
Slide 1

Grid Computing

Department of Statistics

Staff Retreat February 2008

This is a talk I gave to the Department in February 2008. I followed from a talk by Werner
regarding the Department’s future computing resources.

Slide 2

What’s the problem?

ï Finite resources (eg, paikea)

Time --->

Both of these graphs show 2007’s usage of one of our servers, paikea.

The top graph shows how much computing power paikea has available (8 CPUs, 800%).
Green is used, white is
unused.

The bottom graph shows demand. Note the scale on the graphs. In May and June people
were demanding 32 CPUs worth of computing power. This just brought about contention,
and everyone’s tasks ran slower.

Slide 3

What’s the problem?

ï Finite resources

ï Scattered between
servers

The second problem is that resources are scattered through the Department. These are
graphs, just like on the previous page, but showing across all the machines available for
people to run jobs on.

When a new machine becomes available, it takes a while for people to notice it. See here
how one machine was unused until January.

Slide 4

What’s the problem?

ï Finite resources

ï Scattered between servers

ï Uneven demand

The third problem is that demand is uneven. There are the peaks of contention and over-
subscription, and the troughs of idle time.

Slide 5

Our Department’s Resources

ï 52 CPUs, in 17 servers and desktops

ï 160 GHz total processing power
(28x 3.4 GHz, 8x 2.8 GHz AMD64, 18x 2.4 GHz)

ï 106 GB total memory
(64GB, 4.6GB, 3x 4GB, 3.4GB, 2.4GB, 10x 2GB)

ï Let’s take a look …

Here’s what the Department has available, scattered around the place.

Slide 6

ï Basement
Server
Room

Our Racks:

Slide 7

PAIKEA

STAT12

Slide 8

WHEKE

MAKO

TOHORA

PATIKI

Slide 9

Our Department’s Resources

ï 52 CPUs, in 17 servers and desktops

ï 160 GHz total processing power
(28x 3.4 GHz, 8x 2.8 GHz AMD64, 18x 2.4 GHz)

ï 106 GB total memory
(64GB, 4.6GB, 3x 4GB, 3.4GB, 2.4GB, 10x 2GB)

ï How can we distribute this fairly?

Now you know what is being fought over. How can we distribute this fairly?

Slide 10

Here comes the Grid!

ï Sun Grid Engine

The solution we have installed is the Sun Grid Engine. There is a logo for it, but that’s the
fanciest graphics you’ll get. In operation it looks more like the above terminal.

Slide 11

How can the Grid help me?

Grid Engine is helpful in three elementary ways. It can:
ï optimally place computing tasks and balance the load

on a set of networked computers
ï allow users to generate and queue more computing

tasks than can be run at the moment
ï ensure that tasks are executed with respect to priority

and to providing all users with a fair share of access
over time

[Source:
http://gridengine.sunsource.net/GEDomainFAQ.html]

Lots of words cribbed from a good explanation.

Slide 12

For the admins …

ï Much easier to manage the servers:
ñ Add / remove servers due to maintenance

ñ Jobs restarted or moved

ñ Sensible load is maintained

ï Result:

The grid automatically solves a lot of the problems that Werner and I normally have to fix by
hand.

Slide 13

Getting started

ï Jobs are submitted to the Grid using qsub. Jobs
are shell scripts containing commands to be run.

ï If you would normally run your job by typing
./runjob,
(or worse nohup nice ./runjob &)
you can submit it to the Grid and have it run by
typing:
qsub -cwd ./runjob

ï Jobs can be submitted while logged on to any
submit host: stat1, stat12, or paikea.

[Source: http://www.stat.auckland.ac.nz/~kimihia/sun-grid#submitting]

Visit my website. It has all these words on that you can read at your leisure.

Slide 14

A simple example using R

ï A very simple piece of R code (simple.R):

ï Gets run like so (./runjob):

alpha <- 5
beta <- 3
alpha * beta

#!/bin/sh

R CMD BATCH simple.R

Your job can be a lot more complicated than this.

Slide 15

In action!!!

Here the job runs, demonstrating the usual method.

Slide 16

In action!!!

Here the job runs, but this time using the Sun Grid Engine. We don’t know which machine it
ran on, but the end result is the same. Just wait for the output or an email.

Note here that we are told our job number is 772. We can use this for tracking it.

Slide 17

Where’s my job?

ï qstat and qstat –j

ï ls

If you need to keep an eye on your job, these are the tools to use.

Qstat = tells you what jobs are running and which are queued.

Note here the job states:
r (lowercase) = running
R (uppercase) = being rerun (power cut?)
q = job is queued, waiting for a slot
h = job being held for some reason
E (uppercase) = error. Use the next command for more information:

Qstat –j = tells you lots and lots of information about a specific job. Use the job number you
were given on the previous page.

