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Abstract. Seabirds breeding on islands are vulnerable
to introduced predators, such as rats and cats, and the re-
moval of such predators is generally viewed as a priority for
seabird conservation and restoration. However, multiple in-
vasive mammal species interacting may generate unexpected
outcomes following the removal (eradication) of one species.
Generally these indirect interactions are not well understood
or demonstrated. We propose and study a prey (seabird)-
mesopredator (rat)-superpredator (cat) model, taking into ac-
count the juvenile stages in the prey population, in order to
direct conservation management for seabird conservation. We
give a more biologically realistic differential system than those
studied before (Courchamp et al. [1999]; Fan et al. [2005]), in
particular for long-lived seabird species. We present a theo-
retical study and show existence and uniqueness of a posi-
tive solution as well as a qualitative study of the equilibria
that may appear. Because standard numerical methods, usu-
ally implemented in scientific softwares, can fail to give the
right biological approximations (Anguelov et al. [2009]), we
propose a reliable algorithm that preserves most of the qual-
itative properties of the continuous system, using the theory
of nonstandard finite difference methods. Finally, we use bi-
ologically realistic parameters available for the representative
Barau’s petrel (Pinet et al. [2008]), an endemic species from
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Réunion island, to present numerical simulations that support
the theoretical study. Cats play the major role in seabird prey
population dynamics. Seasonality in seabird breeding delays
but does not prevent extinction. In all scenarios, cat control
(or preferably eradication) is imperative to prevent extinction
of vulnerable long-lived seabirds, like the Barau’s petrel.

Key Words: Population dynamics, intraguild pre-
dation, mesopredator, superpredator, equilibrium, stabil-
ity/instability, nonstandard finite difference method, dynamic
consistency, numerical simulation.

1. Introduction. Globally biodiversity is undergoing a dramatic
decline, attributable entirely to the impact of humans (Vitousek et al.
[1997]). Conservation and management of natural ecosystems has be-
come an important and necessary task in order to preserve as much
as possible of the biological diversity in many places around the world
Le Corre [2008]. This is particularly so on oceanic islands, which house
a disproportionate amount of the world’s biodiversity relative to their
area. Isolated islands have also been disproportionately impacted by
the introduction of non-native species. Indeed, many studies have now
shown that introductions of predators, like rats and cats, have driven to
extinction many endemic insular species. For example, the introduction
of alien species is now recognized as directly or indirectly responsible
for 42% of bird extinctions on islands (King [1985]). In response it
is necessary and urgent to develop control or eradication programs to
restore island ecosystems (e.g., Howald et al. [2007]). In that way, math-
ematics has become a powerful tool giving prospective insight into the
dynamics of interacting populations, helping conservation managers
make informed and appropriate choices about the outcomes of control
programmes.

Réunion Island is a small French overseas department, located in
the South-West of Indian Ocean, and is known to be a hot spot of
biological diversity in the world. Réunion Island has been inhabited
for three and a half centuries, and with a growing human population,
the challenge is to preserve its endemic heritage. Some endemic, and
endangered, seabirds and land birds are still living on Réunion Island.
Unfortunately, we know that many endemic birds have become extinct
since the arrival of humans on Réunion Island. Thus, the aim is now to
preserve as much as possible of the remaining endemic bird populations.

Introduced cats (Felis catus) (Robertson [2008]) and rats (Rattus
spp) are two of the most widespread invasive mammal taxa on oceanic
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islands, directly impacting bird populations through opportunistic and
omnivorous predation. The isolation of insular bird populations has
often caused a lack of evolutionary response to mammalian preda-
tion, meaning they are usually preferentially preyed upon (Pearre and
Maass [1998]). Seabirds are particularly vulnerable, requiring a terres-
trial phase for breeding where most species are ground nesting and
poorly adapted to locomotion. Cats and rats have made easy prey of
such seabirds, and for declining populations pest control or eradication
is often imperative.

We are mainly concerned with intraguild predation: when cats (a su-
perpredator) prey upon rats (a mesopredator) and they both share a
prey species, a specific case of “mesopredator release effect” has been
hypothesized. In this scenario the eradication of one predator may al-
ter the dynamics of the system depending on the strength of trophic
relationships. For example the eradication of cats may cause a popu-
lation increase in rats, which will change the impact rats have at the
population level on birds. Although intraguild predation (Müller and
Brodeur [2002]) has been observed often, mesopredator release effect
(of cats and rats) has never actually been demonstrated. It has been
mathematically described previously using ordinary logistic differential
equations for a simple cat–rat–bird system (Courchamp et al. [1999]),
cat–rat–bird system with functional response (Fan et al. [2005]), and
cat–rat–bird system with spatial heterogeneity (Gambino et al. [2007]).
In all cases the authors have reached identical conclusions that the re-
moval of cats will cause an increase in rats that will negatively affect
the bird species of conservation concern; a counter intuitive conclu-
sion that cat eradication does not benefit birds. However, in all cases
the authors simplistically assumed that all bird species on an island
could be treated as an “average” and that the impacts of cats and
rats were identical in form except in the numerical (population size)
level of impact. These studies also used rapid growth rates typical only
of short-lived high-fecundity (r -selected) bird species such as forest
passerines. We believe that this modeling is not adapted to long-lived
seabirds, like the Barau’s petrel or other long-lived species.

Because oceanic island bird conservation usually focuses on seabird
species (e.g., Jones et al. [2008]), and complete eradication of
introduced cats and rats is now possible (Nogales et al. [2004];
Howald et al. [2007]), we focus on the case of cats–rats–seabirds.
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Functionally seabirds differ substantially from land birds. They are
much larger and longer-lived (K -selected), including a subadult at-
sea phase where they are immune to terrestrial predation. Seabirds
also differ in their breeding biology, in the most extreme case laying
only a single egg clutch with high parental investment. They also lack
behavioral plasticity such as to change breeding location when pre-
dation risks increase (Igual et al. [2007]). Because of these differences
the impact of cats and rats on seabirds is not identical, violating the
implicit assumption of previous studies (Courchamp et al. [1999]; Fan
et al. [2005]; Gambino et al. [2007]). Cats are large predators (<2.5
kg), which can impact both the chicks and breeding adults of small
to medium-sized seabirds (Pearre and Maass [1998]); whereas invasive
rats (<0.5 kg) can generally only impact the eggs and chicks due to
their smaller size (Jones et al. [2008]). These size-mediated predation
impacts of cats and rats on an age-structured seabird population can
be graphically conceptualized (see Figure 1).

A critical assumption of the mesopredator release model dynamic is
the presence of alternative prey for the predators at an arbitrary fixed
abundance. We include alternative prey for both rats and cats, allowing
realistic ecosystem dynamics even in the absence (e.g., extinction) of
seabirds, as considered by Fan et al. [2005] but treated differently.
Introduced cats and rats are omnivorous and highly plastic in their
feeding behavior, enabling persistence on many islands despite poor
resources. This assumption is likely to be met on most islands where
vegetation, insects, or small reptiles can provide an alternative and
abundant prey item but would have important consequences, which
we do not explore if this alternative prey item was also a species of
conservation concern (e.g., Caut et al. [2008]).

The rest of the paper is organized as follows. In Section 2, we
present the general cat-rat–seabird model. Then, in Section 3, we
give some theoretical results. In particular, we derive some results
about the local (global) stability/instability of the equilibria. In
Section 4, we use the nonstandard finite difference approach to
construct a numerical scheme that preserves as much as possible
the properties of the continuous system. Using data obtained for
the Barau’s petrel (Pinet et al. [2008]), an endangered seabird en-
demic to Réunion Island, we present some numerical results that il-
lustrate the theoretical part. Finally, in Section 5 we discuss the
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FIGURE 1. Conceptual representation of the age-structured differential pre-
dation model. γi

j is the predation rate of population i on population j where
c = cats, r = rats, f = fledglings, a = adult birds, and v = vegetation. ri is
the annual intrinsic growth rate of population i . For birds, α, β, δ, and ε are
the sex-ratio, adult breeding proportion, adult pair fecundity, and number of
clutches, respectively, μf is fledgling mortality, μj k

is juvenile mortality for
age class k , for n sub-adult age classes, and μa is adult mortality. In our pa-
rameterisation sub-adults (age classes J1 · · · Jn ) are seabirds remaining at sea
and are only subjected to “natural” mortality.

broader conservation implications of our results, and, in particular,
we show that without control on cat populations, seabirds can dis-
appear in a very short time. In a companion piece of work (Russell
et al. [2009]), we consider through simulation the nonequilibrium dy-
namics of a comparable model with respect to community regulation
on predator population dynamics. Here, we focus on the impact of con-
trol strategies for seabird conservation and provide full mathematical
proofs.
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2. The model. The model is illustrated in Figure 1.

