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Exercises and Further Exercises

For convenience we reproduce the exercises from the text as well as further
exercises.

Chapter 2

2.1 How would you find the index(es) of specified values within a vector? For
example, where is the hill race (in hills ) with a climb of 2100 feet? Answer

2.2 The column ftv in data frame birthwt counts the number of visits.
Reduce this to a factor with levels 0, 1 and ‘2 or more’. [Hint: manipulate the
levels , or investigate functions cut and merge.levels .] Answer

2.3 Write a simple function to compute the median absolute deviation (used
in robust statistics; see Section 5.5) median|x − µ| with default µ the sample
median. Compare your answer with the S-PLUS function mad . Answer

2.4 Suppose x is an object with named components and out is a character
string vector. How would you make a new object obtained from x by excluding
any components whose names are in out ? Answer

2.5 Given a matrix X of distinct rows and a vector w of the number of times
that each row should occur, reconstruct the original matrix. Answer

2.6 “I calculated a cross-correlation matrix. I want to print only members of
this matrix that are larger than 0.90 and I want to include dimnames in the answer.”

2.7 “I have a large data frame (5 000 observations) and I would like the cases
where a variable indicating ethnic group is in (1,3,4,6,7).” Answer

Chapter 3

3.1 The data frame survey contains the results of a survey of 237 first-
year statistics students at Adelaide University. For a graphical summary of all
the variables, use plot(survey). Note that this produces a dotchart for factor
variables, and a normal scores plot for the numeric variables.

One component of this data frame, Exer, is a factor object containing the
responses to a question asking how often the students exercised. Produce a
barchart of these responses. Use table and pie or piechart to create a pie
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chart of the responses. Do you like this better than the bar plot? Which is more
informative? Which gives a better picture of exercise habits of students? The
pie function takes an argument names which can be used to put labels on each
pie slice. Redraw the pie chart with labels. Alternatively, you could add a legend
to identify the slices.

You might like to try the same things with the Smoke variable, which records
responses to the question ,“How often do you smoke?” Note that table and
levels ignore missing values; if you wish to include non-respondents in your
chart use summary to generate the values, and names on the summary object to
generate the labels. Answer

3.2 Make a plot of petal width versus petal length of the iris data for a
partially sighted audience, identifying the three species. You will need to double
the annotation size, thicken the lines and change the layout to allow larger margins
for the larger annotation. Answer

3.3 Plot sin(x) against x, using 200 values of x between −π and π, but do
not plot any axes yet (use parameter axes=F in the call to plot ). Add a y-axis
passing through the origin using the ‘extended’ style and horizontal labels. Add
an x-axis with tick-marks from −π to π in increments of π/4, twice the usual
length. Answer

3.4 Cleveland (1993) recommends that the aspect ratio of line plots is chosen
so that lines are ‘banked’ at 45◦. By this he means that the averaged absolute
value of the slope should be around ±45◦. Write a function to achieve this for a
time-series plot, and try it out on the sunspots dataset. (Average along the arc
length of the curve. See the function banking for Cleveland’s solution.) Answer

3.5 The Trellis function splom produces a complete matrix of scatterplots,
as does the basic plotting functions pairs, but in earlier versions of S-PLUS
pairs only plotted the lower triangle of the matrix. Write a function to emulate
the earlier behaviour. [Hint: look at pairs.default. The graphics parameter
mfg may be useful.] Answer

3.6 Ternary plots are used for compositional data (Aitchison, 1986) where there
are three components whose proportions add to one. These are represented by a
point in an equilateral triangle, where the distances to the sides add to a constant.

Write an S function to plot a matrix of compositions on a ternary diagram.
Apply this to the dataset Skye on the composition of rocks on the Isle of Skye
in Scotland. (Our solution can be found on the help page for this dataset, and
S-PLUS 99 has a GUI-graphics example in its samples directory.) Answer

Chapter 5

5.1 Rice (1995, p. 390) gives the following data (Natrella, 1963) on the latent
heat of the fusion of ice (cal/gm):
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Method A: 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97
80.05 80.03 80.02 80.00 80.02

Method B: 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

(a) Assuming normality, test the hypothesis of equal means, both with and without
making the assumption of equal variances.

Compare the result with a Wilcoxon/Mann–Whitney nonparametric two-
sample test.

(b) Inspect the data graphically in various ways, for example, boxplots, Q-Q plots
and histograms.

(c) Fit a one-way analysis of variance and compare it with your t-test. (Look
ahead to the next chapter, or investigate function oneway .)

5.2 Write functions to produce Q-Q plots for a gamma and a Weibull distribu-
tion. Note that unlike the normal Q-Q plot, the shape parameters may need to be
estimated. Answer

5.3 The ideas used in bandwidth selection for kernel density estimation that
are implemented in width.SJ can also be applied to the choice of bin width in a
histogram (Wand, 1997). Implement such a bin-width estimator in S. Answer

5.4 Experiment with dataset galaxies . How many modes do you think there
are in the underlying density?

Chapter 6

6.1 Apply regression diagnostics to the fits to the whiteside energy con-
sumption data. Note (Figure 6.1) that the evidence for a quadratic fit to the ‘after’
data stems from points with high leverage, so also try resistant fits.

6.2 Dataset cabbages gives the results of a field trial on the growth of cabbages
(Rawlings, 1988, p. 219). Analyse this trial.

6.3 The data frame rubber in the library MASS gives 30 measurements
of rubber loss under accelerated testing together with the hardness and tensile
strength of the rubber itself. Explore the data in brush, then fit linear and
quadratic regressions of loss on hard and tens. Select a suitable submodel of
the quadratic model, and inspect the fitted surface by a perspective plot.

6.4 Criminologists are interested in the effect of punishment regimes on crime
rates. This has been studied using aggregate data on 47 states of the USA for
1960, available in data frame UScrime (Ehrlich, 1973; Vandaele, 1978; Raftery,
1995). The response variable is the rate of crimes in a particular category per head
of population. There are 15 explanatory variables; most of these and the response
variable have been rescaled to convenient numbers.

(a) Analyse these data. In your report pay particular attention to how your model
was selected.
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(b) Comment on the effect of the last two explanatory variables in relation to the
criminologists’ interest in the effect of punishment.

(c) Comment critically on the assumptions needed to draw conclusions from
aggregate studies such as this.

6.5 Susan Prosser collected data on the concentration of a chemical GAG in
the urine of 314 children aged from 0 to 17 years. The data are in data frame
GAGurine. Analyse these data, and produce a chart to help a paediatrican to
assess if a child’s GAG concentration is ‘normal’.

6.6 The Janka hardness data in data frame janka gives the density (Dens ) and
hardness (Hard ) of a sample of Australian Eucalypt hardwoods. The problem is
to build a prediction equation for hardness in terms of density.

6.7 The Cars93 data frame (Lock, 1993) gives data on 93 new car models on
sale in the USA in 1993. Use this dataset to predict fuel consumption from the
remaining variables. [Hint: The fuel consumption is in miles per US gallon. In
metric units fuel consumption is expressed in litres/100km, a reciprocal scale.]

6.8 The data in Table 6.4 (from Scheffé, 1959, and in data frame genotype )

Table 6.4: The rat genotype data.

Foster mother
Litter A B I J

A 61.5 55.0 52.5 42.0
68.2 42.0 61.8 54.0
64.0 60.2 49.5 61.0
65.0 52.7 48.2
59.7 39.6

B 60.3 50.8 56.5 51.3
51.7 64.7 59.0 40.5
49.3 61.7 47.2
48.0 64.0 53.0

62.0
I 37.0 56.3 39.7 50.0

36.3 69.8 46.0 43.8
68.0 67.0 61.3 54.5

55.3
55.7

J 59.0 59.5 45.2 44.8
57.4 52.8 57.0 51.5
54.0 56.0 61.4 53.0
47.0 42.0

54.0

refer to rat litters that were separated from their natural mothers at birth and given
to foster mothers to rear. The rats were classified into one of four genotypes, A,
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B, I and J. The response is the litter average weight gain, in grams, over the time
of the study. The aim is to test whether the litters’ and mothers’ genotypes act
additively and if this may be retained to test for differences in litter and mother
genotype effects.

6.9 Extend the analysis of the coop dataset to all the specimens.

6.10 Add the fitted lines for the final model for the petrol data to Figure 6.9.

6.11 Find a way to plot the Sitka data that facilitates comparison of the
growth curves for the two treatment groups.

Add to your plot the fitted mean growth curve and some 95% confidence
intervals.

6.12 Consider how to explore the assumptions made for the lme model for the
Sitka data. Are the plot methods for lme objects helpful in this?

6.13 The object Sitka89 contains the 1989 data on the same 79 Sitka trees
measured on eight days in 1989. Analyse the 1989 data separately, and then in
conjunction with the 1988 data.