Ls = look at the files in the current directory or your home directory.

Slide 18

Improvements to runjob

#!/bin/sh
#$ -S /bin/sh
run in current directory
#$ -cwd
mail at end
#$ -m e
merge output
#$ -j y
R CMD BATCH simple.R simple.Rout$JOB_ID

First, let’s add an output filename. We’ll also add the JOB_ID to the filename, to keep
separate job runs in separate files.

Because $ is a bashism I’ll force use of bash.

Run in the current directory, where my dataset is.

Mail at end.

Merge output (error and standard output, both normally empty for R CMD)

Slide 19

Basic options

ï Run in the current directory:
ñ cwd

ï Email me when it completes:
ñ m e

ï Merge the output and error message files:
ñ j y

ï Wait for job to complete:
ñ sync y

Slide 20

Other useful options!

ï Name your job:
ñ N timmy

ï Wait for free memory:
ñ l mem_free=2G

ï Run the same thing multiple times:
ñ t 1-20

ï Wait for a previous job to complete:
ñ hold_jid 380

Slide 21

Options you’ll likely never use

ï Queues!
ñ q beagle.q

ï Projects!
ñ P lm2007

ï Complex resources! (eg, consume one blarg)
ñ l blarg=1

ï Parallel environments! (eg, 3 orchestra slots)
ñ pe orchestra 3

Here are some ideas for slightly more complicated usage. A grid admin (Werner, Stephen)
will need to set each of these up for you.

Queues are useful for jumping over other users or being restricted to certain hosts.

Projects are good for keeping track of how much CPU time you’re using.

Complex resources, eg, Matlab licenses. (Can also be restricted via quotas.)

Parallel environments, for keeping jobs on the same host (eg, in the case of a mutex) or
having only a certain number running grid-wide.

Slide 22

Getting the most out of the Grid

ï Limitations:
ñ One thread per processor/slot

ï Other improvements:
ñ Checkpointing

For the best performance, rewrite your code!

These are not grid-specific computer science problems.

Slide 23

An example in parallelism

ï What is the mean age of 14 people?

ï 26, 30, 33, 35, 36, 36, 38, 39, 40, 41, 51, 51,
63, 67

ï Easy solution:
(26 + 30 + 33 + … + 67) / 14

ï 13 summing operations

ï 1 division operation

Slide 24

Typical order of operations

ï (((((((((((((26 + 30) + 33) + 35) + 36) + 36) + 38)
+ 39) + 40) + 41) + 51) + 51) + 63) + 67) / 14

ï (26 + 30)
ï + 33

ï + 35
ï + 36

ï + 36
ï …

ï + 67
ï / 14

Usually we work left to right, starting at the inside, sum that up, then move on.

Here’s a bit of a tree layout of how the operations are done, adding, adding, adding, until
finally you do the division.

Slide 25

Dependencies graph

ï In terms of computing resources:

Each job is dependent on the previous calculation. That’s why the string of dependencies is
so long.

This graph shows the job being run twice, once on a slow machine, once on a fast machine.
Each box is a mathematical operation. Note how the faster machine completes earlier.

Slide 26

MATHEMATICAL JARGON

ï Addition is commutative!
ñ Also associative!

ï How can we make the most of this?

Contemporary Linear Algebra, Anton & Busby, Section 3.2, pg94

Slide 27

Reordered operations

ï (((26 + 30) + (33 + 35)) + ((36 + 36) + (38 +
39))) +

ï (((40 + 41) + (51 + 51)) + ((63 + 67) + 0))

ï / 14

ï 14 summing operations
ñ note extra 0, added for ease of coding

ï 1 division operation

Extra 0 is because I hacked this up in bash.

The actual algorithm for planning execution of the problem is to sum each pair of numbers,
and then in the next step, sum each pair again, hence why we always need an even number
of numbers.

However, this does not matter as it runs in parallel with other operations.

Slide 28

Dependencies graph

ï In terms of computing resources:

This dependencies graph looks a bit better. All the dependencies are reordered, and some
can be run in parallel. Each operation (oval) in the top graph matches a square in the lower
graph. Rightmost circles have to be completed first; they match the leftmost squares.

In terms of computing resources, we still have the same number of computations, but they
are spread around the grid semi-randomly, and due to parallelism complete a lot sooner.

Slide 29

Want to see it in action?

ï ~kimihia/grid/average/average-j

You can see our data file, one age per line, and the scripts required.

We submit, and jobs are added to the queue.

Not exciting enough?

Slide 30

Here, have a picture of Trinity hacking something in The Matrix Reloaded.