For the bird population we describe three distinct life stages;
fledgling, juveniles (nonbreeding), and adult (breeding). Juveniles
progress through n age classes equivalent to annual transitions. The
number of individuals in each age class is given by F, Jk , and A, respec-
tively. No senescence is assumed, and time is measured in annual in-
crements, given the annual nature of breeding in many seabird species.

The fledgling age class is modeled by the density-dependent repro-
duction of adults, minus those birds leaving the current age class, either
through mortality or aging, minus those preyed upon by rats and cats
(both relative to the amount of alternative prey available).

The juvenile age-classes 1 through n are simply those surviving from
the previous age class minus those leaving the current age class. We as-
sume that these birds are immune to predation by either cats or rats,
given that these individuals have progressed beyond the predation-
prone fledgling size class and do not engage in predation-prone
nesting. This is especially true for juvenile seabirds, which spend the
majority of their time at sea except for occasional prenesting prospect-
ing. The only source of mortality for these birds is at sea (e.g., natural
or fisheries-related mortality).

The adult age class is similarly modeled by those surviving from the
previous juvenile age class, minus those adults who die from “natu-
ral” (nonpredation) causes minus those that are preyed upon by cats
(relative to the amount of alternative prey available).

Hence, for the entire bird population:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dF

dt
= αβδεA

(
1 − F

Kf

)
− μf F − σf F − F

F + V
γr

f R

− F

F + A + R + S
γc

f C,

dJk

dt
= σjk−1 Jk−1 − μjk

Jk − σjk
Jk , for k = 1, . . . , n

dA

dt
= σjn Jn − μaA − A

F + A + R + S
γc

aC,

(1)

where Kf is fixed at the total number of available nest sites;
F, Jk ,A,R,C, V, and S are the population size of fledglings, juvenile
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age-class k (with J0 = F ), adult birds, rats, cats, and alternative rat
and cat food, respectively; α, β, δ, and ε are the sex-ratio, adult breed-
ing proportion, adult pair fecundity, and number of clutches, respec-
tively. μi and σi are mortality and survival of age-class i (F, Jk ,A),
respectively. γi

j is the predation rate (number of prey per predator)
of i (cats and rats) on j (rats, adults, fledglings, and vegetation). For
simplification, we consider from now on that σ0 = σF , σjk

= σ, and
μjk

= μ, for all k = 1, . . . , n, i.e., survival and mortality rates are con-
stant across all juvenile age classes.

For the predators we use typical logistic population growth mod-
els for the entire population, following Courchamp et al. [1999]. Both
species can breed in their first year, and so there is no need to dis-
tinguish age classes. We assume that size (growth-related) variation
within predator species does not alter their predation rates. Rats
are modeled by the density-dependent growth rate minus those that
die naturally and that are controlled and minus their predation by
cats (relative to the number of cats and amount of alternative prey
available). Cats are modeled by the density-dependent growth rate mi-
nus those that die naturally minus those that are controlled.

Hence for the predators, we have the following system

⎧⎪⎪⎨
⎪⎪⎩

dR

dt
= rrR

(
1 − R

Kr

)
− τrR − R

F + A + R + S
γc

r C,

dC

dt
= rcC

(
1 − C

Kc

)
− τcC,

(2)

where ri and Ki are the annual intrinsic growth-rate and carrying
capacity (see later) of species i, τi is the removal rate (simulated control
effort) of species i , and γi

j are as stated earlier. τ is interpreted as the
proportional decay in the growth rate, r , of each predator population
as control is undertaken.

Carrying capacities for all three species are:

Kf = fixed

Kr =
F

γr
f

+
V

γr
v

for γi
j > 0

Kc =
A

γc
a

+
F

γc
f

+
R

γc
r

+
S

γc
s

for γi
j > 0,
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where Kr and Kc are functions of the available prey and their rates of
consumption.

We use the ODE’s approach like Courchamp et al. [1999] and
Fan et al. [2005] in order to be able to compare our results with
those obtained in the aforementioned papers. But, of course, sev-
eral other approaches can be used to model the system cat-rat-
seabird. For instance, it could be possible to consider a discrete
system or a first-order finite difference system, like Xn+1 = F (Xn ).
Another approach would be to consider delay differential equations.
In that case the subsystem (1) could be reduced, for instance,
to

dF (t)
dt

= αβδεA(t)
(

1 − F (t)
Kf

)
− F (t) − F (t)

F (t) + V
γr

f R(t)

− F (t)
F (t) + A(t) + R(t) + S

γc
f C(t),

dA(t)
dt

= F (t − τ)e−στ − μaA(t) − A(t)
F (t) + A(t) + R(t) + S

γc
aC(t),

(3)

where F (t − τ)e−στ represents the rate of maturation of surviving
fledgings to adulthood; σ is the constant mortality rate of the ju-
venile, τ represents the length of the delay, in years, for a fledg-
ing to become an adult. Age-structured matrix population models
also provide an alternative approach, which we do not consider (e.g.,
Igual et al. [2009]). Unfortunately, from the mathematical point of
view, the previous approaches are more difficult to handle than the
standard ODE’s approach, in particular for large coupled nonlinear
systems.

3. The system seabird–rat–cat. We now consider system (1)–(2)
with appropriate initial conditions. The right-hand side of the system
is Lipschitz continuous, and thus from classical analysis we deduce that
there exists a unique maximal solution. Note also that system (1)–(2)
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can be summarized as follows

⎧⎨
⎩

dx

dt
= M (x) x;

x (0) = x0 ,

(4)

with x = (F, J1 , . . . , Jn , A,R,C)T ∈ R
n+4
+ and M (x) a square

matrix.

If τc < rc and τr < rr , we can define the following compact sub-
set of R

n+4
+ : G = {(F, J1 , . . . , Jn , A,R,C) ∈ R

n+4
+ /F ≤ Kf , Jk ≤

σf σk−1

μa
Kf ,A ≤ σf σnKf ,R ≤ (1 − τr

rr
)Kr,max , C ≤ (1 − τc

rc
)Kc,max},

where the upper bound Kr,max and Kc,max are defined as
follows

Kr,max =
Kf

γr
f

+
V

γr
v

,

Kc,max =

(
σf σn

μaγc
a

+
1
γc

f

)
Kf +

Kr,max

γc
r

+
S

γc
s

.

It can be verified that G is positively invariant with respect to the
system (1)–(2). Altogether, we deduce

Theorem 1. Let (F (0) , J1 (0) , . . . , Jn (0) , A (0) , R (0) , C (0)) ∈ G,
then there exists a unique positive solution in G.

We will now provide some results about the existence of equilib-
ria and their qualitative properties. We consider the following three
cases:

(i) the seabird only, without predators;

(ii) the seabird with only one predator, the rat;

(iii) the seabird with two predators, the rat and the cat.

Some general definitions and useful results are recalled in
Appendix A, and proofs are given in full detail in the next
appendices
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3.1. The system without predators. First, we consider the
previous systems without rats and cats. Thus we consider (4), with
R = C = 0 and we obtain the following (sub)system

⎧⎨
⎩

dX

dt
= A (X)X;

X(0) = X0 ,

(5)

with X = (F, J1 , . . . , Jn , A)T ∈ G−, and G− a compact subset of R
n+3
+

defined by

G− = {(F, J1 , . . . , Jn , A, )

∈ R
n+2
+ /0 ≤ F ≤ Kf , 0 ≤ Jk ≤ σf σk−1Kf , 0 ≤ A ≤ σf σnKf }

and

A (X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(

1 + αβδε
A

Kf

)
0 · · · 0 0 αβδε

σf −1 0
. . . 0 0

0 σ −1 0
. . . 0

...
. . . . . . . . . . . . 0

...
. . . . . . σ −1 0

0 · · · · · · 0 σ −μa

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(6)

Remark 1. For all X ∈ R
n+3
+ ,A (X) is a Metzler matrix, i.e. a

matrix such that off diagonal terms are nonnegative Thus the positive
orthant R

n+2
+ is positively invariant, which means that if X (0) ≥ 0,

then X (t) ≥ 0 for all time t > 0.

Let us define

R =
αβδεσnσf

μa
.
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In demographic terms, R is the basic offspring number of the bird
population.

Proposition 1. System (5) has

(i) a trivial equilibrium E0 = (0, . . . , 0).

(ii) a feasible biological equilibrium E∗ = (F ∗, J∗
1 , . . . , J∗

n , A∗) if and
only if R > 1.

Proof . Taking dX
dt = 0 in (5) leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∗ =
σ

μa
J∗

n ,

J∗
n = σJ∗

n−1 ,

...

J∗
1 = σf F ∗,

F ∗ = αβδεA∗
(

1 − F ∗

Kf

)
(7)

We deduce that A∗ = σf

μa
σnF ∗ and replacing in (8) leads to

F ∗ = αβδε
σf

μa
σnF ∗

(
1 − F ∗

Kf

)
.