Programming exercises

6.14 How do you obtain the standard prediction and confidence intervals for a
linear model fitted by lm ? Answer

6.15 How can we we add a confidence or prediction region to an existing plot
of a simple linear regression?

As an example, add a prediction region to Figure 6.1. Answer

6.16 Write a function to fit a linear model by generalized least squares, that is
to minimize

(y −Xβ)TW (y −Xβ)

for a given symmetric positive definite matrix W , or given Σ = W−1 . Answer

6.17 Implement a ridge regression (Brown, 1994, Sen & Srivastava, 1990)
function in S. Answer

Chapter 7

7.1 Explore the anorexia data example introduced in the discussion of offsets
on page 217 and report your final linear model.

Begin with a Trellis display of the data showing post-treatment weight against
pre-treatment weight for the three treatment groups. In each panel include the
individual regression line, the parallel regression line and the parallel regression
line with slope 1 as well as the points.
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7.2 Analyse the menarche dataset on the proportions of female children in
Warsaw at various ages during adolescence who have reached menarche (Milicer
& Szczotka, 1966) using both logit and probit links.

7.3 Knight & Skagen (1988) collected the data shown in the table (and in
data frame eagles )during a field study on the foraging behaviour of wintering
Bald Eagles in Washington State, USA. The data concern 160 attempts by one
(pirating) Bald Eagle to steal a chum salmon from another (feeding) Bald Eagle.
The abbreviations used are

L = large S = small; A = adult I = immature

Number of Total Size of Age of Size of
successful number of pirating pirating feeding
attempts attempts eagle eagle eagle

17 24 L A L
29 29 L A S
17 27 L I L
20 20 L I S
1 12 S A L

15 16 S A S
0 28 S I L
1 4 S I S

Report on factors that explain the success of the pirating attempt, and give a
prediction formula for the probability of success.

7.4 The following data are part of a survey by Dr Mutch of low-weight births
in Scotland between 1981 and 1988. The table refers to 661 children with birth
weights between 650g and 1749g all of whom survived for at least one year. The
variables of interest are:

Cardiac: mild heart problems of the mother during pregnancy;

Comps: gynaecological problems during pregnancy;

Smoking: mother smoked at least one cigarette per day during the first 6 months
of pregnancy;

BW: was the birth weight less than 1250g?

Cardiac Yes No

Comps Yes No Yes No

Smoking Yes No Yes No Yes No Yes No

BW Yes 10 25 12 15 18 12 42 45
No 7 5 22 19 10 12 202 205

Analyse this table.
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7.5 A survey was made of bicycle and other traffic in the neighbourhood of
the Berkeley campus of the University of California in 1993 (Gelman et al., 1995,
p. 91). Sixty city streets were selected at random, with a stratification into three
levels of activity and whether the street had a marked bicycle lane. The counts
observed in one hour are shown in the table: for two of the streets the data were
lost.

Type of Bike
street lane? Counts

Residential yes bikes 16 9 10 13 19 20 18 17 35 55
other 58 90 48 57 103 57 86 112 273 64

Residential no bikes 12 1 2 4 9 7 9 8
other 113 18 14 44 208 67 29 154

Side yes bikes 8 35 31 19 38 47 44 44 29 18
other 29 415 425 42 180 675 620 437 47 462

Side no bikes 10 43 5 14 58 15 0 47 51 32
other 557 1258 499 601 1163 700 90 1093 1459 1086

Main yes bikes 60 51 58 59 53 68 68 60 71 63
other 1545 1499 1598 503 407 1494 1558 1706 476 752

Main no bikes 8 9 6 9 19 61 31 75 14 25
other 1248 1246 1596 1765 1290 2498 2346 3101 1918 2318

Report on these data, paying particular attention to the effects of bicycle lanes.

7.6 To study the relative survival capacities of two species of native and exotic
snails, here labelled A and B, groups of 20 animals were held in controlled
laboratory conditions for periods of 1, 2, 3 or 4 weeks. At the end of the period
the animals were checked for whether they had survived, but as the check itself is
a destructive process a longitudinal study with the same animals was not possible.
The groups were held in chambers where the temperature and relative humidity
were held fixed at three and four levels ,respectively. There were thus 2 × 4 ×
3× 4 = 96 groups laid out in a complete factorial design.

The data are shown in Table 7.5, where each entry is the number who did not
survive out of the 20 test animals. The data set is also available as the data frame
snails in library MASS. Variable Species is a two-level factor but treat the
other stimulus variables as quantitative.

(a) Fit separate logistic regression models on exposure, relative humidity and
temperature for each species, that is ,a logistic regression of the form
Species/(Exposure + Rel.Hum + Temp).

(b) Fit parallel logistic regressions for the two species on the three stimulus
variables and show that it may be retained when tested within the separate
regressions model.
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Table 7.5: The snail mortality data.

Species A Species B
Exposure Exposure

Rel. Hum. Temp. (◦ C) 1 2 3 4 1 2 3 4
60.0% 10 0 0 1 7 0 0 7 12

15 0 1 4 7 0 3 11 14
20 0 1 5 7 0 2 11 16

65.8% 10 0 0 0 4 0 0 4 10
15 0 1 2 4 0 2 5 12
20 0 0 4 7 0 1 9 12

70.5% 10 0 0 0 3 0 0 2 5
15 0 0 2 3 0 0 4 7
20 0 0 3 5 0 1 6 9

75.8% 10 0 0 0 2 0 1 2 4
15 0 0 1 3 0 0 3 5
20 0 0 2 3 0 1 5 7

(c) There are no deaths for either species for the 1 week exposure time. This
suggests a quadratic term in Exposure might be warranted. Repeat the
analysis including such a quadratic term.

(d) Because deaths are so sparse a residual analysis is fairly meaningless. Nev-
ertheless look at the residuals to see how they appear for this kind of data
set.

(e) Is there a significant difference between the survival rates of the two species?
Describe qualitatively how the probability of death depends upon the stimulus
variables. Summarize your conclusions.

7.7 An experiment was performed in Sweden in 1961–2 to assess the effect
of speed limits on the motorway accident rate (Svensson, 1981). The experiment
was conducted on 92 days in each year, matched so that day j in 1962 was
comparable to day j in 1961. On some days the speed limit was in effect and
enforced, whereas on other days there was no speed limit and cars tended to be
driven faster. The speed limit days tended to be in contiguous blocks.

The data set is given in the data frame Traffic with factors year, day and
limit and the response is the daily traffic accident count y.

Fit Poisson log-linear models and summarize what you discover.
You might assume day occurs as a main effect only (fitting models with

interaction terms involving factors of 92 levels may take some time and memory!),
but assess if an interaction between limit and year is needed.

Check if the deviance residuals provide any hint of irregular behaviour.

7.8 The data given in data frame Insurance consist of the numbers of
policyholders n of an insurance company who were exposed to risk, and the
numbers of car insurance claims made by those policyholders in the third quarter
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of 1973 (Baxter, Coutts & Ross, 1980, Aitkin et al., 1989. The data are cross-
classified by District (four levels), Group of car (four levels), and Age of
driver (four ordered levels). The other variables in the data frame are the numbers
of Holders and Claims.

The relevant model is taken to be a Poisson log-linear model with offset
log n.

(a) Fit an initial model with all terms present up to the three-way interaction; that
is,

Claims ~ District*Group*Age - District:Group:Age
+ offset(log(Holders))

(b) Using stepAIC, or otherwise, prune the model of unjustified terms and report
your findings.

Present your results as a table of estimated claim rates per policy holder for
each category of holder.

(c) It is not strictly valid to regard such data as having the obvious binomial dis-
tribution, since some policyholders may make multiple claims. Nevertheless
it should be a reasonable approximation. Repeat the analysis with a binomial
model and compare the outcomes on estimated claim rates (or in this case,
estimated probabilities of making a claim).

Chapter 8

8.1 For the weight loss example compare the negative exponential model with
quadratic and cubic polynomial regression alternative models, in particular check
the behaviour of each model under extrapolation into the future. Answer

8.2 Fit the negative exponential weight loss model in the ‘goal weight’ form,
equation (8.6), for the three goal weights, w0 = 110, 100 and 90 kg. Plot the
profiles. Answer

8.3 The model used in connection with the Stormer data may also be expressed
as a generalized linear model. To do this we write

β1v

w − β2
=

1
γ1z1 + γ2z2

where γ1 = 1/β1, γ2 = β2/β1, z1 = w/v and z2 = −1/v. This has the form
of a generalized linear model with inverse link. Fit the model in this form using a
quasi family with inverse link and constant variance function.

Back transform the estimated coefficients and show that they agree with the
values obtained using the non-linear regression approach.