Slide 31

GRID COMPUTING STATUS

job-ID prior name user state submit/start at queue

781 0.00000 sum-1 kimihia qw 02/14/2008 12:39:04

782 0.00000 col-1 kimihia hqw 02/14/2008 12:39:04

783 0.00000 sum-2 kimihia hqw 02/14/2008 12:39:04

784 0.00000 col-2 kimihia hqw 02/14/2008 12:39:04

785 0.00000 sum-3 kimihia hqw 02/14/2008 12:39:04

786 0.00000 col-3 kimihia hqw 02/14/2008 12:39:04

787 0.00000 average kimihia hqw 02/14/2008 12:39:04

Jobs sitting in the queue waiting.

I’m running ‘qstat’ repeatedly to show all my jobs.

Slide 32

GRID COMPUTING STATUS

job-ID prior name user state submit/start at queue

781 0.55500 sum-1 kimihia r 02/14/2008 12:39:13 all.q@patiki.stat.au

781 0.55500 sum-1 kimihia r 02/14/2008 12:39:13 all.q@patiki.stat.au

781 0.55500 sum-1 kimihia r 02/14/2008 12:39:13 all.q@stat52.stat.au

781 0.55500 sum-1 kimihia r 02/14/2008 12:39:13 all.q@stat59.stat.au

781 0.55500 sum-1 kimihia r 02/14/2008 12:39:13 all.q@stat64.stat.au

781 0.55500 sum-1 kimihia r 02/14/2008 12:39:13 all.q@stat77.stat.au

781 0.55500 sum-1 kimihia r 02/14/2008 12:39:13 all.q@stat52.stat.au

782 0.00000 col-1 kimihia hqw 02/14/2008 12:39:04

783 0.00000 sum-2 kimihia hqw 02/14/2008 12:39:04

784 0.00000 col-2 kimihia hqw 02/14/2008 12:39:04

785 0.00000 sum-3 kimihia hqw 02/14/2008 12:39:04

786 0.00000 col-3 kimihia hqw 02/14/2008 12:39:04

787 0.00000 average kimihia hqw 02/14/2008 12:39:04

First jobs running, remaining jobs queued.

Slide 33

GRID COMPUTING STATUS

job-ID prior name user state submit/start at queue

783 0.55500 sum-2 kimihia r 02/14/2008 12:40:43 all.q@patiki.stat.au

783 0.55500 sum-2 kimihia r 02/14/2008 12:40:43 all.q@stat52.stat.au

783 0.55500 sum-2 kimihia r 02/14/2008 12:40:43 all.q@stat59.stat.au

783 0.55500 sum-2 kimihia r 02/14/2008 12:40:43 all.q@stat77.stat.au

784 0.00000 col-2 kimihia hqw 02/14/2008 12:39:04

785 0.00000 sum-3 kimihia hqw 02/14/2008 12:39:04

786 0.00000 col-3 kimihia hqw 02/14/2008 12:39:04

787 0.00000 average kimihia hqw 02/14/2008 12:39:04

Some have disappeared because they are completed, less jobs waiting.

(This is the output of repeatedly running ‘qstat’.)

Slide 34

GRID COMPUTING STATUS

job-ID prior name user state submit/start at queue

787 0.00000 average kimihia qw 02/14/2008 12:39:04

Final job running.

Slide 35

GRID COMPUTING STATUS

job-ID prior name user state submit/start at queue

PROCESSING
COMPLETED!!!

All done!

Slide 36

PROCESSING RESULT

42

The script rounds down from 41.8, but for purposes of making a Hitchhiker’s Guide to the
Galaxy joke I’m going to round it up.

This result is the same result as the most intensive computational problem of all time.

Slide 37

JOB OUTPUT AND LOGS
==> sum-1.o781.1 <==

Thu Feb 14 12:40:13 NZDT 2008

stat77.stat.auckland.ac.nz

==> sum-1.o781.2 <==

Thu Feb 14 12:40:13 NZDT 2008

stat59.stat.auckland.ac.nz

==> sum-1.o781.3 <==

Thu Feb 14 12:40:13 NZDT 2008

stat52.stat.auckland.ac.nz

==> sum-1.o781.4 <==

Thu Feb 14 12:40:13 NZDT 2008

patiki.stat.auckland.ac.nz

==> sum-1.o781.5 <==

Thu Feb 14 12:40:13 NZDT 2008

stat64.stat.auckland.ac.nz

==> sum-1.o781.6 <==

Thu Feb 14 12:40:13 NZDT 2008

patiki.stat.auckland.ac.nz

==> sum-1.o781.7 <==

Thu Feb 14 12:40:13 NZDT 2008

stat52.stat.auckland.ac.nz

==> col-1.o782 <==

col-1.1

col-1.2

col-1.3

col-1.4

col-1.5

col-1.6

col-1.7

Collected 8 numbers.

Thu Feb 14 12:40:28 NZDT 2008

stat59.stat.auckland.ac.nz

This is a little hard to read, but left as an appendix for the reader. Note the time when jobs
were run, and on which hosts they were completed.

