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Abstract. The recognition of tracks plays an important role in ecological research and
monitoring, and tracking tunnels are a cost-effective method for indexing species over large
areas. Traditionally, tracks are collected by a tracking system, and analysis is carried out in a
manual identification procedure by experienced wildlife biologists. Unfortunately, human
experts are unable to reliably distinguish tracks of morphologically similar species. We
propose a new method using image analysis, which allows automatic species identification of
tracks, and apply the method to identifying cryptic small-mammal species. We demonstrate
the method by identifying footprints of three invasive rat species with similar morphology that
co-occur in New Zealand, including detection of a recent invasion of a rat-free island.
Automatic footprint recognition successfully identified the species of rat for .70% of
footprints, and .83% of tracking cards. With appropriate changes to the image recognition,
the method could be broadly applicable to any taxa that can be tracked. Identification of
tracks to species level gives better estimates of species presence and composition in
communities.
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INTRODUCTION

Accurate estimates of species presence are required

when ecologists study rare species or assess community

composition (MacKenzie et al. 2002), and automated

species identification could provide many advantages to

ecologists in such situations (Gaston and O’Neill 2004).

Indexing is one cost-effective method for monitoring

animal populations over large areas (Whisson et al.

2005). Noninvasive methods such as tracking are

particularly important when studying low-density or

cryptic species that are difficult to detect by standard

methods such as trapping (Brown et al. 1996, Watts et

al. 2008). The principle of animal tracking is to isolate

single footprints from a number of unknown footprints

and to identify the species that generated the footprint.

Tracks are collected by a tracking system that involves a

tracking tunnel, a pre-inked tracking card, and lures

placed on the center of the card. Animals attracted by

lures walk through the tracking tunnel and leave their

footprints on the tracking card. Traditionally, analysis is

carried out manually by experienced biologists who can

distinguish tracks of some different species (Ratz 1997).

Unfortunately, identification among taxa with similar

morphology is usually impossible (Ratz 1997, Glennon

et al. 2002; Fig. 1). Uncommon species may be

overlooked and classified as a more common, but

similar, species, leading to negatively biased estimates

of species presence or richness (e.g., Golding and Harper

2008).

We describe an automated method of differentiating

tracks of small animals. Our automatic track recognition

system follows three main steps: (1) track acquisition:

field collection and scanning; (2) template extraction:

extracting an initial template database from a given

training set for future matching; (3) template compar-

ison: querying a template database to find a comparable

template and automatic track classification for classify-

ing inputs into different classes according to their

geometric characteristics. This method resolves the need
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for experienced biologists to subjectively classify species

tracks, and allows animal tracking methods to be used

on a much larger scale because cards can be rapidly

analyzed by any user.

TRACK ACQUISITION

Tracks must first be acquired in the field using

standard field methodologies. Multiple footprints from

multiple animals are possible on a single tracking card.

Tracks collected from the field can appear faint (dry

ink) or overlap one another (possibly from multiple

animals). This requires a flexible image analysis

methodology that can tolerate such difficulties. Any

method will only be practical if it can correctly identify

most of the clearly delineated prints, and preferably

some of the more ‘‘difficult’’ prints. To provide

computer-analyzable footprint patterns, tracking cards

are scanned at 300 dpi using flatbed scanners and stored

in bitmap format as gray-scale pictures. Generally, the

dimensions of a 300-dpi scanned tracking card are

about 11703 3500 pixels, occupying ;3.9 Megabytes of

memory space.

Scanned images are segmented through an automated

binarization process in order to extract patterns for

recognition. The quality of recognized patterns signifi-

cantly influences the subsequent analysis. In the case of

animal tracks, the intensity of a footprint can vary

greatly depending on factors such as the type and age of

tracking media. A fixed binarization threshold over an

entire card, delimiting footprints from the background,
does not provide proper footprint patterns, so we

implemented Abutaleb’s method, which has been
reliable for binarizing insect footprints (Woo 2004).

However, animal footprints can have large variability in
the characteristics of individual prints (on the same
card). This makes a straightforward adaptation of

Abutaleb’s method impossible. We chose an adaptive
binarization method whereby the tolerance for distin-

guishing footprints from cards is adjusted locally within
a card, depending on the relative intensity of any

particular footprint. We convert a gray-scale scanned
image into a binary (black and white) image as follows:

we initiate a standard scan on the gray-scale image and
if the local mean and pixel values on a part of the card

are within a defined small range (i.e., card background),
we continue with scanning; otherwise we initiate a

connected region of pixels (i.e., a footprint). This region
‘‘grows’’ in the order that pixels are scanned, with pixels
satisfying

jmA;p � gpj � tA

where mA,p is the sliding mean of region A (up to reading
pixel p), gp is the gray-scale image value at pixel p, and tA
is the local intensity tolerance for this region (e.g.,
defined by a percentage of the initiating pixel value).