Also compute the estimated standard errors and verify that they also agree
with the values obtained directly by the non-linear regression approach.
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Finding the standard errors is more challenging. We need first to find the
variance matrix from the generalized linear model. The large sample variance

matrix for β̂ is related to that for γ̂ by var
(
β̂
)

= Jvar
(
γ̂
)
JT where J is the

Jacobian matrix of the inverse of the parameter transformation:

J =
[
∂β1/∂γ1 ∂β1/∂γ2

∂β2/∂γ1 ∂β2/∂γ2

]
=
[
−1/γ2

1 0
−γ2/γ

2
1 1/γ1

]
(To achieve close agreement you may need to tighten the convergence criteria for
the glm fit, for example, by setting eps=1.0e-10.) Answer

8.4 Stable parameters

Ross (1970) has suggested using stable parameters for non-linear regression,
mainly to achieve estimates that are as near to uncorrelated as possible. It turns
out that in many cases stable parameters also define a coordinate system within
the solution locus with a small curvature.

The idea is to use the means at p well-separated points in sample space as
the parameters. Writing the regression function in terms of the stable parameters
is often intractable, but in the case of a negative exponential decay model of the
type we considered for the weight loss data it is possible if the points are chosen
equally spaced.

If the three mean parameters µi are chosen at x-pointsx0 + iδx, i = 0, 1, 2,
show that the model may be written explicitly as:

η =
µ0µ2 − µ2

1

µ0 − 2µ1 + µ2
+

(µ0 − µ1)2

µ0 − 2µ1 + µ2

(
µ1 − µ2

µ0 − µ1

)(x−x0)/δx

Fit the negative exponential decay model to the weight loss data using this
parametrization and choosing, say, x0 = 40 days and δx = 80 days. Look
at the characteristics of the fit, including the correlations between the parameter
estimates. Explain in heuristic terms why they are relatively low.

Examine the profiles of the fit and check for straightness. Can you give a
possible statistical explanation for why they appear as straight as they do? Answer

8.5 Heteroscedastic regression models

A common heteroscedastic regression model specifies that the observations
have constant coefficient of variation; that is ,Y ∼ N(µ, θµ2) where θ > 0 and
µ depends on regressor variables according to some linear model perhaps with a
link function such as µ = exp η. Write a function to fit such models and try it
out using the Quine data. Compare with the negative binomial models fitted in
Section 7.4, page 234ff.

8.6 A deterministic relationship between pressure and temperature in saturated
steam can be written as

Pressure = α exp
(

βT

γ + T

)
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where T is the temperature, considered the determining variable. Data collected
to estimate the unknown parameters α, β and γ are contained in the data frame
steam.

(a) Fit this model as a non-linear regression assuming additive errors in the
pressure scale. Devise a suitable method for arriving at initial values.

(b) Fit the model again, this time taking logarithms of the relationship and as-
suming that the errors are additive in the log(pressure) scale, (and hence
multiplicative on the original scale).

(c) Which model do you consider is better supported on the basis of model checks?

8.7 The data frame Puromycin supplied with S-PLUS contains data from a
Michaelis–Menten experiment conducted at two levels of a factor state. The
usual non-linear regression model proposed for such cases is

Vij =
Kjcij
cij + θj

+ εij , j = 1, 2

where V is the (initial) velocity of the reaction, c is the substrate concentration
and j refers to the level of the factor.

Fit the model with separate asymptotes Vj and separate θjs. Test the hy-
pothesis that θ1 = θ2 and report. [ Hint: use the anova method for nls
objects.]

For the final model you adopt show the data and fitted curves in a two-panel
Trellis display.

8.8 Fit the non-linear model (8.4) to the muscle data with (αj) as a random
effect; that is ,a mean asymptote plus one variance component. Compare the
predictions (both mean and BLUP curves) of this model with the fixed-effects
model fitted in the text.

8.9 Sarah Hogan collected data on the ‘binaural hearing’ ability of children with
a history of otitis media with effusion (OME). Some of the data (and a description
of the problem) are in data frame OME. Fit a suitable non-linear model, and assess
if there is a change in ability with age and OME status.

(a) The suggested model is a logistic curve that ranges from 0.5 at low noise
levels (when the response is effectively a guess) to 1.0 at high noise levels.
Then the most important parameter will be the noise level L75 at which the
child has a 75% success rate. The amount of data on each child is small, so fit
a model with a common slope but a separate L75 for each child, and analyse
the fitted parameters by age and group. [You may want to look up the function
nlsList.]

(b) Consider a linear model for L75 on age, and differences between the OME
groups, for each type of noise stimulus. Assess the significance of your results
via standard errors and/or F -tests.
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(c) The analysis thus far does not take into account the differences between indi-
vidual subjects. Repeat the analysis using non-linear mixed-effects models.

Answer

8.10 Write a function to fit a gamma distribution to n observations by maximum
likelihood. Answer

8.11 McLachlan & Jones (1988) (see also McLachlan & Krishnan, 1997,
pp. 73ff) give the following grouped data on red blood cell volume, in 18 equally
spaced bins of width 7.2 fl, starting at 21.6 fl.

Set 1: 10 21 51 77 70 50 44 40 46 54 53 54 44 36 29 21 16 13
Set 2: 9 32 64 69 56 68 88 93 87 67 44 36 30 24 21 14 8 7

McLachlan and Jones fit a mixture of two normal densities on log scale by an
involved method using the EM algorithm. Fit this model directly to each set of
data by a small modification of the approach in Section 8.7.

Further exercise

8.12 A deterministic relationship between pressure and temperature in saturated
steam can be written as

Pressure = α exp
(

βT

γ + T

)
where T is the temperature, considered the determining variable. Data collected
to estimate the unknown parameters α , β and γ is contained in the data frame
steam .

(a) Fit this model as a non-linear regression assuming additive errors in the
pressure scale. Devise a suitable method for arriving at initial values.

(b) Fit the model again, this time taking logarithms of the relationship above and
assuming that the errors are additive in the log(pressure) scale, (and hence
multiplicative on the original scale).

(c) Which model do you consider is better supported on the basis of model checks?

Chapter 9

9.1 This data frame gilgais was collected on a line transect survey in gilgai
territory in New South Wales, Australia. Gilgais are natural gentle depressions
in otherwise flat land, and sometimes seem to be regularly distributed. The
data collection was stimulated by the question: are these patterns reflected in
soil properties? At each of 365 sampling locations on a linear grid of 4 metres
spacing, samples were taken at depths 0–10 cm, 30–40 cm and 80–90 cm below
the surface. pH, electrical conductivity and chloride content were measured on a
1:5 soil:water extract from each sample.

Produce smoothed maps of the measurements.
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9.2 Exercise 6.5 considered linear regression for the GAG in urine data in data
frame GAGurine. Consider using a non-linear or smooth regression for the same
task.

9.3 Use neural networks to fit a smooth curve to the mcycle data used in
Figure 9.1. Investigate ways of choosing the degree of smoothness automatically.

Chapter 11

11.1 Data frame biopsy contains data on 699 biopsies of breast tumours,
which have been classified as benign or malignant (Mangasarian & Wolberg,
1990). The nine variables on each biopsy are a rating (1 to 10) by the coordinating
physician; ratings on one variable are missing for some biopsies.

Analyse these data. In particular, investigate the differences in the two types
of tumour, find a rule to classify tumours based solely on the biopsy variables and
assess the accuracy of your rule.

11.2 Data frame UScereals describes 65 commonly available breakfast cere-
als in the USA, based on the information available on the mandatory food label on
the packet. The measurements are normalized to a serving size of one American
cup.

(i) Is there any way to discriminate among the major manufacturers by cereal
characteristics, or do they each have a balanced portfolio of cereals?

(ii) Are there interpretable clusters of cereals?

(iii) Can you describe why cereals are displayed on high, low or middle shelves?

Chapter 13

13.1 Our dataset accdeaths gives monthly accidental deaths in the USA
1973–8, from Brockwell & Davis (1991). Find a suitable ARIMA model, and
predict the deaths for the first six months of 1979. Answer

13.2 Dataset austres is a quarterly series of the number of Australian residents
from March 1971 to March 1994. It comes from Brockwell & Davis (1996) who
analyse the percentage quarterly changes. Explore suitable models in S-PLUS.
Answer

13.3 Repeat Exercise 9.1 as a time series problem.

13.4 Use the information gained in the analysis of beav1 in Section 13.5 to
refine the analysis for beav2.

13.5 Consider the problem of estimating the effect of seat belt legislation on
road accident casualties in the UK considered by Harvey & Durbin (1986). The
data (from Harvey, 1989) are in the series drivers.
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Chapter 14

14.1 Repeat exercise 9.1 as a spatial statistics problem.



Answers to Selected Exercises

Chapter 2

2.1. One way is to use

find.val <- function(x, val) seq(along=x)[x==val]
row.names(hills)[find.val(hills$climb, 2100)]

although in most cases it is easier to subscript directly by a logical vector, for
example row.names(hills)[hills$climb==2100] .