We deduce either F ∗ = 0 and we get the trivial equilibrium or F ∗ > 0,
with

F ∗ =
(

1 − μa

αβδεσnσf

)
Kf =

(
1 − 1

R

)
Kf ,(8)

if and only if R > 1. Then, using (7) and (8), A∗, J∗
1 , . . . , and J∗

n follow.

Then we prove the following

Proposition 2.
• If R ≤ 1, the seabird population will go extinct, i.e., E0 is globally

asymptotically stable.
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• If R > 1, the seabird population can reach the nonzero equilibrium
E∗, i.e., E∗ is locally asymptotically stable.

Proof . See Appendix B.

3.2. The system seabird-rat. Like in the previous section, it is
possible to rewrite (4), with C = 0, in the following manner

⎧⎨
⎩

dX

dt
= B (X) X;

X (0) = X0 ,

(9)

where X = (F, J1 , . . . , Jn , A,R)T ∈ R
n+3 and

B (X )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(

1 + αβδε
A

KF

)
0 · · · · · · 0 αβδε 0

−
R

F + V
γ

r
f

σF −1
. . .

. . . 0 0
...

0 σ −1
. . .

. . . 0
...

0
. . .

. . .
. . .

. . .
. . .

...

...
. . . σ −1

. . . 0

...
. . .

. . .
. . . σ −μa 0

0 · · · 0 rr

(
1 −

γ r
f γ r

v R

γ r
v F + γ r

f V

)
− τr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We set

Rτr = 1 +
γr

f

γr
v

(
1 − τr

rr

)
.(10)

Then we prove
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Proposition 3. For the system seabirds-rats there are four possible
theoretical equilibria:

(i) the trivial equilibrium, E0 = (0, . . . , 0).

(ii) If rr > τr and R < 1, then E1 = (0, . . . , 0, R∗) with R∗ = (1 −
τr
rr

) V
γ r

v
.

(iii) If rr < τr and R > 1, then E∗ = (F ∗, J∗
1 , . . . , J∗

n , A∗, 0), where
F ∗, . . . , A∗ are given in (8) and (7),

(iv) If rr > τr and R > Rτr , then Er
∗ = (Fr , Jr

1 , . . . , Jr
n , Ar ,Rr ),

where Fr is given in (A3), and Jr
1 , . . . , Ar and Rr are given in

(A2 ).

Proof . See Appendix C.

Then we show the following results about the long-term dynamic of
the system seabird-rat.

Proposition 4 (see Table 1).

(i) If rr < τr and R < 1, then the rat and the seabird populations can
go extinct, i.e., the equilibrium E 0 is locally asymptotically stable.

(ii) If rr > τr and 0 < R < Rτr , then the seabird population can go
extinct and the rat population can reach a positive equilibrium,
i.e., E 1 is locally asymptotically stable.

(iii) If rr < τr and 1 < R, then the rat population can go extinct and
the seabird population can reach a positive equilibrium, i.e., E∗ is
locally asymptotically stable

(iv) If rr > τr and R > Rτr , then the rat and seabird populations can
reach the positive equilibrium Er

∗ , i.e., Er
∗ is locally asymptotically

stable.

Proof . See Appendix D.

Remark 2. From item 2 in Proposition 4, it is clear, that if the
rat predation on fledgings is important, i.e., γr

f � γv
r , with 1 < R, then

the seabird population can go extinct. In that case, it would be nec-
essary to have a strong rat control to prevent the extinction of the
seabird.
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TABLE 1. Existence, stability/instability of the equilibrium points for the sub
system seabird-rat.

R τr Existence Stable Instable

<1 > rr E 0 E 0 –
<Rτ r < rr E0 , E1 E 1 E 0

>1 >rr E0 , E∗ E∗ E 0

>Rτ r < rr E0 , E∗, E
r
∗ Er

∗ E0 , E∗

In the Table 1, we summarize some of the previous results.

3.3. The full system: seabird–rat–cat. We now consider sys-
tem (4), and we show the following:

Proposition 5. System (4) admits the following equilibria:

(i) the trivial equilibrium E0 = (0, . . . , 0, 0),

(ii) E∗ = (F ∗, J∗
1 , . . . , J∗

n , A∗, 0, 0), where F ∗, J∗
1 , . . . , and A∗ are

given in Proposition 3, if R > 1.

(iii) E∗
1 = (0, . . . , 0, R∗, 0), where R∗ is given in Proposition 3 , if rr >

τr , rc < τc and R < Rτr .

(iv) E∗∗ = (Fr , Jr
1 , . . . , Jr

n , Ar ,Rr , 0), where Fr , Jr
1 , . . ., Ar and Rr

are defined in Proposition 3 4 , if rr > τr and R > Rτr .

(v) E∗∗∗ = (0, . . . , 0, R∗, C∗), if rc > τc and rr > τr .

Proof . See appendix E.

The previous results give various indications on the long-term behav-
ior of the system.

Remark 3. Equilibrium E∗
1 corresponds to the well known meso-

predator release effect: If cat control is large enough, then the cat pop-
ulation declines and thus an increase of the rat population occurs such
that if R is not sufficiently large, the seabird can go extinct. The
mesopredator release effect is not automatic when the cat disappears:
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it should depend on the basic offspring number too. In particular if
R > Rτr there will be no mesopredator release effect because the in-
trinsic growth of the seabird population will compensate the impact of
rat predation.

Remark 4. Note also that if τr
rr

< 1, the size of interval [1,Rτr ]
depends on rat predation on fledgings, i.e., if γr

f � γr
v (see (10)). Thus

the estimates of predation rates are particularly important.

Remark 5. Through long but straighforward computations,
it is possible to show that a positive equilibrium cat-seabird
(F ∗, J∗

1 , . . . , A∗, 0, C∗) can exist “mathematically” (we are able to com-
pute it) but does not belong to the compact subset G and thus is not
biologically realistic (see Appendix F).

Finally, it is possible to show that a “full” cat-rat-seabird equilibrium
can exist. Unfortunately, it is not possible to solve analytically the
system (A5), but, numerically, it is possible to give the following formal
proposition.

Proposition 6. Suppose that τr = 0. There exists a positive real, τ∗
(the level of cat control), such that if 0 < τ∗ ≤ τc < rc , an equilibrium
cat-rat-seabird, Ef ull = (F ∗, J∗

1 , . . . , A∗, R∗, C∗) exists, i.e., biologically
realistic.

When rat control is considered, the previous proposition can be ex-
tended (numerically) in the following manner

Proposition 7. Let τr,∗ be a positive real such that τr,∗ ≥ rr and
suppose τr ∈ [0, τr,∗]. Then, there exists a positive real, τ∗, that may de-
pend on τr such that if 0 < τ∗ ≤ τc < rc , an equilibrium cat-rat-seabird,
Ef ull = (F ∗, J∗

1 , . . . , A∗, R∗, C∗), exists, i.e., biologically realistic and
locally stable.

The previous results indicate clearly that there is no viable equilib-
rium between seabirds, rats, and cats without appropriate controls on
the predators.

In Figures 8 and 9, we show the evolution of the equilibrium with
respect to the control parameters, τc and τr .

Finally, it is possible to show the following result about the long-term
dynamic of the full system
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Proposition 8 (see Table 2).

(i) If rr > τr or/and rc > τc , the full system will never reach the equi-
librium E∗ = (F ∗, J∗

1 , . . . , J∗
n , A∗, 0, 0) or the equilibrium E∗∗ =

(F ∗, J∗
1 , . . . , J∗

n , A∗, R∗, 0).

(ii) If rr < τr , rc < τc and R > 1, then the full system will reach, at
least locally, the equilibrium E∗ = (F ∗, J∗

1 , . . . , J∗
n , A∗, 0, 0).

(iii) if rr > τr , rc < τc and R > Rτr , then the full system will reach,
at least locally, the equilibrium E∗∗ = (Fr , Jr

1 , . . . , Jr
n , Ar ,Rr , 0).

(iv) If rr > τr and rc > τc , then the full system will reach, at least
locally, the equilibrium E∗∗∗ = (0, 0, . . . , 0, R∗, C∗).

Proof . See Appendix G.

The previous proposition shows that without controls and with R > 1
the whole system can only reach the equilibrium E∗∗∗; in that case the
seabird population disappears while the rat and the cat populations
reach a nonzero equilibrium. When cat and rat controls are introduced,
the long-term behavior of the system becomes more complicated: If the
level of control is high enough, i.e., such that cats and rats are eradi-
cated, then the seabird population will reach its original equilibrium.
If the controls are not strong enough, then we can reach different equi-
librium depending on the values taken by the control parameters τc

and τr .