The final binarization response for all pixels within a
region is constrained within a biologically reasonable

size for footprints. Regions of a card with value 0 (i.e.,
black) are treated as potential parts of footprint patterns

for further analysis (Fig. 2). In many cases, fainter drag
marks can connect tracks (e.g., the central pad and

lumps of mammals). By manually adjusting the local
tolerance in a particular area of a card, binarization can

erase such drag marks and other noise (e.g., smaller
insect tracks), ensuring better footprint patterns for
future analysis.

All possible toes and central pads in the binarized
image h are thus identified as unique regions, which are

approximately circular in shape and can be reasonably
represented by ellipses (Fig. 2). Pixels p ¼ (x, y) on the

FIG. 1. (Left) Left hind print of Rattus exulans. (Right) Left
hind print of R. rattus.

FIG. 2. (Left) Original image. (Middle) The adaptive binarization result for tA¼32 (for any region A). (Right) Fitted ellipses for
the binary image.
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border of each of those regions are used for least-square

fitting of a uniquely defined ellipse (see Fitzgibbon et al.

1999):

Fðh; pÞ ¼ ax2 þ bxyþ cy2 þ dx þ eyþ f

where h ¼ [a b c d e f ]> and p ¼ [x2xy y2x y 1]>. F(h; pi)
is the algebraic distance of a point (x, y) to the conic

F(h; p).
Once all possible toes and central pads have been

identified and defined by ellipses, they are stored in a

local coordinate system database, where toes are ordered

by angle.

TEMPLATE EXTRACTION

Next, an appropriate number of footprints of known

species identification must be extracted to generate an

initial template database. Members in this database are

used subsequently for identifying unknown footprints.

Templates must reflect the variance within species

characteristics (e.g., age and sex) while also expressing

the discerning characteristics among species. Tracks

previously must have been independently correctly

identified, such as by live-capturing individuals from

the target species in the field and collecting footprints

from them. The track acquisition process is manually

aided by selecting appropriate footprint regions. From

these cards, the k most representative ones are chosen

for our template database, T.

A symmetric distance measure can be used to

calculate correspondence between binary patterns

(Klette and Zamperoni 1987). For fingerprint template

selection, the minimum distance of unidentified prints

from templates is used (Uludag et al. 2004), and this

method has shown good experimental performance in

dealing with intra-class variation. Based on these

concepts, we use an adapted method for track recogni-

tion that calculates the average pairwise symmetric

distance for a footprint with all other n � 1 footprints.

The similarity between two sets is defined as the union

(overlap) of nonintersecting parts:

ADB ¼ ðA¨ BÞ � ðA \ BÞ:

Based on this concept, a symmetric distance measure

representing the similarity between two tracks A and B

is calculated by normalizing the symmetric difference:

dðA;BÞ ¼ cardðADBÞ
cardðA¨ BÞ where 0 � d � 1:

Here, d is a metric (see Klette and Zamperoni 1987,

Klette and Rosenfeld 2004); thus it provides pairwise

symmetric distances, and an average distance of a

particular footprint i can be computed as follows:

di ¼
X

d̂i; j

ðn� 1Þ for i 6¼ j

where n is the number of footprints in the training set,

and j is a footprint different from i.

Finally, all average distances are sorted by order, and

the template set that contains the most representative

templates is selected, based on a minimum average

distance criteria.

This method endeavors to find the footprints that

characterize maximum similarity with others in the

training set and, therefore, that are good candidates to

form the initial template database. Creating the template

database is an important stage for accuracy. The

number of templates in the database must be carefully

determined. A large number of templates dramatically

increases computing time for matching, whereas a small

number might not be sufficient for robust identification.

Generally the training data set must comprise the

expected natural variation among tracks.

After initial template images are selected using the

minimum distance method, further information about a

particular template must be extracted from the original

template image and stored in an XML database. The

basic information that is manually extracted is charac-

terized as follows: species, leg (i.e., left front, left hind,

right front, and right hind), central pad area, the

distances of toes relative to central pad, angles between

each toe and its two neighbors, and area of toes.