2.2. Three solutions are:

res <- factor(ftv); levels(res)[-(1:2)] <- "2 or more"
res <- cut(ftv, c(-1,0,1, 10))

levels(res) <- c("0", "1", "2 or more")
merge.levels(factor(ftv), c(1,2,3,3,3,3))

where the first is explained in the help page for merge.levels .

2.3. We used

mad <- function(y, mu=median(y))
median(abs(as.vector(y)-mu))

where as.vector strips off the name attribute which median retains in some
versions of S-PLUS. (Note that the system function by default calculates 1.4826×
median|x − µ| which is a consistent estimator of the standard deviation for a
Gaussian model.)

2.4. The idea is to find any indices where the strings in out match the names
of x and to use their negatives as an index vector. Matching is such a common
problem there is a general function, match , to do it.

x.in <- x[-match(out, names(x), nomatch=0)]

Note the use of nomatch=0 to generate a zero index (and hence no action) if
some string in out is not the name of any component in x .

This solution relies on the uniqueness of the names of the object (which is
not guaranteed in all instances), since match will find only the first match. An
alternative approach is to match the names in out and use logical indexing, by

x.in <- x[match(names(x), out, nomatch=0) == 0]

15
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2.5. All that is needed is

X[rep(1:nrow(X), w), ]

2.6. Try this:

r <- cor(X)
rc <- format(r)
rc[r < 0.9] <- ""
print(rc, quote=F)

Note the use of format to get consistent formating of the entries; format could
also be used to prune the number of significant digits, if required.

2.7. The following solution extends exercise 2.4.
Use match and the indexing capabilities. If the data frame is df and the variable
is ethnic the subset you want is

df[match(df$ethnic, c(1,3,4,6,7), nomatch=0) > 0, ]

The function is.element of S-PLUS 4.0 and later implements this idea as a
function.

is.element <-
function(el, set) !is.na(match(el, set, nomatch = NA))

df[is.element(df$ethnic, c(1,3,4,6,7)), ]

This is an alternative way to use match which has the advantage here of working
even when the first argument is empty.

Chapter 3

3.1. To create a barchart of Exer we just use plot(Exer) , or

barplot(table(Exer), names=names(table(Exer)))

(Try them to see the differences.) For a pie chart, we need to tabulate the frequen-
cies first:

exer.freq <- table(Exer)
exer.freq
Freq Some None
115 98 24

The command pie(exer.freq) will now create a pie chart, but to add labels to
the slices we use the names argument

pie(exer.freq, names=levels(Exer))
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Adding a legend is accomplished by using legend with the fill argument:

legend(locator(1), names(exer.freq), fill=1:3)

For the Smoke variable a slightly different approach is needed if we wish to
include the missing value in the plot.

smoke.freq <- summary(Smoke)
smoke.freq
Heavy Regul Occas Never NA’s

11 17 19 189 1

Since the missing value represents such a small proportion of the data, we highlight
it with explode=5 (because NA’s is the fifth category) so it is not lost in the pie:

pie(smoke.freq, names=names(smoke.freq), explode=5)
legend(locator(1), names(smoke.freq), fill=1:5)

Alternatives using Trellis graphics are

barchart(~ exer.freq, main="Exercise frequency")
piechart(~ exer.freq, main="Exercise frequency")
piechart(~ smoke.freq, explode = 5)

Adding legends and other annotations is left as a further exercise for the reader.

3.2. This is straightforward once the layout is adjusted. We just increased the
sizes of the margins which are to hold text.

ir <- rbind(iris[,,1], iris[,,2], iris[,,3])[, 3:4]
irs <- c(rep("S", 50), rep("C", 50), rep("V", 50))
par(mar=c(7,7,7,5)) # more space on label sides
plot(ir, type="n", cex=2, lwd=2, tck=-0.02)
title("The Iris Data", cex=2)
text(ir, irs, col=c(rep(2,50), rep(3,50), rep(4, 50)))

On-screen the title size is limited by the displayable fonts under the motif driver
(and probably others).

3.3. Our solution was

x <- seq(-pi, pi, length=200)
plot(x, sin(x), type="l", axes=F, ylab="", main="sin(x)")
axis(2, pos=0, yaxs="e", las=1)
axis(1, pos = -1.1, at = pi*seq(-1, 1, 1/4), tck = -0.02,

labels = c("-Pi", "-3Pi/4", "-Pi/2", "-Pi/4", "0",
"Pi/4", "Pi/2", "3Pi/4", "Pi"))
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3.4. We apply this to the annual mean sunspot series. The function bank (based
on banking ) computes an aspect ratio ar such that the average slope of the line
segments (dx, ar*dy) is 45◦ . We adjust the aspect ratio by reducing the size
of one of the axes of the plot.

sunsp <- aggregate(sunspots, 1, mean)

bank <- function(dx, dy, iter = 20, tol = 0.5)
{
dx <- abs(dx)
dy <- abs(dy)[dx > 0]
dx <- dx[dx > 0]
mad <- median(dy/dx)
ar <- ifelse(mad > 0, mad, 1)
radians.to.angle <- 180/pi
for(i in 1:iter) {

distances <- sqrt(dx^2 + (ar * dy)^2)
orientations <- atan(ar * dy, dx)
avg <- (radians.to.angle * sum(orientations *

distances))/sum(distances)
if(abs(45 - avg) < tol) break
ar <- ar * (45/avg)

}
ar

}

bankplot <- function(x, y, type="l", ...)
{
dx <- diff(x/diff(range(x)))
dy <- diff(y/diff(range(y)))
ar <- bank(dx, dy)
pin <- par("pin")
ar <- ar/(pin[2]/pin[1])
oldpar <- par(pin=pin*c(1,ar)/max(1,ar))
on.exit(par(oldpar))
plot(x, y, type=type, ...)

}

bankplot(time(sunsp), sunsp)

3.5. The following function is based closely on pairs.default . We use mfg
to choose which panel to fill in a n×n grid. As we only ever write to the panels,
we need to clear the plot first with a call to frame .

mypairs <- function(x, labels = dimnames(x)[[2]],
panel = points, ...)

{
doaxis <- function(which, dolabel = T)

axis(which, outer = T, line = -0.5, labels = dolabel)
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setup <- function(x, y, ...)
.S(plot(range(x[!is.na(x)]), range(y[!is.na(y)]),

type = "n", axes = F, ...), "plot")
x <- as.matrix(x)
if(is.character(panel)) panel <- get(panel, mode="function")
n <- ncol(x)
oldpar <- par("oma", "mar", "cex", "tck", "mfg", "mgp",

"mex", "mfrow")
oldcex <- par("cex")
CEX <- oldcex * max(7.7/(2 * n + 3), 0.6)
par(mfrow = c(n, n), mgp = c(2, 0.80, 0), oma = rep(3, 4),

mar = rep(0.5, 4), tck = -0.03/n)
on.exit({par(oldpar)})
par(cex = CEX)
frame()
if(length(labels) < n)

labels <- paste(deparse(substitute(x)),
"[,", 1:n, "]", sep = "")

if(par("pty") == "s") {
dif <- diff(par("fin"))/2
if(dif > 0) par(omi = c(dif*n, 0, dif*n, 0) + par("omi"))
else par(omi = c(0, -dif*n, 0, -dif*n) + par("omi"))

}
for(i in 1:n)

for(j in 1:i) {
par(mfg = c(i,j,n,n))
setup(as.vector(x[, j]), as.vector(x[, i]), ...)
box()
if(i == n && j < n) doaxis(1)
if(j == 1 && i > 1) doaxis(2)
if(i > j) {

panel(as.vector(x[, j]), as.vector(x[, i]), ...)
} else {

par(usr = c(0, 1, 0, 1))
text(0.5, 0.5, labels[i], cex = 1.5 * CEX)

}
}

invisible()
}

3.6. As a precaution, we rescale the entries in X to sum to one.

ternary <- function(X, pch = par("pch"), lcex = 1,
add = F, ord = 1:3, ...)

{
if(any(X) < 0) stop("X must be non-negative")
s <- drop(X %*% rep(1, ncol(X)))
if(any(s<=0)) stop("each row of X must have a positive sum")
if(max(abs(s-1)) > 1e-6) {
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warning("row(s) of X will be rescaled")
X <- X / s

}
X <- X[, ord]
s3 <- sqrt(1/3)
if(!add)
{

oldpty <- par("pty")
on.exit(par(pty=oldpty))
par(pty="s")
plot(c(-s3, s3), c(0.5-s3, 0.5+s3), type="n", axes=F,

xlab="", ylab="")
polygon(c(0, -s3, s3), c(1, 0, 0), density=0)
lab <- NULL
if(!is.null(dn <- dimnames(X))) lab <- dn[[2]]
if(length(lab) < 3) lab <- as.character(1:3)
eps <- 0.05 * lcex
text(c(0, s3+eps*0.7, -s3-eps*0.7),

c(1+eps, -0.1*eps, -0.1*eps), lab, cex=lcex)
}
points((X[,2] - X[,3])*s3, X[,1], ...)