In Table 2, we summarize some of the previous results

Altogether, the system can develop a complex dynamic, and this dy-
namic can change according to the parameters. Thus depending on the
parameters, the long-term behavior indicates that the seabird popula-
tion can go extinct or reach an equilibrium with the rat population.
A full equilibrium cat-rat-seabird seems possible but only for a narrow
range of parameters, and this make this equilibrium difficult to reach
in reality. The theory show us that without a sufficient control on cats
preferably, seabird populations have very little chance of survival.

In the next section we explain the numerical scheme we use in our
computations. Then, using the parameters available for the Barau’s
petrel, we will present some numerical simulations to illustrate our
theoretical results.
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Computations with the routine ODE implemented in Scilab
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FIGURE 2. Example of spurious negative solutions obtained with the ODE’s
routine implemented in Scilab.

4. Construction of a suitable algorithm.
Numerical simulations.

4.1. A dynamic consistent algorithm. Let Xn be an approxi-
mation of X (tn ) where tn = nΔt, with n ∈ N.

In the previous section, we have presented different properties of the
theoretical solution and the problems that we may take into account in
our numerical scheme. Compartmental models are usually solved us-
ing standard numerical methods, for example, Euler or Runge Kutta
methods. Unfortunately, these methods can lead to negative solutions,
exhibit numerical instabilities, or even converge to the wrong equilib-
rium for certain values of the time discretization or the model parame-
ters (see Anguelov et al. [2009] for further investigations). For instance,
in Figure 2, using the parameters, we show that a “naive use” of the
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ODE’s routine implemented in Scilab can exhibit negative solutions
(compare also with Figure 5a). Thus, the use or the construction of a
dynamical consistent scheme is a crucial step, and it seems that this
step is often of minor concern in ecology. Here, we aim to present some
simple rules to construct a scheme that preserves most of the properties
of the continuous system.

Nonstandard methods (Mickens [1994], [2002]) have shown great po-
tential in many areas, like ecology, epidemiology, and other disciplines
(see for instance Anguelov et al. [2009]; Dimitrov and Kojouharov
[2006]; Gumel et al. [2005]; Mickens [2000, 2005]; Moghadas et al.
[2003]). Thus, we aim to construct a robust scheme that preserves most
of the properties of the solution of the continuous problem. We require
our scheme to be dynamically consistent, in the sense that the nu-
merical solution should reproduce any property of the exact solution
and/or of the differential system. To do that, we follow Mickens’ rules
to obtain a nonstandard numerical scheme (see Mickens [1994, 2000,
2002, 2005] and references therein).

We also use Mickens’ rules: the standard denominator in the dis-
crete denominator is replaced by a time-step function 0 < Φ(Δt) < 1,
such that Φ (Δt) = O (Δt); then, we approximate the nonlinear terms
in a nonlocal way and consider the linear terms in an implicit way.
Thus a nonstandard approximation scheme for the system (1)–(2) is
given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F n +1 − F n

Φ (Δt)
= αβεδAn +1

−
(

1 + αβεδ
An

KF
+

1
F n + V

γr
f Rn +

1
F n + An + Rn + S

γc
f Cn

)
F n +1 ,

Jn +1
k − Jn

k

Φ (Δt)
= −Jn +1

k + σJn +1
k−1 , for k = 1, . . . , n and Jn

0 = F n ,

An +1 − An

Φ (Δt)
= σJn +1

N −
(

μa +
1

F n + An + Rn + S
γc

a Cn

)
An +1 ,

(11)
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and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rn+1 − Rn

Φ(Δt)
= rrR

n+1

−
(

τr + rr
Rn

Kr
+

1
Fn + An + Rn + S

γc
r C

n

)
Rn+1 ,

with Kr =
Fn

γr
f

+
V

γr
v

Cn+1 − Cn

Φ(Δt)
= rcC

n+1 −
(

τc + rc
Cn

Kc

)
Cn+1 .

with Kc =
An

γc
a

+
Fn

γc
f

+
Rn

γc
r

+
S

γc
v

(12)

Altogether, we can rewrite the previous systems in the following matrix
formulation, using (4)

(Id − Φ(Δt)M(Xn )) Xn+1 = Xn.(13)

Thus, it suffices to choose Φ (Δt) such that Id − Φ(Δt)M(Xn )
is an M -matrix, for all Δt > 0, which implies that
(Id − Φ(Δt)M(Xn ))−1 ≥ 0, for all Δt > 0. In fact, we have
Id − Φ(Δt)M(Xn ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + Φ(Δ t)M1 , 1 0 · · · · · · 0 0 0

−Φ(Δ t)σ 1 + Φ(Δ t)
. . .

. . . 0 0
.
.
.

0 −Φ(Δ t)σ
. . .

. . .
. . . 0

.

.

.

0
. . .

. . . 1 + Φ(Δ t)
. . .

. . .
.
.
.

.

.

.
. . . −Φ(Δ t)σ 1 + Φ(Δ t)

. . . 0

Mn , n

.

.

.
. . .

. . .
. . . 0 1 + Φ(Δ t) 0

Mn + 1 , n + 1

0 · · · 0 1 + Φ(Δ t)

Mn + 2 , n + 2 ,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with

M1,1 (X) = (1 − αβδε) + αβδε
A

KF
+

R

F + V
γr

f

+
1

F + A + R + S
γc

f C,

Mn,n (X) = μa +
1

F + A + R + S
γc

aC,

Mn+1,n+1 (X) = τr + rr

(
γr

f γr
v R

γr
v F + γr

f V
− 1

)
+

1
F + A + R + S

γc
r C,

Mn+2,n+2 (X) = τc + rc

(
C

Kc
− 1

)
.

Thus, following Theorem 5 (in Appendix A), it suffices to choose Φ (Δt)
such that 1 + Φ (Δt) M11 > 0 and 1 + Φ (Δt) Mn+1,n+1 ≥ 0, which im-
plies that MT (Xn ) is diagonaly dominant, and thus M(Xn ) is an
M -matrix. In particular, the following time-step function is convenient

Φ (Δt) =
1 − e−QΔt

Q
,(14)

with

Q ≥ max(rr − τr , rc − τc).(15)

It is also clear that, for any positive initial data, we obtain positive
approximations that are located in the feasible region. Our scheme is
positively stable for all Δt > 0. Critical points or equilibrium of the
continuous problem are solutions of M (Xe) Xe = 0. Thus multiplying
by Φ (Δt) and summing Xe in both sides, leads to

(Id − Φ(Δt)M (Xe))Xe = Xe,

which clearly shows that Xe is a fixed point of (13) also. Thus the
numerical scheme and the continuous problem have the same equilibria,
which are assumed to be hyperbolic. We now intend to show that our
scheme is elementary stable, i.e., the scheme (13) preserves the local
stability/instability property of any equilibrium.
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The dynamics of the model (1)–(2) can be captured by any number
Q that satisfies

Q ≥ max{|λ|2/2|Reλ|},(16)

where λ traces the eigenvalues of the Jacobian matrices of the right-
hand side of model (1)–(2) at any equilibrium. Thus we have the fol-
lowing result.

Theorem 2. The NSFD scheme (13) is elementary stable whenever
Φ(Δt) is chosen according to (14), (15), and (16).

Proof . We have shown that the NSFD scheme (13) has no extra
fixed points than the equilibrium points of (1)–(2). Let X∗ denote the
equilibrium of the system (1)–(2). Let J ≡ JM(X∗) be the Jacobian
matrix of the right-hand side of system (1)–(2) at X∗, i.e., Jij = ∂Mi

∂Xj
.

J is in practice diagonalizable, using the factorization

Λ−1JΛ = diag(λ1 , λ2 , . . . λn ),

where Λ is a transition matrix. Thus, setting ε = X − X∗, the lineariza-
tion of the system (1)–(2) at X∗ reads as

dε

dt
= Jε,(17)

which is equivalent to the uncoupled system

dη

dt
= diag(λ1 , λ2 , . . . λn )η.(18)

Thus, applying the NSFD scheme (13) to the system (17) or (18), we
obtain the linearized schemes

εk+1 = (I − Φ(Δt)J)−1εk

or

ηk+1 = diag
(

1
1 − Φ(Δt)λ1

, . . . ,
1

1 − Φ(Δt)λn

)
ηk .(19)
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Now if X∗ is asymptotically stable for (1)–(2), then the real parts of
all the eigenvalues λi are negative, and it follows from (19) that

ρ
(
(I − Φ(Δt)J)−1

)
= max

{
1

|1 − Φ(Δt)λi |
; 1 ≤ i ≤ n

}

= max
{

1√
1 + 2Φ(Δt)|Reλi | + Φ2(Δt)|λi |2

; 1 ≤ i ≤ n

}

< 1,

which shows that X∗ is asymptotically stable for the scheme (13).

