

MOLECULAR RESOLUTION FOR ISLAND RESTORATION

Alexei Drummond, Nicky Nelson, **JAMES RUSSELL**, Mark Stevens, Richard Newcomb, Thomas Buckley, Howard Ross

Acknowledgements

- Dept of Conservation (Dave Towns, Jo Hoare)
- Ngati Manuhiri (Mook Hohneck)
- Lab: Leah Tooman & Ashok Umayarpatham
- Fieldwork team: Ben Myles Matthew Renner Cameron Kilgour Sarah Wyse Zoe Stone Sandra Anderson

Su Sinclair Chris Stowe Sue Keall Anna Carter Nick Demetras

Island Restoration

- Ecosystems are complex and most components, particularly cryptic, small and microbial, remain undiscovered
- Methods are needed for rapidly collecting data to set restoration targets and monitor whole-ecosystem recovery following conservation interventions
- Advances in molecular tools, particularly nextgeneration sequencing, are a powerful framework
 - characterise ecosystems by species bar-coding
 - phylogeography and species-abundance

A Model Ecosystem

- We established a **pilot** project to test the feasibility of phylogenetically and environmentally characterizing every species in a well-defined New Zealand island ecosystem using modern sequencing, informatics and biogeography
- We then can investigate important ecological questions from conservation (eradication recovery, climate change) to theoretical (unified neutral theory of biogeography and biodiversity) over time and space

Sampling Strategy

• Ten sampling sites on an elevational gradient

Molecular Tools

• c850 vascular plants sequenced for eight loci

 – chloroplastic: rbcL, matK, rpoC1, trnL, trnL-F, psbAtrnH, nuclear ITS, and mitochondrial nad5

- c1200 invertebrates sequenced
 - non-destructive DNA extraction
 - cytochrome oxidase 1 (CO1)
- Avian sequences from reference database
 cytochrome oxidase 1 (CO1)

Operational Taxonomic Units

- For the pilot study we grouped operational taxonomic units (OTUs) for invertebrates
 – OTU <1% genetic divergence (529 => 212)
- Ultimately use shared phylogenetic diversity

TREES

Elevation (m) Agglomerative Coefficient = 0.44

INVERTEBRATES

Elevation (m) Agglomerative Coefficient = 0.22

taxa

Preliminary Conclusions

- Alpha diversity relatively constant across sites
- Beta diversity differences among taxa most likely related to dispersal ability
- Beta diversity differs among sites on the elevational gradient

- the slope of the relationship is similar for all taxa

 Additional variation in species composition explained by forest structure type

Conservation Value

Identified that the majority of invertebrate species were unidentified

most Genbank hits <80% sequence similarity

- Turn-over rates of biodiversity differ by taxa but respond similarly to our underlying elevation gradient
- Taxa were additionally assorted by other mechanisms (coast, forest type)

The Future

- Refine the sequence pipeline for identifying taxonomic units
- Standardise individual-based measures of detectability across taxa
 - detectability includes sampling and sequencing
- Analyse the data within a theoretical framework such as the Unified Neutral Theory of Biodiversity and Biogeography