TEMPLATE COMPARISON

We are now able to compare unknown footprints

from tracking cards with those in our template for

automatic species identification. An algorithm seeks to

find the most likely match by estimating similarity

between potential unique footprint configurations and

templates in the database. Because the central pad is

more likely to leave clear marks on the tracking card, we

start by finding all preliminary central pad ellipses based

on area constraints (the area of a central pad must be

within a specified range). All other ellipses that are close

to the central pad (within a limited distance) will qualify

as possible toes to that central pad. Unique footprints

must now be defined and we develop a previous method

for identifying these (Hasler et al. 2004). The central pad

and all potential toes are placed into a local coordinate

system where toes are ordered by angle, and all

combinations of the central pad with these toes are

iteratively compared with the template list. A similarity

value is calculated for a potential combination (a central

pad and its preliminary toes) and the selected template

using a linear evaluation function. Here we introduce an

automatic template database updating procedure, using

an optimally weighted function that improves the

evaluation response. To ensure high evaluation values

for potential footprints that have small variations from

the template, we replaced the linear function by a

continuous Gauss function:
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Eh;r ¼ exp �ðah;r � bh;rÞ2=r2
r

h i

where Eh,r is the value of the evaluation function, ah,r is

the value of the hth potential toe for the rth parameter

(distance, area, or angle), bh,r is the template value of an

hth potential toe for the rth parameter, and rr is the

template tolerance factor (or standard deviation) for the

rth parameter. These are averaged across all h toes to

give a normalized mean evaluation for each parameter r:

E�r ¼
1

n

Xn

h¼1

Eh

where n is the number of toes being evaluated. Each

parameter r is then weighted and a final normalized

evaluation value (in the range 0 to 1) can be calculated:

E�� ¼
1X

cr

XR

r¼1

crEr

where cr is a weight value for each parameter r (initial

values for all cr ¼ 1).

The similarity estimation function guarantees a higher

output (greater value) for a comparable footprint with a

template and a lower outcome (smaller value) for an

incomparable sample. Track classification is now

relatively straightforward. A threshold value is used to

decide whether the preliminary footprint combination is

a real footprint. Once the unknown footprint is

confirmed, it will then be categorized to the same class

as the comparable template. Software implementing the

automatic track recognition method is available online.5

A constant template database is of limited use because

it can become based upon an obsolete training set, and

hence cannot incorporate new samples. We use dynamic

template updating, which recycles previously identified

unknown tracks and retrains them for our template

database, where the retraining procedure is the same as

for template extraction. Automatic template updating

must be done with caution, however, because a biased

template database will be generated if too many false

samples are used for training, which will strongly

influence the accuracy of our methodology. Only

unambiguously identified samples above a certain

identification threshold should be used for template

updating.

DIFFICULT FOOTPRINTS

Faint footprints, footprints with missing toes, and

merged prints all occur frequently on tracking cards

(Fig. 3). These issues can be readily resolved, however.

To detect faint tracks, the binarization method needs to

be adapted. This is done by manually adjusting the

tolerance to provide better regions, which will construct

PLATE 1. Tracking tunnel with tracking card and Norway rat. Photo credit: J. Russell.

5 hwww.mi.auckland.ac.nz/ScanTi
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more accurate ellipses to represent toes or pads. For one

or two missing toes, the algorithm automatically
generates templates with missing toes during the

similarity estimation process. In our implementation,

templates in the database are automatically reformatted.
For example, if m of n toes are missing, then each

original template generates

n
n� m

� �

new templates for each possible combination of missing
toes. For overlapping prints, when the algorithm

searches for the best match, toes can be shared by

multiple footprints, provided that a central pad can only
belong to one recognized footprint as such. If a central

pad overlaps with a toe, then the pad is treated as a
central pad for one and only one footprint and as a toe

for all other footprints.

DEMONSTRATION

To demonstrate the method, we differentiate between

three small-mammal species: the invasive rats Rattus

exulans, R. norvegicus, and R. rattus, which co-occur on

the New Zealand mainland and many islands (Russell

and Clout 2004). A rat has four toes on the front foot

and five on the hind foot. The front toes are evenly

distributed and the hind central three toes are normally

bunched and parallel. Rat footprints are approximately

circular in shape, and if a line is connected between two

end toes on the front or hind foot, the line bisects or lies

behind the central pad (Russell et al. 2008). Rat tracks

are relatively different because of species characteristics,

but manual species identification is confounded by large

variation among populations, individual ages (size), and

possibly the sex of individuals relative to subtle

differences among species (e.g., Golding and Harper

FIG. 3. (Top) Faint footprint. (Middle) Footprint with a missing toe. (Bottom) Two footprints with merged toes.
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2008). Therefore, distinguishing tracks of different

species is difficult (e.g., Fig. 1). Digitized tracks of rats

previously have been analyzed for defining a sciatic

functional index, SFI (de Medinaceli et al. 1984,

Lowdon et al. 1988), using stride length, footprint

length, and toe spread for diagnosing experimental

injuries in individual rats. However, our motivation

differs from analyzing individual rats instead focusing

on identifying species-level characteristics for ecological

applications.