Suppose now that X∗ is unstable for (1)–(2). Then there exists at
least one eigenvalue of J , say λ1 , with a positive real part. We then
have

1
|1 − Φ(Δt)λ1 |2

=
1

1 − 2Φ(Δt)Reλ1 + Φ2(Δt)|λ1 |2
> 1

whenever the requirement (16) is met. Therefore, X∗ is unstable for
the scheme (13). Thus, at least locally, we are sure that the scheme
(13) has the same dynamic as the system (1)–(2). Q.E.D.

Altogether the numerical algorithm or the finite difference system
(13) is said to be dynamically consistent with the continuous system.
This is of utmost importance in particular because we are interested
in the long-term behavior of the system.

4.2. Numerical simulations. In order to test the applicability
of any model, it is imperative to calibrate it with biologically appro-
priate and empirical data. Appropriate demographic data can often be
difficult to collect however, and many models often fit “inappropriate”
data that may not reflect biological realities. We test our model with
recent data collected on the breeding biology and differential preda-
tion upon an endemic seabird species, the Barau’s petrel Pterodroma
baraui of Réunion Island (western Indian Ocean). The Barau’s pe-
trel is a member of the family Procellariidae and of the gadfly pe-
trel group (Pterodroma spp.). This genus is characterized by a global
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distribution, with high rates of endemism on oceanic islands. The
genus is highly phylogenetically constrained with very little variation
in breeding biology and growth rates. Adult females lay only one egg
each year, with high natal site fidelity and prolonged incubation and
chick rearing (5 months). Adults are long lived (decades) and do not re-
cruit immediately as breeding adults (5+ years), instead spending their
juvenile phase at-sea occasionally returning to prospect around their
birth site. The Barau’s petrel population is estimated between 4,000 to
6,500 pairs, which annually nest above 2,400m (Le Corre et al. [2002]).
In this respect it is similar to the Hawaiian dark-rumped petrel (P.
sandwichensis; Simons [1984]). Barau’s petrel are in decline (Probst
et al. [2000]) and urgent conservation action is required. In particular,
recent diet analysis of cats and rats has been used to parameterize pre-
dation rates of cats and rats on Barau’s petrels (Faulquier et al. [2008]).
The data available in Table 3 provide a rich source in conjunction with
our model to test different cat and rat control options (eradication is
not feasible) in order to save the Barau’s petrel.

In particular with the data given in Table 3, we always verify R > 1.
Thus, from the theoretical result, we know that the system will never
reach some of the mathematical equilibria studied in the theoretical
section. In the following simulations, we always consider Δt = 1 (year).

We simulate a scenario similar to Réunion Island considering the dy-
namics of petrels without predation, i.e., without rats and cats: in Fig-
ure 3, we show that petrel dynamics tend slowly to the nontrivial equi-
librium, E∗. Then, in Figure 4a, we suppose that rats were introduced
in the year 1500, when Arabian navigators first knew about the Mas-
carene islands (Réunion Island, Mauritius, and Rodrigues). We show
that the whole system reaches a new equilibrium, E∗∗, as expected from
theory (see Propositions 3 and 4). This shows that predation by rats
is not sufficient to cause extinction of the bird population. Similarly,
in Figure 4b, we suppose that cats have only recently expanded into
high-altitude breeding colonies of Barau’s petrel at the same time as
human development around t = 1970. As expected from theory, there
is no viable positive equilibrium and the petrel population rapidly dis-
appears.

Finally, we simulate a scenario similar to the colonization of Reunion
Island by introducing first rats and then cats (see Figure 5a). In this
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TABLE 3. Model parameterization for mesopredator release in an age-structured
bird population for Barau’s petrel.

Parameter Symbol Long-lived large (petrel)

Adult sex-ratio α 0.5
Proportion of adults breeding β 0.9
Adult pair fecundity δ 1
Number of clutches ε 1
Sub-adult classes n 5
Fledgling mortality μF 0.34
Sub-adult annual mortality μJ k 0.2
Adult mortality μa 0.07
Expected adult life timea E(ω) 18
Maximum adult life timea max(ω) 48
Annual bird growth ratea rB 0.03
Bird annual reproduction λB (erB ) 1.04
Adult bird carrying capacity KF 100,000
Annual rat growth ratea rr 4
Annual cat growth ratea rc 0.25
Rats control rate τr 0
Cats control rate τc 0 (0.24, 0.25, 0.26, 0.30)

Predation (annual number taken by a single predator)
Cats on rats γc

r 244
Cats on adult birds γc

a 70
Cats on fledglings γc

f 22
Rats on fledglings γr

f 8
Rats on alternative (vegetation) γr

v 300
Cats on alternative (skinks) γc

s 168
Alternative food available for rats V 100,000
Alternative food available for cats S 100,000 {bottom-up system

Source Faulquier et al. [2008];
Simons [1984]; de la

Brooke [1995]

a Derived.
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Petrels: time evolution of the population
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FIGURE 3. Dynamics of the petrel population (F for fledglings, A for adults).

scenario, with τr = τc = 0, we show that the population of Barau’s
petrel will rapidly decline to extinction in less than one century (Fig-
ure 5b) while, at the same time, rats and cats will reach an equilibrium,
i.e., the system reaches equilibrium E∗∗∗, as expected from the theory.
Our previous theoretical results and the numerical experiments showed
that medium-sized seabirds could coexist with rats but not with cats.
We now investigate cat control measures but within a multipredator
context, which specifically considers potential mesopredator release of
rats, in order to estimate the optimal levels of control and recovery
time for the seabird population.

In Figure 6, we show the population dynamics for different values of
τc , around its equilibrium level (0.23, 0.24, 0.25, and 0.30). As long as
τc < τ∗, the system will never reach the equilibrium E∗∗∗. We show nu-
merically that τ∗ ≈ 0.235576, such that Ef ull appears when τc belongs
in a very small interval [0.235576, 0.25]; see also Figure 6a. The time to
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extinction will strongly depend on the control: if τc = 0, the petrels go
extinct in a few decades, but if τc = 0.23 it will takes 8 centuries (see
Figure 6a). Because τc ∈]τ∗, rc [, the system will reach equilibrium Ef ull :
see Figure 6a with τc = 0.24. If τc ≥ rc , then the system will reach the
equilibrium E∗∗. For instance with the values τc = 0.25 and τc = 0.30,
the cats disappear and the petrel population increases again (see
Figure 6c and d). The recovery of the petrel population is slow however,
given their life-history parameters and low reproductive rate.

Finally, in Figure 7, we summarize the long-term behavior of the
different populations, i.e., the different equilibria reached by the full
system, in relation to the control parameter τc . We also recover some
of the results given in the previous sections: the system tends to one
of the equilibrium given in Propositions 6 and 8. As seen in the pre-
vious figures, as long as cats are present, i.e., as long as the control
is insufficient, the petrel population eventually goes extinct, i.e., the
system tends to equilibrium E∗∗∗. If the control becomes sufficient,
then we show that there is a small “window” in which it is possible to
reach the full three species equilibrium Ef ull , or when the control or the
rate of capture is large enough, i.e., τc ≥ τ∗, the petrel and rat popula-
tions reach rapidly the equilibrium E∗∗. It is clear that if it is possible
to maintain the cat population at a low level, the petrel population can
grow “rapidly” to a substantial number of adults and fledgings. Also,
the system is sensitive to the control parameter τc : small perturba-
tions in τc , around τ∗, can drastically change the behavior of the whole
system. Overall, cat control is necessary to prevent the extinction of
the petrels. Even if the control is not sufficient enough, i.e., we do not
eradicate all cats, it appears that even a low level of cat control can
greatly delay the extinction of the petrels.

In the same manner, it is possible to consider rat control, but the
impact of rats on the petrel population is very low in comparison with
cats. We perform computations with different levels of rat and cat
control i.e., 0 ≤ τR ≤ 5 and 0.22 ≤ τc ≤ 0.26 (Figures 8 and 9). As ex-
pected from theory, we show that rat control does not influence the
long-term behavior of the petrel population so long as cats are present.
Moreover, in Figure 8, we show that τ∗, the minimal sufficient cat con-
trol parameter given in Proposition 6, depends on τr , but its variation
is rather small, showing that the impact of rat control is relatively weak
in comparison with cat control. Control or even eradication of rats has
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TABLE 4. Model parameterization for seasonality.

October–March April–September

γcs = 168 336
γca = 70 0
γcf = 22 0
γrv = 300 600
γrf = 8 0

elsewhere been shown to only delay the extinction of other medium-
sized seabird species, in the presence of adult mortality (Igual et al.
[2009]).

4.3. Numerical experiments with periodicity. Here, we in-
troduce seasonality in seabird breeding by repeating the experiments
given in the previous section. Indeed, we know that gadfly petrels are
seasonal breeders present on colonies for only some of the year. Thus
for some of the year rats (and cats) can eat eggs, fledgings, and adults.
During this time the mortality induced by cats is substantial, and pe-
trels can represent more than 50% of cat prey (Faulquier et al. [2008]).
However predator swamping by the massive influx of breeding seabirds
has also been hypothesized to facilitate seabird persistence, due to a
presumed lag in the predator growth rate following off-season popula-
tion collapse (e.g., Catry et al. [2007]; Taylor [1979]). Such an off-season
collapse in cats could be compensated for by the presence of rats as an
alternative food supply for cats.

