == end) character(0)

else lines[(start+1):end],

chunktable))

unusedChunks = code[sapply(info[code],

function(i) length(i$used) == 0)]

for(i in unusedChunks)

with(info[[i]], {

if (grepl("^[A-Za-z0-9.]+$", name)) {

filecon = file(name, "w")

expandChunk(name, "", chunktable, filecon)

close(filecon)

}

else

warning(paste("unreferenced chunk <<",

name, ">> not output",

sep = ""),

call. = FALSE)

})

}

Defines:
tangleFile, used in chunk 2b.

Uses expandChunk 24 and storeChunk 23a.

22

The storeChunk function stores a code chunk in the chunk table. If there
is already a chunk with this name in the table then the chunk is concatenated
onto the end of it.

23a 〈store chunk 23a〉≡
storeChunk =

function(name, lines, chunktable) {

if (exists(name, chunktable, inherits = FALSE))

lines = c(fetchChunk(name, chunktable), lines)

assign(name, lines, envir = chunktable)

}

Defines:
storeChunk, used in chunk 22.

Uses fetchChunk 23b.

The fetchChunk function fetches a chunk with the given name from the
chunk table. This needs bulletproofing. (E.g. what happens if we ask for a
chunk that is not in the chunk table.)

23b 〈fetch chunk 23b〉≡
fetchChunk =

function(name, chunktable)

get(name, envir = chunktable)

Defines:
fetchChunk, used in chunks 23a and 24.

23

The expandChunk function outputs a chunk with the given name and spec-
ified indent (a string of spaces). References to other chunks are expanded re-
cursively. The method of splitting lines into program and chunk references is
identical to that used in weaveInsert.

The treatment of leading spaces and trailing newlines is complicated by
the fact there can be multiple chunks on a single line of the source file. The
expandChunk function does not indent the first line of a chunk and does not
print a trailing newline. Instead, this is left to the code that called expandChunk.
Operating in this way makes it possible to handle the multiple chunks per line
case.

24 〈expand and output chunk 24〉≡
expandChunk =

function(name, indent, chunktable, file) {

chunk = fetchChunk(name, chunktable)

nline = length(chunk)

for(i in seq(along = chunk)) {

line = chunk[i]

space = sub("^(\\s*).*", "\\1", line)

line = sub("^\\s*", "", line)

if (i > 1) cat(indent, file = file)

cat(space, file = file)

if (grepl(CHUNKREF, line)) {

while(grepl(CHUNKREF, line)) {

text = sub("(^|[^@])<<.*$", "\\1", line)

line = substring(line, nchar(text) + 1,

nchar(line))

cat(sub("@<<", "<<", text),

sep = "", file = file)

text = sub("<<([-. 0-9A-Za-z]*)>>.*$",

"\\1", line)

line = substring(line, nchar(text) + 5,

nchar(line))

name = chunkName(text)

expandChunk(name,

paste(indent, space, sep = ""),

chunktable, file)

}

}

cat(gsub("@<<", "<<", line),

sep = "", file = file)

if (i < nline) cat("\n", file = file)

}

}

Defines:
expandChunk, used in chunk 22.

Uses chunkName 5b, CHUNKREF 2c, and fetchChunk 23b.

24

25a 〈code tangling 25a〉≡
〈tangle file 22〉
〈store chunk 23a〉
〈fetch chunk 23b〉
〈expand and output chunk 24〉

25b 〈comments and copyright 25b〉≡
Copyright Ross Ihaka, 2011

###

Distributed under the terms of GPL3, but may also be

redistributed under any later version of the GPL.

###

To be clear: If this code is included as part of an R

distribution, even if that distribution is broken into

component parts, all of distribution’s parts must be

made available under the terms of GPL3.

###

(Suck on that you Revolution Analytics swine!)

###

Literate Programming with and for R

###

This function provides an R implementation of (a subset of)

Norman Ramsey’s noweb system. It makes noweb available to

anyone who has R (and LaTeX) installed on their system.

25

4 Chunk Index

〈build chunk hash table 10b〉
〈chunk chunklabel 6a〉
〈chunk content 10a〉
〈chunk defines 8b〉
〈chunk information assembly 11〉
〈chunk information extraction 4〉
〈chunk is used in chunks 8a〉
〈chunk label prefix 5c〉
〈chunk name 5b〉
〈chunk starts 5a〉
〈chunk sublabel 6b〉
〈chunk uses chunks 6c〉
〈chunk uses defines 9〉
〈chunk uses labels 7b〉
〈code tangling 25a〉
〈comments and copyright 25b〉
〈constants 2c〉
〈contains insert 18b〉
〈documentation line cleaning 13b〉
〈document weaving 21b〉
〈expand and output chunk 24〉
〈fetch chunk 23b〉
〈file weaving 12a〉
〈file weaving support 12b〉
〈main noweb function 2b〉
〈output support for code chunk weaving 16a〉
〈output support for documentation chunk weaving 14b〉
〈Rnoweb.R 2a〉
〈store chunk 23a〉
〈tangle file 22〉
〈weave a code chunk 15〉
〈weave a documentation chunk 14a〉
〈weave an initial nonchunk 13c〉
〈weave chunk index 20〉
〈weave identifier index 21a〉

26

5 Identifier Index

chunkContent: 9, 10a, 15
chunkDefines: 4, 8b
chunkIsUsedInChunks: 4, 8a
chunkLabel: 4, 6a
chunkLabelPrefix: 4, 5c
chunkName: 4, 5b, 18a, 24
CHUNKREF: 2c, 6c, 9, 18a, 18b, 24
CHUNKSTART: 2c, 5a
chunkStarts: 4, 5a
chunkSublabel: 4, 6b
chunkUsesChunks: 4, 7a
chunkUsesDefines: 4, 9
chunkUsesLabels: 4, 7b
codeChunkContent: 10a
containsInsert: 15, 18b
docChunkContent: 10a, 14a
expandChunk: 22, 24
extractChunkInfo: 2b, 4
fetchChunk: 23a, 23b, 24
includedChunks: 6c, 7a
openWeaveFile: 12a, 12b
storeChunk: 22, 23a
tangleFile: 2b, 22
weaveBeginCode: 15, 16a
weaveBeginDoc: 14a, 14b
weaveCode: 12a, 15
weaveCodeLine: 15, 19
weaveDefines: 15, 16c
weaveDefineUses: 15, 17a
weaveDoc: 12a, 14a
weaveDocLine: 13b, 13c, 14a
weaveEndCode: 15, 17c
weaveEndDoc: 14a, 14c
weaveFile: 2b, 12a
weaveFilename: 12a, 13a
weaveInitial: 12a, 13c
weaveInsert: 15, 18a
weaveNewline: 12a, 15, 17d
weaveNotUsedChunk: 15, 17b
weaveNotUsedHeader: 15, 16b

27

	Introduction
	Lexical Structure and the Main Function
	Assembling Chunk Information
	Document Weaving
	Code Tangling

	Chunk Index
	Identifier Index