Rat tracks were collected from around New Zealand

using tracking tunnels and pre-inked tracking cards

(Connovations, Auckland, New Zealand; see Plate 1).

Tracks were acquired from offshore islands where only

one species was present, thus ground-truthing species

identification on any particular card for our template

database and demonstration. Following digital track

acquisition, 75% of 97 footprints from all three species

were identified as suitable for the template training set.

These templates were then applied to an independent

testing set consisting of a combination of 349 footprints

of all three species from 73 other tracking cards. In

addition, we dynamically updated our template database

based on the criterion unique to rat footprints that, if a

line segment is drawn between the two end toes of a rat

footprint, the line must bisect, or lie behind, the central

pad. This property was a good candidate for stabilizing

templates. Thus two conditions were applied to restrict

the template updating procedure: a high similarity value,

and this line segment constraint.

Over 70% of footprints among the three invasive rat

species were correctly identified (‘‘true positive’’), and

over 83% of tracking cards were correctly classified

(Table 1). Results were consistent across species. Type I

and II error rates were appropriate at around 0.10 and

0.20, respectively, whereas only ,10% of footprints

were not detected at all by our image recognition

algorithm. This result was obtained with around 100

template database footprints, which we recommend as a

suitable rule-of-thumb minimum. However, for other

species the minimum number of footprints required will

vary relative to the number of cryptic species in the

community, and their within- and among-species

footprint variability. Testing footprints were kept in

their original conditions without preprocessing, so that

a number of them contained uncertain prints (e.g., faint

and smudged prints). These uncertainties impacted on

individual footprint recognition rates, but they did not

greatly affect overall recognition percentages for track-

ing cards. The majority of prints on tracking cards were

correctly identified by our algorithm, and satisfactory

results were derived for all species, even though tracks

came from an unknown number of individuals. The true

positive rate could have been improved by increasing

the number of templates, but at a cost of computational

time. An important result was derived for one tracking

card that successfully identified a solitary R. norvegicus

invader on a small rat-free island in New Zealand,

which previously had been identified only through much

more costly genetic fingerprinting (see Russell et al.

2005).

DISCUSSION

Developing accurate methods to identify low-density

or cryptic species is vital for wildlife research and

monitoring (Whisson et al. 2005, Watts et al. 2008).

Animal tracks can be readily collected, but the

requirement of expert skills and the subjective nature

of manual identification are problematic (Gaston and

O’Neill 2004). We have described and demonstrated an

automatic track recognition method that can be used to

differentiate between footprints of similar small-mam-

mal species. The template-matching method is only

limited by the quality and quantity of template tracks.

Computational time for a single card on a Core2 Duo

3.0GHz computer with 2.0GB of RAM is ;5–10

seconds. With changes to the track acquisition method,

other taxa such as reptiles (Siyam 2006) and insects

TABLE 1. Classification results for individual footprints and tracking cards for three species of
Rattus.

Classification

Percentage of footprints

R. exulans
(29 cards, 164 prints)

R. norvegicus
(12 cards, 51 prints)

R. rattus
(32 cards, 134 prints)

True positive (sensitivity) 70.1 78.4 76.1
True negative (specificity) 90.8 90.1 90.0
False positive (a) 9.2 9.9 10.0
False negative (b) 20.7 17.6 18.7
Did not detect print 9.1 3.9 5.2
Identified 86.2 83.3 84.4
Unidentified 13.8 16.7 15.6

Notes: Correctly assigned footprints are denoted as ‘‘true positive’’ and ‘‘true negative,’’
incorrectly assigned footprints as ‘‘false positive’’ and ‘‘false negative,’’ and undetected
footprints as ‘‘did not detect print.’’ If a majority of footprints on a tracking card are correctly
classified, it is considered ‘‘identified’’; otherwise it is ‘‘unidentified.’’
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(Hasler et al. 2004) also could be automatically
recognized. The method could complement other

passive detection tools such as hair-tube tunnels for
DNA analysis (Lindenmayer et al. 1999). With larger
template databases, identification below species level

may become possible, such as differentiating between
sexes, age classes, or even individuals. Such applications
would require significant dimorphism between groups,

however (i.e., greater variability between, rather than
within, groups).
Automatic track recognition would have important

applications for detecting individuals at low density
where other detection methods struggle, and where
detection may be confounded by other morphologically
similar species (Lindenmayer et al. 1999). Invasive rat

species are an ongoing problem in New Zealand and
elsewhere (Russell et al. 2008). We successfully identified
the footprints of different species of invasive rats, which

has important applications to island biosecurity. Knowl-
edge of the species of invading rat affects how
conservation managers respond to island invasions,

due to subtle behavioral differences between the species
(O’Connor and Eason 2000, Russell et al. 2008).
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