Following Table 3, we alter some values in the predation rates (see
Table 4). Using the same numerical scheme with Δt = 1

2 (half a year)
for the whole system, we obtain the results given in Figure 10. As
expected, oscillations appear due to seasonality and, from year 1500
to year 1970, the petrel and rat populations stay stable around mean
values. However, with seasonality, the impact of rats on the petrel
population is lower than in the nonperiodic case (compare Figures 5
and 10). When cats are introduced in year 1970, seasonality reduces
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the rate of decline of the population, but the impact of the cats on the
adult population remains so severe that after one and a half centuries,
the petrel population still goes extinct, i.e., the long-term behavior of
the system does not change. Thus overall, the same conclusion holds
with or without including seasonality in the model: cats should be
controlled or eradicated as the priority for seabird conservation.

5. Conclusion. We have presented an extension of previous meso-
predator release models (Courchamp et al. [1999]; Fan et al. [2005]),
with a particular focus on an endangered endemic seabird: the Ba-
rau’s petrel in Réunion Island. Our model takes into account more bi-
ologically realistic assumptions for long-lived birds, and medium-sized
seabirds in particular. This leads to a nonlinear dynamical system of
nine differential equations. We provide a theoretical study of this sys-
tem and demonstrate existence of a unique solution as well as the sta-
bility/instability of plausible equilibria. We address the “persistence
question” of Fan et al. [2005], and except when τc ∈]τ∗, rc [, we show
that equilibrium coexistence of all three species is not possible, princi-
pally because seabirds vulnerable at all life stages can not coexist with
predators. If τc ∈]τ∗, rc [, all three species can coexist but only if super-
predator control is sufficiently large but less than the predator growth
rate.

In order to present reliable numerical simulations, we developed a
nonstandard finite difference scheme suitable to preserve the positivity
of the solution, as well as the equilibria and their qualitative properties.
Our scheme is said to be dynamically consistent with the continuous
problem. In that sense, it is superior to standard methods, implemented
in scientific softwares like Matlab or Scilab (see for instance Anguelov
et al. [2009]). We would like to point out that the choice or the con-
struction of reliable algorithms is strongly related to a preliminary
theoretical study of the considered system.

Using data obtained from field observations (Pinet et al. [2008]), we
were able to parameterize our model and then to run some numeri-
cal experiments. The simulations confirmed the theoretical results and
particularly showed that cats cannot protect seabirds but in fact play a
major role in their extinction. We demonstrated the validity of this con-
clusion by example of the Barau’s petrel, endemic to Réunion Island.
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Recent cat invasion on colonies is the major contributor to petrel pop-
ulation decline, and given the current population size (<6, 500 pairs),
if substantial cat control is not immediately undertaken the popula-
tion is likely to go extinct within the next few decades. Even with
the eradication of cats, recovery of the petrel population could take
many centuries. This scenario is likely to be common to most petrel
species threatened by predators (e.g., Bonnaud et al. [2009]; Le Corre
[2008]).

Our model was purposefully limited to demographic parameters,
which are comprehensible to biologists and routinely estimated in
seabird and predator population studies, such as population size, sur-
vival, mortality, and growth rates. Raw data typically come from long-
term individual-based studies of population dynamics (Lebreton et al.
[1992]). Per capita predation rates are difficult to study in the field,
and instead the gross percentage reduction in prey survival or re-
productive success is commonly measured instead. These values are
difficult to transform to per capita predation rates as they depend
on both predator and prey population densities. Instead, per capita
predation rates can be estimated from diet analysis (Bonnaud et al.
[2007]).

As we have shown, extensions to our model are possible to allow
more realistic population dynamics, although we believe these are un-
likely to change our qualitative results, only the time scale over which
population decline and recovery might occur. Additionally, analyti-
cal solutions to more complex models will be difficult, although nu-
merical investigation would remain possible. But, as we have shown,
taking into account seasonality, at least in the case of the petrels,
does not change the long-term behavior of the system. Immigration
of new predators into breeding colonies could be readily incorporated
into the model, representing a “vacuum” effect following local control
operations. This rapid influx of predators would artificially increase
the growth rate of the cat population and require a higher control
effort.

Predator–prey systems involving more than two species (i.e., addi-
tional predators or prey) can behave in complex manners but are char-
acteristic of islands invaded by introduced species (Courchamp et al.
[2003]). Our simulations have focused on a dual predator single prey
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mesopredator release system, but the exact trophic role of introduced
species can be flexible, particularly due to the adaptability of invasive
mammals. For example, rats may function more as an alternative prey
to cats rather than an additional predator of seabirds. If this were the
case, the system dynamics would better characterize hyperpredation
(Courchamp et al. [2000]), where the presence of an alternative food
supply can maintain the key superpredator at an elevated density (e.g.,
Bonnaud et al. [2007]; Peck et al. [2008]). The dynamics of this model
have been explored elsewhere, and also lead to prey extinction (Gaucel
and Pontier [2005]). We finally emphasize that our work applies strictly
to long-lived (K-selected) prey species, where age structure plays an
important role in demography.

We believe our work can be applied to study the long time dynamics
of other endangered seabirds, like the Mascarene petrel, Pseudobulw-
eria aterrima, the Audubon’s shearwater, Puffinus lherminieri , which
is now extinct on Mauritius Island but still exists on Réunion Island,
and many other seabirds around the world.

Appendices

Appendix A. Very often in ecology or in epidemiology, model-
ing leads to problems involving matrices with special structure. Here
we recall, for readers’ convenience, some useful definitions and results
related to nonnegative matrices, M -matrices, and Metzler matrices.

Let A be an n × n matrix. We note Sp (A), the spectrum of A, ρ(A)
is the spectral radius and s (A) = {max Reλ;λ ∈ σ (A)}, the stability
modulus of A. We also use the following notations

A ≤ B ⇐⇒ aij ≤ bij , for all (i, j) .

A < B ⇐⇒ A ≤ B, and there exist at least one pair (i0 , j0)

such that ai0 j0 < bi0 j0 ,

A 
 B ⇐⇒ aij < bij , for all (i, j) .

Theorem 3. (Berman and Plemmons [1979], Theorem 2.1.3, p. 27)
Let A be a real n × n matrix with nonnegative entries. Then ρ(A) is
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an eigenvalue and there exists a nonnegative eigenvector v correspond-
ing to ρ(A). Furthermore, if A is irreducible, then ρ(A) is a simple
eigenvalue and A has a positive eigenvector corresponding to ρ(A).

Theorem 4. (Berman and Plemmons [1979] Corollary 2.1.5, p. 27)
Let A and B be real nonnegative n × n matrices such that A < B and
A + B is irreducible. Then ρ(A) < ρ(B).

A matrix A is called a Metzler matrix if all its off-diagonal entries
are nonnegative.

A matrix A is called an M-matrix if it can be written in the form
A = μId − B, where B ≥ 0 and μ > ρ(B).

In Berman and Plemmons [1979] and Fiedler [1986], the interested
reader can find many useful results about M -matrices like the following
one:

Theorem 5. Let A ∈ R
n×n . each of the following conditions

(among others) is equivalent to the statement “A is an M-matrix”

• All principal minors of A are nonnegative.
• Every real eigenvalue of A is nonnegative.
• The real part of each nonzero eigenvalue of A is positive, i.e.,

s (A) > 0.

Definition 1. A matrix B is Metzler stable if and only if B is a
Metzler matrix and s (B) ≤ 0.

Definition 2. A is a stable Metzler matrix if and only if −A is an
M-matrix.

Definition 3 (Regular splitting). Let A be a real Metzler matrix.
A = N + M is a regular splitting, if N is a Metzler stable matrix M ≥ 0
is a nonnegative matrix.

Proposition 9 (Berman and Plemmons [1979]; Varga [1962]).
Let A = N + M be a regular splitting of A a real Metzler matrix. Then
A is Metzler stable if and only if ρ

(
−N−1M

)
< 1.
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In particular, the previous proposition infers the following useful
equivalence

s (A) < 0 ⇐⇒ ρ
(
−N−1M

)
< 1.(A1)

Appendix B. We first show that TE is GAS.

• It suffices to consider the following Lyapunov function

V (X) = F +
1
σf

J1 +
1

σf σ
J2 + · · · + 1

σf σn−1 Jn +
1

σf σn
A,

= 〈W,X〉 ,

with W =
(
1, 1

σf
, 1

σf σ , . . . , 1
σf σn−1 , 1

σf σn

)
� 0. We easily verify

that V (E0) = 0 and V (X) > 0 for all X ∈ G−\{E0}. Moreover,
a straighforward computation shows that

V̇ (X) = 〈W,A(X)X〉 − αβδε

(
F

KF
+

(
1
R − 1

))
A

is less or equal to zero if R ≤ 1. Moreover the maximal invariant set
contained in V̇ = 0 is E 0 . Thus, from Lyapunov theory, we deduce
that E 0 is GAS.