}

This labels the vertices clockwise from the top, but other conventions are possi-
ble by altering the argument ord . For example, we can reproduce Fig. 1.9 of
Aitchison (1986) by

ternary(Skye/100, ord=c(1,3,2))
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Chapter 5

5.2. The answers if the shape parameters are known are easy using ppoints .

qqgamma <- function(x, shape, ...)
plot(qgamma(ppoints(x), shape), sort(x), ...)

qqweibull <- function(x, shape, ...)
plot(qweibull(ppoints(x), shape), sort(x), ...)

To fit a gamma we can use the function gamma.mle1 of the answer to exer-
cise 8.10, by

qqgamma <- function(x, shape = gam.mle(x),
xlab = paste("Quantiles of gamma(",

format(shape, digits=3), ")", sep=""),
ylab = deparse(substitute(x)), ...)

{
gam.mle <- function(x) gamma.mle1(x)$alpha
plot(qgamma(ppoints(x), shape), sort(x),

xlab=xlab, ylab=ylab, ...)
}

For a Weibull we can fit using survreg , converting from its parametrization to a
more standard one.

qqweibull <- function(x, shape = wei.shape(x),
xlab = paste("Quantiles of Weibull(",

format(shape, digits=3), ")", sep=""),
ylab = deparse(substitute(x)), ...)

{
wei.shape <- function(x) 1/survreg(Surv(x) ~ 1)$scale

## with S-PLUS 2000 use survReg
## with survival4 use
# wei.shape <- function(x) exp(-survreg(Surv(x) ~ 1)$parms)
plot(qweibull(ppoints(x), shape), sort(x),

xlab=xlab, ylab=ylab, ...)
}

(For use with survival5 replace parms by coef ) It is possible to avoid esti-
mating the shape parameter in this case, as a QQ-plot of any Weibull against a
Weibull(1,1) is a straight line on a log-log scale. Thus it is possible to assess the
fit of a Weibull (of any shape) by qqweibull(x, 1, log="xy") . In any case,
a log-log plot is desirable for small values (less than 0.5) of the shape parameter
as those distributions have a very long right tail.

It is easy to produce Trellis versions of these plots using qqmath , with a
common shape parameter across panels.

5.3. See the function dpi in Wand’s library KernSmooth .
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Chapter 6

6.14. Here is an example for the hills dataset of how to find the confidence
interval for the fit at each data point.

hills.lm <- lm(time ~ dist + climb, data=hills)
hills.pred <- predict(hills.lm, se.fit = T)
hills.ci <- pointwise(hills.pred, coverage = 0.95)

The prediction interval is a little trickier. The simplest idea is to add s2 to the
squared standard errors returned by predict , noting that s2 has in fact been
stored already.

hills.s <- summary(hills.lm)$sigma
hills.pred$se.fit <- sqrt(hills.pred$se.fit^2 +

hills.pred$residual.scale^2)
hills.ci <- pointwise(hills.pred, coverage = 0.95)

6.15. Most of the work was done in the previous exercise. We will try this out on
the data priot to insulation.

before <- whiteside[whiteside$Insul=="Before",]
before.lm <- lm(Gas ~ Temp, data=before)
attach(before)
plot(Temp, Gas)
abline(before.lm, lty=3)

conflines.lm <- function(obj, coverage = 0.95, pred = F, ...)
{
# Check for simple linear regression
xnames <- attr(obj$terms,"term.labels")
if(length(xnames) != 1)

stop("First argument is not a simple linear fit")
# Work out the range of the existing plot.
ux <- par("usr")[1:2]
xp <- seq(ux[1], ux[2], length = 100)
newdf <- data.frame(xp)
names(newdf) <- xnames
pr <- predict(obj, newdf, se.fit = T)
if(pred) {

pr$se.fit <- sqrt(pr$se.fit + pr$res^2)
}
ci <- pointwise(pr, coverage = coverage)
lines(xp, ci$lower, ...)
lines(xp, ci$upper, ...)

}
conflines.lm(before.lm)
conflines.lm(before.lm, pred=T, lty=2)
detach()
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Figure 6.1 is a Trellis plot, so we cannot add information to it; rather we have
to create a new Trellis plot by adding to the panel function. We could do this by
operating on the data for each panel, but we will illustrate a more general solution,
which allows the pooling of standard errors between the sexes.

gas.lm <- lm(Gas ~ Insul/Temp - 1, data=whiteside)
pr <- predict(gas.lm, se=T)
gas.ci <- pointwise(pr)
pr$se.fit <- sqrt(pr$se.fit + pr$res^2)
gas.ti <- pointwise(pr)

prepanel.gas <- function(x, y, subscripts, ...)
{
xlim <- range(x)
ylim <- range(y, gas.ti$fit[subscripts],

gas.ti$upper[subscripts],
gas.ti$lower[subscripts])

list(xlim = xlim, ylim = ylim,
dx = diff(xlim), dy = diff(ylim))

}
panel.gas <- function(x, y, subscripts, ...)
{
panel.xyplot(x, y, cex = 0.5)
ord <- order(x)
lines(x[ord], gas.ci$fit[subscripts][ord])
lines(x[ord], gas.ci$upper[subscripts][ord], lty=3)
lines(x[ord], gas.ci$lower[subscripts][ord], lty=3)
lines(x[ord], gas.ti$upper[subscripts][ord], lty=2)
lines(x[ord], gas.ti$lower[subscripts][ord], lty=2)

}
xyplot(Gas ~ Temp | Insul, whiteside,
prepanel = prepanel.gas, panel = panel.gas,
xlab = "Average external temperature (deg. C)",
ylab = "Gas consumption (1000 cubic feet)")

The prepanel function is needed both to ensure that the tolerance bands fall
inside the display and to allow the slopes of the fitted lines to be used in setting
the aspect ratio.

6.16. We choose to use an eigendecomposition of W , as it is more stable than a
Choleski factorization, and also makes it easier to use the same code for W or
Σ . Let W = UDUT . Then

(y−Xβ)TW (y−Xβ) = (y−Xβ)TUDUT (y−Xβ) = ‖D1/2UT (y−Xβ)‖2

so we can regress Ay on AX where A = D1/2UT . If W = Σ−1 we can
take the eigendecomposition of Σ and replace D by D−1 . We modify lm as
necessary. The following function1 is in library MASS .

1 The distributed version has extra code to handle safer prediction and na.action for prediction.
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lm.gls <- function(formula, data, W, subset, na.action,
inverse = F, method = "qr",
model = F, x = F, y = F, contrasts = NULL, ...)

{
call <- match.call()
m <- match.call(expand = F)
m$W <- m$inverse <- m$method <- m$model <- m$x <-

m$y <- m$contrasts <- m$... <- NULL
m[[1]] <- as.name("model.frame")
m <- eval(m, sys.parent())
if(method == "model.frame") return(m)
Terms <- attr(m, "terms")
Y <- model.extract(m, response)
X <- model.matrix(Terms, m, contrasts)
n <- nrow(X)
if(any(dim(W) != c(n, n))) stop("dim(W) is not correct")
eW <- eigen(W, T)
d <- eW$values
if(any(d <= 0)) stop("W is not positive definite")
A <- diag(d^ifelse(inverse, -0.5, 0.5)) %*% t(eW$vector)
fit <- lm.fit(A %*% X, A %*% Y, method, ...)
fit$terms <- Terms
fit$call <- call
if(model) fit$model <- m
if(x) fit$x <- X
if(y) fit$y <- Y
attr(fit, "na.message") <- attr(m, "na.message")
class(fit) <- c("lm.gls", class(fit))
fit

}

Our task is not over, since we need to be able to do something useful with the
output. However, much of the print and summary methods for class "lm" are
based on the stored results for the transformed problem and so are approximately
correct. The fitted values and residuals are not simply related to the original
problem.

We can test this with an example from Section 13.5. There we fitted a
regression with autoregressive errors, and the covariance matrix for AR(1) errors
is proportional to (α|i−j|) .

alpha <- 0.8255; n <- 100
arow <- c(1, alpha^(1:n))
B <- matrix(c(rep(arow, n-1),1), n,n, byrow = T)
B[lower.tri(B)] <- 0
B <- B + t(B) - diag(n)
beav.gls <- lm.gls(temp ~ activ, W = B , inverse = T)
> summary(beav.gls)

Call: lm.gls(formula = temp ~ activ, W = B, inverse = T)
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Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 37.166 0.091 408.776 0.000
activ 0.669 0.098 6.809 0.000

This is reasonably consistent with the results of Section 15.6, where we noted
appreciable end effects.