As an aside, each mathematical operation took one minute, due to a “sleep 60” in each
script.

Slide 38

JOB OUTPUT AND LOGS
==> sum-2.o783.1 <==

Thu Feb 14 12:41:43 NZDT 2008

stat59.stat.auckland.ac.nz

==> sum-2.o783.2 <==

Thu Feb 14 12:41:43 NZDT 2008

patiki.stat.auckland.ac.nz

==> sum-2.o783.3 <==

Thu Feb 14 12:41:43 NZDT 2008

stat52.stat.auckland.ac.nz

==> sum-2.o783.4 <==

Thu Feb 14 12:41:43 NZDT 2008

stat77.stat.auckland.ac.nz

==> col-2.o784 <==

Found files to collect:

col-2.1

col-2.2

col-2.3

col-2.4

Collected 4 numbers.

Thu Feb 14 12:41:58 NZDT 2008

stat52.stat.auckland.ac.nz

Slide 39

JOB OUTPUT AND LOGS
==> sum-3.o785.1 <==

Thu Feb 14 12:43:13 NZDT 2008

patiki.stat.auckland.ac.nz

==> sum-3.o785.2 <==

Thu Feb 14 12:43:13 NZDT 2008

stat52.stat.auckland.ac.nz

==> col-3.o786 <==

Found files to collect:

col-3.1

col-3.2

Collected 2 numbers.

Thu Feb 14 12:43:28 NZDT 2008

stat59.stat.auckland.ac.nz

==> average.o787 <==

Final sum required

Thu Feb 14 12:45:43 NZDT 2008

patiki.stat.auckland.ac.nz

Jobs submitted at 12:40, final operation completed at 12:45. 15x 1 minute operations were
completed in five minutes, due to parallelism.

Slide 40

Summary & Questions

Hardly any difference, correct?

On the right we don’t know where it ran, but we know it did run, and without stepping on
anybodies toes.

Questions:

-Q (Ross Ihaka): Which jobs are better suited to parallelism? (Jobs with large data sets do not
lend themselves to this sort of parallelism due to I/O overheads.)

A: Most of the jobs being used here are CPU intensive. The grid copies your script to /tmp on
the local machine on which it runs. You could copy your data file across as well at the start of
the job, thus all your later I/O is local.

-Q (Chris Wild): Can I make sure I always run on the fastest machine?

A: The grid finds the machine with the least load to run jobs on. If you pile all jobs onto one
host, then that host will slow down and become the slowest overall. Submit it through the
grid and some days you’ll get the fast host, and some days you’ll get the slow host, and it is
better in the long run. Also it is fair for other users. You can force it with –l, however, it is
selfish.

-Q (Nicholas Horton): Preemptable queues? A person who paid for a certain machine might
like it to be available only to them when they require it all for themselves.

A: Yes, the Grid has support for queues like that. It can all be configured. This particular

example will have to be looked in to further. Beagle.q, as an example, only runs on paikea
and overlaps with all.q . Also when the load on paikea, again using that as an example, gets
too high, jobs in a certain queue (dnetc.q) are stopped.

-Q (Ross Ihaka): Did I see my desktop listed earlier?

A: No. So far the grid is only running on the servers in the basement and the desktops in the
grad room. Desktops in staff offices and used by PhD candidates will have to opt in. This
increases the total speed of the grid, but your desktop may run slower at times. It is a two
way street.

-Q: Is there job migration?

A: It’s crude, and depends on your job. If something goes wrong (eg, the server crashes,
power goes out) your job can be restarted on another host. When queue instances become
unavailable (eg, we’re upgrading paikea) they can send a signal to your job, telling it to save
its work and quit, then can be restarted on another host.

-Q (Chris Wild): What happens if a faster host becomes available while my job is running?

A: Nothing. Your job will continue running on the host it is on until it ends. If a host is
overloaded, and not due to the grid’s fault, some jobs can be suspended until load
decreases. The grid isn’t migrating jobs. The best method is to break your job down into
smaller jobs, so that when the next part of the job is started it gets put onto what is
currently the best available host.

-Q (Stephane Guindon): What about when I’m not at my desktop. Can I have my machine be
on the grid then, and when I get to the desktop the jobs are migrated?

A: Yes, we can set up calendars so that at certain times no new jobs will be started on your
machine. Jobs that are already running will continue until they end. (Disabling the queue.)
Since some jobs run for days this can appear to have no influence on how many jobs are
running. Alternatively jobs can be paused, which frees up the CPU, but leaves the job sitting
almost in limbo. (Suspending the queue.) Remember the grid isn’t doing migration. It can
stop your job and run it elsewhere (if you’re using the –notify option on submission and
handling the USR1 signal).