• Using the fact that

⎧⎪⎪⎨
⎪⎪⎩

F ∗ =
(

1 − 1
R

)
Kf ,

A∗ =
1

αβδε
(R− 1) KF ,
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we compute the Jacobian matrix at E∗

JA (E∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−R 0 0
αβδε

R

σf −1
. . . 0

0
. . . . . . . . .

...
. . . −1

. . .

σJn −μa

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a Metzler matrix that admits a regular splitting JA(E∗) =
N + M , with

N = diag (−R, . . . ,−1,−μA ) and

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
αβδε

R

σf 0 0
. . . 0 0

0 σ 0 0
. . . 0

...
. . . . . . . . . . . . 0

...
. . . . . . σ 0 0

0 · · · · · · 0 σ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, it is clear that N is Metzler stable and M ≥ 0. Moreover, we
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have

−N−1M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
αβδε

R2

σf 0 0
. . . 0 0

0 σ 0 0
. . . 0

...
. . . . . . . . . . . . 0

...
. . . . . . σ 0 0

0 · · · · · · 0
σ

μA
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and a straightforward computation shows that ρ
(
−N−1M

)
< 1 if

αβδε
R2

σf σn

μA
= 1

R < 1 or equivalently R > 1. Thus from Proposition 9
and relation (A1), we deduce that s (JA (E∗)) < 0 if R > 1 and the
result follows.

Appendix C. We solve dX
dt = 0 in (9). The first three equilibria

are easy to obtain using the previous section. The last equilibrium Er
∗ is

obtained through straighforward computations. Assuming rr − τr > 0,
we get ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rr =
(

1 − τr

rr

) (
γr

v F r + γr
f V

)
γr

f γr
v

Ar =
σ

μa
Jr

n ,

Jr
n = σJr

n−1 ,

...

Jr
1 = σF F r

(A2)

and

Fr +
Fr

F r + V
γr

f Rr = αβδεAr

(
1 − Fr

KF

)
.
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We deduce that

Ar =
σnσF

μa
F r .

Thus, from the last equalities, by linearization, we obtain the second
order equation in Fr

F r +
Fr

F ∗ + V
γr

f

(
1 − τr

rr

) (
γr

v F r + γr
f V

)
γr

f γr
v

= RFr

(
1 − Fr

KF

)

(Fr + V ) +
(

1 − τr

μr

)
Fr +

γr
f

γr
v

(
1 − τr

rr

)
V = R

(
1 − Fr

KF

)
(Fr + V )

R
KF

(Fr )2 + Fr

(
R

(
V

KF
− 1

)
+ 1 +

(
1 − τr

rr

))
+ (Rτr −R) V = 0

(Fr )2 + Fr

(
(V − KF ) +

(
2 − τr

rr

)
1
RKF

)
+

(
Rτr

R − 1
)

KF V = 0.

This second order equation admits at a real positive solution if
Rτ r
R − 1 < 0, i.e., if R > Rτr . Thus, we deduce that if R > Rτr , we

deduce

Fr =
1
2

((((
1 −

(
2 − τr

rr

)
1
R

)
KF − V

))

+

√(((
1 −

(
2 − τr

rr

)
1
R

)
KF − V

))2

+ 4
(

1 − Rτr

R

)
KF V

⎞
⎠.

(A3)
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Appendix D. We first compute the Jacobian matrix associated
with B (X) in (9)

J B (X )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

(
1 + α β δ ε

A

K f

)
0 0 α β δ ε

(
1 −

F

K f

)
−

F

F + V
γ

r
f

−
V R

(F + V ) 2
γ

r
f

σ f −1
. . . 0

.

.

.

0
. . .

. . .
. . .

.

.

.

.

.

.
. . . −1

. . .

σ J n
−μ a 0

r r

(
γ r

f

)2
γ r

v R 2(
γ r

v F + γ r
f

V

)2
· · · 0 r r

(
1 −

2 γ r
f

γ r
v R

γ r
v F + γ r

f
V

)
− τ r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We now compute the Jacobian matrix associated with each equilib-
rium. We first consider

JB (E0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 αβδε 0

σf −1
. . . 0

...

0
. . . . . . . . .

...

...
. . . −1

. . .

σJn −μa 0

0 · · · 0 rr − τr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
J0 0

0 rr − τr

)
,

where J 0 is the Jacobian matrix computed at the trivial equilibrium
associated with the system without predators (5). We deduce that the
eigenvalues of J 0 and rr − τr are eigenvalues of JB (E0). From the pre-
vious computations, we know that the eigenvalues of J 0 are strictly
negative. Thus, if rr − τr > 0, we deduce that JB (E0) has one positive
eigenvalue, which implies that E 0 is a saddle node and thus is locally
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unstable. In contrast, if rr − τr < 0 then E 0 is locally asymptotically
stable.

Then, we consider

JB (E1 ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(

1 +
(

1 − τr

rr

)
γr

f

γr
v

))
0 0 αβδε 0

σf −1
. . . 0

...

0
. . .

. . .
. . .

...

...
. . . −1

. . .

0 σJn −μa 0

rr

(
1 − τr

rr

)2

γr
f · · · 0 − (rr − τr )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using the same method used to prove Proposition 2, we can show that if
R < 1 and rr > τr , JB (E1) is a stable Metzler matrix, i.e., s(JB (E1)) <
0, which implies that E 1 is locally asymptotically stable. This is a
reasonable result in the sense that the particular equilibrium E 1 should
exist if and only if R < 1.

Now, we suppose that R > 1 and we study

JB (E∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−R 0 0 μa − F ∗

F ∗ + V
γr

f

σf −1
. . . 0

...

0
. . . . . . . . .

...

...
. . . −1

. . .

σJn −μa 0

0 · · · 0 rr − τr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Thus, s (JB (E∗)) = max (s (JA (E∗) , rr − τr )). In Appendix B, we
proved that s(JA(E∗)) < 0 if R > 1. Thus if R > 1 and rr > τr then
JB (E∗) has one positive eigenvalue, which implies that E∗ is locally
asymptotically unstable. Finally, we study

JB
(
E r

∗
)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(

1 + γ r
f

V R r

(F r + V )2
+ R

F r

K f

)
0 0 αβ δ ε

(
1 −

F r

K f

)
−

F r

F r + V
γ

r
f

σ f −1
. . . 0

.

.

.

0 σ
. . .

. . .
.
.
.

.

.

.
. . . −1

. . .

σ −μa 0

r r
1

γ r
f

(
1 −

τ r

r r

)2
· · · 0 − (r r − τ r )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, the characteristic polynomial gives

p∗∗(x) = −(−1)n

(
(x + rr − τr )

(
x + 1 + γr

f

V Rr

(Fr + V )2 + RFr

Kf

)

− rr

(
1 − τr

rr

)2
Fr

F r + V

)
× (x + μa)(x + 1)n .

Thus, it suffices to focus on ((x + rr − τr )(x + 1 + γr
f

V Rr

(F r +V )2 +

R F r

Kf
) − rr (1 − τr

rr
)2 F r

F r +V ) and in particular to show that all coeffi-
cients are positive. After some computations, this is true if

(R− 1) +
τr

rr
+

(
1 − τr

rr

)
V

V + Fr
> γr

f

V R∗

(Fr + V )2

=
V

(Fr + V )2

(
1 − τr

rr

) (γr
v F r + γr

f V )
γr

v
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or equivalently

(R− 1) +
τr

rr
>

V 2

(F ∗ + V )2

(
1 − τr

rr

)(
γr

f

γr
v

− 1
)

.(A4)

If R > Rτr , we have

R− 1 >

(
1 − τr

rr

)
γr

f

γr
v

>

(
1 − τr

rr

)
γr

f

γr
v

V 2

(F ∗ + V )2

which implies that (A4) is always true. Thus, we deduce that: if R >
Rτr , Er

∗ is locally asymptotically stable.

Appendix E. We are looking for equilibria (F ∗, J∗
1 , . . . ,

A∗, R∗, C∗)T , which leads to either C∗ = 0 and then we recover the
equilibria obtained for the system seabird-rat, or C∗ = 0 and the equi-
libria should verify the following equalities.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C∗ =
(

1 − τc

rc

)(
A∗

γc
a

+
F ∗

γc
f

+
R∗

γc
r

+
S

γc
s

)
,

rr

(
1 −

γr
f γr

v R∗

γr
v F ∗ + γr

f V

)
= τr −

1
F ∗ + A∗ + R∗ + S

γc
r C

∗,

A∗ =
σ

μa
J∗

n − A∗

F ∗ + A∗ + R∗ + S

γc
a

μa
C∗,

J∗
n = σJ∗

n−1 ,

...