An important special case is for W a diagonal matrix. As a extension of the
exercise modify lm.gls to allow the user to specify this case by supplying a
vector of weights in W rather than a matrix. Note that lm can handle this by the
use of (case) weights.

6.17. Recall what ridge regression does (Brown, 1994, Sen & Srivastava, 1990).
Instead of fitting Xβ to Y by least squares, it solves [XTX + λI]β = XTY .
(The case λ = 0 is the least-squares solution, but the ridge constant λ is positive
in ridge regression.) Suppose X is an n × p matrix. Then the ridge regression
problem is equivalent to the regression of Y ′ on X ′ where

X ′ =
[
X√
λI

]
, Y ′ =

[
Y
0

]
Thus we can implement ridge regression by adding p imaginary observations of
0, with

√
λ as the value of the ith regressor and the others zero, for i = 1, . . . , p .

Conventionally ridge regression is applied to the data with the mean removed and
scaled so that the columns of X have constant length. (Any intercept term must
then be removed.)

There is another approach that is more efficient if we need multiple values
of λ , for example to plot a ridge trace or to choose λ by cross-validation. Let
X = UΛV T be the singular-value decomposition of X . Then [XTX + λI]β =
XTY may be rewritten as V [Λ2 + λ]V Tβ = V ΛUTY and hence V T β̂λ =
Λ/(Λ2 + λ)UTY = Λ2/(Λ2 + λ)V TβLS . We implement this for a vector of
values of λ , and compute some statistics to help choose λ , from Brown (1994,
pp. 63–64). The following functions2 are in library MASS .

lm.ridge <- function(formula, data, subset, na.action,
lambda = 0, model = F, x = F, y = F, contrasts = NULL, ...)

{
call <- match.call()
m <- match.call(expand = F)
m$model <- m$x <- m$y <- m$contrasts <-

m$... <- m$lambda <- NULL
m[[1]] <- as.name("model.frame")
m <- eval(m, sys.parent())
Terms <- attr(m, "terms")
Y <- model.extract(m, response)
X <- model.matrix(Terms, m, contrasts)

2 The distributed version has extra code to handle safer prediction and na.action for prediction.
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n <- nrow(X); p <- ncol(X)
if(Inter <- attr(Terms, "intercept"))
{

Xm <- apply(X[, -Inter], 2, mean)
Ym <- mean(Y)
p <- p - 1
X <- X[, -Inter] - rep(Xm, rep.int(n, p))
Y <- Y - Ym

} else Ym <- Xm <- NA
Xscale <- drop(rep(1/n, n) %*% X^2)^0.5
X <- X/rep(Xscale, rep.int(n, p))
Xs <- svd(X)
rhs <- t(Xs$u) %*% Y
d <- Xs$d
lscoef <- Xs$v %*% (rhs/d)
lsfit <- X %*% lscoef
resid <- Y - lsfit
s2 <- sum(resid^2)/(n - p - Inter)
HKB <- (p-2)*s2/sum(lscoef^2)
LW <- (p-2)*s2*n/sum(lsfit^2)
k <- length(lambda)
div <- d^2 + rep(lambda, rep.int(p,k))
a <- (d*rhs)/div
dim(a) <- c(p, k)
coef <- Xs$v %*% a
dimnames(coef) <- list(names(Xscale), format(lambda))
GCV <- apply((Y - X %*% coef)^2, 2, sum)/

(n-apply(matrix(d^2/div,p), 2, sum))^2
structure(list(coef = drop(coef), scales = Xscale,

Inter = Inter, lambda = lambda, ym = Ym, xm = Xm,
GCV = GCV, kHKB = HKB, kLW = LW), class="ridgelm")

}

print.ridgelm <- function(obj)
{
scaledcoef <- t(as.matrix(obj$coef / obj$scales))
if(obj$Inter) {

inter <- obj$ym - scaledcoef %*% obj$xm
scaledcoef<- cbind(Intercept=inter, scaledcoef)

}
print(drop(scaledcoef))

}

select <- function(obj) UseMethod("select")

select.ridgelm <- function(obj)
{
cat("modified HKB estimator is", format(obj$kHKB), "\n")
cat("modified L-W estimator is", format(obj$kLW), "\n")
GCV <- obj$GCV
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if(length(GCV) > 0) {
k <- seq(along=GCV)[GCV==min(GCV)]
cat("smallest value of GCV at",

format(obj$lambda[k]), "\n")
}

}

plot.ridgelm <- function(obj)
matplot(obj$lambda, t(obj$coef), type = "l")

We can apply this to the celebrated Longley data, get a ridge trace and some
estimates of λ .

longley <- data.frame(y = longley.y, longley.x)
lm.ridge(y ~ ., longley)
plot(lm.ridge(y ~ ., longley,

lambda = seq(0,0.1,0.001)))
select(lm.ridge(y ~ ., longley,

lambda = seq(0,0.1,0.0001)))
modified HKB estimator is 0.0042754
modified L-W estimator is 0.032295
smallest value of GCV at 0.0028

There is only a little evidence for the necessity to use ridge regression here, but it
can be seen as an alternative to variable selection.

Chapter 8

8.1. The code from the First Edition follows.

attach(wtloss)
plot(Days, Weight, xlab= "days", ylab ="weight (kg)",

xlim=c(0,730), ylim=c(70, 200))
xx <- seq(0, 730, 10)
lines(xx, 81.37+ 102.68 * 2^(-xx/141.91))
wtloss.quad <- lm(Weight ~ poly(Days, 2))
lines(xx, predict.gam(wtloss.quad, data.frame(Days=xx)), lty=2)
wtloss.cub <- lm(Weight ~ poly(Days, 3))
lines(xx, predict.gam(wtloss.cub, data.frame(Days=xx)), lty=3)
legend(locator(1), c("exponential", "quadratic", "cubic"),

lty=1:3)

Note the use of predict.gam to get valid predictions.
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8.2.

expn2 <- deriv(~ b0 + b1*((w0 - b0)/b1)^(x/d0),
c("b0","b1","d0"), function(b0, b1, d0, x, w0) {})

wtloss.init <- function(obj, w0) {
p <- coef(obj)
d0 <- - log((w0 - p["b0"])/p["b1"], 2) * p["th"]
c(p[c("b0", "b1")], d0 = as.vector(d0))

}
for(w0 in c(110, 100, 90)) {

fm <- nls(Weight ~ expn2(b0, b1, d0, Days, w0),
wtloss, start = wtloss.init(wtloss.gr, w0))

print(plot(profile(fm)))
}

8.3. [ From the fourth printing of the First Edition. ]

> attach(stormer,1)
> z1 <- Wt/Viscosity
> z2 <- -1/Viscosity
> detach(1,save="stormer")
> attach(stormer)
> storm.gm <- glm(Time ~ z1 + z2 - 1,

family=quasi(link=inverse, variance=constant),
data=stormer, trace=T, eps=1.0e-10)

GLM linear loop 1: deviance = 860.92
GLM linear loop 2: deviance = 825.06
GLM linear loop 3: deviance = 825.05
GLM linear loop 4: deviance = 825.05
> g <- coef(storm.gm)
> b <- coef(storm.fm)
> b0 <- c(1/g[1], g[2]/g[1])
> cbind(b,b0)

b b0
z1 29.4013 29.4013
z2 2.2182 2.2183

To find the standard errors we used

> J <- matrix(c(-1/g[1]^2, -g[2]/g[1]^2, 0, 1/g[1]), 2, 2)
> J %*% vcov(storm.gm) %*% t(J)

[,1] [,2]
[1,] 0.83820 -0.56055
[2,] -0.56055 0.44292

Note that to achieve agreement to this accuracy we had to tighten the convergence
criteria for the glm fit by setting eps=1.0e-10 . With the default convergence
criteria there is agreement to about 3 significant digits.
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8.4. [ From the First Edition. ]
We fit the model using the stable parametrization. Good initial values are always
easy to find by estimating the mean at the required points by an approximating
linear model.

