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Assignment 1 2017 Model Answer 
 
Question 1 

 
You got full marks if you identified two applications, gave a reasonable precis 
of your source, and identified your source. 
 
Question 2 

 
Using linear regression, construct a formula for predicting the price of a house 
from the other variables. 
 
Our first step is to read in the data and think about possible data 
manipulations. 
 
infile = "C:\\Users\\alee044\\Documents\\Teaching\\784\\Assignments\\Ass 
1\\kc_house_data.csv" 
housing.df = read.csv(infile, header=TRUE) 

 
Comments on the variables: 
 

1. We can ignore the ID 
2. The actual date is not very important. We will extract the year and 

month from the date, which using the above code is read in as a string 
like 20141013T000000, and treat them as factors. 

3. We will combine the sale date and the information on when the house 
was built and when (if at all) it was renovated) into a single variable age. 

4. We will combine the house and basement areas into one, and create a 
binary variable indicating if the house has a basement. 

5. We will turn year, month and view into factors. 
6. It is not necessary to convert numeric binary variables into factors. 
7. Zip must be as a factor. 

 
The following code does all this and assembles the resulting variables into a 
new data frame. 
 
# feature engineering 
 
year = substr(as.character(housing.df$date),1,4) 
month = substr(as.character(housing.df$date),5,6) 
age = ifelse(housing.df$yr_renovated==0,  
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     as.numeric(Year) - housing.df$yr_built, 
     as.numeric(Year) - housing.df$yr_renovated) 
totalArea = housing.df$sqft_above + housing.df$sqft_basement 
basement = (housing.df$sqft_basement==0)*1 # make it numeric 
 
new.housing.df = data.frame(housing.df[,c(3,4,5,8,9,11,18,19,20,21)], 
     view = factor(housing.df$view), year=factor(year),month=factor(month), 
age=age,totalArea=totalArea,basement=basement, zip = factor(housing.df$zip)) 

  
Next we check for missing values: 
 
> apply(new.housing.df,2, function(x)sum(is.na(x))) 
        price      bedrooms     bathrooms        floors    waterfront     condition  
            0             0             0             0             0             0  
          lat          long sqft_living15    sqft_lot15          view          year  
            0             0             0             0             0             0  
        month           age     totalArea      basement           zip  
            0             0             0             0             0 
There are none. 
 
Finally, lets see if we should transform the response. We plot histograms of 
price and log price: 
 
par(mfrow=c(1,2)) 
hist(new.housing.df$price, main = "price") 
hist(log(new.housing.df$price), main = "log price") 

 

 
 
Seems like a log is indicated. Next we fit the model: 
 
lm.fit = lm(log(price)~., data=new.housing.df) 
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All the variables are significant (not surprising with a large sample size) so the 
full model will probably be the best predictor. 
 
We will use the subset selection functions to find the subset with smallest PE. 
 
 
Let’s do some variable selection to see if we need all the variables: 
 
null.fit = lm(log(price)~1, data=new.housing.df) 
step(null.fit, formula(lm.fit), direction="forward") 
step(lm.fit, formula(lm.fit), direction="back") 
 

On the basis of the outputs from these functions ( not shown) , it seems like 
the full model will be the best predictor.  
 
 

Calculate estimates of prediction error for your predictor using the R330 
functions cross.val and err.boot, as well as the functions crossval and bootpred 
in the bootstrap package, and the function train in the caret package. 
 
How accurate do you think your estimates are? 
 
 
# measurement of PE 
> library(R330) 
> library(bootstrap) 
> library(caret) 
 

First, cross-validation: 
 
> # R330 functions 
> cross.val(lm.fit, nfold=10, nrep=20) 
Cross-validated estimate of root  
mean square prediction error =  0.1948888 
> cross.val(lm.fit, nfold=5, nrep=20) 
Cross-validated estimate of root  
mean square prediction error =  0.194966 
 
 
> caret functions 
> train(log(price)~., data=new.housing.df, 
 method = "lm", # you get this from the website 
 trControl = trainControl(method="cv", number=10, 
 repeats=20))   
 
Resampling results 
 
  RMSE       Rsquared   RMSE SD      Rsquared SD 
  0.1947732  0.8633441  0.004343356  0.007098211 
 
train(log(price)~., data=new.housing.df, 
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 method = "lm", # you get this from the website 
 trControl = trainControl(method="cv", number=5, 
 repeats=20)) 
Resampling results 
 
  RMSE       Rsquared   RMSE SD      Rsquared SD 
  0.1950162  0.8630575  0.004754068  0.003237339 
 
# boostrap functions 
theta.fit <- function(x,y){lsfit(x,y)} 
theta.predict <- function(fit,x){cbind(1,x)%*%fit$coef} 
sq.err <- function(y,yhat) { (y-yhat)^2} 
 
y =log(new.housing.df[,1]) 
x = model.matrix(lm.fit)[,-1] # see comment below 
 
# repeat 20 times 
N=20 
cv10Vec = numeric(N) 
for(i in (1:N)){ 
  cv10Errs = crossval(x,y, theta.fit, theta.predict,ngroup=10) 
  cv10Vec[i] = mean((y-cv10Errs$cv.fit)^2) 
} 
mean(cv10Vec) 
[1] 0.03798151 
 
# repeat 20 times 
N=20 
cv5Vec = numeric(N) 
for(i in (1:N)){ 
  cv5Errs = crossval(x,y, theta.fit, theta.predict,ngroup=5) 
  cv5Vec[i] = mean((y-cv5Errs$cv.fit)^2) 
} 
mean(cv5Vec) 
[1] 0.03799834 

 
 
 
 
 
 
Now the bootstrap 
 
#  bootstrap with 50 reps 
 
# R330 
 
err.boot(lm.fit, B=50) 
 
$err 
[1] 0.0375622 
 
$Err 
[1] 0.03820315 
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# caret 
 
train(log(price)~., data=new.housing.df, 
 method = "lm", # you get this from the website 
 trControl = trainControl(method="boot", repeats=50))  
 
Resampling results 
 
  RMSE       Rsquared   RMSE SD      Rsquared SD 
  0.1954108  0.8620392  0.002740157  0.004396371 
 
 
train(log(price)~., data=new.housing.df, 
 method = "lm", # you get this from the website 
 trControl = trainControl(method="boot632", repeats=50)) 
 
Resampling results 
 
  Rsquared SD 
  0.194636  0.8638792  0.002064829  0.003101573 
 
# Bootstrap package 
 
> boot = bootpred(x,y,nboot=50, theta.fit, theta.predict, 
+  err.meas=sq.err) 
 
 
> boot 
[[1]] 
[1] 0.0375622 
 
[[2]] 
[1] 0.0004536646 
 
[[3]] 
[1] 0.03793542 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
How accurate do you think your estimates are? 
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The table below gives a summary of the results: 
 

 R330 bootstrap caret 
CV5 0.03801 0.03700 0.03803 
CV10 0.03798 0.03798 0.03793 
Err+opt 0.03820 0.03801 0.03819 
632 - 0.03793 0.03788 

 
 
The results are very consistent, an estimated prediction error of around 0.038. 
 
Points to note: 
 

1. The bootpred function in the bootstrap package is very slow. 
 

2. The crossval function in the bootstrap package is a bit tricky to use: the 
input x has to be a numeric matrix of all the variables, including dummy 
variables generated by the factors, but excluding the column if 1`s 
corresponding to the intercept. It can be calculated using the 
model.matrix function, but you have to remove the column of ones. 
 

3. With such a big sample size (relative to the number of variables) the 
training error 0.0375622 is not too optimistic. 

 
 

- 
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