J∗
1 = σF F ∗,

αβδεA∗
(

1 − F ∗

KF

)
= F ∗ − F ∗

F ∗ + V
γr

f R∗ − F ∗

F ∗ + A∗ + R∗ + S
γc

f C∗.

(A5)
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Let F ∗ = · · · = A∗ = 0 and R∗ = 0, then

C∗ =
(

1 − τc

rc

)(
R∗

γc
r

+
S

γc
s

)
,

rr

(
1 − γr

v R∗

V

)
= τr − γc

r

1
R∗ + S

C∗.

Thus

rr

(
1 − γr

v R∗

V

)
(R∗ + S) = τr (R∗ + S) − γc

r

(
1 − τc

rc

)(
R∗

γc
r

+
S

γc
s

)
,

−rrγ
r
v

V
(R∗)2 +

(
rr − τr −

rrγ
r
v S

V
+

(
1 − τc

μc

))
R∗

+
(

rr − τr +
γc

r

γc
s

(
1 − τc

rc

))
S = 0,

(R∗)2 −
((

rr − τr +
(

1 − τc

rc

))
V

rrγr
v

− S

)
R∗

−
(

rr − τr +
γc

r

γc
s

(
1 − τc

rc

))
SV

rrγr
v

= 0.

Then we obtain

(
R∗ − 1

2

((
rr − τr +

(
1 − τc

rc

))
V

rrγr
v

− S

)2

− 1
4

(((
rr − τr +

(
1 − τc

rc

))
V

rrγr
v

− S

))2

+ 4
((

rr − τr +
γc

r

γc
s

(
1 − τc

rc

))
SV

rrγr
v

))
= 0,
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from which we deduce

R∗ =
1
2

(((
rr − τr +

(
1 −

τc

rc

))
V

rr γ r
v

− S

)

+

√((
rr − τr +

(
1 −

τc

rc

))
V

rr γ r
v

− S

) 2

+ 4
(

rr − τr +
γ c

r

γ c
s

(
1 −

τc

rc

))
SV

rr γ r
v

)

and C∗ follows.

Appendix F.

Proposition 10. There is no biologically realistic equilibria
(F ∗, J∗

1 , . . . , A∗, 0, C∗). Seabirds can not coexist with cats.

Proof . Using the first and the third equalities in (A5) with J∗
n =

σn−1σf F ∗ and R∗ = 0, we obtain the following relations between A∗

and F ∗

(A∗)2
(

μa +
(

1 − τc

rc

))
− σnσf (F ∗)2

= σnσf F ∗ (S + A∗)

−A∗

(
μa (F ∗ + S) + γc

a

(
1 − τc

rc

) (
F ∗

γc
f

+
S

γc
v

))

(A6)

and

(
γc

a

γc
f

+ μa

)
A∗F ∗ − αβδε (A∗)2 γc

a

γc
f

(
1 − F ∗

Kf

)
= σnσf (F ∗)2

.(A7)

Thus, from (A6) and (A7), we deduce
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(A∗)2

(
μa +

(
1 − τc

rc

)
+ αβδε

γc
a

γc
f

(
1 − F ∗

KF

))

+ A∗

((
μa +

γc
a

γc
v

(
1 − τc

rc

))
S −

(
τc

rc

γc
a

γc
f

+ σnσf

)
F ∗

)
= σnσf SF ∗,

from which we deduce

(A∗)2 (a − dF ∗) + A∗ (b − cF ∗) = eF ∗

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a =
(

μa +
(

1 − τc

rc

))
+ αβδε

γc
a

γc
f

,

b =
(

μa +
γc

a

γc
v

(
1 − τc

rc

))
S,

c =

(
σnσf +

γc
a

γc
f

τc

rc

)
S,

d = αβδε
γc

a

γc
f

1
Kf

,

e = σnσf S

Finally rewritting (A7), we obtain the following nonlinear system to
solve

⎧⎪⎨
⎪⎩

(A∗)2 (a − dF ∗) + A∗ (b − cF ∗) − eF ∗ = 0,

e

S
(F ∗)2 + (KF − F ∗)d (A∗)2 −

(
b

S
+

γca

γcv

(
1 − τc

rc

))
F ∗A∗ = 0.

(A1)

It is not feasible to obtain the analytic solutions, and thus we have to
approximate the solutions. Using the parameters given in Table 3, we
compute numerically the roots of the previous nonlinear system. Apart
from the trivial solution (0,0), there is no biologically realistic solution:
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the only positive root verifies F ∗ > Kf , which is not biologically real-
istic. Q.E.D.

Appendix G. After long but straighfoward computations, we ob-
tain the Jacobian matrix associated with system (1)–(2) for all equi-
librium, namely

JM (E0 ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 αβδε 0

σf −1 0
. . . 0 0

...

0 σ
. . .

. . .
. . . 0

...

...
. . .

. . . −1
. . .

. . .

...
. . . 0 σ −μa 0 0

0 0 · · · · · · 0 − (τr − rr ) 0

0 0 · · · · · · 0 0 0 − (τc − rc )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

JM(E∗) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(

1 + αβδε
A∗

Kf

)
0 · · · · · · 0 μa −

F ∗

F ∗ + V
γ

r
f −γ c

f

F ∗

F ∗ + A∗ + S

σf −1
. . .

. . .
. . . 0

...

0
. . .

. . .
. . .

. . .
. . .

...

...
. . . σ −1

. . .
. . . 0

0 σJ n −μa 0 −γ c
a

A∗

F ∗ + A∗ + S

0 0 · · · 0 − (τr − rr ) 0

0 0 · · · · · · 0 0 0 − (τc − rc )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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J M(E ∗∗∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + γ r
f

R ∗

V
0 0 0 α β δ ε 0 0

+ γ c
f

C ∗

R ∗ + S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

σ f −1 0
. . . 0 0

.

.

.

0 σ

. . .
. . .

. . . 0

.

.

.

.

.

.
. . .

. . . −1
. . .

. . .

0
. . . 0 σ −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ a + γ c
a

C ∗

(R ∗ + S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0

r r
γ r

v

γ r
f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R ∗

V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2
0 · · · 0 γ r

c

R ∗

(R ∗ + S ) 2
C

∗ −
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ r − r r −γ c
r

R

R ∗ + S

+ γ r
c

R

(R ∗ + S ) 2
C

∗ + 2 r r γ r
v

R ∗

V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

r c

γ c
f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ∗

K C ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2
0 · · · · · · 0

r c

γ c
a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ∗

K C ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

r c

γ c
r

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ∗

K C ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
τ c − r c

+
2 r c C ∗

K C ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with KC ∗ = R∗
γ c

r
+ S

γ c
v
.

J M (E ∗∗) =

⎛
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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r
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using the results obtained in the previous appendices, we easily deduce
that
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• E 0 is locally asymptotically stable if R < 1, τr > rr and τc > rc .
• E 0 is unstable if R < 1, τr < rr , or/and τc < rc .
• E∗ is unstable if R > 1, τr < rr , or/and τc < rc .
• E∗ is locally asymptotically stable if R > 1, τr > rr , and τc > rc .

From Appendix B, when R > 1, it easy to show that all eigenvalues
of JE∗∗ are negative except one if rc − τc > 0, which implies that E∗∗
is unstable and is a saddle point. On the contrary, if rc − τc < 0, then
E∗∗ is locally asymptotically stable.

Finally, for the last equilibrium E∗∗∗, because of the block structure
of the Jacobian, we only have to focus on the following polynomial

p(x) =
(

τr − rr + 2rrγ
r
v

R∗

V
+ x

)(
τc − rc + 2

rcC
∗

KC ∗
+ x

)

+ rc

(
C∗

KC ∗

)2
R∗

R∗ + S

If all coefficients of p are strictly positive, then the roots of p have
negative real parts. Thus, we have to verify that

2
(

rrγ
r
v

R∗

V
+ rc

C∗

KC ∗

)
> rr + rc − (τr + τc)

and

(rr − τr )(rc − τc) + rc
C∗

KC ∗
R∗

(
C∗

KC ∗

1
R∗ + S

+ 4rr
R∗

V

)

> 2
(

(rr − τr )rc
C∗

KC ∗
+ (rc − τc)rrγ

r
v

R∗

V

)

Using the fact that τr = τc = 0 and C∗ = KC ∗ , the previous inequali-
ties reduce to

2rrγ
r
v

R∗

V
> rr − rc
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and

R∗

R∗ + S
+ rr

R∗

V
(4R∗ − γrv ) > rr .

Then, we numerically check that these inequalities are verified with
the parameters given in Table 3. Thus, the equilibrium E∗∗ is locally
asymptotically stable.
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