> stab <- deriv3(~ ((u0*u2-u1^2) +
(u0-u1)^2 *((u1-u2)/(u0-u1))^((x-40)/80))/(u0-2*u1+u2),
c("u0","u1","u2"), function(x, u0, u1, u2) NULL)

> mu <- predict(lm(Weight ~ Days+Days^2, data=wtloss),
newdata=data.frame(Days=c(40,120,200)))

> names(mu) <- paste("u", 0:2, sep="")
> wtloss.st <- nls(Weight ~ stab(Days, u0, u1, u2),

start=mu, data=wtloss, trace=T)
43.3655 : 166.18 138.526 119.742
39.2447 : 165.834 138.515 120.033
> rms.curv(wtloss.st)
Parameter effects: c^theta x sqrt(F) = 0.0101

Intrinsic: c^iota x sqrt(F) = 0.0101

> summary(wtloss.st)$correlation
u0 u1 u2

u0 1.00000 0.43675 -0.11960
u1 0.43675 1.00000 0.25806
u2 -0.11960 0.25806 1.00000
> plot(profile(wtloss.st))

8.9. Some of the children were tested at more than one age, so first we generate
unique IDs for each experiment.

aa <- factor(OME$Age)
ab <- 10*OME$ID + unclass(aa)
ac <- unclass(factor(ab))
OME <- OME
OME$UID <- as.vector(ac)
OME$UIDn <- OME$UID + 0.1*(OME$Noise=="incoherent")
rm(aa, ab, ac)

Our first model is least-squares fitting to the success probabilities.

fp1 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/scal)),
c("L75", "scal"),
function(x,L75,scal) NULL)

The effective range of a logistic is about ±3 times scal , so by inspecting the data
we can choose initial values of L75 as 45 and scal as 3. It seems appropriate to
analyse the two types of noise stimulus separately, at least initially.

> nls(Correct/Trials ~ fp1(Loud, L75, scal),
data=OME[OME$Noise=="coherent",],
start=c(L75=45, scal=3))
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L75 scal
47.993 1.2594

> nls(Correct/Trials ~ fp1(Loud, L75, scal),
data=OME[OME$Noise=="incoherent",],
start=c(L75=45, scal=3))

L75 scal
38.866 2.1702

This suggests fixing on scal = 2 , and fitting a separate L75 for each experi-
ment3. We used nlsList , and allow that a small proportion of fits will fail.

OMEi <- OME
fp2 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/2)),

"L75", function(x,L75) NULL)
OMEi.nls <- nlsList(Correct/Trials ~ fp2(Loud, L75) | UIDn,

data = OMEi, start=list(L75=45), control = list(maxiter=100))
tmp <- sapply(OMEi.nls, function(X)

{if(is.null(X)) NA else as.vector(coef(X))})
OMEif <- data.frame(UID = round(as.numeric((names(tmp)))),

Noise = rep(c("coherent", "incoherent"), 110),
L75 = as.vector(tmp))

OMEif$Age <- OME$Age[match(OMEif$UID, OME$UID)]
OMEif$OME <- OME$OME[match(OMEif$UID, OME$UID)]
OMEif <- OMEif[OMEif$L75 > 30,]

This provides a data frame of the result of each experiment to which we can apply
standard linear models. (The precise results will vary by platform, and it may be
necessary to exclude ‘silly’ values such as −39 dB.) For example, we can consider
if L75 varies linearly with Age by

options(contrasts=c("contr.treatment", "contr.poly"))
summary(lm(L75 ~ Noise/Age, data=OMEif, na.action=na.omit))

and if the OME groups (only defined at ages 30 and 60 months) differ by

summary(lm(L75 ~ Noise/(Age + OME), data=OMEif,
subset=Age >=30 & Age <= 60,
na.action=na.omit, singular.ok=T), cor=F)

The analysis so far does not take the varying number of trials into account.
We can do a weighted least-squares analysis by, for example

fpl75 <-
deriv(~ sqrt(n)*(r/n - 0.5 - 0.5/(1 + exp(-(x-L75)/scal))),

c("L75", "scal"), function(r,n,x,L75,scal) NULL)
nls(0 ~ fpl75(Correct, Trials, Loud, L75, scal),

data=OME[OME$Noise=="coherent",],
start=c(L75=45, scal=3))

3 In principle it would be better to fit a combined nls model with a separate L75
for each level of UIDn and a common value of scal . This can be specified by
Correct/Trials ~0.5 +0.5/(1 + exp(-(Loud - L75[UIDn])/scal)) but failed to converge.
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L75 scal
47.798 1.2962

nls(0 ~ fpl75(Correct, Trials, Loud, L75, scal),
data=OME[OME$Noise=="incoherent",],
start=c(L75=45, scal=3))
L75 scal

38.553 2.0781

fpl75age <- deriv(~ sqrt(n)*(r/n - 0.5 - 0.5/
(1 + exp(-(x-L75-slope*age)/scal))),

c("L75", "slope", "scal"),
function(r,n,x,age,L75,slope,scal) NULL)

OME.nls1 <- nls(0 ~ fpl75age(Correct, Trials, Loud, Age,
L75, slope, scal),

data=OME[OME$Noise=="coherent",],
start=c(L75=45, slope=0, scal=2))
L75 slope scal

48.682 -0.028716 1.2596
OME.nls1
sqrt(diag(vcov(OME.nls1)))
[1] 0.61093 0.01666 0.17565

OME.nls2 <-nls(0 ~ fpl75age(Correct, Trials, Loud, Age,
L75, slope, scal),

data=OME[OME$Noise=="incoherent",],
start=c(L75=45, slope=0, scal=2))

OME.nls2
L75 slop scal

41.73 -0.10006 1.9796
sqrt(diag(vcov(OME.nls2)))
[1] 0.495592 0.013484 0.244558

and similarly for the individual fits. It would also be possible to extract standard
errors for the individual L75 estimates from the results of nlsList .

Non-linear mixed effects models

We have to use the expanded data frame OMEf , as it is not sensible to weight
mixed models. We can generate most of the data frame using answer 2.5, by

OMEf <- OME[rep(1:nrow(OME), OME$Trials),]

To generate the Resp column is slightly trickier: we used

attach(OME)
OMEf$Resp <- unlist(lapply(1:length(Trials), function(i)

c(rep(1, Correct[i]), rep(0, Trials[i] - Correct[i]))))
OMEf <- OMEf[, -match(c("Correct", "Trials"), names(OMEf))]
detach()

It is possible to fully vectorize this, for example by
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OMEf$Resp <- rep(rep(c(1,0), length(Trials)),
t(cbind(Correct, Trials-Correct)))

where the matrix transpose is a ‘trick’ to interleave the two vectors. This approach
is significantly faster (0.03 secs versus 2 secs on a Sun Ultra 1/170), but the
thinking time was much longer.

We change the parametrization of scal to ensure it remains positive: we
allow a random effect on log scale for this parameter. The following fits take a
long time, and the precise answers vary by version of NLME and platform, and
they may not converge at all.

fp2 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/exp(lsc))),
c("L75", "lsc"),
function(x, L75, lsc) NULL)

G1.nlme <- nlme(Resp ~ fp2(Loud, L75, lsc),
fixed = list(L75 ~ Age, lsc ~ 1),
random = L75 + lsc ~ 1 | UID,
data=OMEf[OMEf$Noise=="coherent",], method="ML",
start = list(fixed=c(L75=c(48, -0.03), lsc=0)), verbose=T)

summary(G1.nlme)
....

Random effects:
Formula: list(L75 ~ 1, lsc ~ 1)
Level: UID
Structure: General positive-definite

StdDev Corr
L75.(Intercept) 1.64019 L75.(I

lsc 0.55130 -1
Residual 0.40576

Fixed effects: list(L75 ~ Age, lsc ~ 1)
Value Std.Error DF t-value p-value

L75.(Intercept) 48.121 0.66170 2141 72.723 <.0001
L75.Age -0.025 0.01945 2141 -1.303 0.1927

lsc 0.267 0.15068 2141 1.773 0.0764

G2.nlme <- nlme(Resp ~ fp2(Loud, L75, lsc),
fixed = list(L75 ~ Age, lsc ~ 1),
random = L75 + lsc ~ 1 | UID,
data=OMEf[OMEf$Noise=="incoherent",], method="ML",

start = list(fixed=c(L75=c(41, -0.1), lsc=0)), verbose=T)
summary(G2.nlme)

....
Random effects:
Formula: list(L75 ~ 1, lsc ~ 1)
Level: UID
Structure: General positive-definite

StdDev Corr
L75.(Intercept) 2.168615106 L75.(I

lsc 0.002344956 0.065
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Residual 0.317758632

Fixed effects: list(L75 ~ Age, lsc ~ 1)
Value Std.Error DF t-value p-value

L75.(Intercept) 41.748 1.436 1831 29.068 0.000
L75.Age -0.111 0.064 1831 -1.736 0.083

lsc -9.377 1382.389 1831 -0.007 0.995

The results are remarkably similar to those by weighted least squares. In the case
of G2.nlme this is not surprising as the estimates of the variances of the random
effects are effectively zero. For G1.nlme the variances are reasonable but the
estimate of the correlation is −1 . For G2.nlme it seems clear that the scale is
effectively not estimable.

8.10. Let us write the gamma density as

f(x;λ, α) = λαxα−1e−λx/Γ(α) on [0,∞)

Then the log-likelihood is

L(λ, α) =
∑
i

[
α log λ+ (α− 1) log xi − λxi − log Γ(α)

]
Reasonable initial estimates are given by the moment estimators µ = α/λ, σ2 =
α/λ2 so λ̂ = x/s2, α̂ = x2/s2 . Thus a first approach might be

gamma.mle0 <- function(x)
{
nloglik <- function(theta, x)

- (theta[2] - 1)*sum(log(x)) + theta[1]*sum(x) -
length(x) * (theta[2]*log(theta[1]) - lgamma(theta[2]))

xbar <- mean(x)
lambda0 <- xbar/var(x); alpha0 <- xbar*lambda0
res <- nlminb(c(lambda0, alpha0), nloglik, lower=c(0,0), x=x)
list(lambda = res$par[1], alpha = res$par[2],

loglik = -res$objective)
}

Such a function has been posted to S-news, but it can be improved in a number
of ways. The sufficient statistic (

∑
xi,
∑

log xi) is computed many times. The
range for the parameters is not really [0,∞) but (0,∞) , and we would do better
to take θ = (eλ, eα) ; at the very least we should give a lower limit at which
nloglik can be evaluated. We could use gradient information in the calculation,
but if we compute derivatives we find λ̂ = α/x for given α , so we can reduce
the problem to maximizing

L(λ̂(α), α) = nα logα/x+ (α− 1)
∑

log xi − nα2/x− n log Γ(α)

We can easily find the derivative, but for one-dimensional optimization problems
it is not particularly helpful, and optimize cannot make use of it.
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gamma.mle1 <- function(x)
{
nloglik <- function(alpha, n, xbar, st)

-(n*alpha*log(alpha/xbar) + (alpha - 1)*st
- n*alpha - n*lgamma(alpha))

xbar <- mean(x); n <- length(x); st <- sum(log(x))
alpha0 <- xbar^2/var(x)
res <- optimize(nloglik, lower=alpha0/3, upper=alpha0*3,

n=n, xbar=xbar, st=st)
alpha <- res$min
list(lambda = alpha/xbar, alpha = alpha,

loglik = -res$objective)
}

We minimize minus the log likelihood because optimize does not work correctly
when maximizing in S-PLUS 3.x.

> set.seed(123)
> xg <- rgamma(500, 1.4)
> unix.time(gamma.mle0(xg))
[1] 5.34 0.20 6.00 0.00 0.00
> unix.time(gamma.mle1(xg))
[1] 0.75 0.09 1.00 0.00 0.00
> gamma.mle1(xg)
$lambda:
[1] 0.93358
$alpha:
[1] 1.3737
$loglik:
[1] -678.95

An alternative approach using a Newton algorithm is given in the function
gamma.shape.glm in library MASS .

Chapter 13

13.1. From the First and Second Editions:

> dacc <- diff(accdeaths, 12)
> ts.plot(dacc)
> acf(dacc, 30)
> acf(dacc, 30, "partial")
> ddacc <- diff(dacc)
> ts.plot(ddacc)
> acf(ddacc, 30)
> acf(ddacc, 30, "partial")
> ddacc.1 <- arima.mle(ddacc-mean(ddacc),
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model=list(list(order=c(0,0,1)),
list(order=c(0,0,1), period=12)))

$model[[1]]$ma:
[1] 0.48834
$model[[2]]$ma:
[1] 0.58534
$aic:
[1] 852.72
$loglik:
[1] 848.72
$sigma2:
[1] 94629
> sqrt(diag(ddacc.1$var.coef))
[1] 0.11361 0.10556
> ddacc.2 <- arima.mle(ddacc-mean(ddacc),

model=list(order=c(0,0,13),
ma.opt=c(T,F,F,F,F,T,F,F,F,F,F,T,T)),
max.iter=50, max.fcal=100)

$model$ma:
[1] 0.60784 0.00000 0.00000 0.00000 0.00000 0.41119
[7] 0.00000 0.00000 0.00000 0.00000 0.00000 0.67693

[13] -0.47260
$aic:
[1] 869.85
$loglik:
[1] 843.85
$sigma2:
[1] 70540
> sqrt(diag(ddacc.2$var.coef))
[1] 0.11473 0.10798 0.10798 0.10798 0.10798 0.10798 0.12052
[8] 0.10798 0.10798 0.10798 0.10798 0.10798 0.11473

The plots (Figure 13.1) suggest the use of ∇∇12X , and this has a non-zero mean.
The first model fitted is

∇∇12X = 28.83 + (1− 0.488B)(1− 0.585B12)ε

and the second model comes from selecting promising non-zero terms in a general
MA(13) process, as

∇∇12X = 28.83 + (1− 0.608B − 0.411B6 − 0.677B12 + 0.473B13)ε

Note that the AIC is wrong; it should be 851.85 as there are parameters set to
zero (although this does not allow for selection). This fit illustrates the ability
to constrain coefficients in an ARIMA fit. That standard errors are returned for
zero parameters suggests that the standard errors are wrong. Standard likelihood
theory suggests deleting rows from the inverse of the information matrix:

> dd.VI <- solve(ddacc.2$var.coef)
> sqrt(diag(
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Figure 13.1: Seasonally differenced (top row) and then differenced (bottom row) versions
of the accidental deaths series accdeath with ACF and PACF plots.

solve(dd.VI[ddacc.2$model$ma.opt,ddacc.2$model$ma.opt])
))

[1] 0.096691 0.085779 0.094782 0.095964

which shows the power of the S language.

13.2. We start by creating the quarterly percentage differences. Fitting by
ar suggests that AR(4) and AR(6) models are almost equally good. Thus
we try fractional differencing without an AR component and with AR(4) and
AR(6) components. Unfortunately the likelihoods are not comparable between
arima.mle and arima.fracdiff , and it seems the latter cannot be used with
a specified degree d of (fractional) differencing. Since with the fractional
ARIMA(6,d ,0) model the estimate d̂ ≈ 0 we can guess that AR(6) has AIC
approximately −2 × 122.7 + 2 × 6 = −233.4 and the I(d ) has an AIC of
−2 × 116.47 + 2 = −231.1 . Thus we would choose the ARIMA(6,0,0) model.
This differs from the conclusions of Brockwell & Davis (1996), but with such a
short series end-effects may be important.

> y <- diff(austres)/austres * 100
> ar(y)
$order:
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[1] 6

$ar:
[,1]

[1,] 0.422690
[2,] 0.081845
[3,] 0.124695
[4,] 0.232673
[5,] -0.016759
[6,] -0.199008

$var.pred:
[,1]

[1,] 0.0040826

$aic:
[1] 30.89342 1.77094 2.48377 1.45398 0.53235 1.55605
[7] 0.00000 1.94228 3.26542 5.07989 5.44845 6.32720

[13] 8.13424 6.68541 5.62113 7.61780 9.52565 11.23940
[19] 13.23219 14.39861

> arima.mle(y-mean(y), model=list(ar=rep(0,6)), n.cond=6)$aic
[1] -218.41
> arima.mle(y-mean(y), model=list(ar=rep(0,4)), n.cond=6)$aic
[1] -218.31
> arima.mle(y-mean(y), model=list(ar=0), n.cond=6)$aic
[1] -215.28

> arima.fracdiff(y-mean(y), model=list(d=0, ar=rep(0,6)))
$model:
$model$d:
[1] 4.583e-05

$model$ar:
[1] 0.3964324 0.1059762 0.1618604 0.2528531 -0.0094455
[6] -0.2029133

....
$loglik:
[1] 122.7

> arima.fracdiff(y-mean(y), model=list(d=0))
$model:
$model$d:
[1] 0.43245

....
$loglik:
[1] 116.47
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13.4. We treat the AR(1) model as a simultaneous spatial autoregression (SAR)
although it could also be handled as a conditional autoregression (CAR) process.
Note that unlike arima.mle this computes an exact (not conditional) likelihood.

module(spatial)
beav2.nbr1 <- spatial.neighbor(2:100, 1:99, nregion=100)
slm(temp ~ activ, data = beav2, cov.family = SAR,

spatial.arglist = list(neighbor=beav2.nbr1))
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 36.586 0.126 290.197 0.000

activ 0.476 0.126 3.774 0.000
rho = 0.99521
Residual standard error: 0.12621 on 97 degrees of freedom

slm(temp ~ activ, data = beav2, subset = 6:100,
cov.family = SAR,
spatial.arglist = list(neighbor=beav2.nbr1))

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 37.252 0.082 453.049 0.000
activ 0.596 0.094 6.322 0.000

rho = 0.849
Residual standard error: 0.12067 on 92 degrees of freedom
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